Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
/*	$NetBSD: if_kse.c,v 1.59 2022/09/24 18:12:42 thorpej Exp $	*/

/*-
 * Copyright (c) 2006 The NetBSD Foundation, Inc.
 * All rights reserved.
 *
 * This code is derived from software contributed to The NetBSD Foundation
 * by Tohru Nishimura.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Micrel 8841/8842 10/100 PCI ethernet driver
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.59 2022/09/24 18:12:42 thorpej Exp $");

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/rndsource.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/kernel.h>

#include <net/if.h>
#include <net/if_media.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <net/bpf.h>

#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcidevs.h>

#define KSE_LINKDEBUG 0

#define CSR_READ_4(sc, off) \
	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
#define CSR_WRITE_4(sc, off, val) \
	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
#define CSR_READ_2(sc, off) \
	    bus_space_read_2((sc)->sc_st, (sc)->sc_sh, (off))
#define CSR_WRITE_2(sc, off, val) \
	    bus_space_write_2((sc)->sc_st, (sc)->sc_sh, (off), (val))

#define MDTXC		0x000		/* DMA transmit control */
#define MDRXC		0x004		/* DMA receive control */
#define MDTSC		0x008		/* trigger DMA transmit (SC) */
#define MDRSC		0x00c		/* trigger DMA receive (SC) */
#define TDLB		0x010		/* transmit descriptor list base */
#define RDLB		0x014		/* receive descriptor list base */
#define MTR0		0x020		/* multicast table 31:0 */
#define MTR1		0x024		/* multicast table 63:32 */
#define INTEN		0x028		/* interrupt enable */
#define INTST		0x02c		/* interrupt status */
#define MAAL0		0x080		/* additional MAC address 0 low */
#define MAAH0		0x084		/* additional MAC address 0 high */
#define MARL		0x200		/* MAC address low */
#define MARM		0x202		/* MAC address middle */
#define MARH		0x204		/* MAC address high */
#define GRR		0x216		/* global reset */
#define SIDER		0x400		/* switch ID and function enable */
#define SGCR3		0x406		/* switch function control 3 */
#define  CR3_USEHDX	(1U<<6)		/* use half-duplex 8842 host port */
#define  CR3_USEFC	(1U<<5) 	/* use flowcontrol 8842 host port */
#define IACR		0x4a0		/* indirect access control */
#define IADR1		0x4a2		/* indirect access data 66:63 */
#define IADR2		0x4a4		/* indirect access data 47:32 */
#define IADR3		0x4a6		/* indirect access data 63:48 */
#define IADR4		0x4a8		/* indirect access data 15:0 */
#define IADR5		0x4aa		/* indirect access data 31:16 */
#define  IADR_LATCH	(1U<<30)	/* latch completed indication */
#define  IADR_OVF	(1U<<31)	/* overflow detected */
#define P1CR4		0x512		/* port 1 control 4 */
#define P1SR		0x514		/* port 1 status */
#define P2CR4		0x532		/* port 2 control 4 */
#define P2SR		0x534		/* port 2 status */
#define  PxCR_STARTNEG	(1U<<9)		/* restart auto negotiation */
#define  PxCR_AUTOEN	(1U<<7)		/* auto negotiation enable */
#define  PxCR_SPD100	(1U<<6)		/* force speed 100 */
#define  PxCR_USEFDX	(1U<<5)		/* force full duplex */
#define  PxCR_USEFC	(1U<<4)		/* advertise pause flow control */
#define  PxSR_ACOMP	(1U<<6)		/* auto negotiation completed */
#define  PxSR_SPD100	(1U<<10)	/* speed is 100Mbps */
#define  PxSR_FDX	(1U<<9)		/* full duplex */
#define  PxSR_LINKUP	(1U<<5)		/* link is good */
#define  PxSR_RXFLOW	(1U<<12)	/* receive flow control active */
#define  PxSR_TXFLOW	(1U<<11)	/* transmit flow control active */
#define P1VIDCR		0x504		/* port 1 vtag */
#define P2VIDCR		0x524		/* port 2 vtag */
#define P3VIDCR		0x544		/* 8842 host vtag */
#define EVCNTBR		0x1c00		/* 3 sets of 34 event counters */

#define TXC_BS_MSK	0x3f000000	/* burst size */
#define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
#define TXC_UCG		(1U<<18)	/* generate UDP checksum */
#define TXC_TCG		(1U<<17)	/* generate TCP checksum */
#define TXC_ICG		(1U<<16)	/* generate IP checksum */
#define TXC_FCE		(1U<<9)		/* generate PAUSE to moderate Rx lvl */
#define TXC_EP		(1U<<2)		/* enable automatic padding */
#define TXC_AC		(1U<<1)		/* add CRC to frame */
#define TXC_TEN		(1)		/* enable DMA to run */

#define RXC_BS_MSK	0x3f000000	/* burst size */
#define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
#define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
#define RXC_UCC		(1U<<18)	/* run UDP checksum */
#define RXC_TCC		(1U<<17)	/* run TDP checksum */
#define RXC_ICC		(1U<<16)	/* run IP checksum */
#define RXC_FCE		(1U<<9)		/* accept PAUSE to throttle Tx */
#define RXC_RB		(1U<<6)		/* receive broadcast frame */
#define RXC_RM		(1U<<5)		/* receive all multicast (inc. RB) */
#define RXC_RU		(1U<<4)		/* receive 16 additional unicasts */
#define RXC_RE		(1U<<3)		/* accept error frame */
#define RXC_RA		(1U<<2)		/* receive all frame */
#define RXC_MHTE	(1U<<1)		/* use multicast hash table */
#define RXC_REN		(1)		/* enable DMA to run */

#define INT_DMLCS	(1U<<31)	/* link status change */
#define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
#define INT_DMRS	(1U<<29)	/* frame was received */
#define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
#define INT_DMxPSS	(3U<<25)	/* 26:25 DMA Tx/Rx have stopped */

struct tdes {
	uint32_t t0, t1, t2, t3;
};

struct rdes {
	uint32_t r0, r1, r2, r3;
};

