Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
/*	$NetBSD: sljitNativePPC_common.c,v 1.8 2019/01/20 23:14:16 alnsn Exp $	*/

/*
 *    Stack-less Just-In-Time compiler
 *
 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification, are
 * permitted provided that the following conditions are met:
 *
 *   1. Redistributions of source code must retain the above copyright notice, this list of
 *      conditions and the following disclaimer.
 *
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list
 *      of conditions and the following disclaimer in the documentation and/or other materials
 *      provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void)
{
	return "PowerPC" SLJIT_CPUINFO;
}

/* Length of an instruction word.
   Both for ppc-32 and ppc-64. */
typedef sljit_u32 sljit_ins;

#if ((defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32) && (defined _AIX)) \
	|| (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define SLJIT_PPC_STACK_FRAME_V2 1
#endif

#ifdef _AIX
#include <sys/cache.h>
#endif

#if (defined SLJIT_LITTLE_ENDIAN && SLJIT_LITTLE_ENDIAN)
#define SLJIT_PASS_ENTRY_ADDR_TO_CALL 1
#endif

#if (defined SLJIT_CACHE_FLUSH_OWN_IMPL && SLJIT_CACHE_FLUSH_OWN_IMPL)

static void ppc_cache_flush(sljit_ins *from, sljit_ins *to)
{
#ifdef _AIX
	_sync_cache_range((caddr_t)from, (int)((size_t)to - (size_t)from));
#elif defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
#	if defined(_ARCH_PWR) || defined(_ARCH_PWR2)
	/* Cache flush for POWER architecture. */
	while (from < to) {
		__asm__ volatile (
			"clf 0, %0\n"
			"dcs\n"
			: : "r"(from)
		);
		from++;
	}
	__asm__ volatile ( "ics" );
#	elif defined(_ARCH_COM) && !defined(_ARCH_PPC)
#	error "Cache flush is not implemented for PowerPC/POWER common mode."
#	else
	/* Cache flush for PowerPC architecture. */
	while (from < to) {
		__asm__ volatile (
			"dcbf 0, %0\n"
			"sync\n"
			"icbi 0, %0\n"
			: : "r"(from)
		);
		from++;
	}
	__asm__ volatile ( "isync" );
#	endif
#	ifdef __xlc__
#	warning "This file may fail to compile if -qfuncsect is used"
#	endif
#elif defined(__xlc__)
#error "Please enable GCC syntax for inline assembly statements with -qasm=gcc"
#else
#error "This platform requires a cache flush implementation."
#endif /* _AIX */
}

#endif /* (defined SLJIT_CACHE_FLUSH_OWN_IMPL && SLJIT_CACHE_FLUSH_OWN_IMPL) */

#define TMP_REG1	(SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2	(SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3	(SLJIT_NUMBER_OF_REGISTERS + 4)
#define TMP_ZERO	(SLJIT_NUMBER_OF_REGISTERS + 5)

#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
#define TMP_CALL_REG	(SLJIT_NUMBER_OF_REGISTERS + 6)
#else
#define TMP_CALL_REG	TMP_REG2
#endif

#define TMP_FREG1	(0)
#define TMP_FREG2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)

static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 7] = {
	0, 3, 4, 5, 6, 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 8, 9, 10, 31, 12
};

/* --------------------------------------------------------------------- */
/*  Instrucion forms                                                     */
/* --------------------------------------------------------------------- */
#define D(d)		(reg_map[d] << 21)
#define S(s)		(reg_map[s] << 21)
#define A(a)		(reg_map[a] << 16)
#define B(b)		(reg_map[b] << 11)
#define C(c)		(reg_map[c] << 6)
#define FD(fd)		((fd) << 21)
#define FS(fs)		((fs) << 21)
#define FA(fa)		((fa) << 16)
#define FB(fb)		((fb) << 11)
#define FC(fc)		((fc) << 6)
#define IMM(imm)	((imm) & 0xffff)
#define CRD(d)		((d) << 21)

/* Instruction bit sections.
   OE and Rc flag (see ALT_SET_FLAGS). */
#define OERC(flags)	(((flags & ALT_SET_FLAGS) >> 10) | (flags & ALT_SET_FLAGS))
/* Rc flag (see ALT_SET_FLAGS). */
#define RC(flags)	((flags & ALT_SET_FLAGS) >> 10)
#define HI(opcode)	((opcode) << 26)
#define LO(opcode)	((opcode) << 1)

#define ADD		(HI(31) | LO(266))
#define ADDC		(HI(31) | LO(10))
#define ADDE		(HI(31) | LO(138))
#define ADDI		(HI(14))
#define ADDIC		(HI(13))
#define ADDIS		(HI(15))
#define ADDME		(HI(31) | LO(234))
#define AND		(HI(31) | LO(28))
#define ANDI		(HI(28))
#define ANDIS		(HI(29))
#define Bx		(HI(18))
#define BCx		(HI(16))
#define BCCTR		(HI(19) | LO(528) | (3 << 11))
#define BLR		(HI(19) | LO(16) | (0x14 << 21))
#define CNTLZD		(HI(31) | LO(58))
#define CNTLZW		(HI(31) | LO(26))
#define CMP		(HI(31) | LO(0))
#define CMPI		(HI(11))
#define CMPL		(HI(31) | LO(32))
#define CMPLI		(HI(10))
#define CROR		(HI(19) | LO(449))
#define DIVD		(HI(31) | LO(489))
#define DIVDU		(HI(31) | LO(457))
#define DIVW		(HI(31) | LO(491))
#define DIVWU		(HI(31) | LO(459))
#define EXTSB		(HI(31) | LO(954))
#define EXTSH		(HI(31) | LO(922))
#define EXTSW		(HI(31) | LO(986))
#define FABS		(HI(63) | LO(264))
#define FADD		(HI(63) | LO(21))
#define FADDS		(HI(59) | LO(21))
#define FCFID		(HI(63) | LO(846))
#define FCMPU		(HI(63) | LO(0))
#define FCTIDZ		(HI(63) | LO(815))
#define FCTIWZ		(HI(63) | LO(15))
#define FDIV		(HI(63) | LO(18))
#define FDIVS		(HI(59) | LO(18))
#define FMR		(HI(63) | LO(72))
#define FMUL		(HI(63) | LO(25))
#define FMULS		(HI(59) | LO(25))
#define FNEG		(HI(63) | LO(40))
#define FRSP		(HI(63) | LO(12))
#define FSUB		(HI(63) | LO(20))
#define FSUBS		(HI(59) | LO(20))
#define LD		(HI(58) | 0)
#define LWZ		(HI(32))
#define MFCR		(HI(31) | LO(19))
#define MFLR		(HI(31) | LO(339) | 0x80000)
#define MFXER		(HI(31) | LO(339) | 0x10000)
#define MTCTR		(HI(31) | LO(467) | 0x90000)
#define MTLR		(HI(31) | LO(467) | 0x80000)
#define MTXER		(HI(31) | LO(467) | 0x10000)
#define MULHD		(HI(31) | LO(73))
#define MULHDU		(HI(31) | LO(9))
#define MULHW		(HI(31) | LO(75))
#define MULHWU		(HI(31) | LO(11))
#define MULLD		(HI(31) | LO(233))
#define MULLI		(HI(7))
#define MULLW		(HI(31) | LO(235))
#define NEG		(HI(31) | LO(104))
#define NOP		(HI(24))
#define NOR		(HI(31) | LO(124))
#define OR		(HI(31) | LO(444))
#define ORI		(HI(24))
#define ORIS		(HI(25))
#define RLDICL		(HI(30))
#define RLWINM		(HI(21))
#define SLD		(HI(31) | LO(27))
#define SLW		(HI(31) | LO(24))
#define SRAD		(HI(31) | LO(794))
#define SRADI		(HI(31) | LO(413 << 1))
#define SRAW		(HI(31) | LO(792))
#define SRAWI		(HI(31) | LO(824))
#define SRD		(HI(31) | LO(539))
#define SRW		(HI(31) | LO(536))
#define STD		(HI(62) | 0)
#define STDU		(HI(62) | 1)
#define STDUX		(HI(31) | LO(181))
#define STFIWX		(HI(31) | LO(983))
#define STW		(HI(36))
#define STWU		(HI(37))
#define STWUX		(HI(31) | LO(183))
#define SUBF		(HI(31) | LO(40))
#define SUBFC		(HI(31) | LO(8))
#define SUBFE		(HI(31) | LO(136))
#define SUBFIC		(HI(8))
#define XOR		(HI(31) | LO(316))
#define XORI		(HI(26))
#define XORIS		(HI(27))

#define SIMM_MAX	(0x7fff)
#define SIMM_MIN	(-0x8000)
#define UIMM_MAX	(0xffff)

#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func)
{
	sljit_sw* ptrs;
	if (func_ptr)
		*func_ptr = (void*)context;
	ptrs = (sljit_sw*)func;
	context->addr = addr ? addr : ptrs[0];
	context->r2 = ptrs[1];
	context->r11 = ptrs[2];
}
#endif

static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
	sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
	FAIL_IF(!ptr);
	*ptr = ins;
	compiler->size++;
	return SLJIT_SUCCESS;
}

static SLJIT_INLINE sljit_s32 detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code, sljit_sw executable_offset)
{
	sljit_sw diff;
	sljit_uw target_addr;
	sljit_sw extra_jump_flags;

#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) && (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
	if (jump->flags & (SLJIT_REWRITABLE_JUMP | IS_CALL))
		return 0;
#else
	if (jump->flags & SLJIT_REWRITABLE_JUMP)
		return 0;
#endif

	if (jump->flags & JUMP_ADDR)
		target_addr = jump->u.target;
	else {
		SLJIT_ASSERT(jump->flags & JUMP_LABEL);
		target_addr = (sljit_uw)(code + jump->u.label->size) + (sljit_uw)executable_offset;
	}

