Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/*	$NetBSD: rk_spi.c,v 1.7 2021/05/15 08:46:00 mrg Exp $	*/

/*
 * Copyright (c) 2019 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Tobias Nygren.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.7 2021/05/15 08:46:00 mrg Exp $");

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/kernel.h>
#include <sys/bitops.h>
#include <dev/spi/spivar.h>
#include <dev/fdt/fdtvar.h>
#include <arm/fdt/arm_fdtvar.h>

#define SPI_CTRLR0		0x00
#define SPI_CTRLR0_MTM		__BIT(21)
#define SPI_CTRLR0_OPM		__BIT(20)
#define SPI_CTRLR0_XFM		__BITS(19, 18)
#define SPI_CTRLR0_FRF		__BITS(17, 16)
#define SPI_CTRLR0_RSD		__BITS(15, 14)
#define SPI_CTRLR0_BHT		__BIT(13)
#define SPI_CTRLR0_FBM		__BIT(12)
#define SPI_CTRLR0_EM		__BIT(11)
#define SPI_CTRLR0_RW		__BIT(10)
#define SPI_CTRLR0_CSM		__BITS(9, 8)
#define SPI_CTRLR0_SCPOL	__BIT(7)
#define SPI_CTRLR0_SCPH		__BIT(6)
#define SPI_CTRLR0_CFS		__BITS(5, 2)
#define SPI_CTRLR0_DFS		__BITS(1, 0)
#define SPI_CTRLR0_DFS_4BIT	0x0
#define SPI_CTRLR0_DFS_8BIT	0x1
#define SPI_CTRLR0_DFS_16BIT	0x2

#define SPI_CTRLR1		0x04
#define SPI_CTRLR1_NDM		__BITS(15, 0)

#define SPI_ENR			0x08
#define SPI_ENR_ENR		__BIT(0)

#define SPI_SER			0x0c
#define SPI_SER_SER1		__BIT(1)
#define SPI_SER_SER0		__BIT(0)

#define SPI_BAUDR		0x10
#define SPI_BAUDR_BAUDR		__BITS(15, 0)

#define SPI_TXFTLR		0x14
#define SPI_TXFTLR_TXFLTR	__BITS(4, 0)

#define SPI_RXFTLR		0x18
#define SPI_RXFLTR_RXFLTR	__BITS(4, 0)

#define SPI_TXFLR		0x1c
#define SPI_TXFLR_TXFLR		__BITS(5, 0)

#define SPI_RXFLR		0x20
#define SPI_RXFLR_RXFLR		__BITS(5, 0)

#define SPI_SR			0x24
#define SPI_SR_RFF		__BIT(4)
#define SPI_SR_RFE		__BIT(3)
#define SPI_SR_TFE		__BIT(2)
#define SPI_SR_TFF		__BIT(1)
#define SPI_SR_BSF		__BIT(0)

#define SPI_IPR			0x28
#define SPI_IPR_IPR		__BIT(0)

#define SPI_IMR			0x2c
#define SPI_IMR_RFFIM		__BIT(4)
#define SPI_IMR_RFOIM		__BIT(3)
#define SPI_IMR_RFUIM		__BIT(2)
#define SPI_IMR_TFOIM		__BIT(1)
#define SPI_IMR_TFEIM		__BIT(0)

#define SPI_ISR			0x30
#define SPI_ISR_RFFIS		__BIT(4)
#define SPI_ISR_RFOIS		__BIT(3)
#define SPI_ISR_RFUIS		__BIT(2)
#define SPI_ISR_TFOIS		__BIT(1)
#define SPI_ISR_TFEIS		__BIT(0)

#define SPI_RISR		0x34
#define SPI_RISR_RFFRIS		__BIT(4)
#define SPI_RISR_RFORIS		__BIT(3)
#define SPI_RISR_RFURIS		__BIT(2)
#define SPI_RISR_TFORIS		__BIT(1)
#define SPI_RISR_TFERIS		__BIT(0)