#define T0_OWN		(1U<<31)	/* desc is ready to Tx */

#define R0_OWN		(1U<<31)	/* desc is empty */
#define R0_FS		(1U<<30)	/* first segment of frame */
#define R0_LS		(1U<<29)	/* last segment of frame */
#define R0_IPE		(1U<<28)	/* IP checksum error */
#define R0_TCPE		(1U<<27)	/* TCP checksum error */
#define R0_UDPE		(1U<<26)	/* UDP checksum error */
#define R0_ES		(1U<<25)	/* error summary */
#define R0_MF		(1U<<24)	/* multicast frame */
#define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
#define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
#define R0_RE		(1U<<19)	/* MII reported error */
#define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
#define R0_RF		(1U<<17)	/* damaged runt frame */
#define R0_CE		(1U<<16)	/* CRC error */
#define R0_FT		(1U<<15)	/* frame type */
#define R0_FL_MASK	0x7ff		/* frame length 10:0 */

#define T1_IC		(1U<<31)	/* post interrupt on complete */
#define T1_FS		(1U<<30)	/* first segment of frame */
#define T1_LS		(1U<<29)	/* last segment of frame */
#define T1_IPCKG	(1U<<28)	/* generate IP checksum */
#define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
#define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
#define T1_TER		(1U<<25)	/* end of ring */
#define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
#define T1_TBS_MASK	0x7ff		/* segment size 10:0 */

#define R1_RER		(1U<<25)	/* end of ring */
#define R1_RBS_MASK	0x7fc		/* segment size 10:0 */

#define KSE_NTXSEGS		16
#define KSE_TXQUEUELEN		64
#define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
#define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
#define KSE_NTXDESC		256
#define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
#define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
#define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)

#define KSE_NRXDESC		64
#define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
#define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)

struct kse_control_data {
	struct tdes kcd_txdescs[KSE_NTXDESC];
	struct rdes kcd_rxdescs[KSE_NRXDESC];
};
#define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
#define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
#define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])

struct kse_txsoft {
	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
	bus_dmamap_t txs_dmamap;	/* our DMA map */
	int txs_firstdesc;		/* first descriptor in packet */
	int txs_lastdesc;		/* last descriptor in packet */
	int txs_ndesc;			/* # of descriptors used */
};

struct kse_rxsoft {
	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
	bus_dmamap_t rxs_dmamap;	/* our DMA map */
};

struct kse_softc {
	device_t sc_dev;		/* generic device information */
	bus_space_tag_t sc_st;		/* bus space tag */
	bus_space_handle_t sc_sh;	/* bus space handle */
	bus_size_t sc_memsize;		/* csr map size */
	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
	pci_chipset_tag_t sc_pc;	/* PCI chipset tag */
	struct ethercom sc_ethercom;	/* Ethernet common data */
	void *sc_ih;			/* interrupt cookie */

	struct mii_data sc_mii;		/* mii 8841 */
	struct ifmedia sc_media;	/* ifmedia 8842 */
	int sc_flowflags;		/* 802.3x PAUSE flow control */

	callout_t  sc_tick_ch;		/* MII tick callout */

	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
#define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr

	struct kse_control_data *sc_control_data;
#define sc_txdescs	sc_control_data->kcd_txdescs
#define sc_rxdescs	sc_control_data->kcd_rxdescs

	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
	int sc_txfree;			/* number of free Tx descriptors */
	int sc_txnext;			/* next ready Tx descriptor */
	int sc_txsfree;			/* number of free Tx jobs */
	int sc_txsnext;			/* next ready Tx job */
	int sc_txsdirty;		/* dirty Tx jobs */
	int sc_rxptr;			/* next ready Rx descriptor/descsoft */

	uint32_t sc_txc, sc_rxc;
	uint32_t sc_t1csum;
	int sc_mcsum;
	uint32_t sc_inten;
	uint32_t sc_chip;

	krndsource_t rnd_source;	/* random source */

#ifdef KSE_EVENT_COUNTERS
	struct ksext {
		char evcntname[3][8];
		struct evcnt pev[3][34];
	} sc_ext;			/* switch statistics */
#endif
};

#define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
#define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))

#define KSE_CDTXSYNC(sc, x, n, ops)					\
do {									\
	int __x, __n;							\
									\
	__x = (x);							\
	__n = (n);							\
									\
	/* If it will wrap around, sync to the end of the ring. */	\
	if ((__x + __n) > KSE_NTXDESC) {				\
		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
		    (KSE_NTXDESC - __x), (ops));			\
		__n -= (KSE_NTXDESC - __x);				\
		__x = 0;						\
	}								\
									\
	/* Now sync whatever is left. */				\
	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
} while (/*CONSTCOND*/0)

#define KSE_CDRXSYNC(sc, x, ops)					\
do {									\
	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
} while (/*CONSTCOND*/0)

#define KSE_INIT_RXDESC(sc, x)						\
do {									\
	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
	struct mbuf *__m = __rxs->rxs_mbuf;				\
									\
	__m->m_data = __m->m_ext.ext_buf;				\
	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
	__rxd->r0 = R0_OWN;						\
	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
} while (/*CONSTCOND*/0)

u_int kse_burstsize = 8;	/* DMA burst length tuning knob */

#ifdef KSEDIAGNOSTIC
u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
#endif

static int kse_match(device_t, cfdata_t, void *);
static void kse_attach(device_t, device_t, void *);

CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
    kse_match, kse_attach, NULL, NULL);

static int kse_ioctl(struct ifnet *, u_long, void *);
static void kse_start(struct ifnet *);
static void kse_watchdog(struct ifnet *);
static int kse_init(struct ifnet *);
static void kse_stop(struct ifnet *, int);
static void kse_reset(struct kse_softc *);
static void kse_set_rcvfilt(struct kse_softc *);
static int add_rxbuf(struct kse_softc *, int);
static void rxdrain(struct kse_softc *);
static int kse_intr(void *);
static void rxintr(struct kse_softc *);
static void txreap(struct kse_softc *);
static void lnkchg(struct kse_softc *);
static int kse_ifmedia_upd(struct ifnet *);
static void kse_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void nopifmedia_sts(struct ifnet *, struct ifmediareq *);
static void phy_tick(void *);
int kse_mii_readreg(device_t, int, int, uint16_t *);
int kse_mii_writereg(device_t, int, int, uint16_t);
void kse_mii_statchg(struct ifnet *);
#ifdef KSE_EVENT_COUNTERS
static void stat_tick(void *);
static void zerostats(struct kse_softc *);
#endif

static const struct device_compatible_entry compat_data[] = {
	{ .id = PCI_ID_CODE(PCI_VENDOR_MICREL,
		PCI_PRODUCT_MICREL_KSZ8842) },
	{ .id = PCI_ID_CODE(PCI_VENDOR_MICREL,
		PCI_PRODUCT_MICREL_KSZ8841) },

	PCI_COMPAT_EOL
};

static int
kse_match(device_t parent, cfdata_t match, void *aux)
{
	struct pci_attach_args *pa = (struct pci_attach_args *)aux;

	return PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK &&
	       pci_compatible_match(pa, compat_data);
}

static void
kse_attach(device_t parent, device_t self, void *aux)
{
	struct kse_softc *sc = device_private(self);
	struct pci_attach_args *pa = aux;
	pci_chipset_tag_t pc = pa->pa_pc;
	pci_intr_handle_t ih;
	const char *intrstr;
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct mii_data * const mii = &sc->sc_mii;
	struct ifmedia *ifm;
	uint8_t enaddr[ETHER_ADDR_LEN];
	bus_dma_segment_t seg;
	int i, error, nseg;
	char intrbuf[PCI_INTRSTR_LEN];

	aprint_normal(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
	    PCI_PRODUCT(pa->pa_id), PCI_REVISION(pa->pa_class));

	if (pci_mapreg_map(pa, 0x10,
	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
	    0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_memsize) != 0) {
		aprint_error_dev(self, "unable to map device registers\n");
		return;
	}

	/* Make sure bus mastering is enabled. */
	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
	    PCI_COMMAND_MASTER_ENABLE);

	/* Power up chip if necessary. */
	if ((error = pci_activate(pc, pa->pa_tag, self, NULL))
	    && error != EOPNOTSUPP) {
		aprint_error_dev(self, "cannot activate %d\n", error);
		return;
	}

	/* Map and establish our interrupt. */
	if (pci_intr_map(pa, &ih)) {
		aprint_error_dev(self, "unable to map interrupt\n");
		goto fail;
	}
	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, kse_intr, sc,
	    device_xname(self));
	if (sc->sc_ih == NULL) {
		aprint_error_dev(self, "unable to establish interrupt");
		if (intrstr != NULL)
			aprint_error(" at %s", intrstr);
		aprint_error("\n");
		goto fail;
	}
	aprint_normal_dev(self, "interrupting at %s\n", intrstr);

	sc->sc_dev = self;
	sc->sc_dmat = pa->pa_dmat;
	sc->sc_pc = pa->pa_pc;
	sc->sc_chip = PCI_PRODUCT(pa->pa_id);

	/*
	 * Read the Ethernet address from the EEPROM.
	 */
	i = CSR_READ_2(sc, MARL);
	enaddr[5] = i;
	enaddr[4] = i >> 8;
	i = CSR_READ_2(sc, MARM);
	enaddr[3] = i;
	enaddr[2] = i >> 8;
	i = CSR_READ_2(sc, MARH);
	enaddr[1] = i;
	enaddr[0] = i >> 8;
	aprint_normal_dev(self,
	    "Ethernet address %s\n", ether_sprintf(enaddr));

	/*
	 * Enable chip function.
	 */
	CSR_WRITE_2(sc, SIDER, 1);

	/*
	 * Allocate the control data structures, and create and load the
	 * DMA map for it.
	 */
	error = bus_dmamem_alloc(sc->sc_dmat,
	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
	if (error != 0) {
		aprint_error_dev(self,
		    "unable to allocate control data, error = %d\n", error);
		goto fail_0;
	}
	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
	    BUS_DMA_COHERENT);
	if (error != 0) {
		aprint_error_dev(self,
		    "unable to map control data, error = %d\n", error);
		goto fail_1;
	}
	error = bus_dmamap_create(sc->sc_dmat,
	    sizeof(struct kse_control_data), 1,
	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
	if (error != 0) {
		aprint_error_dev(self,
		    "unable to create control data DMA map, "
		    "error = %d\n", error);
		goto fail_2;
	}
	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
	if (error != 0) {
		aprint_error_dev(self,
		    "unable to load control data DMA map, error = %d\n",
		    error);
		goto fail_3;
	}
	for (i = 0; i < KSE_TXQUEUELEN; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
		    KSE_NTXSEGS, MCLBYTES, 0, 0,
		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
			aprint_error_dev(self,
			    "unable to create tx DMA map %d, error = %d\n",
			    i, error);
			goto fail_4;
		}
	}
	for (i = 0; i < KSE_NRXDESC; i++) {
		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
			aprint_error_dev(self,
			    "unable to create rx DMA map %d, error = %d\n",
			    i, error);
			goto fail_5;
		}
		sc->sc_rxsoft[i].rxs_mbuf = NULL;
	}

	mii->mii_ifp = ifp;
	mii->mii_readreg = kse_mii_readreg;
	mii->mii_writereg = kse_mii_writereg;
	mii->mii_statchg = kse_mii_statchg;

