Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*	$NetBSD: sun4i_spi.c,v 1.7 2021/01/27 03:10:20 thorpej Exp $	*/

/*
 * Copyright (c) 2019 Tobias Nygren
 * Copyright (c) 2018 Jonathan A. Kollasch
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.7 2021/01/27 03:10:20 thorpej Exp $");

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/kernel.h>
#include <sys/bitops.h>
#include <dev/spi/spivar.h>
#include <arm/sunxi/sun4i_spireg.h>
#include <dev/fdt/fdtvar.h>

static const struct device_compatible_entry compat_data[] = {
	{ .compat = "allwinner,sun4i-a10-spi" },
	DEVICE_COMPAT_EOL
};

struct sun4ispi_softc {
	device_t		sc_dev;
	bus_space_tag_t		sc_bst;
	bus_space_handle_t	sc_bsh;
	void			*sc_intrh;
	struct spi_controller	sc_spi;
	SIMPLEQ_HEAD(,spi_transfer) sc_q;
	struct spi_transfer	*sc_transfer;
	struct spi_chunk	*sc_rchunk, *sc_wchunk;
	uint32_t		sc_CTL;
	u_int			sc_modclkrate;
	volatile bool		sc_running;
};

#define SPIREG_READ(sc, reg) \
    bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define SPIREG_WRITE(sc, reg, val) \
    bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))

static struct spi_controller * sun4i_spi_get_controller(device_t);
static int sun4ispi_match(device_t, cfdata_t, void *);
static void sun4ispi_attach(device_t, device_t, void *);

static int sun4ispi_configure(void *, int, int, int);
static int sun4ispi_transfer(void *, struct spi_transfer *);

static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t);
static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t);
static void sun4ispi_rxtx(struct sun4ispi_softc * const);
static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const);
static void sun4ispi_start(struct sun4ispi_softc * const);
static int sun4ispi_intr(void *);

CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc),
    sun4ispi_match, sun4ispi_attach, NULL, NULL);

static const struct fdtbus_spi_controller_func sun4i_spi_funcs = {
	.get_controller = sun4i_spi_get_controller
};

static struct spi_controller *
sun4i_spi_get_controller(device_t dev)
{
	struct sun4ispi_softc * const sc = device_private(dev);

	return &sc->sc_spi;
}

static int
sun4ispi_match(device_t parent, cfdata_t cf, void *aux)
{
	struct fdt_attach_args * const faa = aux;

	return of_compatible_match(faa->faa_phandle, compat_data);
}

static void
sun4ispi_attach(device_t parent, device_t self, void *aux)
{
	struct sun4ispi_softc * const sc = device_private(self);
	struct fdt_attach_args * const faa = aux;
	const int phandle = faa->faa_phandle;
	bus_addr_t addr;
	bus_size_t size;
	struct clk *clk, *modclk;
	char intrstr[128];

	sc->sc_dev = self;
	sc->sc_bst = faa->faa_bst;
	SIMPLEQ_INIT(&sc->sc_q);

	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
	    || clk_enable(clk) != 0) {
		aprint_error(": couldn't enable clock\n");
		return;
	}

	if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
	    || clk_set_rate(modclk, clk_get_rate(clk)) != 0
	    || clk_enable(modclk) != 0) {
		aprint_error(": couldn't enable module clock\n");
		return;
	}
	sc->sc_modclkrate = clk_get_rate(modclk);

	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
		aprint_error(": couldn't map registers\n");
		return;
	}

	SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST
	    | SPI_CTL_TF_RST | SPI_CTL_MODE);
	SPIREG_WRITE(sc, SPI_DMACTL, 0);
	SPIREG_WRITE(sc, SPI_WAIT, 0);
	SPIREG_WRITE(sc, SPI_INTCTL, 0);
	SPIREG_WRITE(sc, SPI_INT_STA, ~0);

	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
		aprint_error(": failed to decode interrupt\n");
		return;
	}

	sc->sc_intrh = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0,
	    sun4ispi_intr, sc, device_xname(self));
	if (sc->sc_intrh == NULL) {
		aprint_error(": unable to establish interrupt\n");
		return;
	}

	aprint_naive("\n");
	aprint_normal(": SPI\n");
	aprint_normal_dev(self, "interrupting on %s\n", intrstr);

	sc->sc_spi.sct_cookie = sc;
	sc->sc_spi.sct_configure = sun4ispi_configure;
	sc->sc_spi.sct_transfer = sun4ispi_transfer;
	(void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves);
	fdtbus_register_spi_controller(self, phandle, &sun4i_spi_funcs);
	(void) fdtbus_attach_spibus(self, phandle, spibus_print);
}

static int
sun4ispi_configure(void *cookie, int slave, int mode, int speed)
{
	struct sun4ispi_softc * const sc = cookie;
	uint32_t ctl, cctl;
	uint32_t minfreq, maxfreq;

	minfreq = sc->sc_modclkrate >> 16;
	maxfreq = sc->sc_modclkrate >> 1;

	if (speed <= 0 || speed < minfreq || speed > maxfreq)
		return EINVAL;

	if (slave >= sc->sc_spi.sct_nslaves)
		return EINVAL;

	ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN;

	switch (mode) {
	case SPI_MODE_0:
		ctl |= 0;
		break;
	case SPI_MODE_1:
		ctl |= SPI_CTL_PHA;
		break;
	case SPI_MODE_2:
		ctl |= SPI_CTL_POL;
		break;
	case SPI_MODE_3:
		ctl |= SPI_CTL_PHA | SPI_CTL_POL;
		break;
	default:
		return EINVAL;
	}

	if (speed < sc->sc_modclkrate / 512) {
		for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
			if ((sc->sc_modclkrate / (1 << cctl)) <= speed)
				goto cdr1_found;
		}
		return EINVAL;
cdr1_found:
		cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
	} else {
		cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
		cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
	}

	device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
	    ctl, cctl, sc->sc_modclkrate,
	    (cctl & SPI_CCTL_DRS)
	    ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
	    : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
	);

	sc->sc_CTL = ctl;
	SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN);
	SPIREG_WRITE(sc, SPI_CCTL, cctl);
	SPIREG_WRITE(sc, SPI_CTL, ctl);

	return 0;
}

static int
sun4ispi_transfer(void *cookie, struct spi_transfer *st)
{
	struct sun4ispi_softc * const sc = cookie;
	int s;

	s = splbio();
	spi_transq_enqueue(&sc->sc_q, st);
	if (sc->sc_running == false) {
		sun4ispi_start(sc);
	}
	splx(s);

	return 0;
}

static void
sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen)
{
	struct spi_chunk *chunk = sc->sc_wchunk;
	size_t len;
	uint8_t b;

	if (chunk == NULL)
		return;

	len = MIN(maxlen, chunk->chunk_wresid);
	chunk->chunk_wresid -= len;
	while (len--) {
		if (chunk->chunk_wptr) {
			b = *chunk->chunk_wptr++;
		} else {
			b = 0;
		}
		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b);
	}
	if (sc->sc_wchunk->chunk_wresid == 0) {
		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
	}
}

static void
sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen)
{
	struct spi_chunk *chunk = sc->sc_rchunk;
	size_t len;
	uint8_t b;

	if (chunk == NULL)
		return;

	len = MIN(maxlen, chunk->chunk_rresid);
	chunk->chunk_rresid -= len;

	while (len--) {
		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA);
		if (chunk->chunk_rptr) {
			*chunk->chunk_rptr++ = b;
		}
	}
	if (sc->sc_rchunk->chunk_rresid == 0) {
		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
	}
}

static void
sun4ispi_rxtx(struct sun4ispi_softc * const sc)
{
	bool again;
	size_t rxavail, txavail;
	uint32_t fsr;

	/* service both FIFOs until no more progress can be made */
	again = true;
	while (again) {
		again = false;
		fsr = SPIREG_READ(sc, SPI_FIFO_STA);
		rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT);
		txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT);
		if (rxavail > 0) {
			KASSERT(sc->sc_rchunk != NULL);
			sun4ispi_rxfifo_drain(sc, rxavail);
			again = true;
		}
		if (txavail > 0 && sc->sc_wchunk != NULL) {
			sun4ispi_txfifo_fill(sc, txavail);
			again = true;
		}
	}
}

static void
sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc)
{
	uint32_t intctl;

	intctl = SPI_INTCTL_TX_INT_EN;
	intctl |= SPI_INTCTL_RF_OF_INT_EN;
	intctl |= SPI_INTCTL_TF_UR_INT_EN;

	if (sc->sc_rchunk) {
		if (sc->sc_rchunk->chunk_rresid >= 32) {
			intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN;
		} else {
			intctl |= SPI_INTCTL_RF_RDY_INT_EN;
		}
	}
	if (sc->sc_wchunk) {
		intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN;
	}
	SPIREG_WRITE(sc, SPI_INTCTL, intctl);
}

static void
sun4ispi_start(struct sun4ispi_softc * const sc)
{
	struct spi_transfer *st;
	uint32_t ctl;
	struct spi_chunk *chunk;
	size_t burstcount;

	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {

		spi_transq_dequeue(&sc->sc_q);

		KASSERT(sc->sc_transfer == NULL);
		sc->sc_transfer = st;
		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
		sc->sc_running = true;

		burstcount = 0;
		for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
			burstcount += chunk->chunk_count;
		}
		KASSERT(burstcount <= SPI_BC_BC);
		SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC));
		SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC));

		sun4ispi_rxtx(sc);
		sun4ispi_set_interrupt_mask(sc);

		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
		ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH;
		SPIREG_WRITE(sc, SPI_CTL, ctl);

		if (!cold)
			return;

		for (;;) {
			(void) sun4ispi_intr(sc);
			if (ISSET(st->st_flags, SPI_F_DONE))
				break;
		}
	}
	sc->sc_running = false;
}

static int
sun4ispi_intr(void *cookie)
{
	struct sun4ispi_softc * const sc = cookie;
	struct spi_transfer *st;
	uint32_t isr;

	isr = SPIREG_READ(sc, SPI_INT_STA);
	if (!isr)
		return 0;

	if (ISSET(isr, SPI_INT_STA_RO)) {
		device_printf(sc->sc_dev, "RXFIFO overflow\n");
	}
	if (ISSET(isr, SPI_INT_STA_TU)) {
		device_printf(sc->sc_dev, "TXFIFO underrun\n");
	}

	sun4ispi_rxtx(sc);

	if (ISSET(isr, SPI_INT_STA_TC)) {
		SPIREG_WRITE(sc, SPI_INTCTL, 0);
		KASSERT(sc->sc_rchunk == NULL);
		KASSERT(sc->sc_wchunk == NULL);
		st = sc->sc_transfer;
		sc->sc_transfer = NULL;
		KASSERT(st != NULL);
		spi_done(st, 0);
		sc->sc_running = false;
	} else {
		sun4ispi_set_interrupt_mask(sc);
	}
	SPIREG_WRITE(sc, SPI_INT_STA, isr);

	return 1;
}