/* $NetBSD: acpi_cpu_md.c,v 1.84 2020/10/25 16:39:00 nia Exp $ */
/*-
* Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_md.c,v 1.84 2020/10/25 16:39:00 nia Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/cpufreq.h>
#include <sys/device.h>
#include <sys/kcore.h>
#include <sys/sysctl.h>
#include <sys/xcall.h>
#include <x86/cpu.h>
#include <x86/cpufunc.h>
#include <x86/cputypes.h>
#include <x86/cpuvar.h>
#include <x86/machdep.h>
#include <x86/x86/tsc.h>
#include <dev/acpi/acpica.h>
#include <dev/acpi/acpi_cpu.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <machine/acpi_machdep.h>
/*
* Intel IA32_MISC_ENABLE.
*/
#define MSR_MISC_ENABLE_EST __BIT(16)
#define MSR_MISC_ENABLE_TURBO __BIT(38)
/*
* AMD C1E.
*/
#define MSR_CMPHALT 0xc0010055
#define MSR_CMPHALT_SMI __BIT(27)
#define MSR_CMPHALT_C1E __BIT(28)
#define MSR_CMPHALT_BMSTS __BIT(29)
/*
* AMD families 10h, 11h, 12h, 14h, and 15h.
*/
#define MSR_10H_LIMIT 0xc0010061
#define MSR_10H_CONTROL 0xc0010062
#define MSR_10H_STATUS 0xc0010063
#define MSR_10H_CONFIG 0xc0010064
/*
* AMD family 0Fh.
*/
#define MSR_0FH_CONTROL 0xc0010041
#define MSR_0FH_STATUS 0xc0010042
#define MSR_0FH_STATUS_CFID __BITS( 0, 5)
#define MSR_0FH_STATUS_CVID __BITS(32, 36)
#define MSR_0FH_STATUS_PENDING __BITS(31, 31)
#define MSR_0FH_CONTROL_FID __BITS( 0, 5)
#define MSR_0FH_CONTROL_VID __BITS( 8, 12)
#define MSR_0FH_CONTROL_CHG __BITS(16, 16)
#define MSR_0FH_CONTROL_CNT __BITS(32, 51)
#define ACPI_0FH_STATUS_FID __BITS( 0, 5)
#define ACPI_0FH_STATUS_VID __BITS( 6, 10)
#define ACPI_0FH_CONTROL_FID __BITS( 0, 5)
#define ACPI_0FH_CONTROL_VID __BITS( 6, 10)
#define ACPI_0FH_CONTROL_VST __BITS(11, 17)
#define ACPI_0FH_CONTROL_MVS __BITS(18, 19)
#define ACPI_0FH_CONTROL_PLL __BITS(20, 26)
#define ACPI_0FH_CONTROL_RVO __BITS(28, 29)
#define ACPI_0FH_CONTROL_IRT __BITS(30, 31)
#define FID_TO_VCO_FID(fidd) (((fid) < 8) ? (8 + ((fid) << 1)) : (fid))
static char native_idle_text[16];
void (*native_idle)(void) = NULL;
static int acpicpu_md_quirk_piix4(const struct pci_attach_args *);
static void acpicpu_md_pstate_hwf_reset(void *, void *);
static int acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *,
uint32_t *);
static int acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *);
static int acpicpu_md_pstate_fidvid_read(uint32_t *, uint32_t *);
static void acpicpu_md_pstate_fidvid_write(uint32_t, uint32_t,
uint32_t, uint32_t);
static int acpicpu_md_pstate_sysctl_init(void);
static int acpicpu_md_pstate_sysctl_get(SYSCTLFN_PROTO);
static int acpicpu_md_pstate_sysctl_set(SYSCTLFN_PROTO);
static int acpicpu_md_pstate_sysctl_all(SYSCTLFN_PROTO);
extern struct acpicpu_softc **acpicpu_sc;
static struct sysctllog *acpicpu_log = NULL;
struct cpu_info *
acpicpu_md_match(device_t parent, cfdata_t match, void *aux)
{
struct cpufeature_attach_args *cfaa = aux;
if (strcmp(cfaa->name, "frequency") != 0)
return NULL;
return cfaa->ci;
}
struct cpu_info *
acpicpu_md_attach(device_t parent, device_t self, void *aux)
{
struct cpufeature_attach_args *cfaa = aux;
return cfaa->ci;
}
uint32_t
acpicpu_md_flags(void)
{
struct cpu_info *ci = curcpu();
struct pci_attach_args pa;
uint32_t family, val = 0;
uint32_t regs[4];
uint64_t msr;
if (acpi_md_ncpus() == 1)
val |= ACPICPU_FLAG_C_BM;
if ((ci->ci_feat_val[1] & CPUID2_MONITOR) != 0)
val |= ACPICPU_FLAG_C_FFH;
/*
* By default, assume that the local APIC timer
* as well as TSC are stalled during C3 sleep.