#define SPI_ICR			0x38
#define SPI_ICR_CTFOI		__BIT(3)
#define SPI_ICR_CRFOI		__BIT(2)
#define SPI_ICR_CRFUI		__BIT(1)
#define SPI_ICR_CCI		__BIT(0)
#define SPI_ICR_ALL		__BITS(3, 0)

#define SPI_DMACR		0x3c
#define SPI_DMACR_TDE		__BIT(1)
#define SPI_DMACR_RDE		__BIT(0)

#define SPI_DMATDLR		0x40
#define SPI_DMATDLR_TDL		__BITS(4, 0)

#define SPI_DMARDLR		0x44
#define SPI_DMARDLR_RDL		__BITS(4, 0)

#define SPI_TXDR		0x400
#define SPI_TXDR_TXDR		__BITS(15, 0)

#define SPI_RXDR		0x800
#define SPI_RXDR_RXDR		__BITS(15, 0)

#define SPI_FIFOLEN		32

static const struct device_compatible_entry compat_data[] = {
	{ .compat = "rockchip,rk3066-spi" },
	{ .compat = "rockchip,rk3328-spi" },
	{ .compat = "rockchip,rk3399-spi" },
	DEVICE_COMPAT_EOL
};

struct rk_spi_softc {
	device_t		sc_dev;
	bus_space_tag_t		sc_bst;
	bus_space_handle_t	sc_bsh;
	void			*sc_ih;
	u_int			sc_spi_freq;
	struct spi_controller	sc_spi;
	SIMPLEQ_HEAD(,spi_transfer) sc_q;
	struct spi_transfer	*sc_transfer;
	struct spi_chunk	*sc_rchunk, *sc_wchunk;
	volatile bool		sc_running;
};

#define SPIREG_READ(sc, reg) \
    bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define SPIREG_WRITE(sc, reg, val) \
    bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))

static struct spi_controller *rk_spi_get_controller(device_t);
static int rk_spi_match(device_t, cfdata_t, void *);
static void rk_spi_attach(device_t, device_t, void *);

static int rk_spi_configure(void *, int, int, int);
static int rk_spi_transfer(void *, struct spi_transfer *);

static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
static void rk_spi_rxtx(struct rk_spi_softc * const);
static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
static void rk_spi_start(struct rk_spi_softc * const);
static int rk_spi_intr(void *);

CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
    rk_spi_match, rk_spi_attach, NULL, NULL);

static const struct fdtbus_spi_controller_func rk_spi_funcs = {
	.get_controller = rk_spi_get_controller
};

static struct spi_controller *
rk_spi_get_controller(device_t dev)
{
	struct rk_spi_softc * const sc = device_private(dev);

	return &sc->sc_spi;
}

static int
rk_spi_match(device_t parent, cfdata_t cf, void *aux)
{
	struct fdt_attach_args * const faa = aux;

	return of_compatible_match(faa->faa_phandle, compat_data);
}

static void
rk_spi_attach(device_t parent, device_t self, void *aux)
{
	struct rk_spi_softc * const sc = device_private(self);
	struct fdt_attach_args * const faa = aux;
	const int phandle = faa->faa_phandle;
	bus_addr_t addr;
	bus_size_t size;
	struct clk *sclk, *pclk;
	char intrstr[128];

	sc->sc_dev = self;
	sc->sc_bst = faa->faa_bst;
	SIMPLEQ_INIT(&sc->sc_q);

	if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
	    || clk_enable(sclk) != 0) {
		aprint_error(": couldn't enable sclk\n");
		return;
	}

	if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
	    || clk_enable(pclk) != 0) {
		aprint_error(": couldn't enable pclk\n");
		return;
	}

	sc->sc_spi_freq = clk_get_rate(sclk);

	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
		aprint_error(": couldn't map registers\n");
		return;
	}