	/* Initialize ifmedia structures. */
	if (sc->sc_chip == 0x8841) {
		/* use port 1 builtin PHY as index 1 device */
		sc->sc_ethercom.ec_mii = mii;
		ifm = &mii->mii_media;
		ifmedia_init(ifm, 0, kse_ifmedia_upd, kse_ifmedia_sts);
		mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY1 */,
		    MII_OFFSET_ANY, MIIF_DOPAUSE);
		if (LIST_FIRST(&mii->mii_phys) == NULL) {
			ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
			ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
		} else
			ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
	} else {
		/*
		 * pretend 100FDX w/ no alternative media selection.
		 * 8842 MAC is tied with a builtin 3 port switch. It can do
		 * 4 degree priotised rate control over either of tx/rx
		 * direction for any of ports, respectively. Tough, this
		 * driver leaves the rate unlimited intending 100Mbps maximum.
		 * 2 external ports behave in AN mode and this driver provides
		 * no mean to manipulate and see their operational details.
		 */
		sc->sc_ethercom.ec_ifmedia = ifm = &sc->sc_media;
		ifmedia_init(ifm, 0, NULL, nopifmedia_sts);
		ifmedia_add(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
		ifmedia_set(ifm, IFM_ETHER | IFM_100_TX | IFM_FDX);

		aprint_normal_dev(self,
		    "10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n");
	}
	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */

	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
	ifp->if_softc = sc;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = kse_ioctl;
	ifp->if_start = kse_start;
	ifp->if_watchdog = kse_watchdog;
	ifp->if_init = kse_init;
	ifp->if_stop = kse_stop;
	IFQ_SET_READY(&ifp->if_snd);

	/*
	 * capable of 802.1Q VLAN-sized frames and hw assisted tagging.
	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
	 */
	sc->sc_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
	ifp->if_capabilities =
	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;

	sc->sc_flowflags = 0;

	if_attach(ifp);
	if_deferred_start_init(ifp, NULL);
	ether_ifattach(ifp, enaddr);

	callout_init(&sc->sc_tick_ch, 0);
	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);

	rnd_attach_source(&sc->rnd_source, device_xname(self),
	    RND_TYPE_NET, RND_FLAG_DEFAULT);

#ifdef KSE_EVENT_COUNTERS
	const char *events[34] = {
		"RxLoPriotyByte",
		"RxHiPriotyByte",
		"RxUndersizePkt",
		"RxFragments",
		"RxOversize",
		"RxJabbers",
		"RxSymbolError",
		"RxCRCError",
		"RxAlignmentError",
		"RxControl8808Pkts",
		"RxPausePkts",
		"RxBroadcast",
		"RxMulticast",
		"RxUnicast",
		"Rx64Octets",
		"Rx65To127Octets",
		"Rx128To255Octets",
		"Rx255To511Octets",
		"Rx512To1023Octets",
		"Rx1024To1522Octets",
		"TxLoPriotyByte",
		"TxHiPriotyByte",
		"TxLateCollision",
		"TxPausePkts",
		"TxBroadcastPkts",
		"TxMulticastPkts",
		"TxUnicastPkts",
		"TxDeferred",
		"TxTotalCollision",
		"TxExcessiveCollision",
		"TxSingleCollision",
		"TxMultipleCollision",
		"TxDropPkts",
		"RxDropPkts",
	};
	struct ksext *ee = &sc->sc_ext;
	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
	for (i = 0; i < p; i++) {
		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
		    "%s.%d", device_xname(sc->sc_dev), i+1);
		for (int ev = 0; ev < 34; ev++) {
			evcnt_attach_dynamic(&ee->pev[i][ev], EVCNT_TYPE_MISC,
			    NULL, ee->evcntname[i], events[ev]);
		}
	}
#endif
	return;

 fail_5:
	for (i = 0; i < KSE_NRXDESC; i++) {
		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_rxsoft[i].rxs_dmamap);
	}
 fail_4:
	for (i = 0; i < KSE_TXQUEUELEN; i++) {
		if (sc->sc_txsoft[i].txs_dmamap != NULL)
			bus_dmamap_destroy(sc->sc_dmat,
			    sc->sc_txsoft[i].txs_dmamap);
	}
	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
 fail_3:
	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
 fail_2:
	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
	    sizeof(struct kse_control_data));
 fail_1:
	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
 fail_0:
	pci_intr_disestablish(pc, sc->sc_ih);
 fail:
	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_memsize);
	return;
}

static int
kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
	struct kse_softc *sc = ifp->if_softc;
	struct ifreq *ifr = (struct ifreq *)data;
	struct ifmedia *ifm;
	int s, error;

	s = splnet();

	switch (cmd) {
	case SIOCSIFMEDIA:
		/* Flow control requires full-duplex mode. */
		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
		    (ifr->ifr_media & IFM_FDX) == 0)
			ifr->ifr_media &= ~IFM_ETH_FMASK;
		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
				/* We can do both TXPAUSE and RXPAUSE. */
				ifr->ifr_media |=
				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
			}
			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
		}
		ifm = (sc->sc_chip == 0x8841)
		    ? &sc->sc_mii.mii_media : &sc->sc_media;
		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
		break;
	default:
		error = ether_ioctl(ifp, cmd, data);
		if (error != ENETRESET)
			break;
		error = 0;
		if (cmd == SIOCSIFCAP)
			error = if_init(ifp);
		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
			;
		else if (ifp->if_flags & IFF_RUNNING) {
			/*
			 * Multicast list has changed; set the hardware filter
			 * accordingly.
			 */
			kse_set_rcvfilt(sc);
		}
		break;
	}

	splx(s);

	return error;
}

static int
kse_init(struct ifnet *ifp)
{
	struct kse_softc *sc = ifp->if_softc;
	uint32_t paddr;
	int i, error = 0;

	/* cancel pending I/O */
	kse_stop(ifp, 0);

	/* reset all registers but PCI configuration */
	kse_reset(sc);

	/* craft Tx descriptor ring */
	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
		sc->sc_txdescs[i].t3 = paddr;
		paddr += sizeof(struct tdes);
	}
	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
	sc->sc_txfree = KSE_NTXDESC;
	sc->sc_txnext = 0;

	for (i = 0; i < KSE_TXQUEUELEN; i++)
		sc->sc_txsoft[i].txs_mbuf = NULL;
	sc->sc_txsfree = KSE_TXQUEUELEN;
	sc->sc_txsnext = 0;
	sc->sc_txsdirty = 0;