*/
val |= ACPICPU_FLAG_C_APIC | ACPICPU_FLAG_C_TSC;
/*
* Detect whether TSC is invariant. If it is not, we keep the flag to
* note that TSC will not run at constant rate. Depending on the CPU,
* this may affect P- and T-state changes, but especially relevant
* are C-states; with variant TSC, states larger than C1 may
* completely stop the counter.
*/
if (tsc_is_invariant())
val &= ~ACPICPU_FLAG_C_TSC;
switch (cpu_vendor) {
case CPUVENDOR_IDT:
if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
val |= ACPICPU_FLAG_P_FFH;
if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
val |= ACPICPU_FLAG_T_FFH;
break;
case CPUVENDOR_INTEL:
/*
* Bus master control and arbitration should be
* available on all supported Intel CPUs (to be
* sure, this is double-checked later from the
* firmware data). These flags imply that it is
* not necessary to flush caches before C3 state.
*/
val |= ACPICPU_FLAG_C_BM | ACPICPU_FLAG_C_ARB;
/*
* Check if we can use "native", MSR-based,
* access. If not, we have to resort to I/O.
*/
if ((ci->ci_feat_val[1] & CPUID2_EST) != 0)
val |= ACPICPU_FLAG_P_FFH;
if ((ci->ci_feat_val[0] & CPUID_ACPI) != 0)
val |= ACPICPU_FLAG_T_FFH;
/*
* Check whether MSR_APERF, MSR_MPERF, and Turbo
* Boost are available. Also see if we might have
* an invariant local APIC timer ("ARAT").
*/
if (cpuid_level >= 0x06) {
x86_cpuid(0x00000006, regs);
if ((regs[2] & CPUID_DSPM_HWF) != 0)
val |= ACPICPU_FLAG_P_HWF;
if ((regs[0] & CPUID_DSPM_IDA) != 0)
val |= ACPICPU_FLAG_P_TURBO;
if ((regs[0] & CPUID_DSPM_ARAT) != 0)
val &= ~ACPICPU_FLAG_C_APIC;
}
break;
case CPUVENDOR_AMD:
x86_cpuid(0x80000000, regs);
if (regs[0] < 0x80000007)
break;
x86_cpuid(0x80000007, regs);
family = CPUID_TO_FAMILY(ci->ci_signature);
switch (family) {
case 0x0f:
/*
* Disable C1E if present.
*/
if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
val |= ACPICPU_FLAG_C_C1E;
/*
* Evaluate support for the "FID/VID
* algorithm" also used by powernow(4).
*/
if ((regs[3] & CPUID_APM_FID) == 0)
break;
if ((regs[3] & CPUID_APM_VID) == 0)
break;
val |= ACPICPU_FLAG_P_FFH | ACPICPU_FLAG_P_FIDVID;
break;
case 0x10:
case 0x11:
/*
* Disable C1E if present.
*/
if (rdmsr_safe(MSR_CMPHALT, &msr) != EFAULT)
val |= ACPICPU_FLAG_C_C1E;
/* FALLTHROUGH */
case 0x12:
case 0x14: /* AMD Fusion */
case 0x15: /* AMD Bulldozer */
/*
* Like with Intel, detect MSR-based P-states,
* and AMD's "turbo" (Core Performance Boost),
* respectively.