	SPIREG_WRITE(sc, SPI_ENR, 0);
	SPIREG_WRITE(sc, SPI_IMR, 0);

	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
		aprint_error(": failed to decode interrupt\n");
		return;
	}

	sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
	    rk_spi_intr, sc, device_xname(self));
	if (sc->sc_ih == NULL) {
		aprint_error(": unable to establish interrupt\n");
		return;
	}

	aprint_naive("\n");
	aprint_normal(": SPI\n");
	aprint_normal_dev(self, "interrupting on %s\n", intrstr);

	sc->sc_spi.sct_cookie = sc;
	sc->sc_spi.sct_configure = rk_spi_configure;
	sc->sc_spi.sct_transfer = rk_spi_transfer;
	sc->sc_spi.sct_nslaves = 2;

	fdtbus_register_spi_controller(self, phandle, &rk_spi_funcs);
	(void) fdtbus_attach_spibus(self, phandle, spibus_print);
}

static int
rk_spi_configure(void *cookie, int slave, int mode, int speed)
{
	struct rk_spi_softc * const sc = cookie;
	uint32_t ctrlr0;
	uint16_t divider;

	divider = (sc->sc_spi_freq / speed) & ~1;
	if (divider < 2) {
		aprint_error_dev(sc->sc_dev,
		    "spi_clk %u is too low for speed %u, using speed %u\n",
		     sc->sc_spi_freq, speed, sc->sc_spi_freq / 2);
		divider = 2;
	}

	if (slave >= sc->sc_spi.sct_nslaves)
		return EINVAL;

	ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);

	switch (mode) {
	case SPI_MODE_0:
		ctrlr0 |= 0;
		break;
	case SPI_MODE_1:
		ctrlr0 |= SPI_CTRLR0_SCPH;
		break;
	case SPI_MODE_2:
		ctrlr0 |= SPI_CTRLR0_SCPOL;
		break;
	case SPI_MODE_3:
		ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
		break;
	default:
		return EINVAL;
	}

	SPIREG_WRITE(sc, SPI_ENR, 0);
	SPIREG_WRITE(sc, SPI_SER, 0);
	SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
	SPIREG_WRITE(sc, SPI_BAUDR, divider);

	SPIREG_WRITE(sc, SPI_DMACR, 0);
	SPIREG_WRITE(sc, SPI_DMATDLR, 0);
	SPIREG_WRITE(sc, SPI_DMARDLR, 0);

	SPIREG_WRITE(sc, SPI_IPR, 0);
	SPIREG_WRITE(sc, SPI_IMR, 0);
	SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);

	SPIREG_WRITE(sc, SPI_ENR, 1);

	return 0;
}

static int
rk_spi_transfer(void *cookie, struct spi_transfer *st)
{
	struct rk_spi_softc * const sc = cookie;
	int s;

	s = splbio();
	spi_transq_enqueue(&sc->sc_q, st);
	if (sc->sc_running == false) {
		rk_spi_start(sc);
	}
	splx(s);

	return 0;
}

static void
rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
{
	struct spi_chunk *chunk = sc->sc_wchunk;
	size_t len;
	uint8_t b;

	if (chunk == NULL)
		return;

	len = MIN(maxlen, chunk->chunk_wresid);
	chunk->chunk_wresid -= len;
	while (len--) {
		if (chunk->chunk_wptr) {
			b = *chunk->chunk_wptr++;
		} else {
			b = 0;
		}
		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
	}
	if (sc->sc_wchunk->chunk_wresid == 0) {
		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
	}
}

static void
rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
{
	struct spi_chunk *chunk = sc->sc_rchunk;
	size_t len;
	uint8_t b;

	if (chunk == NULL)
		return;

	len = MIN(maxlen, chunk->chunk_rresid);
	chunk->chunk_rresid -= len;

	while (len--) {
		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
		if (chunk->chunk_rptr) {
			*chunk->chunk_rptr++ = b;
		}
	}
	if (sc->sc_rchunk->chunk_rresid == 0) {
		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
	}
}

static void
rk_spi_rxtx(struct rk_spi_softc * const sc)
{
	bool again;
	uint32_t reg;
	size_t avail;