	/* craft Rx descriptor ring */
	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
		sc->sc_rxdescs[i].r3 = paddr;
		paddr += sizeof(struct rdes);
	}
	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
	for (i = 0; i < KSE_NRXDESC; i++) {
		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
			if ((error = add_rxbuf(sc, i)) != 0) {
				aprint_error_dev(sc->sc_dev,
				    "unable to allocate or map rx "
				    "buffer %d, error = %d\n",
				    i, error);
				rxdrain(sc);
				goto out;
			}
		}
		else
			KSE_INIT_RXDESC(sc, i);
	}
	sc->sc_rxptr = 0;

	/* hand Tx/Rx rings to HW */
	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));

	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC;
	sc->sc_rxc = RXC_REN | RXC_RU | RXC_RB;
	sc->sc_t1csum = sc->sc_mcsum = 0;
	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
		sc->sc_rxc |= RXC_ICC;
		sc->sc_mcsum |= M_CSUM_IPv4;
	}
	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
		sc->sc_txc |= TXC_ICG;
		sc->sc_t1csum |= T1_IPCKG;
	}
	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
		sc->sc_rxc |= RXC_TCC;
		sc->sc_mcsum |= M_CSUM_TCPv4;
	}
	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
		sc->sc_txc |= TXC_TCG;
		sc->sc_t1csum |= T1_TCPCKG;
	}
	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
		sc->sc_rxc |= RXC_UCC;
		sc->sc_mcsum |= M_CSUM_UDPv4;
	}
	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
		sc->sc_txc |= TXC_UCG;
		sc->sc_t1csum |= T1_UDPCKG;
	}
	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);

	if (sc->sc_chip == 0x8842) {
		/* make PAUSE flow control to run */
		sc->sc_txc |= TXC_FCE;
		sc->sc_rxc |= RXC_FCE;
		i = CSR_READ_2(sc, SGCR3);
		CSR_WRITE_2(sc, SGCR3, i | CR3_USEFC);
	}

	/* accept multicast frame or run promisc mode */
	kse_set_rcvfilt(sc);

	/* set current media */
	if (sc->sc_chip == 0x8841)
		(void)kse_ifmedia_upd(ifp);

	/* enable transmitter and receiver */
	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
	CSR_WRITE_4(sc, MDRSC, 1);

	/* enable interrupts */
	sc->sc_inten = INT_DMTS | INT_DMRS | INT_DMRBUS;
	if (sc->sc_chip == 0x8841)
		sc->sc_inten |= INT_DMLCS;
	CSR_WRITE_4(sc, INTST, ~0);
	CSR_WRITE_4(sc, INTEN, sc->sc_inten);

	ifp->if_flags |= IFF_RUNNING;
	ifp->if_flags &= ~IFF_OACTIVE;

	/* start one second timer */
	callout_schedule(&sc->sc_tick_ch, hz);

#ifdef KSE_EVENT_COUNTERS
	zerostats(sc);
#endif

 out:
	if (error) {
		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
		ifp->if_timer = 0;
		aprint_error_dev(sc->sc_dev, "interface not running\n");
	}
	return error;
}

static void
kse_stop(struct ifnet *ifp, int disable)
{
	struct kse_softc *sc = ifp->if_softc;
	struct kse_txsoft *txs;
	int i;

	callout_stop(&sc->sc_tick_ch);

	sc->sc_txc &= ~TXC_TEN;
	sc->sc_rxc &= ~RXC_REN;
	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);

	for (i = 0; i < KSE_TXQUEUELEN; i++) {
		txs = &sc->sc_txsoft[i];
		if (txs->txs_mbuf != NULL) {
			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
			m_freem(txs->txs_mbuf);
			txs->txs_mbuf = NULL;
		}
	}

	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
	ifp->if_timer = 0;

	if (disable)
		rxdrain(sc);
}

static void
kse_reset(struct kse_softc *sc)
{

	/* software reset */
	CSR_WRITE_2(sc, GRR, 1);
	delay(1000); /* PDF does not mention the delay amount */
	CSR_WRITE_2(sc, GRR, 0);

	/* enable switch function */
	CSR_WRITE_2(sc, SIDER, 1);
}

static void
kse_watchdog(struct ifnet *ifp)
{
	struct kse_softc *sc = ifp->if_softc;

	/*
	 * Since we're not interrupting every packet, sweep
	 * up before we report an error.
	 */
	txreap(sc);

	if (sc->sc_txfree != KSE_NTXDESC) {
		aprint_error_dev(sc->sc_dev,
		    "device timeout (txfree %d txsfree %d txnext %d)\n",
		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
		if_statinc(ifp, if_oerrors);

		/* Reset the interface. */
		kse_init(ifp);
	}
	else if (ifp->if_flags & IFF_DEBUG)
		aprint_error_dev(sc->sc_dev, "recovered from device timeout\n");

	/* Try to get more packets going. */
	kse_start(ifp);
}

static void
kse_start(struct ifnet *ifp)
{
	struct kse_softc *sc = ifp->if_softc;
	struct mbuf *m0, *m;
	struct kse_txsoft *txs;
	bus_dmamap_t dmamap;
	int error, nexttx, lasttx, ofree, seg;
	uint32_t tdes0;

	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
		return;

	/* Remember the previous number of free descriptors. */
	ofree = sc->sc_txfree;

	/*
	 * Loop through the send queue, setting up transmit descriptors
	 * until we drain the queue, or use up all available transmit
	 * descriptors.
	 */
	for (;;) {
		IFQ_POLL(&ifp->if_snd, m0);
		if (m0 == NULL)
			break;

		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
			txreap(sc);
			if (sc->sc_txsfree == 0)
				break;
		}
		txs = &sc->sc_txsoft[sc->sc_txsnext];
		dmamap = txs->txs_dmamap;

		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
		if (error) {
			if (error == EFBIG) {
				aprint_error_dev(sc->sc_dev,
				    "Tx packet consumes too many "
				    "DMA segments, dropping...\n");
				    IFQ_DEQUEUE(&ifp->if_snd, m0);
				    m_freem(m0);
				    continue;
			}
			/* Short on resources, just stop for now. */
			break;
		}

		if (dmamap->dm_nsegs > sc->sc_txfree) {
			/*
			 * Not enough free descriptors to transmit this
			 * packet.  We haven't committed anything yet,
			 * so just unload the DMA map, put the packet
			 * back on the queue, and punt.	 Notify the upper
			 * layer that there are not more slots left.
			 */
			ifp->if_flags |= IFF_OACTIVE;
			bus_dmamap_unload(sc->sc_dmat, dmamap);
			break;
		}