*/
if ((regs[3] & CPUID_APM_HWP) != 0)
val |= ACPICPU_FLAG_P_FFH;
if ((regs[3] & CPUID_APM_CPB) != 0)
val |= ACPICPU_FLAG_P_TURBO;
/*
* Also check for APERF and MPERF,
* first available in the family 10h.
*/
if (cpuid_level >= 0x06) {
x86_cpuid(0x00000006, regs);
if ((regs[2] & CPUID_DSPM_HWF) != 0)
val |= ACPICPU_FLAG_P_HWF;
}
break;
}
break;
}
/*
* There are several erratums for PIIX4.
*/
if (pci_find_device(&pa, acpicpu_md_quirk_piix4) != 0)
val |= ACPICPU_FLAG_PIIX4;
return val;
}
static int
acpicpu_md_quirk_piix4(const struct pci_attach_args *pa)
{
/*
* XXX: The pci_find_device(9) function only
* deals with attached devices. Change this
* to use something like pci_device_foreach().
*/
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return 0;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82371AB_ISA ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82440MX_PMC)
return 1;
return 0;
}
void
acpicpu_md_quirk_c1e(void)
{
const uint64_t c1e = MSR_CMPHALT_SMI | MSR_CMPHALT_C1E;
uint64_t val;
val = rdmsr(MSR_CMPHALT);
if ((val & c1e) != 0)
wrmsr(MSR_CMPHALT, val & ~c1e);
}
int
acpicpu_md_cstate_start(struct acpicpu_softc *sc)
{
const size_t size = sizeof(native_idle_text);
struct acpicpu_cstate *cs;
bool ipi = false;
int i;
/*
* Save the cpu_idle(9) loop used by default.
*/
x86_cpu_idle_get(&native_idle, native_idle_text, size);
for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
cs = &sc->sc_cstate[i];
if (cs->cs_method == ACPICPU_C_STATE_HALT) {
ipi = true;
break;
}
}
x86_cpu_idle_set(acpicpu_cstate_idle, "acpi", ipi);
return 0;
}
int
acpicpu_md_cstate_stop(void)
{
static char text[16];
void (*func)(void);
bool ipi;
x86_cpu_idle_get(&func, text, sizeof(text));
if (func == native_idle)
return EALREADY;
ipi = (native_idle != x86_cpu_idle_halt) ? false : true;
x86_cpu_idle_set(native_idle, native_idle_text, ipi);
/*
* Run a cross-call to ensure that all CPUs are
* out from the ACPI idle-loop before detachment.
*/
xc_barrier(0);
return 0;
}
/*
* Called with interrupts enabled.
*/
void __nocsan
acpicpu_md_cstate_enter(int method, int state)
{
struct cpu_info *ci = curcpu();
KASSERT(ci->ci_ilevel == IPL_NONE);
switch (method) {
case ACPICPU_C_STATE_FFH:
x86_monitor(&ci->ci_want_resched, 0, 0);
if (__predict_false(ci->ci_want_resched != 0))
return;
x86_mwait((state - 1) << 4, 0);
break;
case ACPICPU_C_STATE_HALT:
x86_disable_intr();
if (__predict_false(ci->ci_want_resched != 0)) {
x86_enable_intr();
return;
}
x86_stihlt();
break;
}
}
int
acpicpu_md_pstate_start(struct acpicpu_softc *sc)
{
uint64_t xc, val;
switch (cpu_vendor) {
case CPUVENDOR_IDT:
case CPUVENDOR_INTEL:
/*
* Make sure EST is enabled.
*/
if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) != 0) {
val = rdmsr(MSR_MISC_ENABLE);
if ((val & MSR_MISC_ENABLE_EST) == 0) {
val |= MSR_MISC_ENABLE_EST;
wrmsr(MSR_MISC_ENABLE, val);
val = rdmsr(MSR_MISC_ENABLE);
if ((val & MSR_MISC_ENABLE_EST) == 0)
return ENOTTY;
}
}
}
/*
* Reset the APERF and MPERF counters.