#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL) && (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	if (jump->flags & IS_CALL)
		goto keep_address;
#endif

	diff = ((sljit_sw)target_addr - (sljit_sw)(code_ptr) - executable_offset) & ~0x3l;

	extra_jump_flags = 0;
	if (jump->flags & IS_COND) {
		if (diff <= 0x7fff && diff >= -0x8000) {
			jump->flags |= PATCH_B;
			return 1;
		}
		if (target_addr <= 0xffff) {
			jump->flags |= PATCH_B | PATCH_ABS_B;
			return 1;
		}
		extra_jump_flags = REMOVE_COND;

		diff -= sizeof(sljit_ins);
	}

	if (diff <= 0x01ffffff && diff >= -0x02000000) {
		jump->flags |= PATCH_B | extra_jump_flags;
		return 1;
	}

	if (target_addr <= 0x03ffffff) {
		jump->flags |= PATCH_B | PATCH_ABS_B | extra_jump_flags;
		return 1;
	}

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
keep_address:
#endif
	if (target_addr <= 0x7fffffff) {
		jump->flags |= PATCH_ABS32;
		return 1;
	}

	if (target_addr <= 0x7fffffffffffl) {
		jump->flags |= PATCH_ABS48;
		return 1;
	}
#endif

	return 0;
}

SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
	struct sljit_memory_fragment *buf;
	sljit_ins *code;
	sljit_ins *code_ptr;
	sljit_ins *buf_ptr;
	sljit_ins *buf_end;
	sljit_uw word_count;
	sljit_sw executable_offset;
	sljit_uw addr;

	struct sljit_label *label;
	struct sljit_jump *jump;
	struct sljit_const *const_;

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_generate_code(compiler));
	reverse_buf(compiler);

#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	compiler->size += (compiler->size & 0x1) + (sizeof(struct sljit_function_context) / sizeof(sljit_ins));
#else
	compiler->size += (sizeof(struct sljit_function_context) / sizeof(sljit_ins));
#endif
#endif
	code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
	PTR_FAIL_WITH_EXEC_IF(code);
	buf = compiler->buf;

	code_ptr = code;
	word_count = 0;
	executable_offset = SLJIT_EXEC_OFFSET(code);

	label = compiler->labels;
	jump = compiler->jumps;
	const_ = compiler->consts;

	do {
		buf_ptr = (sljit_ins*)buf->memory;
		buf_end = buf_ptr + (buf->used_size >> 2);
		do {
			*code_ptr = *buf_ptr++;
			SLJIT_ASSERT(!label || label->size >= word_count);
			SLJIT_ASSERT(!jump || jump->addr >= word_count);
			SLJIT_ASSERT(!const_ || const_->addr >= word_count);
			/* These structures are ordered by their address. */
			if (label && label->size == word_count) {
				/* Just recording the address. */
				label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
				label->size = code_ptr - code;
				label = label->next;
			}
			if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
				jump->addr = (sljit_uw)(code_ptr - 3);
#else
				jump->addr = (sljit_uw)(code_ptr - 6);
#endif
				if (detect_jump_type(jump, code_ptr, code, executable_offset)) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
					code_ptr[-3] = code_ptr[0];
					code_ptr -= 3;
#else
					if (jump->flags & PATCH_ABS32) {
						code_ptr -= 3;
						code_ptr[-1] = code_ptr[2];
						code_ptr[0] = code_ptr[3];
					}
					else if (jump->flags & PATCH_ABS48) {
						code_ptr--;
						code_ptr[-1] = code_ptr[0];
						code_ptr[0] = code_ptr[1];
						/* rldicr rX,rX,32,31 -> rX,rX,16,47 */
						SLJIT_ASSERT((code_ptr[-3] & 0xfc00ffff) == 0x780007c6);
						code_ptr[-3] ^= 0x8422;
						/* oris -> ori */
						code_ptr[-2] ^= 0x4000000;
					}
					else {
						code_ptr[-6] = code_ptr[0];
						code_ptr -= 6;
					}
#endif
					if (jump->flags & REMOVE_COND) {
						code_ptr[0] = BCx | (2 << 2) | ((code_ptr[0] ^ (8 << 21)) & 0x03ff0001);
						code_ptr++;
						jump->addr += sizeof(sljit_ins);
						code_ptr[0] = Bx;
						jump->flags -= IS_COND;
					}
				}
				jump = jump->next;
			}
			if (const_ && const_->addr == word_count) {
				const_->addr = (sljit_uw)code_ptr;
				const_ = const_->next;
			}
			code_ptr ++;
			word_count ++;
		} while (buf_ptr < buf_end);

		buf = buf->next;
	} while (buf);

	if (label && label->size == word_count) {
		label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
		label->size = code_ptr - code;
		label = label->next;
	}

	SLJIT_ASSERT(!label);
	SLJIT_ASSERT(!jump);
	SLJIT_ASSERT(!const_);
#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size - (sizeof(struct sljit_function_context) / sizeof(sljit_ins)));
#else
	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
#endif

	jump = compiler->jumps;
	while (jump) {
		do {
			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
			buf_ptr = (sljit_ins *)jump->addr;

			if (jump->flags & PATCH_B) {
				if (jump->flags & IS_COND) {
					if (!(jump->flags & PATCH_ABS_B)) {
						addr -= (sljit_uw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset);
						SLJIT_ASSERT((sljit_sw)addr <= 0x7fff && (sljit_sw)addr >= -0x8000);
						*buf_ptr = BCx | (addr & 0xfffc) | ((*buf_ptr) & 0x03ff0001);
					}
					else {
						SLJIT_ASSERT(addr <= 0xffff);
						*buf_ptr = BCx | (addr & 0xfffc) | 0x2 | ((*buf_ptr) & 0x03ff0001);
					}
				}
				else {
					if (!(jump->flags & PATCH_ABS_B)) {
						addr -= (sljit_uw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset);
						SLJIT_ASSERT((sljit_sw)addr <= 0x01ffffff && (sljit_sw)addr >= -0x02000000);
						*buf_ptr = Bx | (addr & 0x03fffffc) | ((*buf_ptr) & 0x1);
					}
					else {
						SLJIT_ASSERT(addr <= 0x03ffffff);
						*buf_ptr = Bx | (addr & 0x03fffffc) | 0x2 | ((*buf_ptr) & 0x1);
					}
				}
				break;
			}

			/* Set the fields of immediate loads. */
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
			buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
			buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
#else
			if (jump->flags & PATCH_ABS32) {
				SLJIT_ASSERT(addr <= 0x7fffffff);
				buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
				buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
				break;
			}
			if (jump->flags & PATCH_ABS48) {
				SLJIT_ASSERT(addr <= 0x7fffffffffff);
				buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 32) & 0xffff);
				buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 16) & 0xffff);
				buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | (addr & 0xffff);
				break;
			}
			buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff);
			buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff);
			buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff);
			buf_ptr[4] = (buf_ptr[4] & 0xffff0000) | (addr & 0xffff);
#endif
		} while (0);
		jump = jump->next;
	}

	compiler->error = SLJIT_ERR_COMPILED;
	compiler->executable_offset = executable_offset;
	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);

	code = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset);

#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	if (((sljit_sw)code_ptr) & 0x4)
		code_ptr++;
#endif
	sljit_set_function_context(NULL, (struct sljit_function_context*)code_ptr, (sljit_sw)code, (void*)sljit_generate_code);
#endif

	code_ptr = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);

	SLJIT_CACHE_FLUSH(code, code_ptr);

#if (defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
	return code_ptr;
#else
	return code;
#endif
}

/* --------------------------------------------------------------------- */
/*  Entry, exit                                                          */
/* --------------------------------------------------------------------- */

/* inp_flags: */

/* Creates an index in data_transfer_insts array. */
#define LOAD_DATA	0x01
#define INDEXED		0x02
#define WRITE_BACK	0x04
#define WORD_DATA	0x00
#define BYTE_DATA	0x08
#define HALF_DATA	0x10
#define INT_DATA	0x18
#define SIGNED_DATA	0x20
/* Separates integer and floating point registers */
#define GPR_REG		0x3f
#define DOUBLE_DATA	0x40

#define MEM_MASK	0x7f

/* Other inp_flags. */

#define ARG_TEST	0x000100
/* Integer opertion and set flags -> requires exts on 64 bit systems. */
#define ALT_SIGN_EXT	0x000200
/* This flag affects the RC() and OERC() macros. */
#define ALT_SET_FLAGS	0x000400
#define ALT_KEEP_CACHE	0x000800
#define ALT_FORM1	0x010000
#define ALT_FORM2	0x020000
#define ALT_FORM3	0x040000
#define ALT_FORM4	0x080000
#define ALT_FORM5	0x100000
#define ALT_FORM6	0x200000
#define ALT_FORM7	0x400000

/* Source and destination is register. */
#define REG_DEST	0x000001
#define REG1_SOURCE	0x000002
#define REG2_SOURCE	0x000004
/* getput_arg_fast returned true. */
#define FAST_DEST	0x000008
/* Multiple instructions are required. */
#define SLOW_DEST	0x000010
/*
ALT_SIGN_EXT		0x000200
ALT_SET_FLAGS		0x000400
ALT_FORM1		0x010000
...
ALT_FORM7		0x400000 */

#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#include "sljitNativePPC_32.c"
#else
#include "sljitNativePPC_64.c"
#endif

#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#define STACK_STORE	STW
#define STACK_LOAD	LWZ
#else
#define STACK_STORE	STD
#define STACK_LOAD	LD
#endif

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
	sljit_s32 i, tmp, offs;

	CHECK_ERROR();
	CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
	set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

	FAIL_IF(push_inst(compiler, MFLR | D(0)));
	offs = -(sljit_s32)(sizeof(sljit_sw));
	FAIL_IF(push_inst(compiler, STACK_STORE | S(TMP_ZERO) | A(SLJIT_SP) | IMM(offs)));