		IFQ_DEQUEUE(&ifp->if_snd, m0);

		/*
		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
		 */

		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
		    BUS_DMASYNC_PREWRITE);

		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
		lasttx = -1;
		for (nexttx = sc->sc_txnext, seg = 0;
		     seg < dmamap->dm_nsegs;
		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
			struct tdes *tdes = &sc->sc_txdescs[nexttx];
			/*
			 * If this is the first descriptor we're
			 * enqueueing, don't set the OWN bit just
			 * yet.	 That could cause a race condition.
			 * We'll do it below.
			 */
			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
			tdes->t1 = sc->sc_t1csum
			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
			tdes->t0 = tdes0;
			tdes0 = T0_OWN; /* 2nd and other segments */
			lasttx = nexttx;
		}
		/*
		 * Outgoing NFS mbuf must be unloaded when Tx completed.
		 * Without T1_IC NFS mbuf is left unack'ed for excessive
		 * time and NFS stops to proceed until kse_watchdog()
		 * calls txreap() to reclaim the unack'ed mbuf.
		 * It's painful to traverse every mbuf chain to determine
		 * whether someone is waiting for Tx completion.
		 */
		m = m0;
		do {
			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
				sc->sc_txdescs[lasttx].t1 |= T1_IC;
				break;
			}
		} while ((m = m->m_next) != NULL);

		/* Write deferred 1st segment T0_OWN at the final stage */
		sc->sc_txdescs[lasttx].t1 |= T1_LS;
		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

		/* Tell DMA start transmit */
		CSR_WRITE_4(sc, MDTSC, 1);

		txs->txs_mbuf = m0;
		txs->txs_firstdesc = sc->sc_txnext;
		txs->txs_lastdesc = lasttx;
		txs->txs_ndesc = dmamap->dm_nsegs;

		sc->sc_txfree -= txs->txs_ndesc;
		sc->sc_txnext = nexttx;
		sc->sc_txsfree--;
		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
		/*
		 * Pass the packet to any BPF listeners.
		 */
		bpf_mtap(ifp, m0, BPF_D_OUT);
	}

	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
		/* No more slots left; notify upper layer. */
		ifp->if_flags |= IFF_OACTIVE;
	}
	if (sc->sc_txfree != ofree) {
		/* Set a watchdog timer in case the chip flakes out. */
		ifp->if_timer = 5;
	}
}

static void
kse_set_rcvfilt(struct kse_softc *sc)
{
	struct ether_multistep step;
	struct ether_multi *enm;
	struct ethercom *ec = &sc->sc_ethercom;
	struct ifnet *ifp = &ec->ec_if;
	uint32_t crc, mchash[2];
	int i;

	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM | RXC_RA);

	/* clear perfect match filter and prepare mcast hash table */
	for (i = 0; i < 16; i++)
		 CSR_WRITE_4(sc, MAAH0 + i*8, 0);
	crc = mchash[0] = mchash[1] = 0;

	ETHER_LOCK(ec);
	if (ifp->if_flags & IFF_PROMISC) {
		ec->ec_flags |= ETHER_F_ALLMULTI;
		ETHER_UNLOCK(ec);
		/* run promisc. mode */
		sc->sc_rxc |= RXC_RA;
		goto update;
	}
	ec->ec_flags &= ~ETHER_F_ALLMULTI;
	ETHER_FIRST_MULTI(step, ec, enm);
	i = 0;
	while (enm != NULL) {
		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
			/*
			 * We must listen to a range of multicast addresses.
			 * For now, just accept all multicasts, rather than
			 * trying to set only those filter bits needed to match
			 * the range.  (At this time, the only use of address
			 * ranges is for IP multicast routing, for which the
			 * range is big enough to require all bits set.)
			 */
			ec->ec_flags |= ETHER_F_ALLMULTI;
			ETHER_UNLOCK(ec);
			/* accept all multicast */
			sc->sc_rxc |= RXC_RM;
			goto update;
		}
#if KSE_MCASTDEBUG == 1
		printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
#endif
		if (i < 16) {
			/* use 16 additional MAC addr to accept mcast */
			uint32_t addr;
			uint8_t *ep = enm->enm_addrlo;
			addr = (ep[3] << 24) | (ep[2] << 16)
			     | (ep[1] << 8)  |  ep[0];
			CSR_WRITE_4(sc, MAAL0 + i*8, addr);
			addr = (ep[5] << 8) | ep[4];
			CSR_WRITE_4(sc, MAAH0 + i*8, addr | (1U << 31));
		} else {
			/* use hash table when too many */
			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
		}
		ETHER_NEXT_MULTI(step, enm);
		i++;
	}
	ETHER_UNLOCK(ec);

	if (crc)
		sc->sc_rxc |= RXC_MHTE;
	CSR_WRITE_4(sc, MTR0, mchash[0]);
	CSR_WRITE_4(sc, MTR1, mchash[1]);
 update:
	/* With RA or RM, MHTE/MTR0/MTR1 are never consulted. */
	return;
}

static int
add_rxbuf(struct kse_softc *sc, int idx)
{
	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
	struct mbuf *m;
	int error;

	MGETHDR(m, M_DONTWAIT, MT_DATA);
	if (m == NULL)
		return ENOBUFS;

	MCLGET(m, M_DONTWAIT);
	if ((m->m_flags & M_EXT) == 0) {
		m_freem(m);
		return ENOBUFS;
	}

	if (rxs->rxs_mbuf != NULL)
		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);

	rxs->rxs_mbuf = m;

	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
	if (error) {
		aprint_error_dev(sc->sc_dev,
		    "can't load rx DMA map %d, error = %d\n", idx, error);
		panic("kse_add_rxbuf");
	}

	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);

