/* $NetBSD: stg.c,v 1.6 2011/10/30 21:08:33 phx Exp $ */
/*-
* Copyright (c) 2011 Frank Wille.
* All rights reserved.
*
* Written by Frank Wille for The NetBSD Project.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>
#include "globals.h"
#define CSR_WRITE_1(l, r, v) out8((l)->csr+(r), (v))
#define CSR_READ_1(l, r) in8((l)->csr+(r))
#define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v))
#define CSR_READ_2(l, r) in16rb((l)->csr+(r))
#define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v))
#define CSR_READ_4(l, r) in32rb((l)->csr+(r))
#define VTOPHYS(va) (uint32_t)(va)
#define DEVTOV(pa) (uint32_t)(pa)
#define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz))
#define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz))
#define DELAY(n) delay(n)
#define ALLOC(T,A) (T *)allocaligned(sizeof(T),(A))
struct desc {
uint64_t xd0, xd1, xd2, dummy;
};
#define T1_EMPTY (1U << 31) /* no Tx frame available */
#define T1_NOALIGN (3U << 16) /* allow any Tx alignment */
#define T1_CNTSHIFT 24 /* Tx fragment count */
#define T2_LENSHIFT 48 /* Tx fragment length */
#define R1_DONE (1U << 31) /* desc has a Rx frame */
#define R1_FL_MASK 0xffff /* Rx frame length */
#define R1_ER_MASK 0x3f0000 /* Rx error indication */
#define R2_LENSHIFT 48 /* Rx fragment length */
#define STGE_DMACtrl 0x00
#define DMAC_RxDMAPollNow (1U << 4)
#define DMAC_TxDMAPollNow (1U << 12)
#define STGE_TFDListPtrLo 0x10
#define STGE_TFDListPtrHi 0x14
#define STGE_RFDListPtrLo 0x1c
#define STGE_RFDListPtrHi 0x20
#define STGE_DebugCtrl 0x2c
#define STGE_AsicCtrl 0x30
#define AC_PhyMedia (1U << 7)
#define AC_GlobalReset (1U << 16)
#define AC_RxReset (1U << 17)
#define AC_TxReset (1U << 18)
#define AC_DMA (1U << 19)
#define AC_FIFO (1U << 20)
#define AC_Network (1U << 21)
#define AC_Host (1U << 22)
#define AC_AutoInit (1U << 23)
#define AC_RstOut (1U << 24)
#define AC_ResetBusy (1U << 26)
#define STGE_EepromData 0x48
#define STGE_EepromCtrl 0x4a
#define EC_EepromAddress(x) ((x) & 0xff)
#define EC_EepromOpcode(x) ((x) << 8)
#define EC_OP_RR 2
#define EC_EepromBusy (1U << 15)
#define STGE_IntEnable 0x5c
#define STGE_MACCtrl 0x6c
#define MC_DuplexSelect (1U << 5)
#define MC_StatisticsDisable (1U << 22)
#define MC_TxEnable (1U << 24)
#define MC_RxEnable (1U << 27)
#define STGE_PhyCtrl 0x76
#define PC_MgmtClk (1U << 0)
#define PC_MgmtData (1U << 1)
#define PC_MgmtDir (1U << 2)
#define PC_PhyDuplexPolarity (1U << 3)
#define PC_PhyDuplexStatus (1U << 4)
#define PC_PhyLnkPolarity (1U << 5)
#define PC_LinkSpeed(x) (((x) >> 6) & 3)
#define PC_LinkSpeed_Down 0
#define PC_LinkSpeed_10 1
#define PC_LinkSpeed_100 2
#define PC_LinkSpeed_1000 3
#define STGE_StationAddress0 0x78
#define STGE_StationAddress1 0x7a
#define STGE_StationAddress2 0x7c
#define STGE_MaxFrameSize 0x84
#define STGE_ReceiveMode 0x88
#define RM_ReceiveUnicast (1U << 0)
#define RM_ReceiveMulticast (1U << 1)
#define RM_ReceiveBroadcast (1U << 2)
#define RM_ReceiveAllFrames (1U << 3)
#define RM_ReceiveMulticastHash (1U << 4)
#define RM_ReceiveIPMulticast (1U << 5)
#define STGE_EEPROM_SA0 0x10
#define FRAMESIZE 1536
struct local {
struct desc txd[2];
struct desc rxd[2];
uint8_t rxstore[2][FRAMESIZE];
unsigned csr, rx, tx, phy;
uint16_t bmsr, anlpar;
uint8_t phyctrl_saved;
};
static void stg_reset(struct local *);
static int mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_initphy(struct local *);
static void mii_dealan(struct local *, unsigned);
static void mii_bitbang_sync(struct local *);
static void mii_bitbang_send(struct local *, uint32_t, int);
static void mii_bitbang_clk(struct local *, uint8_t);
