/* $NetBSD: pmap.c,v 1.109 2022/10/05 09:03:06 rin Exp $ */
/*
* Copyright 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.109 2022/10/05 09:03:06 rin Exp $");
#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "opt_pmap.h"
#endif
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/systm.h>
#include <uvm/uvm.h>
#include <machine/powerpc.h>
#include <powerpc/pcb.h>
#include <powerpc/spr.h>
#include <powerpc/ibm4xx/spr.h>
#include <powerpc/ibm4xx/cpu.h>
#include <powerpc/ibm4xx/tlb.h>
/*
* kernmap is an array of PTEs large enough to map in
* 4GB. At 16KB/page it is 256K entries or 2MB.
*/
#define KERNMAP_SIZE ((0xffffffffU / PAGE_SIZE) + 1)
void *kernmap;
#define MINCTX 2
#define NUMCTX 256
volatile struct pmap *ctxbusy[NUMCTX];
#define TLBF_USED 0x1
#define TLBF_REF 0x2
#define TLBF_LOCKED 0x4
#define TLB_LOCKED(i) (tlb_info[(i)].ti_flags & TLBF_LOCKED)
typedef struct tlb_info_s {
char ti_flags;
char ti_ctx; /* TLB_PID assiciated with the entry */
u_int ti_va;
} tlb_info_t;
volatile tlb_info_t tlb_info[NTLB];
/* We'll use a modified FIFO replacement policy cause it's cheap */
volatile int tlbnext;
static int tlb_nreserved = 0;
static int pmap_bootstrap_done = 0;
/* Event counters */
struct evcnt tlbmiss_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
NULL, "cpu", "tlbmiss");
struct evcnt tlbflush_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
NULL, "cpu", "tlbflush");
struct evcnt tlbenter_ev = EVCNT_INITIALIZER(EVCNT_TYPE_TRAP,
NULL, "cpu", "tlbenter");
EVCNT_ATTACH_STATIC(tlbmiss_ev);
EVCNT_ATTACH_STATIC(tlbflush_ev);
EVCNT_ATTACH_STATIC(tlbenter_ev);
struct pmap kernel_pmap_;
struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
static int npgs;
static u_int nextavail;
#ifndef MSGBUFADDR
extern paddr_t msgbuf_paddr;
#endif
static struct mem_region *mem, *avail;
/*
* This is a cache of referenced/modified bits.
* Bits herein are shifted by ATTRSHFT.
*/
static char *pmap_attrib;
#define PV_WIRED 0x1
#define PV_WIRE(pv) ((pv)->pv_va |= PV_WIRED)
#define PV_UNWIRE(pv) ((pv)->pv_va &= ~PV_WIRED)
#define PV_ISWIRED(pv) ((pv)->pv_va & PV_WIRED)
#define PV_VA(pv) ((pv)->pv_va & ~PV_WIRED)
#define PV_CMPVA(va,pv) (!(PV_VA(pv) ^ (va)))
struct pv_entry {
struct pv_entry *pv_next; /* Linked list of mappings */
struct pmap *pv_pm;
vaddr_t pv_va; /* virtual address of mapping */
};
/* Each index corresponds to TLB_SIZE_* value. */
static size_t tlbsize[] = {
1024, /* TLB_SIZE_1K */
4096, /* TLB_SIZE_4K */
16384, /* TLB_SIZE_16K */
65536, /* TLB_SIZE_64K */
262144, /* TLB_SIZE_256K */
1048576, /* TLB_SIZE_1M */
4194304, /* TLB_SIZE_4M */
16777216, /* TLB_SIZE_16M */
};
struct pv_entry *pv_table;
static struct pool pv_pool;
static int pmap_initialized;
static void ctx_flush(int);
struct pv_entry *pa_to_pv(paddr_t);
static inline char *pa_to_attr(paddr_t);
static inline volatile u_int *pte_find(struct pmap *, vaddr_t);
static inline int pte_enter(struct pmap *, vaddr_t, u_int);
static inline int pmap_enter_pv(struct pmap *, vaddr_t, paddr_t, int);
static void pmap_remove_pv(struct pmap *, vaddr_t, paddr_t);
static inline void tlb_invalidate_entry(int);
static int ppc4xx_tlb_size_mask(size_t, int *, int *);
struct pv_entry *
pa_to_pv(paddr_t pa)
{
uvm_physseg_t bank;
psize_t pg;
bank = uvm_physseg_find(atop(pa), &pg);
if (bank == UVM_PHYSSEG_TYPE_INVALID)
return NULL;
return &uvm_physseg_get_pmseg(bank)->pvent[pg];
}
static inline char *
pa_to_attr(paddr_t pa)
{
uvm_physseg_t bank;
psize_t pg;
bank = uvm_physseg_find(atop(pa), &pg);
if (bank == UVM_PHYSSEG_TYPE_INVALID)
return NULL;
return &uvm_physseg_get_pmseg(bank)->attrs[pg];
}
/*
* Insert PTE into page table.
*/
static inline int
pte_enter(struct pmap *pm, vaddr_t va, u_int pte)
{
int seg = STIDX(va), ptn = PTIDX(va);
u_int oldpte;
if (!pm->pm_ptbl[seg]) {
/* Don't allocate a page to clear a non-existent mapping. */
if (!pte)
return 0;
vaddr_t km = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
if (__predict_false(km == 0))
return ENOMEM;
pm->pm_ptbl[seg] = (u_int *)km;
}
oldpte = pm->pm_ptbl[seg][ptn];
pm->pm_ptbl[seg][ptn] = pte;
/* Flush entry. */
ppc4xx_tlb_flush(va, pm->pm_ctx);
if (oldpte != pte) {
if (pte == 0)
pm->pm_stats.resident_count--;
else
pm->pm_stats.resident_count++;
}
return 0;
}
/*
* Get a pointer to a PTE in a page table.