	KSE_INIT_RXDESC(sc, idx);

	return 0;
}

static void
rxdrain(struct kse_softc *sc)
{
	struct kse_rxsoft *rxs;
	int i;

	for (i = 0; i < KSE_NRXDESC; i++) {
		rxs = &sc->sc_rxsoft[i];
		if (rxs->rxs_mbuf != NULL) {
			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
			m_freem(rxs->rxs_mbuf);
			rxs->rxs_mbuf = NULL;
		}
	}
}

static int
kse_intr(void *arg)
{
	struct kse_softc *sc = arg;
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	uint32_t isr;

	if ((isr = CSR_READ_4(sc, INTST)) == 0)
		return 0;

	if (isr & INT_DMRS)
		rxintr(sc);
	if (isr & INT_DMTS)
		txreap(sc);
	if (isr & INT_DMLCS)
		lnkchg(sc);
	if (isr & INT_DMRBUS)
		aprint_error_dev(sc->sc_dev, "Rx descriptor full\n");

	CSR_WRITE_4(sc, INTST, isr);

	if (ifp->if_flags & IFF_RUNNING)
		if_schedule_deferred_start(ifp);

	return 1;
}

static void
rxintr(struct kse_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct kse_rxsoft *rxs;
	struct mbuf *m;
	uint32_t rxstat;
	int i, len;

	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
		rxs = &sc->sc_rxsoft[i];

		KSE_CDRXSYNC(sc, i,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

		rxstat = sc->sc_rxdescs[i].r0;

		if (rxstat & R0_OWN) /* desc is left empty */
			break;

		/* R0_FS | R0_LS must have been marked for this desc */

		if (rxstat & R0_ES) {
			if_statinc(ifp, if_ierrors);
#define PRINTERR(bit, str)						\
			if (rxstat & (bit))				\
				aprint_error_dev(sc->sc_dev,		\
				    "%s\n", str)
			PRINTERR(R0_TL, "frame too long");
			PRINTERR(R0_RF, "runt frame");
			PRINTERR(R0_CE, "bad FCS");
#undef PRINTERR
			KSE_INIT_RXDESC(sc, i);
			continue;
		}

		/* HW errata; frame might be too small or too large */

		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);

		len = rxstat & R0_FL_MASK;
		len -= ETHER_CRC_LEN;	/* Trim CRC off */
		m = rxs->rxs_mbuf;

		if (add_rxbuf(sc, i) != 0) {
			if_statinc(ifp, if_ierrors);
			KSE_INIT_RXDESC(sc, i);
			bus_dmamap_sync(sc->sc_dmat,
			    rxs->rxs_dmamap, 0,
			    rxs->rxs_dmamap->dm_mapsize,
			    BUS_DMASYNC_PREREAD);
			continue;
		}

		m_set_rcvif(m, ifp);
		m->m_pkthdr.len = m->m_len = len;

		if (sc->sc_mcsum) {
			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
			if (rxstat & R0_IPE)
				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
			if (rxstat & (R0_TCPE | R0_UDPE))
				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
		}
		if_percpuq_enqueue(ifp->if_percpuq, m);
#ifdef KSEDIAGNOSTIC
		if (kse_monitor_rxintr > 0) {
			aprint_error_dev(sc->sc_dev,
			    "m stat %x data %p len %d\n",
			    rxstat, m->m_data, m->m_len);
		}
#endif
	}
	sc->sc_rxptr = i;
}

static void
txreap(struct kse_softc *sc)
{
	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
	struct kse_txsoft *txs;
	uint32_t txstat;
	int i;

	ifp->if_flags &= ~IFF_OACTIVE;

	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
		txs = &sc->sc_txsoft[i];

		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;

		if (txstat & T0_OWN) /* desc is still in use */
			break;

		/* There is no way to tell transmission status per frame */

		if_statinc(ifp, if_opackets);

		sc->sc_txfree += txs->txs_ndesc;
		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
		m_freem(txs->txs_mbuf);
		txs->txs_mbuf = NULL;
	}
	sc->sc_txsdirty = i;
	if (sc->sc_txsfree == KSE_TXQUEUELEN)
		ifp->if_timer = 0;
}

static void
lnkchg(struct kse_softc *sc)
{
	struct ifmediareq ifmr;

#if KSE_LINKDEBUG == 1
	uint16_t p1sr = CSR_READ_2(sc, P1SR);
printf("link %s detected\n", (p1sr & PxSR_LINKUP) ? "up" : "down");
#endif
	kse_ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
}

static int
kse_ifmedia_upd(struct ifnet *ifp)
{
	struct kse_softc *sc = ifp->if_softc;
	struct ifmedia *ifm = &sc->sc_mii.mii_media;
	uint16_t p1cr4;

	p1cr4 = 0;
	if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_AUTO) {
		p1cr4 |= PxCR_STARTNEG;	/* restart AN */
		p1cr4 |= PxCR_AUTOEN;	/* enable AN */
		p1cr4 |= PxCR_USEFC;	/* advertise flow control pause */
		p1cr4 |= 0xf;		/* adv. 100FDX,100HDX,10FDX,10HDX */
	} else {
		if (IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_100_TX)
			p1cr4 |= PxCR_SPD100;
		if (ifm->ifm_media & IFM_FDX)
			p1cr4 |= PxCR_USEFDX;
	}
	CSR_WRITE_2(sc, P1CR4, p1cr4);
#if KSE_LINKDEBUG == 1
printf("P1CR4: %04x\n", p1cr4);
#endif
	return 0;
}

static void
kse_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct kse_softc *sc = ifp->if_softc;
	struct mii_data *mii = &sc->sc_mii;

	mii_pollstat(mii);
	ifmr->ifm_status = mii->mii_media_status;
	ifmr->ifm_active = sc->sc_flowflags |
	    (mii->mii_media_active & ~IFM_ETH_FMASK);
}

static void
nopifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
	struct kse_softc *sc = ifp->if_softc;
	struct ifmedia *ifm = &sc->sc_media;

#if KSE_LINKDEBUG == 2
printf("p1sr: %04x, p2sr: %04x\n", CSR_READ_2(sc, P1SR), CSR_READ_2(sc, P2SR));
#endif