	/* Service both FIFOs until no more progress can be made. */
	again = true;
	while (again) {
		again = false;
		reg = SPIREG_READ(sc, SPI_RXFLR);
		avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
		if (avail > 0) {
			KASSERT(sc->sc_rchunk != NULL);
			rk_spi_rxfifo_drain(sc, avail);
			again = true;
		}
		reg = SPIREG_READ(sc, SPI_TXFLR);
		avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
		if (avail > 0 && sc->sc_wchunk != NULL) {
			rk_spi_txfifo_fill(sc, avail);
			again = true;
		}
	}
}

static void
rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
{
	uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
	int len;

	/*
	 * Delay rx interrupts until the FIFO has the # of bytes we'd
	 * ideally like to receive, or FIFO is half full.
	 */
	len = sc->sc_rchunk != NULL
	    ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
	if (len > 0) {
		SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
		imr |= SPI_IMR_RFFIM;
	}

	/*
	 * Delay tx interrupts until the FIFO can accept the # of bytes we'd
	 * ideally like to transmit, or the FIFO is half empty.
	 */
	len = sc->sc_wchunk != NULL
	    ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
	if (len > 0) {
		SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
		imr |= SPI_IMR_TFEIM;
	}

	/* If xfer is done, then interrupt as soon as the tx fifo is empty. */
	if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
		SPIREG_WRITE(sc, SPI_TXFTLR, 0);
		imr |= SPI_IMR_TFEIM;
	}

	SPIREG_WRITE(sc, SPI_IMR, imr);
}

static void
rk_spi_start(struct rk_spi_softc * const sc)
{
	struct spi_transfer *st;

	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
		spi_transq_dequeue(&sc->sc_q);
		KASSERT(sc->sc_transfer == NULL);
		sc->sc_transfer = st;
		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
		sc->sc_running = true;

		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
		SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);

		rk_spi_rxtx(sc);
		rk_spi_set_interrupt_mask(sc);

		if (!cold)
			return;

		for (;;) {
			(void) rk_spi_intr(sc);
			if (ISSET(st->st_flags, SPI_F_DONE))
				break;
		}
	}
	sc->sc_running = false;
}

static int
rk_spi_intr(void *cookie)
{
	struct rk_spi_softc * const sc = cookie;
	struct spi_transfer *st;
	uint32_t isr;
	uint32_t sr;
	uint32_t icr = SPI_ICR_CCI;

	isr = SPIREG_READ(sc, SPI_ISR);
	if (!isr)
		return 0;

	if (ISSET(isr, SPI_ISR_RFOIS)) {
		device_printf(sc->sc_dev, "RXFIFO overflow\n");
		icr |= SPI_ICR_CRFOI;
	}
	if (ISSET(isr, SPI_ISR_RFUIS)) {
		device_printf(sc->sc_dev, "RXFIFO underflow\n");
		icr |= SPI_ICR_CRFUI;
	}
	if (ISSET(isr, SPI_ISR_TFOIS)) {
		device_printf(sc->sc_dev, "TXFIFO overflow\n");
		icr |= SPI_ICR_CTFOI;
	}

	rk_spi_rxtx(sc);

	if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
		do {
			sr = SPIREG_READ(sc, SPI_SR);
		} while (ISSET(sr, SPI_SR_BSF));
		SPIREG_WRITE(sc, SPI_IMR, 0);
		SPIREG_WRITE(sc, SPI_SER, 0);
		st = sc->sc_transfer;
		sc->sc_transfer = NULL;
		KASSERT(st != NULL);
		spi_done(st, 0);
		sc->sc_running = false;
	} else {
		rk_spi_set_interrupt_mask(sc);
	}

	SPIREG_WRITE(sc, SPI_ICR, icr);

	return 1;
}