*/
volatile u_int *
pte_find(struct pmap *pm, vaddr_t va)
{
int seg = STIDX(va), ptn = PTIDX(va);
if (pm->pm_ptbl[seg])
return &pm->pm_ptbl[seg][ptn];
return NULL;
}
/*
* This is called during initppc, before the system is really initialized.
*/
void
pmap_bootstrap(u_int kernelstart, u_int kernelend)
{
struct mem_region *mp, *mp1;
int cnt, i;
u_int s, e, sz;
tlbnext = tlb_nreserved;
/*
* Allocate the kernel page table at the end of
* kernel space so it's in the locked TTE.
*/
kernmap = (void *)kernelend;
/*
* Initialize kernel page table.
*/
for (i = 0; i < STSZ; i++)
pmap_kernel()->pm_ptbl[i] = NULL;
ctxbusy[0] = ctxbusy[1] = pmap_kernel();
/*
* Announce page-size to the VM-system
*/
uvmexp.pagesize = NBPG;
uvm_md_init();
/*
* Get memory.
*/
mem_regions(&mem, &avail);
for (mp = mem; mp->size; mp++) {
physmem += btoc(mp->size);
printf("+%lx,", mp->size);
}
printf("\n");
ppc4xx_tlb_init();
/*
* Count the number of available entries.
*/
for (cnt = 0, mp = avail; mp->size; mp++)
cnt++;
/*
* Page align all regions.
* Non-page aligned memory isn't very interesting to us.
* Also, sort the entries for ascending addresses.
*/
kernelstart &= ~PGOFSET;
kernelend = (kernelend + PGOFSET) & ~PGOFSET;
for (mp = avail; mp->size; mp++) {
s = mp->start;
e = mp->start + mp->size;
printf("%08x-%08x -> ", s, e);
/*
* Check whether this region holds all of the kernel.
*/
if (s < kernelstart && e > kernelend) {
avail[cnt].start = kernelend;
avail[cnt++].size = e - kernelend;
e = kernelstart;
}
/*
* Look whether this regions starts within the kernel.
*/
if (s >= kernelstart && s < kernelend) {
if (e <= kernelend)
goto empty;
s = kernelend;
}
/*
* Now look whether this region ends within the kernel.
*/
if (e > kernelstart && e <= kernelend) {
if (s >= kernelstart)
goto empty;
e = kernelstart;
}
/*
* Now page align the start and size of the region.
*/
s = round_page(s);
e = trunc_page(e);
if (e < s)
e = s;
sz = e - s;
printf("%08x-%08x = %x\n", s, e, sz);
/*
* Check whether some memory is left here.
*/
if (sz == 0) {
empty:
memmove(mp, mp + 1,
(cnt - (mp - avail)) * sizeof(*mp));
cnt--;
mp--;
continue;
}
/*
* Do an insertion sort.
*/
npgs += btoc(sz);
for (mp1 = avail; mp1 < mp; mp1++)
if (s < mp1->start)
break;
if (mp1 < mp) {
memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
mp1->start = s;
mp1->size = sz;
} else {
mp->start = s;
mp->size = sz;
}
}
/*
* We cannot do pmap_steal_memory here,
* since we don't run with translation enabled yet.
*/
#ifndef MSGBUFADDR
/*
* allow for msgbuf
*/
sz = round_page(MSGBUFSIZE);
mp = NULL;
for (mp1 = avail; mp1->size; mp1++)
if (mp1->size >= sz)
mp = mp1;
if (mp == NULL)
panic("not enough memory?");
npgs -= btoc(sz);
msgbuf_paddr = mp->start + mp->size - sz;
mp->size -= sz;
if (mp->size <= 0)
memmove(mp, mp + 1, (cnt - (mp - avail)) * sizeof(*mp));
#endif
for (mp = avail; mp->size; mp++)
uvm_page_physload(atop(mp->start), atop(mp->start + mp->size),
atop(mp->start), atop(mp->start + mp->size),
VM_FREELIST_DEFAULT);
/*
* Initialize kernel pmap and hardware.
*/
/* Setup TLB pid allocator so it knows we alreadu using PID 1 */
pmap_kernel()->pm_ctx = KERNEL_PID;
nextavail = avail->start;
pmap_bootstrap_done = 1;
}
/*
* Restrict given range to physical memory
*
* (Used by /dev/mem)
*/
void
pmap_real_memory(paddr_t *start, psize_t *size)
{
struct mem_region *mp;
for (mp = mem; mp->size; mp++) {
if (*start + *size > mp->start &&
*start < mp->start + mp->size) {
if (*start < mp->start) {
*size -= mp->start - *start;
*start = mp->start;
}
if (*start + *size > mp->start + mp->size)
*size = mp->start + mp->size - *start;
return;
}
}
*size = 0;
}
/*
* Initialize anything else for pmap handling.
* Called during vm_init().
*/
void
pmap_init(void)
{
struct pv_entry *pv;
vsize_t sz;
vaddr_t addr;
int bank, i, s;
char *attr;
sz = (vsize_t)((sizeof(struct pv_entry) + 1) * npgs);
sz = round_page(sz);
addr = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED | UVM_KMF_ZERO);
s = splvm();
pv = pv_table = (struct pv_entry *)addr;
for (i = npgs; --i >= 0;)
pv++->pv_pm = NULL;
pmap_attrib = (char *)pv;
memset(pv, 0, npgs);
pv = pv_table;
attr = pmap_attrib;
for (bank = uvm_physseg_get_first(); uvm_physseg_valid_p(bank);
bank = uvm_physseg_get_next(bank)) {
sz = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
uvm_physseg_get_pmseg(bank)->pvent = pv;
uvm_physseg_get_pmseg(bank)->attrs = attr;
pv += sz;
attr += sz;
}
pmap_initialized = 1;
splx(s);
/* Setup a pool for additional pvlist structures */
pool_init(&pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pv_entry",
NULL, IPL_VM);
}
/*
* How much virtual space is available to the kernel?