*/
if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
xc = xc_broadcast(0, acpicpu_md_pstate_hwf_reset, NULL, NULL);
xc_wait(xc);
}
return acpicpu_md_pstate_sysctl_init();
}
int
acpicpu_md_pstate_stop(void)
{
if (acpicpu_log == NULL)
return EALREADY;
sysctl_teardown(&acpicpu_log);
acpicpu_log = NULL;
return 0;
}
int
acpicpu_md_pstate_init(struct acpicpu_softc *sc)
{
struct cpu_info *ci = sc->sc_ci;
struct acpicpu_pstate *ps, msr;
uint32_t family, i = 0;
(void)memset(&msr, 0, sizeof(struct acpicpu_pstate));
switch (cpu_vendor) {
case CPUVENDOR_IDT:
case CPUVENDOR_INTEL:
/*
* If the so-called Turbo Boost is present,
* the P0-state is always the "turbo state".
* It is shown as the P1 frequency + 1 MHz.
*
* For discussion, see:
*
* Intel Corporation: Intel Turbo Boost Technology
* in Intel Core(tm) Microarchitectures (Nehalem)
* Based Processors. White Paper, November 2008.
*/
if (sc->sc_pstate_count >= 2 &&
(sc->sc_flags & ACPICPU_FLAG_P_TURBO) != 0) {
ps = &sc->sc_pstate[0];
if (ps->ps_freq == sc->sc_pstate[1].ps_freq + 1)
ps->ps_flags |= ACPICPU_FLAG_P_TURBO;
}
msr.ps_control_addr = MSR_PERF_CTL;
msr.ps_control_mask = __BITS(0, 15);
msr.ps_status_addr = MSR_PERF_STATUS;
msr.ps_status_mask = __BITS(0, 15);
break;
case CPUVENDOR_AMD:
if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
msr.ps_flags |= ACPICPU_FLAG_P_FIDVID;
family = CPUID_TO_FAMILY(ci->ci_signature);
switch (family) {
case 0x0f:
msr.ps_control_addr = MSR_0FH_CONTROL;
msr.ps_status_addr = MSR_0FH_STATUS;
break;
case 0x10:
case 0x11:
case 0x12:
case 0x14:
case 0x15:
msr.ps_control_addr = MSR_10H_CONTROL;
msr.ps_control_mask = __BITS(0, 2);
msr.ps_status_addr = MSR_10H_STATUS;
msr.ps_status_mask = __BITS(0, 2);
break;
default:
/*
* If we have an unknown AMD CPU, rely on XPSS.
*/
if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
return EOPNOTSUPP;
}
break;
default:
return ENODEV;
}
/*
* Fill the P-state structures with MSR addresses that are
* known to be correct. If we do not know the addresses,
* leave the values intact. If a vendor uses XPSS, we do
* not necessarily need to do anything to support new CPUs.
*/
while (i < sc->sc_pstate_count) {
ps = &sc->sc_pstate[i];
if (msr.ps_flags != 0)
ps->ps_flags |= msr.ps_flags;
if (msr.ps_status_addr != 0)
ps->ps_status_addr = msr.ps_status_addr;
if (msr.ps_status_mask != 0)
ps->ps_status_mask = msr.ps_status_mask;
if (msr.ps_control_addr != 0)
ps->ps_control_addr = msr.ps_control_addr;
if (msr.ps_control_mask != 0)
ps->ps_control_mask = msr.ps_control_mask;
i++;
}
return 0;
}
/*
* Read the IA32_APERF and IA32_MPERF counters. The first
* increments at the rate of the fixed maximum frequency
* configured during the boot, whereas APERF counts at the
* rate of the actual frequency. Note that the MSRs must be
* read without delay, and that only the ratio between
* IA32_APERF and IA32_MPERF is architecturally defined.
*
* The function thus returns the percentage of the actual
* frequency in terms of the maximum frequency of the calling
* CPU since the last call. A value zero implies an error.
