/*-
* Copyright (c) 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas of 3am Software Foundry.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#define _ARM32_BUS_DMA_PRIVATE
#define PCIE_PRIVATE
#include "locators.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: bcm53xx_pax.c,v 1.22 2021/08/07 16:18:43 thorpej Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/kmem.h>
#include <sys/systm.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pciconf.h>
#include <arm/locore.h>
#include <arm/broadcom/bcm53xx_reg.h>
#include <arm/broadcom/bcm53xx_var.h>
#ifndef __HAVE_PCI_CONF_HOOK
#error __HAVE_PCI_CONF_HOOK must be defined
#endif
static const struct {
paddr_t owin_base;
psize_t owin_size;
} bcmpax_owins[] = {
[0] = { BCM53XX_PCIE0_OWIN_PBASE, BCM53XX_PCIE0_OWIN_SIZE },
[1] = { BCM53XX_PCIE1_OWIN_PBASE, BCM53XX_PCIE1_OWIN_SIZE },
[2] = { BCM53XX_PCIE2_OWIN_PBASE, BCM53XX_PCIE2_OWIN_SIZE },
};
static int bcmpax_ccb_match(device_t, cfdata_t, void *);
static void bcmpax_ccb_attach(device_t, device_t, void *);
struct bcmpax_intrhand {
TAILQ_ENTRY(bcmpax_intrhand) ih_link;
int (*ih_func)(void *);
void *ih_arg;
int ih_ipl;
};
TAILQ_HEAD(bcmpax_ihqh, bcmpax_intrhand);
struct bcmpax_softc {
device_t sc_dev;
bus_space_tag_t sc_bst;
bus_space_handle_t sc_bsh;
bus_dma_tag_t sc_dmat;
kmutex_t *sc_lock;
kmutex_t *sc_cfg_lock;
bool sc_linkup;
int sc_pba_flags;
uint32_t sc_intrgen;
struct arm32_pci_chipset sc_pc;
struct bcmpax_ihqh sc_intrs;
void *sc_ih[6];
int sc_port;
};
static inline uint32_t
bcmpax_read_4(struct bcmpax_softc *sc, bus_size_t o)
{
return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
}
static inline void
bcmpax_write_4(struct bcmpax_softc *sc, bus_size_t o, uint32_t v)
{
bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
}
static void bcmpax_attach_hook(device_t, device_t, struct pcibus_attach_args *);
static int bcmpax_bus_maxdevs(void *, int);
static pcitag_t bcmpax_make_tag(void *, int, int, int);
static void bcmpax_decompose_tag(void *, pcitag_t, int *, int *, int *);
static pcireg_t bcmpax_conf_read(void *, pcitag_t, int);
static void bcmpax_conf_write(void *, pcitag_t, int, pcireg_t);
static int bcmpax_intr_map(const struct pci_attach_args *, pci_intr_handle_t *);
static const char *bcmpax_intr_string(void *, pci_intr_handle_t, char *, size_t);
static const struct evcnt *bcmpax_intr_evcnt(void *, pci_intr_handle_t);
static void *bcmpax_intr_establish(void *, pci_intr_handle_t, int,
int (*)(void *), void *, const char *);
static void bcmpax_intr_disestablish(void *, void *);
static int bcmpax_conf_hook(void *, int, int, int, pcireg_t);
static void bcmpax_conf_interrupt(void *, int, int, int, int, int *);
static int bcmpax_intr(void *);