static int eeprom_wait(struct local *);
int
stg_match(unsigned tag, void *data)
{
unsigned v;
v = pcicfgread(tag, PCI_ID_REG);
switch (v) {
case PCI_DEVICE(0x13f0, 0x1023): /* ST1023, IP1000A */
return 1;
}
return 0;
}
void *
stg_init(unsigned tag, void *data)
{
struct local *l;
struct desc *txd, *rxd;
uint8_t *en;
unsigned i;
uint32_t macctl, reg;
static uint8_t bad[2][6] = {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
};
l = ALLOC(struct local, 32); /* desc alignment */
memset(l, 0, sizeof(struct local));
l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* first try mem space */
if (l->csr == 0)
l->csr = DEVTOV(PCI_XIOBASE + (pcicfgread(tag, 0x10) & ~01));
stg_reset(l);
mii_initphy(l);
/* read ethernet address */
en = data;
for (i = 0; i < 6; i++)
en[i] = CSR_READ_1(l, STGE_StationAddress0 + i);
if (memcmp(en, bad[0], 6) == 0 || memcmp(en, bad[1], 6) == 0) {
uint16_t addr[3];
for (i = 0; i < 3; i++) {
if (eeprom_wait(l) != 0)
printf("NIC: serial EEPROM is not ready!\n");
CSR_WRITE_2(l, STGE_EepromCtrl,
EC_EepromAddress(STGE_EEPROM_SA0 + i) |
EC_EepromOpcode(EC_OP_RR));
if (eeprom_wait(l) != 0)
printf("NIC: serial EEPROM read time out!\n");
addr[i] = le16toh(CSR_READ_2(l, STGE_EepromData));
}
(void)memcpy(en, addr, 6);
/* try to read MAC from Flash, when EEPROM is empty/missing */
if (memcmp(en, bad[0], 6) == 0 || memcmp(en, bad[1], 6) == 0)
read_mac_from_flash(en);
/* set the station address now */
for (i = 0; i < 6; i++)
CSR_WRITE_1(l, STGE_StationAddress0 + i, en[i]);
}
printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
en[0], en[1], en[2], en[3], en[4], en[5]);
DPRINTF(("PHY %d (%04x.%04x)\n", l->phy,
mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)));
/* setup descriptors */
txd = &l->txd[0];
txd[0].xd0 = htole64(VTOPHYS(&txd[1]));
txd[0].xd1 = htole64(T1_EMPTY);
txd[1].xd0 = htole64(VTOPHYS(&txd[0]));
txd[1].xd1 = htole64(T1_EMPTY);
rxd = &l->rxd[0];
rxd[0].xd0 = htole64(VTOPHYS(&rxd[1]));
rxd[0].xd2 = htole64(VTOPHYS(l->rxstore[0]) |
((uint64_t)FRAMESIZE << 48));
rxd[1].xd0 = htole64(VTOPHYS(&rxd[0]));
rxd[1].xd2 = htole64(VTOPHYS(l->rxstore[1]) |
((uint64_t)FRAMESIZE << 48));
wbinv(l, sizeof(struct local));
CSR_WRITE_2(l, STGE_IntEnable, 0);
CSR_WRITE_2(l, STGE_ReceiveMode, RM_ReceiveUnicast |
RM_ReceiveBroadcast | RM_ReceiveAllFrames | RM_ReceiveMulticast);
CSR_WRITE_4(l, STGE_TFDListPtrHi, 0);
CSR_WRITE_4(l, STGE_TFDListPtrLo, VTOPHYS(txd));
CSR_WRITE_4(l, STGE_RFDListPtrHi, 0);
CSR_WRITE_4(l, STGE_RFDListPtrLo, VTOPHYS(rxd));
CSR_WRITE_2(l, STGE_MaxFrameSize, FRAMESIZE);
CSR_WRITE_4(l, STGE_MACCtrl, 0); /* do IFSSelect(0) first */
macctl = MC_StatisticsDisable | MC_TxEnable | MC_RxEnable;
if (PCI_REVISION(pcicfgread(tag, PCI_CLASS_REG)) >= 6) {
/* some workarounds for revisions >= 6 */
CSR_WRITE_2(l, STGE_DebugCtrl,
CSR_READ_2(l, STGE_DebugCtrl) | 0x0200);
CSR_WRITE_2(l, STGE_DebugCtrl,
CSR_READ_2(l, STGE_DebugCtrl) | 0x0010);
CSR_WRITE_2(l, STGE_DebugCtrl,
CSR_READ_2(l, STGE_DebugCtrl) | 0x0020);
}
/* auto negotiation, set the current media */
mii_dealan(l, 5);
reg = CSR_READ_1(l, STGE_PhyCtrl);
switch (PC_LinkSpeed(reg)) {
case PC_LinkSpeed_1000:
printf("1000Mbps");
break;
case PC_LinkSpeed_100:
printf("100Mbps");
break;
case PC_LinkSpeed_10:
printf("10Mbps");
break;
}
if (reg & PC_PhyDuplexStatus) {
macctl |= MC_DuplexSelect;
printf("-FDX");
}
printf("\n");
CSR_WRITE_4(l, STGE_MACCtrl, macctl);
return l;
}
void
stg_shutdown(void *dev)
{
struct local *l = dev;
/*
* We have to reset the chip, when we don't need it anymore,
* otherwise bad things will happen (e.g. the DSM-G600 will no
* longer be able to reboot).
