/* $NetBSD: asan.h,v 1.8 2022/04/02 11:16:07 skrll Exp $ */
/*
* Copyright (c) 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nick Hudson, and is part of the KASAN subsystem of the NetBSD kernel.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_efi.h"
#include <sys/atomic.h>
#include <sys/ksyms.h>
#include <uvm/uvm.h>
#include <arm/vmparam.h>
#include <arm/arm32/machdep.h>
#include <arm/arm32/pmap.h>
#define KASAN_MD_SHADOW_START VM_KERNEL_KASAN_BASE
#define KASAN_MD_SHADOW_END VM_KERNEL_KASAN_END
#define __MD_KERNMEM_BASE KERNEL_BASE
static inline int8_t *
kasan_md_addr_to_shad(const void *addr)
{
vaddr_t va = (vaddr_t)addr;
return (int8_t *)(KASAN_MD_SHADOW_START +
((va - __MD_KERNMEM_BASE) >> KASAN_SHADOW_SCALE_SHIFT));
}
static inline bool
kasan_md_unsupported(vaddr_t addr)
{
return addr < VM_MIN_KERNEL_ADDRESS ||
addr >= KASAN_MD_SHADOW_START;
}
/* -------------------------------------------------------------------------- */
/*
* Early mapping, used to map just the stack at boot time. We rely on the fact
* that VA = PA + KERNEL_BASE.
*/
/*
* KASAN_NEARLYPAGES is hard to work out.
*
* The INIT_ARM_TOTAL_STACK shadow is reduced by the KASAN_SHADOW_SCALE_SIZE
* factor. This shadow mapping is likely to span more than one L2 page tables
* and, as a result, more than one PAGE_SIZE block. The L2 page tables might
* span more than one L1 page table entry as well.
*
* To ensure we have enough start with the assumption of 1 L1 page table, and
* the number of pages to map the shadow... then double for the spanning as
* described above
*/
#define KASAN_NEARLYPAGES \
(2 * (1 + howmany(INIT_ARM_TOTAL_STACK / KASAN_SHADOW_SCALE_SIZE, PAGE_SIZE)))
static bool __md_early __read_mostly;
static size_t __md_nearlyl1pts __attribute__((__section__(".data"))) = 0;
static size_t __md_nearlypages __attribute__((__section__(".data")));
static uint8_t __md_earlypages[KASAN_NEARLYPAGES * PAGE_SIZE]
__aligned(PAGE_SIZE) __attribute__((__section__(".data")));
static vaddr_t
__md_palloc(void)
{
paddr_t pa;
if (__predict_false(__md_early)) {
KASSERTMSG(__md_nearlypages < KASAN_NEARLYPAGES,
"__md_nearlypages %zu", __md_nearlypages);
vaddr_t va = (vaddr_t)(&__md_earlypages[0] + __md_nearlypages * PAGE_SIZE);
__md_nearlypages++;
__builtin_memset((void *)va, 0, PAGE_SIZE);
return KERN_VTOPHYS(va);
}
if (!uvm.page_init_done) {
if (uvm_page_physget(&pa) == false)
panic("KASAN can't get a page");
return pa;
}
struct vm_page *pg;
retry:
pg = uvm_pagealloc(NULL, 0, NULL, 0);
if (pg == NULL) {
uvm_wait(__func__);
goto retry;
}
pa = VM_PAGE_TO_PHYS(pg);
return pa;
}
static void
kasan_md_shadow_map_page(vaddr_t va)
{
const uint32_t mask = L1_TABLE_SIZE - 1;
const paddr_t ttb = (paddr_t)(armreg_ttbr1_read() & ~mask);
pd_entry_t * const pdep = (pd_entry_t *)KERN_PHYSTOV(ttb);
const size_t l1slot = l1pte_index(va);
vaddr_t l2ptva;
KASSERT((va & PAGE_MASK) == 0);
extern bool kasan_l2pts_created;
if (__predict_true(kasan_l2pts_created)) {
/*
* The shadow map area L2PTs were allocated and mapped
* by arm32_kernel_vm_init. Use the array of pv_addr_t
* to get the l2ptva.