	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
	for (i = SLJIT_S0; i >= tmp; i--) {
		offs -= (sljit_s32)(sizeof(sljit_sw));
		FAIL_IF(push_inst(compiler, STACK_STORE | S(i) | A(SLJIT_SP) | IMM(offs)));
	}

	for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
		offs -= (sljit_s32)(sizeof(sljit_sw));
		FAIL_IF(push_inst(compiler, STACK_STORE | S(i) | A(SLJIT_SP) | IMM(offs)));
	}

	SLJIT_ASSERT(offs == -(sljit_s32)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1));

#if (defined SLJIT_PPC_STACK_FRAME_V2 && SLJIT_PPC_STACK_FRAME_V2)
	FAIL_IF(push_inst(compiler, STACK_STORE | S(0) | A(SLJIT_SP) | IMM(2 * sizeof(sljit_sw))));
#else
	FAIL_IF(push_inst(compiler, STACK_STORE | S(0) | A(SLJIT_SP) | IMM(sizeof(sljit_sw))));
#endif

	FAIL_IF(push_inst(compiler, ADDI | D(TMP_ZERO) | A(0) | 0));
	if (args >= 1)
		FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(SLJIT_S0) | B(SLJIT_R0)));
	if (args >= 2)
		FAIL_IF(push_inst(compiler, OR | S(SLJIT_R1) | A(SLJIT_S1) | B(SLJIT_R1)));
	if (args >= 3)
		FAIL_IF(push_inst(compiler, OR | S(SLJIT_R2) | A(SLJIT_S2) | B(SLJIT_R2)));

	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET;
	local_size = (local_size + 15) & ~0xf;
	compiler->local_size = local_size;

#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
	if (local_size <= SIMM_MAX)
		FAIL_IF(push_inst(compiler, STWU | S(SLJIT_SP) | A(SLJIT_SP) | IMM(-local_size)));
	else {
		FAIL_IF(load_immediate(compiler, 0, -local_size));
		FAIL_IF(push_inst(compiler, STWUX | S(SLJIT_SP) | A(SLJIT_SP) | B(0)));
	}
#else
	if (local_size <= SIMM_MAX)
		FAIL_IF(push_inst(compiler, STDU | S(SLJIT_SP) | A(SLJIT_SP) | IMM(-local_size)));
	else {
		FAIL_IF(load_immediate(compiler, 0, -local_size));
		FAIL_IF(push_inst(compiler, STDUX | S(SLJIT_SP) | A(SLJIT_SP) | B(0)));
	}
#endif

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
	sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
{
	CHECK_ERROR();
	CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
	set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);

	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET;
	compiler->local_size = (local_size + 15) & ~0xf;
	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 i, tmp, offs;

	CHECK_ERROR();
	CHECK(check_sljit_emit_return(compiler, op, src, srcw));

	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));

	if (compiler->local_size <= SIMM_MAX)
		FAIL_IF(push_inst(compiler, ADDI | D(SLJIT_SP) | A(SLJIT_SP) | IMM(compiler->local_size)));
	else {
		FAIL_IF(load_immediate(compiler, 0, compiler->local_size));
		FAIL_IF(push_inst(compiler, ADD | D(SLJIT_SP) | A(SLJIT_SP) | B(0)));
	}

#if (defined SLJIT_PPC_STACK_FRAME_V2 && SLJIT_PPC_STACK_FRAME_V2)
	FAIL_IF(push_inst(compiler, STACK_LOAD | D(0) | A(SLJIT_SP) | IMM(2 * sizeof(sljit_sw))));
#else
	FAIL_IF(push_inst(compiler, STACK_LOAD | D(0) | A(SLJIT_SP) | IMM(sizeof(sljit_sw))));
#endif

	offs = -(sljit_s32)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1);

	tmp = compiler->scratches;
	for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) {
		FAIL_IF(push_inst(compiler, STACK_LOAD | D(i) | A(SLJIT_SP) | IMM(offs)));
		offs += (sljit_s32)(sizeof(sljit_sw));
	}

	tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
	for (i = tmp; i <= SLJIT_S0; i++) {
		FAIL_IF(push_inst(compiler, STACK_LOAD | D(i) | A(SLJIT_SP) | IMM(offs)));
		offs += (sljit_s32)(sizeof(sljit_sw));
	}

	FAIL_IF(push_inst(compiler, STACK_LOAD | D(TMP_ZERO) | A(SLJIT_SP) | IMM(offs)));
	SLJIT_ASSERT(offs == -(sljit_sw)(sizeof(sljit_sw)));

	FAIL_IF(push_inst(compiler, MTLR | S(0)));
	FAIL_IF(push_inst(compiler, BLR));

	return SLJIT_SUCCESS;
}

#undef STACK_STORE
#undef STACK_LOAD

/* --------------------------------------------------------------------- */
/*  Operators                                                            */
/* --------------------------------------------------------------------- */

/* i/x - immediate/indexed form
   n/w - no write-back / write-back (1 bit)
   s/l - store/load (1 bit)
   u/s - signed/unsigned (1 bit)
   w/b/h/i - word/byte/half/int allowed (2 bit)
   It contans 32 items, but not all are different. */

/* 64 bit only: [reg+imm] must be aligned to 4 bytes. */
#define INT_ALIGNED	0x10000
/* 64-bit only: there is no lwau instruction. */
#define UPDATE_REQ	0x20000

#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
#define ARCH_32_64(a, b)	a
#define INST_CODE_AND_DST(inst, flags, reg) \
	((inst) | (((flags) & MEM_MASK) <= GPR_REG ? D(reg) : FD(reg)))
#else
#define ARCH_32_64(a, b)	b
#define INST_CODE_AND_DST(inst, flags, reg) \
	(((inst) & ~(INT_ALIGNED | UPDATE_REQ)) | (((flags) & MEM_MASK) <= GPR_REG ? D(reg) : FD(reg)))
#endif

static const sljit_ins data_transfer_insts[64 + 8] = {

/* -------- Unsigned -------- */

/* Word. */

/* u w n i s */ ARCH_32_64(HI(36) /* stw */, HI(62) | INT_ALIGNED | 0x0 /* std */),
/* u w n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x0 /* ld */),
/* u w n x s */ ARCH_32_64(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */),
/* u w n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */),

/* u w w i s */ ARCH_32_64(HI(37) /* stwu */, HI(62) | INT_ALIGNED | 0x1 /* stdu */),
/* u w w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | 0x1 /* ldu */),
/* u w w x s */ ARCH_32_64(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */),
/* u w w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */),

/* Byte. */

/* u b n i s */ HI(38) /* stb */, 
/* u b n i l */ HI(34) /* lbz */,
/* u b n x s */ HI(31) | LO(215) /* stbx */,
/* u b n x l */ HI(31) | LO(87) /* lbzx */,

/* u b w i s */ HI(39) /* stbu */,
/* u b w i l */ HI(35) /* lbzu */,
/* u b w x s */ HI(31) | LO(247) /* stbux */,
/* u b w x l */ HI(31) | LO(119) /* lbzux */,

/* Half. */

/* u h n i s */ HI(44) /* sth */,
/* u h n i l */ HI(40) /* lhz */,
/* u h n x s */ HI(31) | LO(407) /* sthx */,
/* u h n x l */ HI(31) | LO(279) /* lhzx */,

/* u h w i s */ HI(45) /* sthu */,
/* u h w i l */ HI(41) /* lhzu */,
/* u h w x s */ HI(31) | LO(439) /* sthux */,
/* u h w x l */ HI(31) | LO(311) /* lhzux */,

/* Int. */

/* u i n i s */ HI(36) /* stw */,
/* u i n i l */ HI(32) /* lwz */,
/* u i n x s */ HI(31) | LO(151) /* stwx */,
/* u i n x l */ HI(31) | LO(23) /* lwzx */,

/* u i w i s */ HI(37) /* stwu */,
/* u i w i l */ HI(33) /* lwzu */,
/* u i w x s */ HI(31) | LO(183) /* stwux */,
/* u i w x l */ HI(31) | LO(55) /* lwzux */,

/* -------- Signed -------- */

/* Word. */

/* s w n i s */ ARCH_32_64(HI(36) /* stw */, HI(62) | INT_ALIGNED | 0x0 /* std */),
/* s w n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x0 /* ld */),
/* s w n x s */ ARCH_32_64(HI(31) | LO(151) /* stwx */, HI(31) | LO(149) /* stdx */),
/* s w n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(21) /* ldx */),

/* s w w i s */ ARCH_32_64(HI(37) /* stwu */, HI(62) | INT_ALIGNED | 0x1 /* stdu */),
/* s w w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | 0x1 /* ldu */),
/* s w w x s */ ARCH_32_64(HI(31) | LO(183) /* stwux */, HI(31) | LO(181) /* stdux */),
/* s w w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(53) /* ldux */),

/* Byte. */

/* s b n i s */ HI(38) /* stb */,
/* s b n i l */ HI(34) /* lbz */ /* EXTS_REQ */,
/* s b n x s */ HI(31) | LO(215) /* stbx */,
/* s b n x l */ HI(31) | LO(87) /* lbzx */ /* EXTS_REQ */,

/* s b w i s */ HI(39) /* stbu */,
/* s b w i l */ HI(35) /* lbzu */ /* EXTS_REQ */,
/* s b w x s */ HI(31) | LO(247) /* stbux */,
/* s b w x l */ HI(31) | LO(119) /* lbzux */ /* EXTS_REQ */,

/* Half. */

/* s h n i s */ HI(44) /* sth */,
/* s h n i l */ HI(42) /* lha */,
/* s h n x s */ HI(31) | LO(407) /* sthx */,
/* s h n x l */ HI(31) | LO(343) /* lhax */,

/* s h w i s */ HI(45) /* sthu */,
/* s h w i l */ HI(43) /* lhau */,
/* s h w x s */ HI(31) | LO(439) /* sthux */,
/* s h w x l */ HI(31) | LO(375) /* lhaux */,