*/
void
pmap_virtual_space(vaddr_t *start, vaddr_t *end)
{
*start = (vaddr_t) VM_MIN_KERNEL_ADDRESS;
*end = (vaddr_t) VM_MAX_KERNEL_ADDRESS;
}
#ifdef PMAP_GROWKERNEL
/*
* Preallocate kernel page tables to a specified VA.
* This simply loops through the first TTE for each
* page table from the beginning of the kernel pmap,
* reads the entry, and if the result is
* zero (either invalid entry or no page table) it stores
* a zero there, populating page tables in the process.
* This is not the most efficient technique but i don't
* expect it to be called that often.
*/
extern struct vm_page *vm_page_alloc1(void);
extern void vm_page_free1(struct vm_page *);
vaddr_t kbreak = VM_MIN_KERNEL_ADDRESS;
vaddr_t
pmap_growkernel(vaddr_t maxkvaddr)
{
struct pmap *pm = pmap_kernel();
paddr_t pg;
int seg, s;
s = splvm();
/* Align with the start of a page table */
for (kbreak &= ~(PTMAP - 1); kbreak < maxkvaddr; kbreak += PTMAP) {
seg = STIDX(kbreak);
if (pte_find(pm, kbreak))
continue;
if (uvm.page_init_done)
pg = (paddr_t)VM_PAGE_TO_PHYS(vm_page_alloc1());
else if (!uvm_page_physget(&pg))
panic("pmap_growkernel: no memory");
if (!pg)
panic("pmap_growkernel: no pages");
pmap_zero_page((paddr_t)pg);
/* XXX This is based on all phymem being addressable */
pm->pm_ptbl[seg] = (u_int *)pg;
}
splx(s);
return kbreak;
}
/*
* vm_page_alloc1:
*
* Allocate and return a memory cell with no associated object.
*/
struct vm_page *
vm_page_alloc1(void)
{
struct vm_page *pg;
pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
if (pg) {
pg->wire_count = 1; /* no mappings yet */
pg->flags &= ~PG_BUSY; /* never busy */
}
return pg;
}
/*
* vm_page_free1:
*
* Returns the given page to the free list,
* disassociating it with any VM object.
*
* Object and page must be locked prior to entry.
*/
void
vm_page_free1(struct vm_page *pg)
{
KASSERTMSG(pg->flags == (PG_CLEAN | PG_FAKE),
"invalid page pg = %p, pa = %" PRIxPADDR,
pg, VM_PAGE_TO_PHYS(pg));
pg->flags |= PG_BUSY;
pg->wire_count = 0;
uvm_pagefree(pg);
}
#endif
/*
* Create and return a physical map.
*/
struct pmap *
pmap_create(void)
{
struct pmap *pm;
pm = kmem_alloc(sizeof(*pm), KM_SLEEP);
memset(pm, 0, sizeof(*pm));
pm->pm_refs = 1;
return pm;
}
/*
* Add a reference to the given pmap.
*/
void
pmap_reference(struct pmap *pm)
{
pm->pm_refs++;
}
/*
* Retire the given pmap from service.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_destroy(struct pmap *pm)
{
int i;
if (--pm->pm_refs > 0)
return;
KASSERT(pm->pm_stats.resident_count == 0);
KASSERT(pm->pm_stats.wired_count == 0);
for (i = 0; i < STSZ; i++)
if (pm->pm_ptbl[i]) {
uvm_km_free(kernel_map, (vaddr_t)pm->pm_ptbl[i],
PAGE_SIZE, UVM_KMF_WIRED);
pm->pm_ptbl[i] = NULL;
}
if (pm->pm_ctx)
ctx_free(pm);
kmem_free(pm, sizeof(*pm));
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(struct pmap *dst_pmap, struct pmap *src_pmap, vaddr_t dst_addr,
vsize_t len, vaddr_t src_addr)
{
}
/*
* Require that all active physical maps contain no
* incorrect entries NOW.
*/
void
pmap_update(struct pmap *pmap)
{
}
/*
* Fill the given physical page with zeroes.
*/
void
pmap_zero_page(paddr_t pa)
{
int i;
#ifdef PPC_4XX_NOCACHE
memset((void *)pa, 0, PAGE_SIZE);
#else
for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) {
__asm volatile ("dcbz 0,%0" : : "r" (pa));
pa += CACHELINESIZE;
}
#endif
}
/*
* Copy the given physical source page to its destination.
*/
void
pmap_copy_page(paddr_t src, paddr_t dst)
{
memcpy((void *)dst, (void *)src, PAGE_SIZE);
dcache_wbinv_page(dst);
}
static inline int
pmap_enter_pv(struct pmap *pm, vaddr_t va, paddr_t pa, int flags)
{
struct pv_entry *pv, *npv;
int s;
KASSERT(pmap_initialized);
s = splvm();
pv = pa_to_pv(pa);
if (!pv->pv_pm) {
/*
* No entries yet, use header as the first entry.
*/
pv->pv_va = va;
pv->pv_pm = pm;
pv->pv_next = NULL;
} else {
/*
* There is at least one other VA mapping this page.
* Place this entry after the header.