*/
stg_reset(l);
}
int
stg_send(void *dev, char *buf, unsigned len)
{
struct local *l = dev;
volatile struct desc *txd;
unsigned loop;
wbinv(buf, len);
txd = &l->txd[l->tx];
txd->xd2 = htole64(VTOPHYS(buf) | ((uint64_t)len << 48));
txd->xd1 = htole64(T1_NOALIGN | (1 << 24));
wbinv(txd, sizeof(struct desc));
CSR_WRITE_4(l, STGE_DMACtrl, DMAC_TxDMAPollNow);
loop = 100;
do {
if ((le64toh(txd->xd1) & T1_EMPTY) != 0)
goto done;
DELAY(10);
inv(txd, sizeof(struct desc));
} while (--loop > 0);
printf("xmit failed\n");
return -1;
done:
l->tx ^= 1;
return len;
}
int
stg_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
{
struct local *l = dev;
volatile struct desc *rxd;
uint32_t sts;
unsigned bound, len;
uint8_t *ptr;
bound = 1000 * timo;
again:
rxd = &l->rxd[l->rx];
do {
inv(rxd, sizeof(struct desc));
sts = (uint32_t)le64toh(rxd->xd1);
if ((sts & R1_DONE) != 0)
goto gotone;
DELAY(1000); /* 1 milli second */
} while (--bound > 0);
errno = 0;
return -1;
gotone:
if ((sts & R1_ER_MASK) != 0) {
rxd->xd1 = 0;
wbinv(rxd, sizeof(struct desc));
l->rx ^= 1;
goto again;
}
len = sts & R1_FL_MASK;
if (len > maxlen)
len = maxlen;
ptr = l->rxstore[l->rx];
inv(ptr, len);
memcpy(buf, ptr, len);
rxd->xd1 = 0;
wbinv(rxd, sizeof(struct desc));
l->rx ^= 1;
return len;
}
static void
stg_reset(struct local *l)
{
uint32_t reg;
int i;
reg = CSR_READ_4(l, STGE_AsicCtrl);
CSR_WRITE_4(l, STGE_AsicCtrl, reg | AC_GlobalReset | AC_RxReset |
AC_TxReset | AC_DMA | AC_FIFO | AC_Network | AC_Host |
AC_AutoInit | ((reg & AC_PhyMedia) ? AC_RstOut : 0));
DELAY(50000);
for (i = 0; i < 1000; i++) {
DELAY(5000);
if ((CSR_READ_4(l, STGE_AsicCtrl) & AC_ResetBusy) == 0)
break;
}
if (i >= 1000)
printf("NIC reset failed to complete!\n");
DELAY(1000);
}
#define R0110 6 /* 0110b read op */
#define W0101 5 /* 0101b write op */
#define A10 2 /* 10b ack turn around */
/* read the MII by bitbanging STGE_PhyCtrl */
static int
mii_read(struct local *l, int phy, int reg)
{
unsigned data;
int i;
uint8_t v;
/* initiate read access */
data = (R0110 << 10) | (phy << 5) | reg;
mii_bitbang_sync(l);
mii_bitbang_send(l, data, 14); /* 4OP + 5PHY + 5REG */
/* switch direction to PHY->host */
v = l->phyctrl_saved;
CSR_WRITE_1(l, STGE_PhyCtrl, v);
/* read data */
data = 0;
for (i = 0; i < 18; i++) { /* 2TA + 16DATA */
data <<= 1;
data |= !!(CSR_READ_1(l, STGE_PhyCtrl) & PC_MgmtData);
mii_bitbang_clk(l, v);
}
return data & 0xffff;
}
/* write the MII by bitbanging STGE_PhyCtrl */
static void
mii_write(struct local *l, int phy, int reg, int val)
{
unsigned data;
data = (W0101 << 28) | (phy << 23) | (reg << 18) | (A10 << 16);
data |= val;
mii_bitbang_sync(l);
mii_bitbang_send(l, data, 32); /* 4OP + 5PHY + 5REG + 2TA + 16DATA */
}
#define MII_BMCR 0x00 /* Basic mode control register (rw) */
#define BMCR_RESET 0x8000 /* reset */
#define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
#define BMCR_ISO 0x0400 /* isolate */