CFATTACH_DECL_NEW(bcmpax_ccb, sizeof(struct bcmpax_softc),
bcmpax_ccb_match, bcmpax_ccb_attach, NULL, NULL);
static int
bcmpax_ccb_match(device_t parent, cfdata_t cf, void *aux)
{
struct bcmccb_attach_args * const ccbaa = aux;
const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
if (strcmp(cf->cf_name, loc->loc_name))
return 0;
#ifdef DIAGNOSTIC
const int port = cf->cf_loc[BCMCCBCF_PORT];
#endif
KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
return 1;
}
static int
bcmpax_iwin_init(struct bcmpax_softc *sc)
{
#if 0
uint32_t megs = (physical_end + 0xfffff - physical_start) >> 20;
uint32_t iwin_megs = uimin(256, megs);
#if 1
bus_addr_t iwin1_start = physical_start;
#else
bus_addr_t iwin1_start = 0;
#endif
#if 1
bcmpax_write_4(sc, PCIE_IARR_1_LOWER, iwin1_start | uimin(megs, 128));
bcmpax_write_4(sc, PCIE_FUNC0_IMAP1, iwin1_start | 1);
#else
bcmpax_write_4(sc, PCIE_FUNC0_IMAP1, iwin1_start | uimin(megs, 128));
bcmpax_write_4(sc, PCIE_IARR_1_LOWER, iwin1_start | 1);
#endif
bcmpax_conf_write(sc, 0, PCI_MAPREG_START+4, iwin1_start);
if (iwin_megs > 128) {
bus_addr_t iwin2_start = iwin1_start + 128*1024*1024;
#if 1
bcmpax_write_4(sc, PCIE_IARR_2_LOWER, iwin2_start | uimin(megs - 128, 128));
bcmpax_write_4(sc, PCIE_FUNC0_IMAP2, iwin2_start | 1);
#else
bcmpax_write_4(sc, PCIE_FUNC0_IMAP2, iwin2_start | uimin(megs - 128, 128));
bcmpax_write_4(sc, PCIE_IARR_2_LOWER, iwin2_start | 1);
#endif
bcmpax_conf_write(sc, 0, PCI_MAPREG_START+8, iwin2_start);
}
if (megs <= iwin_megs) {
/*
* We could can DMA to all of memory so we don't need to subregion!
*/
return 0;
}
return bus_dmatag_subregion(sc->sc_dmat, physical_start,
physical_start + (iwin_megs << 20) - 1, &sc->sc_dmat, 0);
#else
bcmpax_write_4(sc, PCIE_IARR_1_LOWER, 0);
bcmpax_write_4(sc, PCIE_FUNC0_IMAP1, 0);
bcmpax_write_4(sc, PCIE_IARR_2_LOWER, 0);
bcmpax_write_4(sc, PCIE_FUNC0_IMAP2, 0);
return 0;
#endif
}
static void
bcmpax_ccb_attach(device_t parent, device_t self, void *aux)
{
struct bcmpax_softc * const sc = device_private(self);
struct bcmccb_attach_args * const ccbaa = aux;
const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
cfdata_t cf = device_cfdata(self);
sc->sc_dev = self;
sc->sc_dmat = &bcm53xx_coherent_dma_tag;
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
if (cf->cf_flags & 2) {
sc->sc_dmat = &bcm53xx_bounce_dma_tag;
}
#endif
sc->sc_bst = ccbaa->ccbaa_ccb_bst;
bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
loc->loc_offset, loc->loc_size, &sc->sc_bsh);
/*
* Kick the hardware into RC mode.
*/
bcmpax_write_4(sc, PCIE_CLK_CONTROL, 3);
delay(250);
bcmpax_write_4(sc, PCIE_CLK_CONTROL, 1);
uint32_t v = bcmpax_read_4(sc, PCIE_STRAP_STATUS);
const bool enabled = (v & STRAP_PCIE_IF_ENABLE) != 0;