*
* For further details, refer to:
*
* Intel Corporation: Intel 64 and IA-32 Architectures
* Software Developer's Manual. Section 13.2, Volume 3A:
* System Programming Guide, Part 1. July, 2008.
*
* Advanced Micro Devices: BIOS and Kernel Developer's
* Guide (BKDG) for AMD Family 10h Processors. Section
* 2.4.5, Revision 3.48, April 2010.
*/
uint8_t
acpicpu_md_pstate_hwf(struct cpu_info *ci)
{
struct acpicpu_softc *sc;
uint64_t aperf, mperf;
uint8_t rv = 0;
sc = acpicpu_sc[ci->ci_acpiid];
if (__predict_false(sc == NULL))
return 0;
if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P_HWF) == 0))
return 0;
aperf = sc->sc_pstate_aperf;
mperf = sc->sc_pstate_mperf;
x86_disable_intr();
sc->sc_pstate_aperf = rdmsr(MSR_APERF);
sc->sc_pstate_mperf = rdmsr(MSR_MPERF);
x86_enable_intr();
aperf = sc->sc_pstate_aperf - aperf;
mperf = sc->sc_pstate_mperf - mperf;
if (__predict_true(mperf != 0))
rv = (aperf * 100) / mperf;
return rv;
}
static void
acpicpu_md_pstate_hwf_reset(void *arg1, void *arg2)
{
struct cpu_info *ci = curcpu();
struct acpicpu_softc *sc;
sc = acpicpu_sc[ci->ci_acpiid];
if (__predict_false(sc == NULL))
return;
x86_disable_intr();
wrmsr(MSR_APERF, 0);
wrmsr(MSR_MPERF, 0);
x86_enable_intr();
sc->sc_pstate_aperf = 0;
sc->sc_pstate_mperf = 0;
}
int
acpicpu_md_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
{
struct acpicpu_pstate *ps = NULL;
uint64_t val;
uint32_t i;
if ((sc->sc_flags & ACPICPU_FLAG_P_FIDVID) != 0)
return acpicpu_md_pstate_fidvid_get(sc, freq);
/*
* Pick any P-state for the status address.
*/
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (__predict_true(ps->ps_freq != 0))
break;
}
if (__predict_false(ps == NULL))
return ENODEV;
if (__predict_false(ps->ps_status_addr == 0))
return EINVAL;
val = rdmsr(ps->ps_status_addr);
if (__predict_true(ps->ps_status_mask != 0))
val = val & ps->ps_status_mask;
/*
* Search for the value from known P-states.
*/
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (__predict_false(ps->ps_freq == 0))
continue;
if (val == ps->ps_status) {
*freq = ps->ps_freq;
return 0;
}
}
/*
* If the value was not found, try APERF/MPERF.
* The state is P0 if the return value is 100 %.
*/
if ((sc->sc_flags & ACPICPU_FLAG_P_HWF) != 0) {
KASSERT(sc->sc_pstate_count > 0);
KASSERT(sc->sc_pstate[0].ps_freq != 0);
if (acpicpu_md_pstate_hwf(sc->sc_ci) == 100) {
*freq = sc->sc_pstate[0].ps_freq;
return 0;
}
}
return EIO;
}
int
acpicpu_md_pstate_set(struct acpicpu_pstate *ps)
{
uint64_t val = 0;
if (__predict_false(ps->ps_control_addr == 0))
return EINVAL;
if ((ps->ps_flags & ACPICPU_FLAG_P_FIDVID) != 0)
return acpicpu_md_pstate_fidvid_set(ps);
/*
* If the mask is set, do a read-modify-write.
*/
if (__predict_true(ps->ps_control_mask != 0)) {
val = rdmsr(ps->ps_control_addr);
val &= ~ps->ps_control_mask;
}
val |= ps->ps_control;
wrmsr(ps->ps_control_addr, val);
DELAY(ps->ps_latency);
return 0;
}
static int
acpicpu_md_pstate_fidvid_get(struct acpicpu_softc *sc, uint32_t *freq)
{
struct acpicpu_pstate *ps;
uint32_t fid, i, vid;
uint32_t cfid, cvid;
int rv;
/*
* AMD family 0Fh needs special treatment.