*/
npv = pool_get(&pv_pool, PR_NOWAIT);
if (npv == NULL) {
if ((flags & PMAP_CANFAIL) == 0)
panic("pmap_enter_pv: failed");
splx(s);
return ENOMEM;
}
npv->pv_va = va;
npv->pv_pm = pm;
npv->pv_next = pv->pv_next;
pv->pv_next = npv;
pv = npv;
}
if (flags & PMAP_WIRED) {
PV_WIRE(pv);
pm->pm_stats.wired_count++;
}
splx(s);
return 0;
}
static void
pmap_remove_pv(struct pmap *pm, vaddr_t va, paddr_t pa)
{
struct pv_entry *pv, *npv;
/*
* Remove from the PV table.
*/
pv = pa_to_pv(pa);
if (!pv)
return;
/*
* If it is the first entry on the list, it is actually
* in the header and we must copy the following entry up
* to the header. Otherwise we must search the list for
* the entry. In either case we free the now unused entry.
*/
if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
if (PV_ISWIRED(pv))
pm->pm_stats.wired_count--;
if ((npv = pv->pv_next)) {
*pv = *npv;
pool_put(&pv_pool, npv);
} else
pv->pv_pm = NULL;
} else {
for (; (npv = pv->pv_next) != NULL; pv = npv)
if (pm == npv->pv_pm && PV_CMPVA(va, npv))
break;
if (npv) {
pv->pv_next = npv->pv_next;
if (PV_ISWIRED(npv)) {
pm->pm_stats.wired_count--;
}
pool_put(&pv_pool, npv);
}
}
}
/*
* Insert physical page at pa into the given pmap at virtual address va.
*/
int
pmap_enter(struct pmap *pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
u_int tte;
bool managed;
int s;
/*
* Have to remove any existing mapping first.
*/
pmap_remove(pm, va, va + PAGE_SIZE);
if (flags & PMAP_WIRED)
flags |= prot;
managed = uvm_pageismanaged(pa);
/*
* Generate TTE.
*/
tte = TTE_PA(pa);
/* XXXX -- need to support multiple page sizes. */
tte |= TTE_SZ_16K;
KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
(PMAP_NOCACHE | PME_WRITETHROUG));
if (flags & PMAP_NOCACHE) {
/* Must be I/O mapping */
tte |= TTE_I | TTE_G;
}
#ifdef PPC_4XX_NOCACHE
tte |= TTE_I;
#else
else if (flags & PME_WRITETHROUG) {
/* Uncached and writethrough are not compatible */
tte |= TTE_W;
}
#endif
if (pm == pmap_kernel())
tte |= TTE_ZONE(ZONE_PRIV);
else
tte |= TTE_ZONE(ZONE_USER);
if (flags & VM_PROT_WRITE)
tte |= TTE_WR;
if (flags & VM_PROT_EXECUTE)
tte |= TTE_EX;
/*
* Now record mapping for later back-translation.
*/
if (pmap_initialized && managed) {
char *attr;
if (pmap_enter_pv(pm, va, pa, flags)) {
/* Could not enter pv on a managed page */
return ENOMEM;
}
/* Now set attributes. */
attr = pa_to_attr(pa);
KASSERT(attr);
if (flags & VM_PROT_ALL)
*attr |= PMAP_ATTR_REF;
if (flags & VM_PROT_WRITE)
*attr |= PMAP_ATTR_CHG;
}
s = splvm();
/* Insert page into page table. */
if (__predict_false(pte_enter(pm, va, tte))) {
if (__predict_false((flags & PMAP_CANFAIL) == 0))
panic("%s: pte_enter", __func__);
splx(s);
return ENOMEM;
}
/* If this is a real fault, enter it in the tlb */
if (tte && ((flags & PMAP_WIRED) == 0)) {
int s2 = splhigh();
ppc4xx_tlb_enter(pm->pm_ctx, va, tte);
splx(s2);
}
splx(s);
/* Flush the real memory from the instruction cache. */
if ((prot & VM_PROT_EXECUTE) && (tte & TTE_I) == 0)
__syncicache((void *)pa, PAGE_SIZE);
return 0;
}
void
pmap_unwire(struct pmap *pm, vaddr_t va)
{
struct pv_entry *pv;
paddr_t pa;
int s;
if (!pmap_extract(pm, va, &pa))
return;
pv = pa_to_pv(pa);
if (!pv)
return;
s = splvm();
while (pv != NULL) {
if (pm == pv->pv_pm && PV_CMPVA(va, pv)) {
if (PV_ISWIRED(pv)) {
PV_UNWIRE(pv);
pm->pm_stats.wired_count--;
}
break;
}
pv = pv->pv_next;
}
splx(s);
}
void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
struct pmap *pm = pmap_kernel();
u_int tte;
int s;
/*
* Generate TTE.
*
* XXXX
*
* Since the kernel does not handle execution privileges properly,
* we will handle read and execute permissions together.
*/
tte = 0;
if (prot & VM_PROT_ALL) {
tte = TTE_PA(pa) | TTE_EX | TTE_ZONE(ZONE_PRIV);
/* XXXX -- need to support multiple page sizes. */
tte |= TTE_SZ_16K;
KASSERT((flags & (PMAP_NOCACHE | PME_WRITETHROUG)) !=
(PMAP_NOCACHE | PME_WRITETHROUG));
if (flags & PMAP_NOCACHE)
/* Must be I/O mapping */
tte |= TTE_I | TTE_G;
#ifdef PPC_4XX_NOCACHE
tte |= TTE_I;
#else
else if (prot & PME_WRITETHROUG) {
/* Uncached and writethrough are not compatible */
tte |= TTE_W;
}
#endif
if (prot & VM_PROT_WRITE)
tte |= TTE_WR;
}
s = splvm();
/* Insert page into page table. */
if (__predict_false(pte_enter(pm, va, tte)))
panic("%s: pte_enter", __func__);
splx(s);
}
void
pmap_kremove(vaddr_t va, vsize_t len)
{
while (len > 0) {
(void)pte_enter(pmap_kernel(), va, 0); /* never fail */
va += PAGE_SIZE;
len -= PAGE_SIZE;
}
}
/*
* Remove the given range of mapping entries.