/* Int. */

/* s i n i s */ HI(36) /* stw */,
/* s i n i l */ ARCH_32_64(HI(32) /* lwz */, HI(58) | INT_ALIGNED | 0x2 /* lwa */),
/* s i n x s */ HI(31) | LO(151) /* stwx */,
/* s i n x l */ ARCH_32_64(HI(31) | LO(23) /* lwzx */, HI(31) | LO(341) /* lwax */),

/* s i w i s */ HI(37) /* stwu */,
/* s i w i l */ ARCH_32_64(HI(33) /* lwzu */, HI(58) | INT_ALIGNED | UPDATE_REQ | 0x2 /* lwa */),
/* s i w x s */ HI(31) | LO(183) /* stwux */,
/* s i w x l */ ARCH_32_64(HI(31) | LO(55) /* lwzux */, HI(31) | LO(373) /* lwaux */),

/* -------- Double -------- */

/* d   n i s */ HI(54) /* stfd */,
/* d   n i l */ HI(50) /* lfd */,
/* d   n x s */ HI(31) | LO(727) /* stfdx */,
/* d   n x l */ HI(31) | LO(599) /* lfdx */,

/* s   n i s */ HI(52) /* stfs */,
/* s   n i l */ HI(48) /* lfs */,
/* s   n x s */ HI(31) | LO(663) /* stfsx */,
/* s   n x l */ HI(31) | LO(535) /* lfsx */,

};

#undef ARCH_32_64

/* Simple cases, (no caching is required). */
static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 inp_flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
{
	sljit_ins inst;

	/* Should work when (arg & REG_MASK) == 0. */
	SLJIT_ASSERT(A(0) == 0);
	SLJIT_ASSERT(arg & SLJIT_MEM);

	if (arg & OFFS_REG_MASK) {
		if (argw & 0x3)
			return 0;
		if (inp_flags & ARG_TEST)
			return 1;

		inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
		SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
		FAIL_IF(push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(OFFS_REG(arg))));
		return -1;
	}

	if (SLJIT_UNLIKELY(!(arg & REG_MASK)))
		inp_flags &= ~WRITE_BACK;

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	inst = data_transfer_insts[inp_flags & MEM_MASK];
	SLJIT_ASSERT((arg & REG_MASK) || !(inst & UPDATE_REQ));

	if (argw > SIMM_MAX || argw < SIMM_MIN || ((inst & INT_ALIGNED) && (argw & 0x3)) || (inst & UPDATE_REQ))
		return 0;
	if (inp_flags & ARG_TEST)
		return 1;
#endif

#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
	if (argw > SIMM_MAX || argw < SIMM_MIN)
		return 0;
	if (inp_flags & ARG_TEST)
		return 1;

	inst = data_transfer_insts[inp_flags & MEM_MASK];
	SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
#endif

	FAIL_IF(push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | IMM(argw)));
	return -1;
}

/* See getput_arg below.
   Note: can_cache is called only for binary operators. Those operator always
   uses word arguments without write back. */
static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
	sljit_sw high_short, next_high_short;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	sljit_sw diff;
#endif

	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));

	if (arg & OFFS_REG_MASK)
		return ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && (argw & 0x3) == (next_argw & 0x3));

	if (next_arg & OFFS_REG_MASK)
		return 0;

#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
	high_short = (argw + ((argw & 0x8000) << 1)) & ~0xffff;
	next_high_short = (next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff;
	return high_short == next_high_short;
#else
	if (argw <= 0x7fffffffl && argw >= -0x80000000l) {
		high_short = (argw + ((argw & 0x8000) << 1)) & ~0xffff;
		next_high_short = (next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff;
		if (high_short == next_high_short)
			return 1;
	}

	diff = argw - next_argw;
	if (!(arg & REG_MASK))
		return diff <= SIMM_MAX && diff >= SIMM_MIN;

	if (arg == next_arg && diff <= SIMM_MAX && diff >= SIMM_MIN)
		return 1;

	return 0;
#endif
}

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define ADJUST_CACHED_IMM(imm) \
	if ((inst & INT_ALIGNED) && (imm & 0x3)) { \
		/* Adjust cached value. Fortunately this is really a rare case */ \
		compiler->cache_argw += imm & 0x3; \
		FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG3) | A(TMP_REG3) | (imm & 0x3))); \
		imm &= ~0x3; \
	}
#endif

/* Emit the necessary instructions. See can_cache above. */
static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 inp_flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
{
	sljit_s32 tmp_r;
	sljit_ins inst;
	sljit_sw high_short, next_high_short;
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	sljit_sw diff;
#endif

	SLJIT_ASSERT(arg & SLJIT_MEM);

	tmp_r = ((inp_flags & LOAD_DATA) && ((inp_flags) & MEM_MASK) <= GPR_REG) ? reg : TMP_REG1;
	/* Special case for "mov reg, [reg, ... ]". */
	if ((arg & REG_MASK) == tmp_r)
		tmp_r = TMP_REG1;

	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
		argw &= 0x3;
		/* Otherwise getput_arg_fast would capture it. */
		SLJIT_ASSERT(argw);

		if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg && argw == compiler->cache_argw)
			tmp_r = TMP_REG3;
		else {
			if ((arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK) && argw == (next_argw & 0x3)) {
				compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
				compiler->cache_argw = argw;
				tmp_r = TMP_REG3;
			}
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
			FAIL_IF(push_inst(compiler, RLWINM | S(OFFS_REG(arg)) | A(tmp_r) | (argw << 11) | ((31 - argw) << 1)));
#else
			FAIL_IF(push_inst(compiler, RLDI(tmp_r, OFFS_REG(arg), argw, 63 - argw, 1)));
#endif
		}
		inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
		SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
		return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(tmp_r));
	}

	if (SLJIT_UNLIKELY(!(arg & REG_MASK)))
		inp_flags &= ~WRITE_BACK;

	inst = data_transfer_insts[inp_flags & MEM_MASK];
	SLJIT_ASSERT((arg & REG_MASK) || !(inst & UPDATE_REQ));

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	if (argw <= 0x7fff7fffl && argw >= -0x80000000l
			&& (!(inst & INT_ALIGNED) || !(argw & 0x3)) && !(inst & UPDATE_REQ)) {
#endif

		arg &= REG_MASK;
		high_short = (sljit_s32)(argw + ((argw & 0x8000) << 1)) & ~0xffff;
		/* The getput_arg_fast should handle this otherwise. */
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		SLJIT_ASSERT(high_short && high_short <= 0x7fffffffl && high_short >= -0x80000000l);
#else
		SLJIT_ASSERT(high_short && !(inst & (INT_ALIGNED | UPDATE_REQ)));
#endif

		if (inp_flags & WRITE_BACK) {
			tmp_r = arg;
			FAIL_IF(push_inst(compiler, ADDIS | D(arg) | A(arg) | IMM(high_short >> 16)));
		}
		else if (compiler->cache_arg != (SLJIT_MEM | arg) || high_short != compiler->cache_argw) {
			if ((next_arg & SLJIT_MEM) && !(next_arg & OFFS_REG_MASK)) {
				next_high_short = (sljit_s32)(next_argw + ((next_argw & 0x8000) << 1)) & ~0xffff;
				if (high_short == next_high_short) {
					compiler->cache_arg = SLJIT_MEM | arg;
					compiler->cache_argw = high_short;
					tmp_r = TMP_REG3;
				}
			}
			FAIL_IF(push_inst(compiler, ADDIS | D(tmp_r) | A(arg & REG_MASK) | IMM(high_short >> 16)));
		}
		else
			tmp_r = TMP_REG3;

		return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(tmp_r) | IMM(argw));

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	}

	/* Everything else is PPC-64 only. */
	if (SLJIT_UNLIKELY(!(arg & REG_MASK))) {
		diff = argw - compiler->cache_argw;
		if ((compiler->cache_arg & SLJIT_IMM) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
			ADJUST_CACHED_IMM(diff);
			return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3) | IMM(diff));
		}

		diff = argw - next_argw;
		if ((next_arg & SLJIT_MEM) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
			SLJIT_ASSERT(inp_flags & LOAD_DATA);

			compiler->cache_arg = SLJIT_IMM;
			compiler->cache_argw = argw;
			tmp_r = TMP_REG3;
		}

		FAIL_IF(load_immediate(compiler, tmp_r, argw));
		return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(tmp_r));
	}

	diff = argw - compiler->cache_argw;
	if (compiler->cache_arg == arg && diff <= SIMM_MAX && diff >= SIMM_MIN) {
		SLJIT_ASSERT(!(inp_flags & WRITE_BACK) && !(inst & UPDATE_REQ));
		ADJUST_CACHED_IMM(diff);
		return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3) | IMM(diff));
	}

	if ((compiler->cache_arg & SLJIT_IMM) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
		inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
		SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
		if (compiler->cache_argw != argw) {
			FAIL_IF(push_inst(compiler, ADDI | D(TMP_REG3) | A(TMP_REG3) | IMM(diff)));
			compiler->cache_argw = argw;
		}
		return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(TMP_REG3));
	}

	if (argw == next_argw && (next_arg & SLJIT_MEM)) {
		SLJIT_ASSERT(inp_flags & LOAD_DATA);
		FAIL_IF(load_immediate(compiler, TMP_REG3, argw));

		compiler->cache_arg = SLJIT_IMM;
		compiler->cache_argw = argw;

		inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
		SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
		return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(TMP_REG3));
	}

	diff = argw - next_argw;
	if (arg == next_arg && !(inp_flags & WRITE_BACK) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
		SLJIT_ASSERT(inp_flags & LOAD_DATA);
		FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
		FAIL_IF(push_inst(compiler, ADD | D(TMP_REG3) | A(TMP_REG3) | B(arg & REG_MASK)));

		compiler->cache_arg = arg;
		compiler->cache_argw = argw;

		return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(TMP_REG3));
	}

	if ((next_arg & SLJIT_MEM) && !(next_arg & OFFS_REG_MASK) && diff <= SIMM_MAX && diff >= SIMM_MIN) {
		SLJIT_ASSERT(inp_flags & LOAD_DATA);
		FAIL_IF(load_immediate(compiler, TMP_REG3, argw));

		compiler->cache_arg = SLJIT_IMM;
		compiler->cache_argw = argw;
		tmp_r = TMP_REG3;
	}
	else
		FAIL_IF(load_immediate(compiler, tmp_r, argw));

