/* $NetBSD: g42xxeb_machdep.c,v 1.40 2023/04/20 08:28:03 skrll Exp $ */
/*
* Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation.
* All rights reserved.
*
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for Genetec G4250EBX
* evaluation board.
*
* Based on iq80310_machhdep.c
*/
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for Intel IQ80310 evaluation
* boards using RedBoot firmware.
*/
#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_md.h"
#include "opt_com.h"
#include "lcd.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <uvm/uvm_extern.h>
#include <sys/conf.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <machine/bootconfig.h>
#include <arm/locore.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/xscale/pxa2x0reg.h>
#include <arm/xscale/pxa2x0var.h>
#include <arm/xscale/pxa2x0_gpio.h>
#include <evbarm/g42xxeb/g42xxeb_reg.h>
#include <evbarm/g42xxeb/g42xxeb_var.h>
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_end;
u_int free_pages;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
/* Physical and virtual addresses for some global pages */
pv_addr_t minidataclean;
paddr_t msgbufphys;
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 4
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
/* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
/* Prototypes */
#if 0
void process_kernel_args(char *);
#endif
void consinit(void);
void kgdb_port_init(void);
void change_clock(uint32_t v);
bs_protos(bs_notimpl);
#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif
#ifndef CONSPEED
#define CONSPEED B115200 /* What RedBoot uses */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
{ 44, GPIO_ALT_FN_1_IN }, /* BTCST */
{ 45, GPIO_ALT_FN_2_OUT }, /* BTRST */
{ -1 }
};
static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = {
pxa25x_com_btuart_gpioconf,
pxa25x_com_ffuart_gpioconf,
#if 0
pxa25x_com_stuart_gpioconf,
pxa25x_pxaacu_gpioconf,
#endif
boarddep_gpioconf,
NULL
};
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
/* cnpollc(1);*/
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
static inline
pd_entry_t *
read_ttb(void)
{
long ttb;
__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
return (pd_entry_t *)(ttb & ~((1<<14)-1));
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
static const struct pmap_devmap g42xxeb_devmap[] = {
DEVMAP_ENTRY(
G42XXEB_PLDREG_VBASE,
G42XXEB_PLDREG_BASE,
G42XXEB_PLDREG_SIZE
),
DEVMAP_ENTRY(
G42XXEB_GPIO_VBASE,
PXA2X0_GPIO_BASE,
PXA250_GPIO_SIZE
),
DEVMAP_ENTRY(
G42XXEB_CLKMAN_VBASE,
PXA2X0_CLKMAN_BASE,
PXA2X0_CLKMAN_SIZE
),
DEVMAP_ENTRY(
G42XXEB_INTCTL_VBASE,
PXA2X0_INTCTL_BASE,
PXA2X0_INTCTL_SIZE
),
DEVMAP_ENTRY(
G42XXEB_FFUART_VBASE,
PXA2X0_FFUART_BASE,
4 * COM_NPORTS
),
DEVMAP_ENTRY(
G42XXEB_BTUART_VBASE,
PXA2X0_BTUART_BASE,
4 * COM_NPORTS
),
DEVMAP_ENTRY_END
};
/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
vaddr_t
initarm(void *arg)
{
extern vaddr_t xscale_cache_clean_addr;
int loop;
int loop1;
u_int l1pagetable;
paddr_t memstart;
psize_t memsize;
int led_data = 1;
#ifdef DIAGNOSTIC
extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
#endif
#define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
#define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
/* use physical address until pagetable is set */
LEDSTEP_P();
/* map some peripheral registers at static I/O area */
pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
LEDSTEP_P();
/* start 32.768 kHz OSC */
ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
/* Get ready for splfoo() */
pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
LEDSTEP();
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
LEDSTEP();
/*
* Okay, RedBoot has provided us with the following memory map:
*
* Physical Address Range Description
* ----------------------- ----------------------------------
* 0x00000000 - 0x01ffffff flash Memory (32MB)
* 0x04000000 - 0x05ffffff Application flash Memory (32MB)
* 0x08000000 - 0x080000ff I/O baseboard registers
* 0x0c000000 - 0x0c0fffff Ethernet Controller
* 0x14000000 - 0x17ffffff Expansion Card (64MB)
* 0x40000000 - 0x480fffff Processor Registers
* 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
*
*
* Virtual Address Range X C B Description
* ----------------------- - - - ----------------------------------
* 0x00000000 - 0x00003fff N Y Y SDRAM
* 0x00004000 - 0x01ffffff N Y N ROM
* 0x08000000 - 0x080fffff N N N I/O baseboard registers
* 0x0a000000 - 0x0a0fffff N N N SRAM
* 0x40000000 - 0x480fffff N N N Processor Registers
* 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
* 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
* 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
* (done by this routine)
* 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
* 0xfd100000 - 0xfd3fffff N N N Processor Registers.
* 0xfd400000 - 0xfd4fffff N N N FF-UART
* 0xfd500000 - 0xfd5fffff N N N BT-UART
*
* RedBoot's first level page table is at 0xa0004000. There
* are also 2 second-level tables at 0xa0008000 and
* 0xa0008400. We will continue to use them until we switch to
* our pagetable by cpu_setttb().