*/
extern pv_addr_t kasan_l2pt[];
const size_t off = va - KASAN_MD_SHADOW_START;
const size_t segoff = off & (L2_S_SEGSIZE - 1);
const size_t idx = off / L2_S_SEGSIZE;
const vaddr_t segl2ptva = kasan_l2pt[idx].pv_va;
l2ptva = segl2ptva + l1pte_index(segoff) * L2_TABLE_SIZE_REAL;
} else {
/*
* An L1PT entry is/may be required for bootstrap tables. As a
* page gives enough space to multiple L2PTs the previous call
* might have already created the L2PT.
*/
if (!l1pte_page_p(pdep[l1slot])) {
const paddr_t l2ptpa = __md_palloc();
const vaddr_t segl2va = va & -L2_S_SEGSIZE;
const size_t segl1slot = l1pte_index(segl2va);
__md_nearlyl1pts++;
const pd_entry_t npde =
L1_C_PROTO | l2ptpa | L1_C_DOM(PMAP_DOMAIN_KERNEL);
l1pte_set(pdep + segl1slot, npde);
/*
* No need for PDE_SYNC_RANGE here as we're creating
* the bootstrap tables
*/
}
l2ptva = KERN_PHYSTOV(l1pte_pa(pdep[l1slot]));
}
pt_entry_t * l2pt = (pt_entry_t *)l2ptva;
pt_entry_t * const ptep = &l2pt[l2pte_index(va)];
if (!l2pte_valid_p(*ptep)) {
const int prot = VM_PROT_READ | VM_PROT_WRITE;
const paddr_t pa = __md_palloc();
pt_entry_t npte =
L2_S_PROTO |
pa |
(__md_early ? 0 : pte_l2_s_cache_mode_pt) |
L2_S_PROT(PTE_KERNEL, prot);
l2pte_set(ptep, npte, 0);
if (!__md_early)
PTE_SYNC(ptep);
__builtin_memset((void *)va, 0, PAGE_SIZE);
}
}
/*
* Map the init stacks of the BP and APs. We will map the rest in kasan_init.
*/
static void
kasan_md_early_init(void *stack)
{
/*
* We come through here twice. The first time is for generic_start
* and the bootstrap tables. The second is for arm32_kernel_vm_init
* and the real tables.
*
* In the first we have to create L1PT entries, whereas in the
* second arm32_kernel_vm_init has setup kasan_l1pts (and the L1PT
* entries for them
*/
__md_early = true;
__md_nearlypages = __md_nearlyl1pts;
kasan_shadow_map(stack, INIT_ARM_TOTAL_STACK);
__md_early = false;
}
static void
kasan_md_init(void)
{
extern vaddr_t kasan_kernelstart;
extern vaddr_t kasan_kernelsize;
kasan_shadow_map((void *)kasan_kernelstart, kasan_kernelsize);
/* The VAs we've created until now. */
vaddr_t eva = pmap_growkernel(VM_KERNEL_VM_BASE);
kasan_shadow_map((void *)VM_KERNEL_VM_BASE, eva - VM_KERNEL_VM_BASE);
}
static inline bool
__md_unwind_end(const char *name)
{
static const char * const vectors[] = {
"undefined_entry",
"swi_entry",
"prefetch_abort_entry",
"data_abort_entry",
"address_exception_entry",
"irq_entry",
"fiqvector"
};
for (size_t i = 0; i < __arraycount(vectors); i++) {
if (!strncmp(name, vectors[i], strlen(vectors[i])))
return true;
}
return false;
}
static void
kasan_md_unwind(void)
{
uint32_t lr, *fp;
const char *mod;
const char *sym;
size_t nsym;
int error;
fp = (uint32_t *)__builtin_frame_address(0);
nsym = 0;
while (1) {
/*
* normal frame
* fp[ 0] saved code pointer
* fp[-1] saved lr value
* fp[-2] saved sp value
* fp[-3] saved fp value
*/
lr = fp[-1];
if (lr < VM_MIN_KERNEL_ADDRESS) {
break;
}
error = ksyms_getname(&mod, &sym, (vaddr_t)lr, KSYMS_PROC);
if (error) {
break;
}
printf("#%zu %p in %s <%s>\n", nsym, (void *)lr, sym, mod);
if (__md_unwind_end(sym)) {
break;
}
fp = (uint32_t *)fp[-3];
if (fp == NULL) {
break;
}
nsym++;
if (nsym >= 15) {
break;
}
}
}