* While it wants to use ACPI, it does not
* comply with the ACPI specifications.
*/
rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
if (rv != 0)
return rv;
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (__predict_false(ps->ps_freq == 0))
continue;
fid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_FID);
vid = __SHIFTOUT(ps->ps_status, ACPI_0FH_STATUS_VID);
if (cfid == fid && cvid == vid) {
*freq = ps->ps_freq;
return 0;
}
}
return EIO;
}
static int
acpicpu_md_pstate_fidvid_set(struct acpicpu_pstate *ps)
{
const uint64_t ctrl = ps->ps_control;
uint32_t cfid, cvid, fid, i, irt;
uint32_t pll, vco_cfid, vco_fid;
uint32_t val, vid, vst;
int rv;
rv = acpicpu_md_pstate_fidvid_read(&cfid, &cvid);
if (rv != 0)
return rv;
fid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_FID);
vid = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VID);
irt = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_IRT);
vst = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_VST);
pll = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_PLL);
vst = vst * 20;
pll = pll * 1000 / 5;
irt = 10 * __BIT(irt);
/*
* Phase 1.
*/
while (cvid > vid) {
val = 1 << __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_MVS);
val = (val > cvid) ? 0 : cvid - val;
acpicpu_md_pstate_fidvid_write(cfid, val, 1, vst);
rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
if (rv != 0)
return rv;
}
i = __SHIFTOUT(ctrl, ACPI_0FH_CONTROL_RVO);
for (; i > 0 && cvid > 0; --i) {
acpicpu_md_pstate_fidvid_write(cfid, cvid - 1, 1, vst);
rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
if (rv != 0)
return rv;
}
/*
* Phase 2.
*/
if (cfid != fid) {
vco_fid = FID_TO_VCO_FID(fid);
vco_cfid = FID_TO_VCO_FID(cfid);
while (abs(vco_fid - vco_cfid) > 2) {
if (fid <= cfid)
val = cfid - 2;
else {
val = (cfid > 6) ? cfid + 2 :
FID_TO_VCO_FID(cfid) + 2;
}
acpicpu_md_pstate_fidvid_write(val, cvid, pll, irt);
rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
if (rv != 0)
return rv;
vco_cfid = FID_TO_VCO_FID(cfid);
}
acpicpu_md_pstate_fidvid_write(fid, cvid, pll, irt);
rv = acpicpu_md_pstate_fidvid_read(&cfid, NULL);
if (rv != 0)
return rv;
}
/*
* Phase 3.
*/
if (cvid != vid) {
acpicpu_md_pstate_fidvid_write(cfid, vid, 1, vst);
rv = acpicpu_md_pstate_fidvid_read(NULL, &cvid);
if (rv != 0)
return rv;
}
return 0;
}
static int
acpicpu_md_pstate_fidvid_read(uint32_t *cfid, uint32_t *cvid)
{
int i = ACPICPU_P_STATE_RETRY * 100;
uint64_t val;
do {
val = rdmsr(MSR_0FH_STATUS);
} while (__SHIFTOUT(val, MSR_0FH_STATUS_PENDING) != 0 && --i >= 0);
if (i == 0)
return EAGAIN;
if (cfid != NULL)
*cfid = __SHIFTOUT(val, MSR_0FH_STATUS_CFID);
if (cvid != NULL)
*cvid = __SHIFTOUT(val, MSR_0FH_STATUS_CVID);
return 0;
}
static void
acpicpu_md_pstate_fidvid_write(uint32_t fid,
uint32_t vid, uint32_t cnt, uint32_t tmo)
{
uint64_t val = 0;
val |= __SHIFTIN(fid, MSR_0FH_CONTROL_FID);
val |= __SHIFTIN(vid, MSR_0FH_CONTROL_VID);
val |= __SHIFTIN(cnt, MSR_0FH_CONTROL_CNT);
val |= __SHIFTIN(0x1, MSR_0FH_CONTROL_CHG);
wrmsr(MSR_0FH_CONTROL, val);
DELAY(tmo);
}
int