const bool is_v2_p = (v & STRAP_PCIE_USER_FOR_CE_GEN1) == 0;
const bool is_x2_p = (v & STRAP_PCIE_USER_FOR_CE_1LANE) == 0;
const bool is_rc_p = (v & STRAP_PCIE_USER_RC_MODE) != 0;
aprint_naive("\n");
aprint_normal(": PCI Express V%u %u-lane %s Controller%s\n",
is_v2_p ? 2 : 1,
is_x2_p ? 2 : 1,
is_rc_p ? "RC" : "EP",
enabled ? "" : "(disabled)");
if (!enabled || !is_rc_p)
return;
sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
sc->sc_cfg_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
TAILQ_INIT(&sc->sc_intrs);
sc->sc_pc.pc_conf_v = sc;
sc->sc_pc.pc_attach_hook = bcmpax_attach_hook;
sc->sc_pc.pc_bus_maxdevs = bcmpax_bus_maxdevs;
sc->sc_pc.pc_make_tag = bcmpax_make_tag;
sc->sc_pc.pc_decompose_tag = bcmpax_decompose_tag;
sc->sc_pc.pc_conf_read = bcmpax_conf_read;
sc->sc_pc.pc_conf_write = bcmpax_conf_write;
sc->sc_pc.pc_intr_v = sc;
sc->sc_pc.pc_intr_map = bcmpax_intr_map;
sc->sc_pc.pc_intr_string = bcmpax_intr_string;
sc->sc_pc.pc_intr_evcnt = bcmpax_intr_evcnt;
sc->sc_pc.pc_intr_establish = bcmpax_intr_establish;
sc->sc_pc.pc_intr_disestablish = bcmpax_intr_disestablish;
sc->sc_pc.pc_conf_hook = bcmpax_conf_hook;
sc->sc_pc.pc_conf_interrupt = bcmpax_conf_interrupt;
sc->sc_pba_flags |= PCI_FLAGS_MRL_OKAY;
sc->sc_pba_flags |= PCI_FLAGS_MRM_OKAY;
sc->sc_pba_flags |= PCI_FLAGS_MWI_OKAY;
// sc->sc_pba_flags |= PCI_FLAGS_MSI_OKAY;
// sc->sc_pba_flags |= PCI_FLAGS_MSIX_OKAY;
for (size_t i = 0; i < loc->loc_nintrs; i++) {
sc->sc_ih[i] = intr_establish(loc->loc_intrs[0] + i, IPL_VM,
IST_LEVEL, bcmpax_intr, sc);
if (sc->sc_ih[i] == NULL) {
aprint_error_dev(self,
"failed to establish interrupt #%zu (%zu)\n", i,
loc->loc_intrs[0] + i);
while (i-- > 0) {
intr_disestablish(sc->sc_ih[i]);
}
return;
}
}
aprint_normal_dev(self, "interrupting on irqs %d-%d\n",
loc->loc_intrs[0], loc->loc_intrs[0] + loc->loc_nintrs - 1);
/*
* Enable INTA-INTD
*/
bcmpax_write_4(sc, PCIE_SYS_RC_INTX_EN, 0x0f);
int offset;
const bool ok = pci_get_capability(&sc->sc_pc, 0, PCI_CAP_PCIEXPRESS,
&offset, NULL);
KASSERT(ok);
/*
* This will force the device to negotiate to a max of gen1.
*/
if (cf->cf_flags & 1) {
bcmpax_conf_write(sc, 0, offset + PCIE_LCSR2, 1);
}
/*
* Now we wait (.25 sec) for the link to come up.
*/
offset += PCIE_LCSR;
for (size_t timo = 0;; timo++) {
const pcireg_t lcsr = bcmpax_conf_read(sc, 0, offset);
sc->sc_linkup = __SHIFTOUT(lcsr, PCIE_LCSR_NLW) != 0
&& (1 || (lcsr & PCIE_LCSR_DLACTIVE) != 0);
if (sc->sc_linkup || timo == 250) {
aprint_debug_dev(self,
"lcsr=%#x nlw=%jd linkup=%d, timo=%zu\n",
lcsr, __SHIFTOUT(lcsr, PCIE_LCSR_NLW),
sc->sc_linkup, timo);
break;
}
DELAY(1000);
}
if (sc->sc_linkup) {
/*
* Enable the inbound (device->memory) map.