	/* Get the indexed version instead of the normal one. */
	inst = data_transfer_insts[(inp_flags | INDEXED) & MEM_MASK];
	SLJIT_ASSERT(!(inst & (INT_ALIGNED | UPDATE_REQ)));
	return push_inst(compiler, INST_CODE_AND_DST(inst, inp_flags, reg) | A(arg & REG_MASK) | B(tmp_r));
#endif
}

static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
{
	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
		return compiler->error;
	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}

static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 input_flags,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w)
{
	/* arg1 goes to TMP_REG1 or src reg
	   arg2 goes to TMP_REG2, imm or src reg
	   TMP_REG3 can be used for caching
	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
	sljit_s32 dst_r;
	sljit_s32 src1_r;
	sljit_s32 src2_r;
	sljit_s32 sugg_src2_r = TMP_REG2;
	sljit_s32 flags = input_flags & (ALT_FORM1 | ALT_FORM2 | ALT_FORM3 | ALT_FORM4 | ALT_FORM5 | ALT_FORM6 | ALT_FORM7 | ALT_SIGN_EXT | ALT_SET_FLAGS);

	if (!(input_flags & ALT_KEEP_CACHE)) {
		compiler->cache_arg = 0;
		compiler->cache_argw = 0;
	}

	/* Destination check. */
	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32 && !(src2 & SLJIT_MEM))
			return SLJIT_SUCCESS;
		dst_r = TMP_REG2;
	}
	else if (FAST_IS_REG(dst)) {
		dst_r = dst;
		flags |= REG_DEST;
		if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
			sugg_src2_r = dst_r;
	}
	else {
		SLJIT_ASSERT(dst & SLJIT_MEM);
		if (getput_arg_fast(compiler, input_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
			flags |= FAST_DEST;
			dst_r = TMP_REG2;
		}
		else {
			flags |= SLOW_DEST;
			dst_r = 0;
		}
	}

	/* Source 1. */
	if (FAST_IS_REG(src1)) {
		src1_r = src1;
		flags |= REG1_SOURCE;
	}
	else if (src1 & SLJIT_IMM) {
		FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
		src1_r = TMP_REG1;
	}
	else if (getput_arg_fast(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
		FAIL_IF(compiler->error);
		src1_r = TMP_REG1;
	}
	else
		src1_r = 0;

	/* Source 2. */
	if (FAST_IS_REG(src2)) {
		src2_r = src2;
		flags |= REG2_SOURCE;
		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
			dst_r = src2_r;
	}
	else if (src2 & SLJIT_IMM) {
		FAIL_IF(load_immediate(compiler, sugg_src2_r, src2w));
		src2_r = sugg_src2_r;
	}
	else if (getput_arg_fast(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
		FAIL_IF(compiler->error);
		src2_r = sugg_src2_r;
	}
	else
		src2_r = 0;

	/* src1_r, src2_r and dst_r can be zero (=unprocessed).
	   All arguments are complex addressing modes, and it is a binary operator. */
	if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
			FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w));
			FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
		}
		else {
			FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
			FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
		}
		src1_r = TMP_REG1;
		src2_r = TMP_REG2;
	}
	else if (src1_r == 0 && src2_r == 0) {
		FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
		src1_r = TMP_REG1;
	}
	else if (src1_r == 0 && dst_r == 0) {
		FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
		src1_r = TMP_REG1;
	}
	else if (src2_r == 0 && dst_r == 0) {
		FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
		src2_r = sugg_src2_r;
	}

	if (dst_r == 0)
		dst_r = TMP_REG2;

	if (src1_r == 0) {
		FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
		src1_r = TMP_REG1;
	}

	if (src2_r == 0) {
		FAIL_IF(getput_arg(compiler, input_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
		src2_r = sugg_src2_r;
	}

	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));

	if (flags & (FAST_DEST | SLOW_DEST)) {
		if (flags & FAST_DEST)
			FAIL_IF(getput_arg_fast(compiler, input_flags, dst_r, dst, dstw));
		else
			FAIL_IF(getput_arg(compiler, input_flags, dst_r, dst, dstw, 0, 0));
	}
	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op)
{
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	sljit_s32 int_op = op & SLJIT_I32_OP;
#endif

	CHECK_ERROR();
	CHECK(check_sljit_emit_op0(compiler, op));

	op = GET_OPCODE(op);
	switch (op) {
	case SLJIT_BREAKPOINT:
	case SLJIT_NOP:
		return push_inst(compiler, NOP);
	case SLJIT_LMUL_UW:
	case SLJIT_LMUL_SW:
		FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R0)));
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		FAIL_IF(push_inst(compiler, MULLD | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1)));
		return push_inst(compiler, (op == SLJIT_LMUL_UW ? MULHDU : MULHD) | D(SLJIT_R1) | A(TMP_REG1) | B(SLJIT_R1));
#else
		FAIL_IF(push_inst(compiler, MULLW | D(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R1)));
		return push_inst(compiler, (op == SLJIT_LMUL_UW ? MULHWU : MULHW) | D(SLJIT_R1) | A(TMP_REG1) | B(SLJIT_R1));
#endif
	case SLJIT_DIVMOD_UW:
	case SLJIT_DIVMOD_SW:
		FAIL_IF(push_inst(compiler, OR | S(SLJIT_R0) | A(TMP_REG1) | B(SLJIT_R0)));
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		FAIL_IF(push_inst(compiler, (int_op ? (op == SLJIT_DIVMOD_UW ? DIVWU : DIVW) : (op == SLJIT_DIVMOD_UW ? DIVDU : DIVD)) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1)));
		FAIL_IF(push_inst(compiler, (int_op ? MULLW : MULLD) | D(SLJIT_R1) | A(SLJIT_R0) | B(SLJIT_R1)));
#else
		FAIL_IF(push_inst(compiler, (op == SLJIT_DIVMOD_UW ? DIVWU : DIVW) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1)));
		FAIL_IF(push_inst(compiler, MULLW | D(SLJIT_R1) | A(SLJIT_R0) | B(SLJIT_R1)));
#endif
		return push_inst(compiler, SUBF | D(SLJIT_R1) | A(SLJIT_R1) | B(TMP_REG1));
	case SLJIT_DIV_UW:
	case SLJIT_DIV_SW:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		return push_inst(compiler, (int_op ? (op == SLJIT_DIV_UW ? DIVWU : DIVW) : (op == SLJIT_DIV_UW ? DIVDU : DIVD)) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1));
#else
		return push_inst(compiler, (op == SLJIT_DIV_UW ? DIVWU : DIVW) | D(SLJIT_R0) | A(SLJIT_R0) | B(SLJIT_R1));
#endif
	}

	return SLJIT_SUCCESS;
}

#define EMIT_MOV(type, type_flags, type_cast) \
	emit_op(compiler, (src & SLJIT_IMM) ? SLJIT_MOV : type, flags | (type_flags), dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? type_cast srcw : srcw)

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 flags = HAS_FLAGS(op) ? ALT_SET_FLAGS : 0;
	sljit_s32 op_flags = GET_ALL_FLAGS(op);

	CHECK_ERROR();
	CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
	ADJUST_LOCAL_OFFSET(dst, dstw);
	ADJUST_LOCAL_OFFSET(src, srcw);

	op = GET_OPCODE(op);
	if ((src & SLJIT_IMM) && srcw == 0)
		src = TMP_ZERO;

	if (GET_FLAG_TYPE(op_flags) == SLJIT_OVERFLOW || GET_FLAG_TYPE(op_flags) == SLJIT_NOT_OVERFLOW)
		FAIL_IF(push_inst(compiler, MTXER | S(TMP_ZERO)));

	if (op_flags & SLJIT_I32_OP) {
		if (op < SLJIT_NOT) {
			if (FAST_IS_REG(src) && src == dst) {
				if (!TYPE_CAST_NEEDED(op))
					return SLJIT_SUCCESS;
			}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
			if (op == SLJIT_MOV_S32 && (src & SLJIT_MEM))
				op = SLJIT_MOV_U32;
			if (op == SLJIT_MOVU_S32 && (src & SLJIT_MEM))
				op = SLJIT_MOVU_U32;
			if (op == SLJIT_MOV_U32 && (src & SLJIT_IMM))
				op = SLJIT_MOV_S32;
			if (op == SLJIT_MOVU_U32 && (src & SLJIT_IMM))
				op = SLJIT_MOVU_S32;
#endif
		}
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		else {
			/* Most operations expect sign extended arguments. */
			flags |= INT_DATA | SIGNED_DATA;
			if (src & SLJIT_IMM)
				srcw = (sljit_s32)srcw;
		}
#endif
	}

	switch (op) {
	case SLJIT_MOV:
	case SLJIT_MOV_P:
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
	case SLJIT_MOV_U32:
	case SLJIT_MOV_S32:
#endif
		return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	case SLJIT_MOV_U32:
		return EMIT_MOV(SLJIT_MOV_U32, INT_DATA, (sljit_u32));

	case SLJIT_MOV_S32:
		return EMIT_MOV(SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, (sljit_s32));
#endif

	case SLJIT_MOV_U8:
		return EMIT_MOV(SLJIT_MOV_U8, BYTE_DATA, (sljit_u8));

	case SLJIT_MOV_S8:
		return EMIT_MOV(SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, (sljit_s8));

	case SLJIT_MOV_U16:
		return EMIT_MOV(SLJIT_MOV_U16, HALF_DATA, (sljit_u16));

	case SLJIT_MOV_S16:
		return EMIT_MOV(SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, (sljit_s16));

	case SLJIT_MOVU:
	case SLJIT_MOVU_P:
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
	case SLJIT_MOVU_U32:
	case SLJIT_MOVU_S32:
#endif
		return emit_op(compiler, SLJIT_MOV, flags | WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	case SLJIT_MOVU_U32:
		return EMIT_MOV(SLJIT_MOV_U32, INT_DATA | WRITE_BACK, (sljit_u32));

