Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

*	$NetBSD: sint.sa,v 1.3 2010/02/09 23:07:14 wiz Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	sint.sa 3.1 12/10/90
*
*	The entry point sINT computes the rounded integer 
*	equivalent of the input argument, sINTRZ computes 
*	the integer rounded to zero of the input argument.
*
*	Entry points sint and sintrz are called from do_func
*	to emulate the fint and fintrz unimplemented instructions,
*	respectively.  Entry point sintdo is used by bindec.
*
*	Input: (Entry points sint and sintrz) Double-extended
*		number X in the ETEMP space in the floating-point
*		save stack.
*	       (Entry point sintdo) Double-extended number X in
*		location pointed to by the address register a0.
*	       (Entry point sintd) Double-extended denormalized
*		number X in the ETEMP space in the floating-point
*		save stack.
*
*	Output: The function returns int(X) or intrz(X) in fp0.
*
*	Modifies: fp0.
*
*	Algorithm: (sint and sintrz)
*
*	1. If exp(X) >= 63, return X. 
*	   If exp(X) < 0, return +/- 0 or +/- 1, according to
*	   the rounding mode.
*	
*	2. (X is in range) set rsc = 63 - exp(X). Unnormalize the
*	   result to the exponent $403e.
*
*	3. Round the result in the mode given in USER_FPCR. For
*	   sintrz, force round-to-zero mode.
*
*	4. Normalize the rounded result; store in fp0.
*
*	For the denormalized cases, force the correct result
*	for the given sign and rounding mode.
*
*		        Sign(X)
*		RMODE   +    -
*		-----  --------
*		 RN    +0   -0
*		 RZ    +0   -0
*		 RM    +0   -1
*		 RP    +1   -0
*

SINT    IDNT    2,1 Motorola 040 Floating Point Software Package

	section	8

	include	fpsp.h

	xref	dnrm_lp
	xref	nrm_set
	xref	round
	xref	t_inx2
	xref	ld_pone
	xref	ld_mone
	xref	ld_pzero
	xref	ld_mzero
	xref	snzrinx

*
*	FINT
*
	xdef	sint
sint:
	bfextu	FPCR_MODE(a6){2:2},d1	;use user's mode for rounding
*					;implicity has extend precision
*					;in upper word. 
	move.l	d1,L_SCR1(a6)		;save mode bits
	bra.b	sintexc			

*
*	FINT with extended denorm inputs.
*
	xdef	sintd
sintd:
	btst.b	#5,FPCR_MODE(a6)
	beq	snzrinx		;if round nearest or round zero, +/- 0
	btst.b	#4,FPCR_MODE(a6)
	beq.b	rnd_mns
rnd_pls:
	btst.b	#sign_bit,LOCAL_EX(a0)
	bne.b	sintmz
	bsr	ld_pone		;if round plus inf and pos, answer is +1
	bra	t_inx2
rnd_mns:
	btst.b	#sign_bit,LOCAL_EX(a0)
	beq.b	sintpz
	bsr	ld_mone		;if round mns inf and neg, answer is -1
	bra	t_inx2
sintpz:
	bsr	ld_pzero
	bra	t_inx2
sintmz:
	bsr	ld_mzero
	bra	t_inx2