*/
void
pmap_remove(struct pmap *pm, vaddr_t va, vaddr_t endva)
{
paddr_t pa;
volatile u_int *ptp;
int s;
s = splvm();
while (va < endva) {
if ((ptp = pte_find(pm, va)) && (pa = *ptp)) {
pa = TTE_PA(pa);
pmap_remove_pv(pm, va, pa);
*ptp = 0;
ppc4xx_tlb_flush(va, pm->pm_ctx);
pm->pm_stats.resident_count--;
}
va += PAGE_SIZE;
}
splx(s);
}
/*
* Get the physical page address for the given pmap/virtual address.
*/
bool
pmap_extract(struct pmap *pm, vaddr_t va, paddr_t *pap)
{
int seg = STIDX(va), ptn = PTIDX(va);
u_int pa = 0;
int s;
s = splvm();
if (pm->pm_ptbl[seg] && (pa = pm->pm_ptbl[seg][ptn]) && pap)
*pap = TTE_PA(pa) | (va & PGOFSET);
splx(s);
return pa != 0;
}
/*
* Lower the protection on the specified range of this pmap.
*
* There are only two cases: either the protection is going to 0,
* or it is going to read-only.
*/
void
pmap_protect(struct pmap *pm, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
{
volatile u_int *ptp;
int s, bic;
if ((prot & VM_PROT_READ) == 0) {
pmap_remove(pm, sva, eva);
return;
}
bic = 0;
if ((prot & VM_PROT_WRITE) == 0)
bic |= TTE_WR;
if ((prot & VM_PROT_EXECUTE) == 0)
bic |= TTE_EX;
if (bic == 0)
return;
s = splvm();
while (sva < eva) {
if ((ptp = pte_find(pm, sva)) != NULL) {
*ptp &= ~bic;
ppc4xx_tlb_flush(sva, pm->pm_ctx);
}
sva += PAGE_SIZE;
}
splx(s);
}
bool
pmap_check_attr(struct vm_page *pg, u_int mask, int clear)
{
paddr_t pa;
char *attr;
int s, rv;
/*
* First modify bits in cache.
*/
pa = VM_PAGE_TO_PHYS(pg);
attr = pa_to_attr(pa);
if (attr == NULL)
return false;
s = splvm();
rv = (*attr & mask) != 0;
if (clear) {
*attr &= ~mask;
pmap_page_protect(pg,
mask == PMAP_ATTR_CHG ? VM_PROT_READ : 0);
}
splx(s);
return rv;
}
/*
* Lower the protection on the specified physical page.
*
* There are only two cases: either the protection is going to 0,
* or it is going to read-only.
*/
void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
struct pv_entry *pvh, *pv, *npv;
struct pmap *pm;
paddr_t pa = VM_PAGE_TO_PHYS(pg);
vaddr_t va;
pvh = pa_to_pv(pa);
if (pvh == NULL)
return;
/* Handle extra pvs which may be deleted in the operation */
for (pv = pvh->pv_next; pv; pv = npv) {
npv = pv->pv_next;
pm = pv->pv_pm;
va = PV_VA(pv);
pmap_protect(pm, va, va + PAGE_SIZE, prot);
}
/* Now check the head pv */
if (pvh->pv_pm) {
pv = pvh;
pm = pv->pv_pm;
va = PV_VA(pv);
pmap_protect(pm, va, va + PAGE_SIZE, prot);
}
}
/*
* Activate the address space for the specified process. If the process
* is the current process, load the new MMU context.
*/
void
pmap_activate(struct lwp *l)
{
#if 0
struct pcb *pcb = lwp_getpcb(l);
pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
/*
* XXX Normally performed in cpu_lwp_fork().
*/
printf("pmap_activate(%p), pmap=%p\n",l,pmap);
pcb->pcb_pm = pmap;
#endif
}
/*
* Deactivate the specified process's address space.
*/
void
pmap_deactivate(struct lwp *l)
{
}
/*
* Synchronize caches corresponding to [addr, addr+len) in p.
*/
void
pmap_procwr(struct proc *p, vaddr_t va, size_t len)
{
struct pmap *pm = p->p_vmspace->vm_map.pmap;
if (__predict_true(p == curproc)) {
int msr, ctx, pid;
/*
* Take it easy! TLB miss handler takes care of us.
*/
/*
* Need to turn off IMMU and switch to user context.
* (icbi uses DMMU).
*/
if (!(ctx = pm->pm_ctx)) {
/* No context -- assign it one */
ctx_alloc(pm);
ctx = pm->pm_ctx;
}
__asm volatile (
"mfmsr %[msr];"
"li %[pid],0x20;" /* Turn off IMMU */
"andc %[pid],%[msr],%[pid];"
"ori %[pid],%[pid],0x10;" /* Turn on DMMU for sure */
"mtmsr %[pid];"
"isync;"
MFPID(%[pid])
MTPID(%[ctx])
"isync;"
"1:"
"dcbst 0,%[va];"
"icbi 0,%[va];"
"add %[va],%[va],%[size];"
"sub. %[len],%[len],%[size];"
"bge 1b;"
"sync;"
MTPID(%[pid])
"mtmsr %[msr];"
"isync;"
: [msr] "=&r" (msr), [pid] "=&r" (pid)
: [ctx] "r" (ctx), [va] "r" (va), [len] "r" (len),
[size] "r" (CACHELINESIZE));
} else {
paddr_t pa;
vaddr_t tva, eva;
int tlen;
/*
* For p != curproc, we cannot rely upon TLB miss handler in
* user context. Therefore, extract pa and operate againt it.