	case SLJIT_MOVU_S32:
		return EMIT_MOV(SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | WRITE_BACK, (sljit_s32));
#endif

	case SLJIT_MOVU_U8:
		return EMIT_MOV(SLJIT_MOV_U8, BYTE_DATA | WRITE_BACK, (sljit_u8));

	case SLJIT_MOVU_S8:
		return EMIT_MOV(SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA | WRITE_BACK, (sljit_s8));

	case SLJIT_MOVU_U16:
		return EMIT_MOV(SLJIT_MOV_U16, HALF_DATA | WRITE_BACK, (sljit_u16));

	case SLJIT_MOVU_S16:
		return EMIT_MOV(SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA | WRITE_BACK, (sljit_s16));

	case SLJIT_NOT:
		return emit_op(compiler, SLJIT_NOT, flags, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_NEG:
		return emit_op(compiler, SLJIT_NEG, flags, dst, dstw, TMP_REG1, 0, src, srcw);

	case SLJIT_CLZ:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		return emit_op(compiler, SLJIT_CLZ, flags | (!(op_flags & SLJIT_I32_OP) ? 0 : ALT_FORM1), dst, dstw, TMP_REG1, 0, src, srcw);
#else
		return emit_op(compiler, SLJIT_CLZ, flags, dst, dstw, TMP_REG1, 0, src, srcw);
#endif
	}

	return SLJIT_SUCCESS;
}

#undef EMIT_MOV

#define TEST_SL_IMM(src, srcw) \
	(((src) & SLJIT_IMM) && (srcw) <= SIMM_MAX && (srcw) >= SIMM_MIN)

#define TEST_UL_IMM(src, srcw) \
	(((src) & SLJIT_IMM) && !((srcw) & ~0xffff))

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_SH_IMM(src, srcw) \
	(((src) & SLJIT_IMM) && !((srcw) & 0xffff) && (srcw) <= 0x7fffffffl && (srcw) >= -0x80000000l)
#else
#define TEST_SH_IMM(src, srcw) \
	(((src) & SLJIT_IMM) && !((srcw) & 0xffff))
#endif

#define TEST_UH_IMM(src, srcw) \
	(((src) & SLJIT_IMM) && !((srcw) & ~0xffff0000))

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_ADD_IMM(src, srcw) \
	(((src) & SLJIT_IMM) && (srcw) <= 0x7fff7fffl && (srcw) >= -0x80000000l)
#else
#define TEST_ADD_IMM(src, srcw) \
	((src) & SLJIT_IMM)
#endif

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define TEST_UI_IMM(src, srcw) \
	(((src) & SLJIT_IMM) && !((srcw) & ~0xffffffff))
#else
#define TEST_UI_IMM(src, srcw) \
	((src) & SLJIT_IMM)
#endif

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w)
{
	sljit_s32 flags = HAS_FLAGS(op) ? ALT_SET_FLAGS : 0;

	CHECK_ERROR();
	CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
	ADJUST_LOCAL_OFFSET(dst, dstw);
	ADJUST_LOCAL_OFFSET(src1, src1w);
	ADJUST_LOCAL_OFFSET(src2, src2w);

	if ((src1 & SLJIT_IMM) && src1w == 0)
		src1 = TMP_ZERO;
	if ((src2 & SLJIT_IMM) && src2w == 0)
		src2 = TMP_ZERO;

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	if (op & SLJIT_I32_OP) {
		/* Most operations expect sign extended arguments. */
		flags |= INT_DATA | SIGNED_DATA;
		if (src1 & SLJIT_IMM)
			src1w = (sljit_s32)(src1w);
		if (src2 & SLJIT_IMM)
			src2w = (sljit_s32)(src2w);
		if (HAS_FLAGS(op))
			flags |= ALT_SIGN_EXT;
	}
#endif
	if (GET_FLAG_TYPE(op) == SLJIT_OVERFLOW || GET_FLAG_TYPE(op) == SLJIT_NOT_OVERFLOW)
		FAIL_IF(push_inst(compiler, MTXER | S(TMP_ZERO)));
	if (src2 == TMP_REG2)
		flags |= ALT_KEEP_CACHE;

	switch (GET_OPCODE(op)) {
	case SLJIT_ADD:
		if (!HAS_FLAGS(op) && ((src1 | src2) & SLJIT_IMM)) {
			if (TEST_SL_IMM(src2, src2w)) {
				compiler->imm = src2w & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_SL_IMM(src1, src1w)) {
				compiler->imm = src1w & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
			if (TEST_SH_IMM(src2, src2w)) {
				compiler->imm = (src2w >> 16) & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_SH_IMM(src1, src1w)) {
				compiler->imm = (src1w >> 16) & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
			/* Range between -1 and -32768 is covered above. */
			if (TEST_ADD_IMM(src2, src2w)) {
				compiler->imm = src2w & 0xffffffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_ADD_IMM(src1, src1w)) {
				compiler->imm = src1w & 0xffffffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
		}
		if (HAS_FLAGS(op)) {
			if (TEST_SL_IMM(src2, src2w)) {
				compiler->imm = src2w & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_SL_IMM(src1, src1w)) {
				compiler->imm = src1w & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
		}
		return emit_op(compiler, SLJIT_ADD, flags, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_ADDC:
		return emit_op(compiler, SLJIT_ADDC, flags, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_SUB:
		if (GET_FLAG_TYPE(op) >= SLJIT_LESS && GET_FLAG_TYPE(op) <= SLJIT_LESS_EQUAL)
		{
			if (dst == SLJIT_UNUSED)
			{
				if (TEST_UL_IMM(src2, src2w)) {
					compiler->imm = src2w & 0xffff;
					return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
				}
				return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM5, dst, dstw, src1, src1w, src2, src2w);
			}

			if ((src2 & SLJIT_IMM) && src2w >= 0 && src2w <= (SIMM_MAX + 1))
			{
				compiler->imm = src2w;
				return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM6, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM7, dst, dstw, src1, src1w, src2, src2w);
		}

		if (!HAS_FLAGS(op) && ((src1 | src2) & SLJIT_IMM)) {
			if (TEST_SL_IMM(src2, -src2w)) {
				compiler->imm = (-src2w) & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_SL_IMM(src1, src1w)) {
				compiler->imm = src1w & 0xffff;
				return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
			if (TEST_SH_IMM(src2, -src2w)) {
				compiler->imm = ((-src2w) >> 16) & 0xffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			/* Range between -1 and -32768 is covered above. */
			if (TEST_ADD_IMM(src2, -src2w)) {
				compiler->imm = -src2w & 0xffffffff;
				return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM4, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
		}

		if (dst == SLJIT_UNUSED && GET_FLAG_TYPE(op) != GET_FLAG_TYPE(SLJIT_SET_CARRY)
				&& GET_FLAG_TYPE(op) == SLJIT_OVERFLOW && GET_FLAG_TYPE(op) == SLJIT_NOT_OVERFLOW) {
			if (TEST_SL_IMM(src2, src2w)) {
				compiler->imm = src2w & 0xffff;
				return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			return emit_op(compiler, SLJIT_SUB, flags | ALT_FORM4, dst, dstw, src1, src1w, src2, src2w);
		}

		if (TEST_SL_IMM(src2, -src2w)) {
			compiler->imm = (-src2w) & 0xffff;
			return emit_op(compiler, SLJIT_ADD, flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
		}
		/* We know ALT_SIGN_EXT is set if it is an SLJIT_I32_OP on 64 bit systems. */
		return emit_op(compiler, SLJIT_SUB, flags, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_SUBC:
		return emit_op(compiler, SLJIT_SUBC, flags, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_MUL:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		if (op & SLJIT_I32_OP)
			flags |= ALT_FORM2;
#endif
		if (!HAS_FLAGS(op)) {
			if (TEST_SL_IMM(src2, src2w)) {
				compiler->imm = src2w & 0xffff;
				return emit_op(compiler, SLJIT_MUL, flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_SL_IMM(src1, src1w)) {
				compiler->imm = src1w & 0xffff;
				return emit_op(compiler, SLJIT_MUL, flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
		}
		else
			FAIL_IF(push_inst(compiler, MTXER | S(TMP_ZERO)));
		return emit_op(compiler, SLJIT_MUL, flags, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_AND:
	case SLJIT_OR:
	case SLJIT_XOR:
		/* Commutative unsigned operations. */
		if (!HAS_FLAGS(op) || GET_OPCODE(op) == SLJIT_AND) {
			if (TEST_UL_IMM(src2, src2w)) {
				compiler->imm = src2w;
				return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_UL_IMM(src1, src1w)) {
				compiler->imm = src1w;
				return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
			if (TEST_UH_IMM(src2, src2w)) {
				compiler->imm = (src2w >> 16) & 0xffff;
				return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM2, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_UH_IMM(src1, src1w)) {
				compiler->imm = (src1w >> 16) & 0xffff;
				return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM2, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
		}
		if (GET_OPCODE(op) != SLJIT_AND && GET_OPCODE(op) != SLJIT_AND) {
			/* Unlike or and xor, and resets unwanted bits as well. */
			if (TEST_UI_IMM(src2, src2w)) {
				compiler->imm = src2w;
				return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM3, dst, dstw, src1, src1w, TMP_REG2, 0);
			}
			if (TEST_UI_IMM(src1, src1w)) {
				compiler->imm = src1w;
				return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM3, dst, dstw, src2, src2w, TMP_REG2, 0);
			}
		}
		return emit_op(compiler, GET_OPCODE(op), flags, dst, dstw, src1, src1w, src2, src2w);

	case SLJIT_SHL:
	case SLJIT_LSHR:
	case SLJIT_ASHR:
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		if (op & SLJIT_I32_OP)
			flags |= ALT_FORM2;
#endif
		if (src2 & SLJIT_IMM) {
			compiler->imm = src2w;
			return emit_op(compiler, GET_OPCODE(op), flags | ALT_FORM1, dst, dstw, src1, src1w, TMP_REG2, 0);
		}
		return emit_op(compiler, GET_OPCODE(op), flags, dst, dstw, src1, src1w, src2, src2w);
	}