	/* 8842 MAC pretends 100FDX all the time */
	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
	ifmr->ifm_active = ifm->ifm_cur->ifm_media |
	    IFM_FLOW | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE;
}

static void
phy_tick(void *arg)
{
	struct kse_softc *sc = arg;
	struct mii_data *mii = &sc->sc_mii;
	int s;

	if (sc->sc_chip == 0x8841) {
		s = splnet();
		mii_tick(mii);
		splx(s);
	}
#ifdef KSE_EVENT_COUNTERS
	stat_tick(arg);
#endif
	callout_schedule(&sc->sc_tick_ch, hz);
}

static const uint16_t phy1csr[] = {
	/* 0 BMCR */	0x4d0,
	/* 1 BMSR */	0x4d2,
	/* 2 PHYID1 */	0x4d6,	/* 0x0022 - PHY1HR */
	/* 3 PHYID2 */	0x4d4,	/* 0x1430 - PHY1LR */
	/* 4 ANAR */	0x4d8,
	/* 5 ANLPAR */	0x4da,
};

int
kse_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
	struct kse_softc *sc = device_private(self);

	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
		return EINVAL;
	*val = CSR_READ_2(sc, phy1csr[reg]);
	return 0;
}

int
kse_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
	struct kse_softc *sc = device_private(self);

	if (phy != 1 || reg >= __arraycount(phy1csr) || reg < 0)
		return EINVAL;
	CSR_WRITE_2(sc, phy1csr[reg], val);
	return 0;
}

void
kse_mii_statchg(struct ifnet *ifp)
{
	struct kse_softc *sc = ifp->if_softc;
	struct mii_data *mii = &sc->sc_mii;

#if KSE_LINKDEBUG == 1
	/* decode P1SR register value */
	uint16_t p1sr = CSR_READ_2(sc, P1SR);
	printf("P1SR %04x, spd%d", p1sr, (p1sr & PxSR_SPD100) ? 100 : 10);
	if (p1sr & PxSR_FDX)
		printf(",full-duplex");
	if (p1sr & PxSR_RXFLOW)
		printf(",rxpause");
	if (p1sr & PxSR_TXFLOW)
		printf(",txpause");
	printf("\n");
	/* show resolved mii(4) parameters to compare against above */
	printf("MII spd%d",
	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
	if (mii->mii_media_active & IFM_FDX)
		printf(",full-duplex");
	if (mii->mii_media_active & IFM_FLOW) {
		printf(",flowcontrol");
		if (mii->mii_media_active & IFM_ETH_RXPAUSE)
			printf(",rxpause");
		if (mii->mii_media_active & IFM_ETH_TXPAUSE)
			printf(",txpause");
	}
	printf("\n");
#endif
	/* Get flow control negotiation result. */
	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;

	/* Adjust MAC PAUSE flow control. */
	if ((mii->mii_media_active & IFM_FDX)
	    && (sc->sc_flowflags & IFM_ETH_TXPAUSE))
		sc->sc_txc |= TXC_FCE;
	else
		sc->sc_txc &= ~TXC_FCE;
	if ((mii->mii_media_active & IFM_FDX)
	    && (sc->sc_flowflags & IFM_ETH_RXPAUSE))
		sc->sc_rxc |= RXC_FCE;
	else
		sc->sc_rxc &= ~RXC_FCE;
	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
#if KSE_LINKDEBUG == 1
	printf("%ctxfce, %crxfce\n",
	    (sc->sc_txc & TXC_FCE) ? '+' : '-',
	    (sc->sc_rxc & RXC_FCE) ? '+' : '-');
#endif
}

#ifdef KSE_EVENT_COUNTERS
static void
stat_tick(void *arg)
{
	struct kse_softc *sc = arg;
	struct ksext *ee = &sc->sc_ext;
	int nport, p, i, reg, val;

	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
	for (p = 0; p < nport; p++) {
		/* read 34 ev counters by indirect read via IACR */
		for (i = 0; i < 32; i++) {
			reg = EVCNTBR + p * 0x20 + i;
			CSR_WRITE_2(sc, IACR, reg);
			/* 30-bit counter value are halved in IADR5 & IADR4 */
			do {
				val = CSR_READ_2(sc, IADR5) << 16;
			} while ((val & IADR_LATCH) == 0);
			if (val & IADR_OVF) {
				(void)CSR_READ_2(sc, IADR4);
				val = 0x3fffffff; /* has made overflow */
			}
			else {
				val &= 0x3fff0000;		/* 29:16 */
				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
			}
			ee->pev[p][i].ev_count += val; /* ev0 thru 31 */
		}
		/* ev32 and ev33 are 16-bit counter */
		CSR_WRITE_2(sc, IACR, EVCNTBR + 0x100 + p);
		ee->pev[p][32].ev_count += CSR_READ_2(sc, IADR4); /* ev32 */
		CSR_WRITE_2(sc, IACR, EVCNTBR + 0x100 + p * 3 + 1);
		ee->pev[p][33].ev_count += CSR_READ_2(sc, IADR4); /* ev33 */
	}
}

static void
zerostats(struct kse_softc *sc)
{
	struct ksext *ee = &sc->sc_ext;
	int nport, p, i, reg, val;

	/* Make sure all the HW counters get zero */
	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
	for (p = 0; p < nport; p++) {
		for (i = 0; i < 32; i++) {
			reg = EVCNTBR + p * 0x20 + i;
			CSR_WRITE_2(sc, IACR, reg);
			do {
				val = CSR_READ_2(sc, IADR5) << 16;
			} while ((val & IADR_LATCH) == 0);
			(void)CSR_READ_2(sc, IADR4);
			ee->pev[p][i].ev_count = 0;
		}
		CSR_WRITE_2(sc, IACR, EVCNTBR + 0x100 + p);
		(void)CSR_READ_2(sc, IADR4);
		CSR_WRITE_2(sc, IACR, EVCNTBR + 0x100 + p * 3 + 1);
		(void)CSR_READ_2(sc, IADR4);
		ee->pev[p][32].ev_count = 0;
		ee->pev[p][33].ev_count = 0;
	}
}
#endif