*
* Note that va below VM_MIN_KERNEL_ADDRESS is reserved for
* direct mapping.
*/
for (tva = va; len > 0; tva = eva, len -= tlen) {
eva = uimin(tva + len, trunc_page(tva + PAGE_SIZE));
tlen = eva - tva;
if (!pmap_extract(pm, tva, &pa)) {
/* XXX should be already unmapped */
continue;
}
__syncicache((void *)pa, tlen);
}
}
}
static inline void
tlb_invalidate_entry(int i)
{
#ifdef PMAP_TLBDEBUG
/*
* Clear only TLBHI[V] bit so that we can track invalidated entry.
*/
register_t msr, pid, hi;
KASSERT(mfspr(SPR_PID) == KERNEL_PID);
__asm volatile (
"mfmsr %[msr];"
"li %[pid],0;"
"mtmsr %[pid];"
MFPID(%[pid])
"tlbre %[hi],%[i],0;"
"andc %[hi],%[hi],%[valid];"
"tlbwe %[hi],%[i],0;"
MTPID(%[pid])
"mtmsr %[msr];"
"isync;"
: [msr] "=&r" (msr), [pid] "=&r" (pid), [hi] "=&r" (hi)
: [i] "r" (i), [valid] "r" (TLB_VALID));
#else
/*
* Just clear entire TLBHI register.
*/
__asm volatile (
"tlbwe %0,%1,0;"
"isync;"
: : "r" (0), "r" (i));
#endif
tlb_info[i].ti_ctx = 0;
tlb_info[i].ti_flags = 0;
}
/* This has to be done in real mode !!! */
void
ppc4xx_tlb_flush(vaddr_t va, int pid)
{
u_long msr, i, found;
/* If there's no context then it can't be mapped. */
if (!pid)
return;
__asm volatile (
MFPID(%[found]) /* Save PID */
"mfmsr %[msr];" /* Save MSR */
"li %[i],0;" /* Now clear MSR */
"mtmsr %[i];"
"isync;"
MTPID(%[pid]) /* Set PID */
"isync;"
"tlbsx. %[i],0,%[va];" /* Search TLB */
"isync;"
MTPID(%[found]) /* Restore PID */
"mtmsr %[msr];" /* Restore MSR */
"isync;"
"li %[found],1;"
"beq 1f;"
"li %[found],0;"
"1:"
: [i] "=&r" (i), [found] "=&r" (found), [msr] "=&r" (msr)
: [va] "r" (va), [pid] "r" (pid));
if (found && !TLB_LOCKED(i)) {
/* Now flush translation */
tlb_invalidate_entry(i);
tlbnext = i;
/* Successful flushes */
tlbflush_ev.ev_count++;
}
}
void
ppc4xx_tlb_flush_all(void)
{
u_long i;
for (i = 0; i < NTLB; i++)
if (!TLB_LOCKED(i))
tlb_invalidate_entry(i);
__asm volatile ("isync");
}
/* Find a TLB entry to evict. */
static int
ppc4xx_tlb_find_victim(void)
{
int flags;
for (;;) {
if (++tlbnext >= NTLB)
tlbnext = tlb_nreserved;
flags = tlb_info[tlbnext].ti_flags;
if (!(flags & TLBF_USED) ||
(flags & (TLBF_LOCKED | TLBF_REF)) == 0) {
u_long va, stack = (u_long)&va;
if (!((tlb_info[tlbnext].ti_va ^ stack) &
(~PGOFSET)) &&
(tlb_info[tlbnext].ti_ctx == KERNEL_PID) &&
(flags & TLBF_USED)) {
/* Kernel stack page */
flags |= TLBF_REF;
tlb_info[tlbnext].ti_flags = flags;
} else {
/* Found it! */
return tlbnext;
}
} else
tlb_info[tlbnext].ti_flags = (flags & ~TLBF_REF);
}
}
void
ppc4xx_tlb_enter(int ctx, vaddr_t va, u_int pte)
{
u_long hi, lo, i;
paddr_t pa;
int msr, pid, sz;
tlbenter_ev.ev_count++;
sz = (pte & TTE_SZ_MASK) >> TTE_SZ_SHIFT;
pa = (pte & TTE_RPN_MASK(sz));
hi = (va & TLB_EPN_MASK) | (sz << TLB_SIZE_SHFT) | TLB_VALID;
lo = (pte & ~TLB_RPN_MASK) | pa;
lo |= ppc4xx_tlbflags(va, pa);
i = ppc4xx_tlb_find_victim();
KASSERTMSG(i >= tlb_nreserved && i < NTLB,
"invalid entry %ld", i);
tlb_info[i].ti_va = (va & TLB_EPN_MASK);
tlb_info[i].ti_ctx = ctx;
tlb_info[i].ti_flags = TLBF_USED | TLBF_REF;
__asm volatile (
"mfmsr %[msr];" /* Save MSR */
"li %[pid],0;"
"mtmsr %[pid];" /* Clear MSR */
"isync;"
"tlbwe %[pid],%[i],0;" /* Invalidate old entry. */
MFPID(%[pid]) /* Save old PID */
MTPID(%[ctx]) /* Load translation ctx */
"isync;"
"tlbwe %[lo],%[i],1;" /* Set TLB */
"tlbwe %[hi],%[i],0;"
"isync;"
MTPID(%[pid]) /* Restore PID */
"mtmsr %[msr];" /* and MSR */
"isync;"
: [msr] "=&r" (msr), [pid] "=&r" (pid)
: [ctx] "r" (ctx), [i] "r" (i), [lo] "r" (lo), [hi] "r" (hi));
}
void
ppc4xx_tlb_init(void)
{
int i;
/* Mark reserved TLB entries */
for (i = 0; i < tlb_nreserved; i++) {
tlb_info[i].ti_flags = TLBF_LOCKED | TLBF_USED;
tlb_info[i].ti_ctx = KERNEL_PID;
}
/* Setup security zones */
/* Z0 - accessible by kernel only if TLB entry permissions allow
* Z1,Z2 - access is controlled by TLB entry permissions
* Z3 - full access regardless of TLB entry permissions
*/
__asm volatile (
"mtspr %0,%1;"
"isync;"
: : "K" (SPR_ZPR), "r" (0x1b000000));
}
/*
* ppc4xx_tlb_size_mask:
*
* Roundup size to supported page size, return TLBHI mask and real size.