	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
{
	CHECK_REG_INDEX(check_sljit_get_register_index(reg));
	return reg_map[reg];
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg)
{
	CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
	return reg;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
	void *instruction, sljit_s32 size)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_op_custom(compiler, instruction, size));

	return push_inst(compiler, *(sljit_ins*)instruction);
}

/* --------------------------------------------------------------------- */
/*  Floating point operators                                             */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
	return SLJIT_IS_FPU_AVAILABLE;
#else
	/* Available by default. */
	return 1;
#endif
}

#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_F32_OP) >> 6))
#define SELECT_FOP(op, single, double) ((op & SLJIT_F32_OP) ? single : double)

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
#define FLOAT_TMP_MEM_OFFSET (6 * sizeof(sljit_sw))
#else
#define FLOAT_TMP_MEM_OFFSET (2 * sizeof(sljit_sw))

#if (defined SLJIT_LITTLE_ENDIAN && SLJIT_LITTLE_ENDIAN)
#define FLOAT_TMP_MEM_OFFSET_LOW (2 * sizeof(sljit_sw))
#define FLOAT_TMP_MEM_OFFSET_HI (3 * sizeof(sljit_sw))
#else
#define FLOAT_TMP_MEM_OFFSET_LOW (3 * sizeof(sljit_sw))
#define FLOAT_TMP_MEM_OFFSET_HI (2 * sizeof(sljit_sw))
#endif

#endif /* SLJIT_CONFIG_PPC_64 */

static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw)
{
	if (src & SLJIT_MEM) {
		/* We can ignore the temporary data store on the stack from caching point of view. */
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
		src = TMP_FREG1;
	}

#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
	op = GET_OPCODE(op);
	FAIL_IF(push_inst(compiler, (op == SLJIT_CONV_S32_FROM_F64 ? FCTIWZ : FCTIDZ) | FD(TMP_FREG1) | FB(src)));

	if (dst == SLJIT_UNUSED)
		return SLJIT_SUCCESS;

	if (op == SLJIT_CONV_SW_FROM_F64) {
		if (FAST_IS_REG(dst)) {
			FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0));
			return emit_op_mem2(compiler, WORD_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0);
		}
		return emit_op_mem2(compiler, DOUBLE_DATA, TMP_FREG1, dst, dstw, 0, 0);
	}

#else
	FAIL_IF(push_inst(compiler, FCTIWZ | FD(TMP_FREG1) | FB(src)));

	if (dst == SLJIT_UNUSED)
		return SLJIT_SUCCESS;
#endif

	if (FAST_IS_REG(dst)) {
		FAIL_IF(load_immediate(compiler, TMP_REG1, FLOAT_TMP_MEM_OFFSET));
		FAIL_IF(push_inst(compiler, STFIWX | FS(TMP_FREG1) | A(SLJIT_SP) | B(TMP_REG1)));
		return emit_op_mem2(compiler, INT_DATA | LOAD_DATA, dst, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, 0, 0);
	}

	SLJIT_ASSERT(dst & SLJIT_MEM);

	if (dst & OFFS_REG_MASK) {
		dstw &= 0x3;
		if (dstw) {
#if (defined SLJIT_CONFIG_PPC_32 && SLJIT_CONFIG_PPC_32)
			FAIL_IF(push_inst(compiler, RLWINM | S(OFFS_REG(dst)) | A(TMP_REG1) | (dstw << 11) | ((31 - dstw) << 1)));
#else
			FAIL_IF(push_inst(compiler, RLDI(TMP_REG1, OFFS_REG(dst), dstw, 63 - dstw, 1)));
#endif
			dstw = TMP_REG1;
		}
		else
			dstw = OFFS_REG(dst);
	}
	else {
		if ((dst & REG_MASK) && !dstw) {
			dstw = dst & REG_MASK;
			dst = 0;
		}
		else {
			/* This works regardless we have SLJIT_MEM1 or SLJIT_MEM0. */
			FAIL_IF(load_immediate(compiler, TMP_REG1, dstw));
			dstw = TMP_REG1;
		}
	}

	return push_inst(compiler, STFIWX | FS(TMP_FREG1) | A(dst & REG_MASK) | B(dstw));
}

static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)

	sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;

	if (src & SLJIT_IMM) {
		if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32)
			srcw = (sljit_s32)srcw;
		FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
		src = TMP_REG1;
	}
	else if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32) {
		if (FAST_IS_REG(src))
			FAIL_IF(push_inst(compiler, EXTSW | S(src) | A(TMP_REG1)));
		else
			FAIL_IF(emit_op_mem2(compiler, INT_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
		src = TMP_REG1;
	}

	if (FAST_IS_REG(src)) {
		FAIL_IF(emit_op_mem2(compiler, WORD_DATA, src, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
		FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, dst, dstw));
	}
	else
		FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));

	FAIL_IF(push_inst(compiler, FCFID | FD(dst_r) | FB(TMP_FREG1)));

	if (dst & SLJIT_MEM)
		return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
	if (op & SLJIT_F32_OP)
		return push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r));
	return SLJIT_SUCCESS;

#else

	sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
	sljit_s32 invert_sign = 1;

	if (src & SLJIT_IMM) {
		FAIL_IF(load_immediate(compiler, TMP_REG1, srcw ^ 0x80000000));
		src = TMP_REG1;
		invert_sign = 0;
	}
	else if (!FAST_IS_REG(src)) {
		FAIL_IF(emit_op_mem2(compiler, WORD_DATA | SIGNED_DATA | LOAD_DATA, TMP_REG1, src, srcw, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW));
		src = TMP_REG1;
	}

	/* First, a special double floating point value is constructed: (2^53 + (input xor (2^31)))
	   The double precision format has exactly 53 bit precision, so the lower 32 bit represents
	   the lower 32 bit of such value. The result of xor 2^31 is the same as adding 0x80000000
	   to the input, which shifts it into the 0 - 0xffffffff range. To get the converted floating
	   point value, we need to substract 2^53 + 2^31 from the constructed value. */
	FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG2) | A(0) | 0x4330));
	if (invert_sign)
		FAIL_IF(push_inst(compiler, XORIS | S(src) | A(TMP_REG1) | 0x8000));
	FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG2, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_HI, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
	FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_HI));
	FAIL_IF(push_inst(compiler, ADDIS | D(TMP_REG1) | A(0) | 0x8000));
	FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW));
	FAIL_IF(emit_op_mem2(compiler, WORD_DATA, TMP_REG1, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET));
	FAIL_IF(emit_op_mem2(compiler, DOUBLE_DATA | LOAD_DATA, TMP_FREG2, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET, SLJIT_MEM1(SLJIT_SP), FLOAT_TMP_MEM_OFFSET_LOW));

	FAIL_IF(push_inst(compiler, FSUB | FD(dst_r) | FA(TMP_FREG1) | FB(TMP_FREG2)));

	if (dst & SLJIT_MEM)
		return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
	if (op & SLJIT_F32_OP)
		return push_inst(compiler, FRSP | FD(dst_r) | FB(dst_r));
	return SLJIT_SUCCESS;

#endif
}

static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w)
{
	if (src1 & SLJIT_MEM) {
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
		src1 = TMP_FREG1;
	}

	if (src2 & SLJIT_MEM) {
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
		src2 = TMP_FREG2;
	}

	return push_inst(compiler, FCMPU | CRD(4) | FA(src1) | FB(src2));
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw)
{
	sljit_s32 dst_r;

	CHECK_ERROR();
	compiler->cache_arg = 0;
	compiler->cache_argw = 0;

	SLJIT_COMPILE_ASSERT((SLJIT_F32_OP == 0x100) && !(DOUBLE_DATA & 0x4), float_transfer_bit_error);
	SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);

	if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32)
		op ^= SLJIT_F32_OP;

	dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;

	if (src & SLJIT_MEM) {
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw));
		src = dst_r;
	}

	switch (GET_OPCODE(op)) {
	case SLJIT_CONV_F64_FROM_F32:
		op ^= SLJIT_F32_OP;
		if (op & SLJIT_F32_OP) {
			FAIL_IF(push_inst(compiler, FRSP | FD(dst_r) | FB(src)));
			break;
		}
		/* Fall through. */
	case SLJIT_MOV_F64:
		if (src != dst_r) {
			if (dst_r != TMP_FREG1)
				FAIL_IF(push_inst(compiler, FMR | FD(dst_r) | FB(src)));
			else
				dst_r = src;
		}
		break;
	case SLJIT_NEG_F64:
		FAIL_IF(push_inst(compiler, FNEG | FD(dst_r) | FB(src)));
		break;
	case SLJIT_ABS_F64:
		FAIL_IF(push_inst(compiler, FABS | FD(dst_r) | FB(src)));
		break;
	}

	if (dst & SLJIT_MEM)
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0));
	return SLJIT_SUCCESS;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src1, sljit_sw src1w,
	sljit_s32 src2, sljit_sw src2w)
{
	sljit_s32 dst_r, flags = 0;