acpicpu_md_tstate_get(struct acpicpu_softc *sc, uint32_t *percent)
{
struct acpicpu_tstate *ts;
uint64_t val;
uint32_t i;
val = rdmsr(MSR_THERM_CONTROL);
for (i = 0; i < sc->sc_tstate_count; i++) {
ts = &sc->sc_tstate[i];
if (ts->ts_percent == 0)
continue;
if (val == ts->ts_status) {
*percent = ts->ts_percent;
return 0;
}
}
return EIO;
}
int
acpicpu_md_tstate_set(struct acpicpu_tstate *ts)
{
uint64_t val;
uint8_t i;
val = ts->ts_control;
val = val & __BITS(0, 4);
wrmsr(MSR_THERM_CONTROL, val);
if (ts->ts_status == 0) {
DELAY(ts->ts_latency);
return 0;
}
for (i = val = 0; i < ACPICPU_T_STATE_RETRY; i++) {
val = rdmsr(MSR_THERM_CONTROL);
if (val == ts->ts_status)
return 0;
DELAY(ts->ts_latency);
}
return EAGAIN;
}
/*
* A kludge for backwards compatibility.
*/
static int
acpicpu_md_pstate_sysctl_init(void)
{
const struct sysctlnode *fnode, *mnode, *rnode;
int rv;
rv = sysctl_createv(&acpicpu_log, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&acpicpu_log, 0, &rnode, &mnode,
0, CTLTYPE_NODE, "cpu", NULL,
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&acpicpu_log, 0, &mnode, &fnode,
0, CTLTYPE_NODE, "frequency", NULL,
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
acpicpu_md_pstate_sysctl_set, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
CTLFLAG_READONLY, CTLTYPE_INT, "current", NULL,
acpicpu_md_pstate_sysctl_get, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
rv = sysctl_createv(&acpicpu_log, 0, &fnode, &rnode,
CTLFLAG_READONLY, CTLTYPE_STRING, "available", NULL,
acpicpu_md_pstate_sysctl_all, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (rv != 0)
goto fail;
return 0;
fail:
if (acpicpu_log != NULL) {
sysctl_teardown(&acpicpu_log);
acpicpu_log = NULL;
}
return rv;
}
static int
acpicpu_md_pstate_sysctl_get(SYSCTLFN_ARGS)
{
struct sysctlnode node;
uint32_t freq;
int err;
freq = cpufreq_get(curcpu());
if (freq == 0)
return ENXIO;
node = *rnode;
node.sysctl_data = &freq;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err != 0 || newp == NULL)
return err;
return 0;
}
static int
acpicpu_md_pstate_sysctl_set(SYSCTLFN_ARGS)
{
struct sysctlnode node;
uint32_t freq;
int err;
freq = cpufreq_get(curcpu());
if (freq == 0)
return ENXIO;
node = *rnode;
node.sysctl_data = &freq;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err != 0 || newp == NULL)
return err;
cpufreq_set_all(freq);
return 0;
}
static int
acpicpu_md_pstate_sysctl_all(SYSCTLFN_ARGS)
{
struct cpu_info *ci = curcpu();
struct acpicpu_softc *sc;
struct sysctlnode node;
char buf[1024];
size_t len;
uint32_t i;
int err;
sc = acpicpu_sc[ci->ci_acpiid];
if (sc == NULL)
return ENXIO;
(void)memset(&buf, 0, sizeof(buf));
mutex_enter(&sc->sc_mtx);
for (len = 0, i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
if (sc->sc_pstate[i].ps_freq == 0)
continue;
if (len >= sizeof(buf))
break;
len += snprintf(buf + len, sizeof(buf) - len, "%u%s",
sc->sc_pstate[i].ps_freq,
i < (sc->sc_pstate_count - 1) ? " " : "");
}
mutex_exit(&sc->sc_mtx);
node = *rnode;
node.sysctl_data = buf;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err != 0 || newp == NULL)
return err;
return 0;
}