*/
int error = bcmpax_iwin_init(sc);
if (error) {
aprint_error_dev(sc->sc_dev,
"failed to subregion dma tag: %d\n", error);
return;
}
aprint_normal_dev(self, "iwin[1]=%#x/%#x iwin[2]=%#x/%#x\n",
bcmpax_read_4(sc, PCIE_FUNC0_IMAP1),
bcmpax_read_4(sc, PCIE_IARR_1_LOWER),
bcmpax_read_4(sc, PCIE_FUNC0_IMAP2),
bcmpax_read_4(sc, PCIE_IARR_2_LOWER));
paddr_t base = bcmpax_owins[loc->loc_port].owin_base;
psize_t size = bcmpax_owins[loc->loc_port].owin_size;
KASSERT((size & ~PCIE_OARR_ADDR) == 0);
if (size > 0) {
bcmpax_write_4(sc, PCIE_OARR_0, base);
bcmpax_write_4(sc, PCIE_OMAP_0_LOWER, base | 1);
}
if (size > __LOWEST_SET_BIT(PCIE_OARR_ADDR)) {
paddr_t base1 = base + __LOWEST_SET_BIT(PCIE_OARR_ADDR);
bcmpax_write_4(sc, PCIE_OARR_1, base1);
bcmpax_write_4(sc, PCIE_OMAP_1_LOWER, base1 | 1);
}
struct pciconf_resources *pcires = pciconf_resource_init();
pciconf_resource_add(pcires, PCICONF_RESOURCE_MEM,
base, size);
error = pci_configure_bus(&sc->sc_pc, pcires,
0, arm_pcache.dcache_line_size);
pciconf_resource_fini(pcires);
if (error) {
aprint_normal_dev(self, "configuration failed\n");
return;
}
}
struct pcibus_attach_args pba;
memset(&pba, 0, sizeof(pba));
pba.pba_flags = sc->sc_pba_flags;
pba.pba_flags |= PCI_FLAGS_MEM_OKAY;
pba.pba_memt = sc->sc_bst;
pba.pba_dmat = sc->sc_dmat;
pba.pba_pc = &sc->sc_pc;
pba.pba_bus = 0;
config_found(self, &pba, pcibusprint, CFARGS_NONE);
}
static void
bcmpax_attach_hook(device_t parent, device_t self,
struct pcibus_attach_args *pba)
{
}
static int
bcmpax_bus_maxdevs(void *v, int bus)
{
struct bcmpax_softc * const sc = v;
if (__predict_true(sc->sc_linkup))
return bus > 1 ? 32 : 1;
return bus ? 0 : 1;
}
static void
bcmpax_decompose_tag(void *v, pcitag_t tag, int *busp, int *devp, int *funcp)
{
if (busp)
*busp = __SHIFTOUT(tag, CFG_ADDR_BUS);
if (devp)
*devp = __SHIFTOUT(tag, CFG_ADDR_DEV);
if (funcp)
*funcp = __SHIFTOUT(tag, CFG_ADDR_FUNC);
}
static pcitag_t
bcmpax_make_tag(void *v, int bus, int dev, int func)
{
return __SHIFTIN(bus, CFG_ADDR_BUS)
| __SHIFTIN(dev, CFG_ADDR_DEV)
| __SHIFTIN(func, CFG_ADDR_FUNC)
| (bus == 0 ? CFG_ADDR_TYPE0 : CFG_ADDR_TYPE1);
}
static inline bus_size_t
bcmpax_conf_addr_write(struct bcmpax_softc *sc, pcitag_t tag)
{
if ((tag & (CFG_ADDR_BUS|CFG_ADDR_DEV)) == 0) {
uint32_t reg = __SHIFTOUT(tag, CFG_ADDR_REG);
uint32_t func = __SHIFTOUT(tag, CFG_ADDR_FUNC);
bcmpax_write_4(sc, PCIE_CFG_IND_ADDR,
__SHIFTIN(func, CFG_IND_ADDR_FUNC)
| __SHIFTIN(reg, CFG_IND_ADDR_REG));
dsb(sy);
return PCIE_CFG_IND_DATA;
}
if (sc->sc_linkup) {
bcmpax_write_4(sc, PCIE_CFG_ADDR, tag);
dsb(sy);
return PCIE_CFG_DATA;
}
return 0;
}
static pcireg_t
bcmpax_conf_read(void *v, pcitag_t tag, int reg)
{
struct bcmpax_softc * const sc = v;
if ((unsigned int)reg >= PCI_CONF_SIZE)
return 0xffffffff;
/*
* Even in RC mode, the PCI Express Root Complex return itself
* as BCM Ethernet Controller!. We could change ppb.c to match it
* but we'll just lie and say we are a PPB bridge.