#define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
#define MII_BMSR 0x01 /* Basic mode status register (ro) */
#define BMSR_ACOMP 0x0020 /* Autonegotiation complete */
#define BMSR_LINK 0x0004 /* Link status */
#define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */
#define ANAR_FC 0x0400 /* local device supports PAUSE */
#define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */
#define ANAR_TX 0x0080 /* local device supports 100bTx */
#define ANAR_10_FD 0x0040 /* local device supports 10bT FD */
#define ANAR_10 0x0020 /* local device supports 10bT */
#define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */
#define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
static void
mii_initphy(struct local *l)
{
int phy, ctl, sts, bound;
l->phyctrl_saved = CSR_READ_1(l, STGE_PhyCtrl) &
(PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
for (phy = 0; phy < 32; phy++) {
ctl = mii_read(l, phy, MII_BMCR);
sts = mii_read(l, phy, MII_BMSR);
if (ctl != 0xffff && sts != 0xffff && sts != 0)
goto found;
}
printf("MII: no PHY found\n");
return;
found:
ctl = mii_read(l, phy, MII_BMCR);
mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET);
bound = 100;
do {
DELAY(10);
ctl = mii_read(l, phy, MII_BMCR);
if (ctl == 0xffff) {
printf("MII: PHY %d has died after reset\n", phy);
return;
}
} while (bound-- > 0 && (ctl & BMCR_RESET));
if (bound == 0)
printf("PHY %d reset failed\n", phy);
ctl &= ~BMCR_ISO;
mii_write(l, phy, MII_BMCR, ctl);
sts = mii_read(l, phy, MII_BMSR) |
mii_read(l, phy, MII_BMSR); /* read twice */
l->phy = phy;
l->bmsr = sts;
}
static void
mii_dealan(struct local *l, unsigned timo)
{
unsigned anar, bound;
anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
mii_write(l, l->phy, MII_ANAR, anar);
mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
l->anlpar = 0;
bound = getsecs() + timo;
do {
l->bmsr = mii_read(l, l->phy, MII_BMSR) |
mii_read(l, l->phy, MII_BMSR); /* read twice */
if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
break;
}
DELAY(10 * 1000);
} while (getsecs() < bound);
}
static void
mii_bitbang_sync(struct local *l)
{
int i;
uint8_t v;
v = l->phyctrl_saved | PC_MgmtDir | PC_MgmtData;
CSR_WRITE_1(l, STGE_PhyCtrl, v);
DELAY(1);
for (i = 0; i < 32; i++)
mii_bitbang_clk(l, v);
}
static void
mii_bitbang_send(struct local *l, uint32_t data, int nbits)
{
uint32_t i;
uint8_t v;
v = l->phyctrl_saved | PC_MgmtDir;
CSR_WRITE_1(l, STGE_PhyCtrl, v);
DELAY(1);
for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
if (data & i)
v |= PC_MgmtData;
else
v &= ~PC_MgmtData;
CSR_WRITE_1(l, STGE_PhyCtrl, v);
DELAY(1);
mii_bitbang_clk(l, v);
}
}
static void
mii_bitbang_clk(struct local *l, uint8_t v)
{
CSR_WRITE_1(l, STGE_PhyCtrl, v | PC_MgmtClk);
DELAY(1);
CSR_WRITE_1(l, STGE_PhyCtrl, v);
DELAY(1);
}
static int
eeprom_wait(struct local *l)
{
int i;
for (i = 0; i < 1000; i++) {
DELAY(1000);
if ((CSR_READ_2(l, STGE_EepromCtrl) & EC_EepromBusy) == 0)
return 0;
}
return 1;
}