*/
static int
ppc4xx_tlb_size_mask(size_t size, int *mask, int *rsiz)
{
int i;
for (i = 0; i < __arraycount(tlbsize); i++)
if (size <= tlbsize[i]) {
*mask = (i << TLB_SIZE_SHFT);
*rsiz = tlbsize[i];
return 0;
}
return EINVAL;
}
/*
* ppc4xx_tlb_mapiodev:
*
* Lookup virtual address of mapping previously entered via
* ppc4xx_tlb_reserve. Search TLB directly so that we don't
* need to waste extra storage for reserved mappings. Note
* that reading TLBHI also sets PID, but all reserved mappings
* use KERNEL_PID, so the side effect is nil.
*/
void *
ppc4xx_tlb_mapiodev(paddr_t base, psize_t len)
{
paddr_t pa;
vaddr_t va;
u_int lo, hi, sz;
int i;
/* tlb_nreserved is only allowed to grow, so this is safe. */
for (i = 0; i < tlb_nreserved; i++) {
__asm volatile (
"tlbre %[lo],%[i],1;" /* TLBLO */
"tlbre %[hi],%[i],0;" /* TLBHI */
: [lo] "=&r" (lo), [hi] "=&r" (hi)
: [i] "r" (i));
KASSERT(hi & TLB_VALID);
KASSERT(mfspr(SPR_PID) == KERNEL_PID);
pa = (lo & TLB_RPN_MASK);
if (base < pa)
continue;
sz = tlbsize[(hi & TLB_SIZE_MASK) >> TLB_SIZE_SHFT];
if (base + len > pa + sz)
continue;
va = (hi & TLB_EPN_MASK) + (base & (sz - 1)); /* sz = 2^n */
return (void *)va;
}
return NULL;
}
/*
* ppc4xx_tlb_reserve:
*
* Map physical range to kernel virtual chunk via reserved TLB entry.
*/
void
ppc4xx_tlb_reserve(paddr_t pa, vaddr_t va, size_t size, int flags)
{
u_int lo, hi;
int szmask, rsize;
/* Called before pmap_bootstrap(), va outside kernel space. */
KASSERT(va < VM_MIN_KERNEL_ADDRESS || va >= VM_MAX_KERNEL_ADDRESS);
KASSERT(!pmap_bootstrap_done);
KASSERT(tlb_nreserved < NTLB);
/* Resolve size. */
if (ppc4xx_tlb_size_mask(size, &szmask, &rsize) != 0)
panic("ppc4xx_tlb_reserve: entry %d, %zuB too large",
size, tlb_nreserved);
/* Real size will be power of two >= 1024, so this is OK. */
pa &= ~(rsize - 1); /* RPN */
va &= ~(rsize - 1); /* EPN */
lo = pa | TLB_WR | flags;
hi = va | TLB_VALID | szmask;
#ifdef PPC_4XX_NOCACHE
lo |= TLB_I;
#endif
__asm volatile (
"tlbwe %[lo],%[i],1;" /* write TLBLO */
"tlbwe %[hi],%[i],0;" /* write TLBHI */
"isync;"
: : [i] "r" (tlb_nreserved), [lo] "r" (lo), [hi] "r" (hi));
tlb_nreserved++;
}
/*
* We should pass the ctx in from trap code.
*/
int
pmap_tlbmiss(vaddr_t va, int ctx)
{
volatile u_int *pte;
u_long tte;
tlbmiss_ev.ev_count++;
/*
* We will reserve 0 upto VM_MIN_KERNEL_ADDRESS for va == pa mappings.
* Physical RAM is expected to live in this range, care must be taken
* to not clobber 0 upto ${physmem} with device mappings in machdep
* code.
*/
if (ctx != KERNEL_PID ||
(va >= VM_MIN_KERNEL_ADDRESS && va < VM_MAX_KERNEL_ADDRESS)) {
pte = pte_find((struct pmap *)__UNVOLATILE(ctxbusy[ctx]), va);
if (pte == NULL) {
/*
* Map unmanaged addresses directly for
* kernel access
*/
return 1;
}
tte = *pte;
if (tte == 0)
return 1;
} else {
/* Create a 16MB writable mapping. */
tte = TTE_PA(va) | TTE_ZONE(ZONE_PRIV) | TTE_SZ_16M | TTE_WR;
#ifdef PPC_4XX_NOCACHE
tte |= TTE_I;
#endif
}
ppc4xx_tlb_enter(ctx, va, tte);
return 0;
}
/*
* Flush all the entries matching a context from the TLB.