*
*	FINTRZ
*
	xdef	sintrz
sintrz:
	move.l	#1,L_SCR1(a6)		;use rz mode for rounding
*					;implicity has extend precision
*					;in upper word. 
	bra.b	sintexc			
*
*	SINTDO
*
*	Input:	a0 points to an IEEE extended format operand
* 	Output:	fp0 has the result 
*
* Exceptions:
*
* If the subroutine results in an inexact operation, the inx2 and
* ainx bits in the USER_FPSR are set.
*
*
	xdef	sintdo
sintdo:
	bfextu	FPCR_MODE(a6){2:2},d1	;use user's mode for rounding
*					;implicitly has ext precision
*					;in upper word. 
	move.l	d1,L_SCR1(a6)		;save mode bits
*
* Real work of sint is in sintexc
*
sintexc:
	bclr.b	#sign_bit,LOCAL_EX(a0)	;convert to internal extended
*					;format
	sne	LOCAL_SGN(a0)		
	cmp.w	#$403e,LOCAL_EX(a0)	;check if (unbiased) exp > 63
	bgt.b	out_rnge			;branch if exp < 63
	cmp.w	#$3ffd,LOCAL_EX(a0)	;check if (unbiased) exp < 0
	bgt.w	in_rnge			;if 63 >= exp > 0, do calc
*
* Input is less than zero.  Restore sign, and check for directed
* rounding modes.  L_SCR1 contains the rmode in the lower byte.
*
un_rnge:
	btst.b	#1,L_SCR1+3(a6)		;check for rn and rz
	beq.b	un_rnrz
	tst.b	LOCAL_SGN(a0)		;check for sign
	bne.b	un_rmrp_neg
*
* Sign is +.  If rp, load +1.0, if rm, load +0.0
*
	cmpi.b	#3,L_SCR1+3(a6)		;check for rp
	beq.b	un_ldpone		;if rp, load +1.0
	bsr	ld_pzero		;if rm, load +0.0
	bra	t_inx2
un_ldpone:
	bsr	ld_pone
	bra	t_inx2
*
* Sign is -.  If rm, load -1.0, if rp, load -0.0
*
un_rmrp_neg:
	cmpi.b	#2,L_SCR1+3(a6)		;check for rm
	beq.b	un_ldmone		;if rm, load -1.0
	bsr	ld_mzero		;if rp, load -0.0
	bra	t_inx2
un_ldmone:
	bsr	ld_mone
	bra	t_inx2
*
* Rmode is rn or rz; return signed zero
*
un_rnrz:
	tst.b	LOCAL_SGN(a0)		;check for sign
	bne.b	un_rnrz_neg
	bsr	ld_pzero
	bra	t_inx2
un_rnrz_neg:
	bsr	ld_mzero
	bra	t_inx2
	
*
* Input is greater than 2^63.  All bits are significant.  Return
* the input.
*
out_rnge:
	bfclr	LOCAL_SGN(a0){0:8}	;change back to IEEE ext format
	beq.b	intps
	bset.b	#sign_bit,LOCAL_EX(a0)
intps:
	fmove.l	fpcr,-(sp)
	fmove.l	#0,fpcr
	fmove.x LOCAL_EX(a0),fp0	;if exp > 63
*					;then return X to the user
*					;there are no fraction bits
	fmove.l	(sp)+,fpcr
	rts

in_rnge:
* 					;shift off fraction bits
	clr.l	d0			;clear d0 - initial g,r,s for
*					;dnrm_lp
	move.l	#$403e,d1		;set threshold for dnrm_lp
*					;assumes a0 points to operand
	bsr	dnrm_lp
*					;returns unnormalized number
*					;pointed by a0
*					;output d0 supplies g,r,s
*					;used by round
	move.l	L_SCR1(a6),d1		;use selected rounding mode
*
*
	bsr	round			;round the unnorm based on users
*					;input	a0 ptr to ext X
*					;	d0 g,r,s bits
*					;	d1 PREC/MODE info
*					;output a0 ptr to rounded result
*					;inexact flag set in USER_FPSR
*					;if initial grs set
*
* normalize the rounded result and store value in fp0
*
	bsr	nrm_set			;normalize the unnorm
*					;Input: a0 points to operand to
*					;be normalized
*					;Output: a0 points to normalized
*					;result
	bfclr	LOCAL_SGN(a0){0:8}
	beq.b	nrmrndp
	bset.b	#sign_bit,LOCAL_EX(a0)	;return to IEEE extended format
nrmrndp:
	fmove.l	fpcr,-(sp)
	fmove.l	#0,fpcr
	fmove.x LOCAL_EX(a0),fp0	;move result to fp0
	fmove.l	(sp)+,fpcr
	rts

	end