*/
if ((tag & (CFG_ADDR_BUS|CFG_ADDR_DEV|CFG_ADDR_FUNC)) == 0
&& reg == PCI_CLASS_REG) {
return PCI_CLASS_CODE(PCI_CLASS_BRIDGE,
PCI_SUBCLASS_BRIDGE_PCI, 0);
}
//printf("%s: tag %#lx reg %#x:", __func__, tag, reg);
mutex_enter(sc->sc_cfg_lock);
bus_size_t data_reg = bcmpax_conf_addr_write(sc, tag | reg);
//printf(" [from %#lx]:\n", data_reg);
pcireg_t rv;
if (data_reg)
rv = bcmpax_read_4(sc, data_reg);
else
rv = 0xffffffff;
mutex_exit(sc->sc_cfg_lock);
//printf(" %#x\n", rv);
return rv;
}
static void
bcmpax_conf_write(void *v, pcitag_t tag, int reg, pcireg_t val)
{
struct bcmpax_softc * const sc = v;
if ((unsigned int)reg >= PCI_CONF_SIZE)
return;
mutex_enter(sc->sc_cfg_lock);
bus_size_t data_reg = bcmpax_conf_addr_write(sc, tag | reg);
//printf("%s: tag %#lx reg %#x:", __func__, tag, reg);
if (data_reg) {
//printf(" [to %#lx]:\n", data_reg);
bcmpax_write_4(sc, data_reg, val);
//printf(" %#x\n", val);
}
mutex_exit(sc->sc_cfg_lock);
}
static void
bcmpax_conf_interrupt(void *v, int bus, int dev, int ipin, int swiz, int *ilinep)
{
*ilinep = 5; /* (ipin + swiz) & 3; */
}
static int
bcmpax_conf_hook(void *v, int bus, int dev, int func, pcireg_t id)
{
if (func > 0)
return 0;
return PCI_CONF_ENABLE_MEM | PCI_CONF_MAP_MEM | PCI_CONF_ENABLE_BM;
}
static int
bcmpax_intr(void *v)
{
struct bcmpax_softc * const sc = v;
while (bcmpax_read_4(sc, PCIE_SYS_RC_INTX_CSR)) {
struct bcmpax_intrhand *ih;
mutex_enter(sc->sc_lock);
const uint32_t lastgen = sc->sc_intrgen;
TAILQ_FOREACH(ih, &sc->sc_intrs, ih_link) {
int (* const func)(void *) = ih->ih_func;
void * const arg = ih->ih_arg;
mutex_exit(sc->sc_lock);
int rv = (*func)(arg);
if (rv) {
return rv;
}
mutex_enter(sc->sc_lock);
/*
* Check to see if the interrupt list changed.
* If so, restart from the beginning.
*/
if (lastgen != sc->sc_intrgen)
break;
}
mutex_exit(sc->sc_lock);
}
return 0;
}
static int
bcmpax_intr_map(const struct pci_attach_args *pa, pci_intr_handle_t *pihp)
{
if (pa->pa_intrpin == 0)
return EINVAL;
*pihp = pa->pa_intrpin;
return 0;
}
static const char *
bcmpax_intr_string(void *v, pci_intr_handle_t pih, char *buf, size_t len)
{
struct bcmpax_softc * const sc = v;
if (pih) {
snprintf(buf, len, "%s int%c",
device_xname(sc->sc_dev),
(char) ('a' + pih - PCI_INTERRUPT_PIN_A));
return buf;
}
return NULL;
}
static const struct evcnt *
bcmpax_intr_evcnt(void *v, pci_intr_handle_t pih)
{
return NULL;
}
static void *
bcmpax_intr_establish(void *v, pci_intr_handle_t pih, int ipl,
int (*func)(void *), void *arg, const char *xname)
{
struct bcmpax_softc * const sc = v;
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
KASSERT(ipl == IPL_VM);
KASSERT(func != NULL);
KASSERT(arg != NULL);
if (pih == 0)
return NULL;
struct bcmpax_intrhand * const ih = kmem_alloc(sizeof(*ih), KM_SLEEP);
ih->ih_func = func;
ih->ih_arg = arg;
mutex_enter(sc->sc_lock);
TAILQ_INSERT_TAIL(&sc->sc_intrs, ih, ih_link);
mutex_exit(sc->sc_lock);
return ih;
}
static void
bcmpax_intr_disestablish(void *v, void *vih)
{
struct bcmpax_softc * const sc = v;
struct bcmpax_intrhand * const ih = vih;
mutex_enter(sc->sc_lock);
TAILQ_REMOVE(&sc->sc_intrs, ih, ih_link);
sc->sc_intrgen++;
mutex_exit(sc->sc_lock);
kmem_free(ih, sizeof(*ih));
}