*/
static void
ctx_flush(int cnum)
{
int i;
/* We gotta steal this context */
for (i = tlb_nreserved; i < NTLB; i++) {
if (tlb_info[i].ti_ctx == cnum) {
/* Can't steal ctx if it has locked/reserved entry. */
KASSERTMSG(!TLB_LOCKED(i) && i >= tlb_nreserved,
"locked/reserved entry %d for ctx %d",
i, cnum);
/*
* Invalidate particular TLB entry regardless of
* locked status
*/
tlb_invalidate_entry(i);
}
}
}
/*
* Allocate a context. If necessary, steal one from someone else.
*
* The new context is flushed from the TLB before returning.
*/
int
ctx_alloc(struct pmap *pm)
{
static int next = MINCTX;
int cnum, s;
KASSERT(pm != pmap_kernel());
s = splvm();
/* Find a likely context. */
cnum = next;
do {
if (++cnum >= NUMCTX)
cnum = MINCTX;
} while (ctxbusy[cnum] != NULL && cnum != next);
/* Now clean it out */
if (cnum < MINCTX)
cnum = MINCTX; /* Never steal ctx 0 or 1 */
ctx_flush(cnum);
if (ctxbusy[cnum]) {
#ifdef DEBUG
/* We should identify this pmap and clear it */
printf("Warning: stealing context %d\n", cnum);
#endif
ctxbusy[cnum]->pm_ctx = 0;
}
ctxbusy[cnum] = pm;
next = cnum;
splx(s);
pm->pm_ctx = cnum;
return cnum;
}
/*
* Give away a context.
*/
void
ctx_free(struct pmap *pm)
{
int oldctx;
oldctx = pm->pm_ctx;
if (oldctx == 0)
panic("ctx_free: freeing kernel context");
KASSERTMSG(ctxbusy[oldctx] == pm,
"ctxbusy[%d] = %p, pm->pm_ctx = %p",
oldctx, ctxbusy[oldctx], pm);
/* We should verify it has not been stolen and reallocated... */
ctxbusy[oldctx] = NULL;
ctx_flush(oldctx);
}
#ifdef DEBUG
/*
* Test ref/modify handling.
*/
void pmap_testout(void);
void
pmap_testout(void)
{
struct vm_page *pg;
vaddr_t va;
paddr_t pa;
volatile int *loc;
int ref, mod, val = 0;
/* Allocate a page */
va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
UVM_KMF_WIRED | UVM_KMF_ZERO);
loc = (int *)va;
pmap_extract(pmap_kernel(), va, &pa);
pg = PHYS_TO_VM_PAGE(pa);
pmap_unwire(pmap_kernel(), va);
pmap_kremove(va, PAGE_SIZE);
pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
pmap_update(pmap_kernel());
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Check it's properly cleared */
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
/* Reference page */
val = *loc;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Modify page */
*loc = 1;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Modified page: ref %d, mod %d\n", ref, mod);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Check it's properly cleared */
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
/* Modify page */
*loc = 1;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Modified page: ref %d, mod %d\n", ref, mod);
/* Check pmap_protect() */
pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_READ);
pmap_update(pmap_kernel());
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("pmap_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Reference page */
val = *loc;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Modify page */
#if 0
pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
pmap_update(pmap_kernel());
#endif
*loc = 1;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Modified page: ref %d, mod %d\n", ref, mod);
/* Check pmap_protect() */
pmap_protect(pmap_kernel(), va, va + PAGE_SIZE, VM_PROT_NONE);
pmap_update(pmap_kernel());
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("pmap_protect(): ref %d, mod %d\n", ref, mod);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Reference page */
val = *loc;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Modify page */
#if 0
pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
pmap_update(pmap_kernel());
#endif
*loc = 1;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Modified page: ref %d, mod %d\n", ref, mod);
/* Check pmap_pag_protect() */
pmap_page_protect(pg, VM_PROT_READ);
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("pmap_page_protect(VM_PROT_READ): ref %d, mod %d\n", ref, mod);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Reference page */
val = *loc;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Modify page */
#if 0
pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
pmap_update(pmap_kernel());
#endif
*loc = 1;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Modified page: ref %d, mod %d\n", ref, mod);
/* Check pmap_pag_protect() */
pmap_page_protect(pg, VM_PROT_NONE);
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("pmap_page_protect(): ref %d, mod %d\n", ref, mod);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Reference page */
val = *loc;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Referenced page: ref %d, mod %d val %x\n", ref, mod, val);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Modify page */
#if 0
pmap_enter(pmap_kernel(), va, pa, VM_PROT_ALL, 0);
pmap_update(pmap_kernel());
#endif
*loc = 1;
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Modified page: ref %d, mod %d\n", ref, mod);
/* Unmap page */
pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
pmap_update(pmap_kernel());
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Unmapped page: ref %d, mod %d\n", ref, mod);
/* Now clear reference and modify */
ref = pmap_clear_reference(pg);
mod = pmap_clear_modify(pg);
printf("Clearing page va %p pa %lx: ref %d, mod %d\n",
(void *)(u_long)va, (long)pa, ref, mod);
/* Check it's properly cleared */
ref = pmap_is_referenced(pg);
mod = pmap_is_modified(pg);
printf("Checking cleared page: ref %d, mod %d\n", ref, mod);
pmap_remove(pmap_kernel(), va, va + PAGE_SIZE);
pmap_kenter_pa(va, pa, VM_PROT_ALL, 0);
uvm_km_free(kernel_map, (vaddr_t)va, PAGE_SIZE, UVM_KMF_WIRED);
}
#endif