*/
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
LEDSTEP();
/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
pxa2x0_gpio_config(g42xxeb_gpioconf);
LEDSTEP();
consinit();
#ifdef KGDB
LEDSTEP();
kgdb_port_init();
#endif
LEDSTEP();
/* Talk to the user */
printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
#if 0
/*
* Examine the boot args string for options we need to know about
* now.
*/
process_kernel_args((char *)nwbootinfo.bt_args);
#endif
memstart = 0xa0000000;
memsize = 0x04000000; /* 64MB */
printf("initarm: Configuring system ...\n");
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independent */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = memstart;
bootconfig.dram[0].pages = memsize / PAGE_SIZE;
/*
* Set up the variables that define the availability of
* physical memory. For now, we're going to set
* physical_freestart to 0xa0200000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the L1 table that we set up, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
physical_freestart = 0xa0009000UL;
physical_freeend = 0xa0200000UL;
physmem = (physical_end - physical_start) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
LEDSTEP();
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
/* Allocate enough pages for cleaning the Mini-Data cache. */
KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
valloc_pages(minidataclean, 1);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
/*
* XXX Defer this to later so that we can reclaim the memory
* XXX used by the RedBoot page tables.
*/
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00200000; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the Mini-Data cache clean area. */
xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
minidataclean.pv_pa);
/* Map the vector page. */
#if 1
/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
* cache-clean code there. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif
/*
* map integrated peripherals at same address in l1pagetable
* so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
/*
* Give the XScale global cache clean code an appropriately
* sized chunk of unmapped VA space starting at 0xff000000
* (our device mappings end before this address).
*/
xscale_cache_clean_addr = 0xff000000U;
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
{
extern char _end[];
physical_freestart = physical_start +
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
KERNEL_BASE);
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
}
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
LEDSTEP();
cpu_setttb(kernel_l1pt.pv_pa, true);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
LEDSTEP();
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slighly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_md_init();
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
LEDSTEP();
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
LEDSTEP();
#ifdef __HAVE_MEMORY_DISK__
md_root_setconf(memory_disk, sizeof memory_disk);
#endif
#ifdef BOOTHOWTO
boothowto |= BOOTHOWTO;
#endif
{
uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
if (0 == (sw & (1<<0)))
boothowto ^= RB_KDB;
if (0 == (sw & (1<<1)))
boothowto ^= RB_SINGLE;
}
LEDSTEP();
#ifdef KGDB
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
#ifdef DDB
db_machine_init();
/* Firmware doesn't load symbols. */
ddb_init(0, NULL, NULL);
if (boothowto & RB_KDB)
Debugger();
#endif
pldreg8_write(G42XXEB_LED, 0);
/* We return the new stack pointer address */
return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}
#if 0
void
process_kernel_args(char *args)
{
boothowto = 0;
/* Make a local copy of the bootargs */
strncpy(bootargs, args, MAX_BOOT_STRING);
args = bootargs;
boot_file = bootargs;
/* Skip the kernel image filename */
while (*args != ' ' && *args != 0)
++args;
if (*args != 0)
*args++ = 0;
while (*args == ' ')
++args;
boot_args = args;
printf("bootfile: %s\n", boot_file);
printf("bootargs: %s\n", boot_args);
parse_mi_bootargs(boot_args);
}
#endif
#ifdef KGDB
#ifndef KGDB_DEVNAME
#define KGDB_DEVNAME "ffuart"
#endif
const char kgdb_devname[] = KGDB_DEVNAME;
#if (NCOM > 0)
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comkgdbmode = KGDB_DEVMODE;
#endif /* NCOM */
#endif /* KGDB */
void
consinit(void)
{
static int consinit_called = 0;
uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
#if 0
char *console = CONSDEVNAME;
#endif
if (consinit_called != 0)
return;
consinit_called = 1;
#if NCOM > 0
#ifdef FFUARTCONSOLE
#ifdef KGDB
if (0 == strcmp(kgdb_devname, "ffuart")){
/* port is reserved for kgdb */
} else
#endif
if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
#if 0
pxa2x0_clkman_config(CKEN_FFUART, 1);
#else
ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
ckenreg|CKEN_FFUART);
#endif
return;
}
#endif /* FFUARTCONSOLE */
#ifdef BTUARTCONSOLE
#ifdef KGDB
if (0 == strcmp(kgdb_devname, "btuart")) {
/* port is reserved for kgdb */
} else
#endif
if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
ckenreg|CKEN_BTUART);
return;
}
#endif /* BTUARTCONSOLE */
#endif /* NCOM */
}
#ifdef KGDB
void
kgdb_port_init(void)
{
#if (NCOM > 0) && defined(COM_PXA2X0)
paddr_t paddr = 0;
uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
if (0 == strcmp(kgdb_devname, "ffuart")) {
paddr = PXA2X0_FFUART_BASE;
ckenreg |= CKEN_FFUART;
}
else if (0 == strcmp(kgdb_devname, "btuart")) {
paddr = PXA2X0_BTUART_BASE;
ckenreg |= CKEN_BTUART;
}
if (paddr &&
0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
}
#endif
}
#endif