	CHECK_ERROR();
	CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
	ADJUST_LOCAL_OFFSET(dst, dstw);
	ADJUST_LOCAL_OFFSET(src1, src1w);
	ADJUST_LOCAL_OFFSET(src2, src2w);

	compiler->cache_arg = 0;
	compiler->cache_argw = 0;

	dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG2;

	if (src1 & SLJIT_MEM) {
		if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
			FAIL_IF(compiler->error);
			src1 = TMP_FREG1;
		} else
			flags |= ALT_FORM1;
	}

	if (src2 & SLJIT_MEM) {
		if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
			FAIL_IF(compiler->error);
			src2 = TMP_FREG2;
		} else
			flags |= ALT_FORM2;
	}

	if ((flags & (ALT_FORM1 | ALT_FORM2)) == (ALT_FORM1 | ALT_FORM2)) {
		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
		}
		else {
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
		}
	}
	else if (flags & ALT_FORM1)
		FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
	else if (flags & ALT_FORM2)
		FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));

	if (flags & ALT_FORM1)
		src1 = TMP_FREG1;
	if (flags & ALT_FORM2)
		src2 = TMP_FREG2;

	switch (GET_OPCODE(op)) {
	case SLJIT_ADD_F64:
		FAIL_IF(push_inst(compiler, SELECT_FOP(op, FADDS, FADD) | FD(dst_r) | FA(src1) | FB(src2)));
		break;

	case SLJIT_SUB_F64:
		FAIL_IF(push_inst(compiler, SELECT_FOP(op, FSUBS, FSUB) | FD(dst_r) | FA(src1) | FB(src2)));
		break;

	case SLJIT_MUL_F64:
		FAIL_IF(push_inst(compiler, SELECT_FOP(op, FMULS, FMUL) | FD(dst_r) | FA(src1) | FC(src2) /* FMUL use FC as src2 */));
		break;

	case SLJIT_DIV_F64:
		FAIL_IF(push_inst(compiler, SELECT_FOP(op, FDIVS, FDIV) | FD(dst_r) | FA(src1) | FB(src2)));
		break;
	}

	if (dst_r == TMP_FREG2)
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));

	return SLJIT_SUCCESS;
}

#undef FLOAT_DATA
#undef SELECT_FOP

/* --------------------------------------------------------------------- */
/*  Other instructions                                                   */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	/* For UNUSED dst. Uncommon, but possible. */
	if (dst == SLJIT_UNUSED)
		return SLJIT_SUCCESS;

	if (FAST_IS_REG(dst))
		return push_inst(compiler, MFLR | D(dst));

	/* Memory. */
	FAIL_IF(push_inst(compiler, MFLR | D(TMP_REG2)));
	return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
{
	CHECK_ERROR();
	CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
	ADJUST_LOCAL_OFFSET(src, srcw);

	if (FAST_IS_REG(src))
		FAIL_IF(push_inst(compiler, MTLR | S(src)));
	else {
		if (src & SLJIT_MEM)
			FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
		else if (src & SLJIT_IMM)
			FAIL_IF(load_immediate(compiler, TMP_REG2, srcw));
		FAIL_IF(push_inst(compiler, MTLR | S(TMP_REG2)));
	}
	return push_inst(compiler, BLR);
}

/* --------------------------------------------------------------------- */
/*  Conditional instructions                                             */
/* --------------------------------------------------------------------- */

SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
	struct sljit_label *label;

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_label(compiler));

	if (compiler->last_label && compiler->last_label->size == compiler->size)
		return compiler->last_label;

	label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
	PTR_FAIL_IF(!label);
	set_label(label, compiler);
	return label;
}

static sljit_ins get_bo_bi_flags(sljit_s32 type)
{
	switch (type) {
	case SLJIT_EQUAL:
		return (12 << 21) | (2 << 16);

	case SLJIT_NOT_EQUAL:
		return (4 << 21) | (2 << 16);

	case SLJIT_LESS:
	case SLJIT_SIG_LESS:
		return (12 << 21) | (0 << 16);

	case SLJIT_GREATER_EQUAL:
	case SLJIT_SIG_GREATER_EQUAL:
		return (4 << 21) | (0 << 16);

	case SLJIT_GREATER:
	case SLJIT_SIG_GREATER:
		return (12 << 21) | (1 << 16);

	case SLJIT_LESS_EQUAL:
	case SLJIT_SIG_LESS_EQUAL:
		return (4 << 21) | (1 << 16);

	case SLJIT_LESS_F64:
		return (12 << 21) | ((4 + 0) << 16);

	case SLJIT_GREATER_EQUAL_F64:
		return (4 << 21) | ((4 + 0) << 16);

	case SLJIT_GREATER_F64:
		return (12 << 21) | ((4 + 1) << 16);

	case SLJIT_LESS_EQUAL_F64:
		return (4 << 21) | ((4 + 1) << 16);

	case SLJIT_OVERFLOW:
	case SLJIT_MUL_OVERFLOW:
		return (12 << 21) | (3 << 16);

	case SLJIT_NOT_OVERFLOW:
	case SLJIT_MUL_NOT_OVERFLOW:
		return (4 << 21) | (3 << 16);

	case SLJIT_EQUAL_F64:
		return (12 << 21) | ((4 + 2) << 16);

	case SLJIT_NOT_EQUAL_F64:
		return (4 << 21) | ((4 + 2) << 16);

	case SLJIT_UNORDERED_F64:
		return (12 << 21) | ((4 + 3) << 16);

	case SLJIT_ORDERED_F64:
		return (4 << 21) | ((4 + 3) << 16);

	default:
		SLJIT_ASSERT(type >= SLJIT_JUMP && type <= SLJIT_CALL3);
		return (20 << 21);
	}
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
	struct sljit_jump *jump;
	sljit_ins bo_bi_flags;

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_jump(compiler, type));

	bo_bi_flags = get_bo_bi_flags(type & 0xff);
	if (!bo_bi_flags)
		return NULL;

	jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
	PTR_FAIL_IF(!jump);
	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
	type &= 0xff;

	/* In PPC, we don't need to touch the arguments. */
	if (type < SLJIT_JUMP)
		jump->flags |= IS_COND;
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
	if (type >= SLJIT_CALL0)
		jump->flags |= IS_CALL;
#endif

	PTR_FAIL_IF(emit_const(compiler, TMP_CALL_REG, 0));
	PTR_FAIL_IF(push_inst(compiler, MTCTR | S(TMP_CALL_REG)));
	jump->addr = compiler->size;
	PTR_FAIL_IF(push_inst(compiler, BCCTR | bo_bi_flags | (type >= SLJIT_FAST_CALL ? 1 : 0)));
	return jump;
}

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
	struct sljit_jump *jump = NULL;
	sljit_s32 src_r;

	CHECK_ERROR();
	CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
	ADJUST_LOCAL_OFFSET(src, srcw);

	if (FAST_IS_REG(src)) {
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
		if (type >= SLJIT_CALL0) {
			FAIL_IF(push_inst(compiler, OR | S(src) | A(TMP_CALL_REG) | B(src)));
			src_r = TMP_CALL_REG;
		}
		else
			src_r = src;
#else
		src_r = src;
#endif
	} else if (src & SLJIT_IMM) {
		jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
		FAIL_IF(!jump);
		set_jump(jump, compiler, JUMP_ADDR);
		jump->u.target = srcw;
#if (defined SLJIT_PASS_ENTRY_ADDR_TO_CALL && SLJIT_PASS_ENTRY_ADDR_TO_CALL)
		if (type >= SLJIT_CALL0)
			jump->flags |= IS_CALL;
#endif
		FAIL_IF(emit_const(compiler, TMP_CALL_REG, 0));
		src_r = TMP_CALL_REG;
	}
	else {
		FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_CALL_REG, 0, TMP_REG1, 0, src, srcw));
		src_r = TMP_CALL_REG;
	}

	FAIL_IF(push_inst(compiler, MTCTR | S(src_r)));
	if (jump)
		jump->addr = compiler->size;
	return push_inst(compiler, BCCTR | (20 << 21) | (type >= SLJIT_FAST_CALL ? 1 : 0));
}

/* Get a bit from CR, all other bits are zeroed. */
#define GET_CR_BIT(bit, dst) \
	FAIL_IF(push_inst(compiler, RLWINM | S(dst) | A(dst) | ((1 + (bit)) << 11) | (31 << 6) | (31 << 1)));

#define INVERT_BIT(dst) \
	FAIL_IF(push_inst(compiler, XORI | S(dst) | A(dst) | 0x1));

SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
	sljit_s32 dst, sljit_sw dstw,
	sljit_s32 src, sljit_sw srcw,
	sljit_s32 type)
{
	sljit_s32 reg, input_flags;
	sljit_s32 flags = GET_ALL_FLAGS(op);
	sljit_sw original_dstw = dstw;

	CHECK_ERROR();
	CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	if (dst == SLJIT_UNUSED)
		return SLJIT_SUCCESS;

	op = GET_OPCODE(op);
	reg = (op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2;

	compiler->cache_arg = 0;
	compiler->cache_argw = 0;
	if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
		ADJUST_LOCAL_OFFSET(src, srcw);
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		input_flags = (flags & SLJIT_I32_OP) ? INT_DATA : WORD_DATA;
#else
		input_flags = WORD_DATA;
#endif
		FAIL_IF(emit_op_mem2(compiler, input_flags | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
		src = TMP_REG1;
		srcw = 0;
	}

	FAIL_IF(push_inst(compiler, MFCR | D(reg)));

	switch (type & 0xff) {
	case SLJIT_EQUAL:
		GET_CR_BIT(2, reg);
		break;

	case SLJIT_NOT_EQUAL:
		GET_CR_BIT(2, reg);
		INVERT_BIT(reg);
		break;

	case SLJIT_LESS:
	case SLJIT_SIG_LESS:
		GET_CR_BIT(0, reg);
		break;

	case SLJIT_GREATER_EQUAL:
	case SLJIT_SIG_GREATER_EQUAL:
		GET_CR_BIT(0, reg);
		INVERT_BIT(reg);
		break;

	case SLJIT_GREATER:
	case SLJIT_SIG_GREATER:
		GET_CR_BIT(1, reg);
		break;

	case SLJIT_LESS_EQUAL:
	case SLJIT_SIG_LESS_EQUAL:
		GET_CR_BIT(1, reg);
		INVERT_BIT(reg);
		break;

	case SLJIT_LESS_F64:
		GET_CR_BIT(4 + 0, reg);
		break;

	case SLJIT_GREATER_EQUAL_F64:
		GET_CR_BIT(4 + 0, reg);
		INVERT_BIT(reg);
		break;

	case SLJIT_GREATER_F64:
		GET_CR_BIT(4 + 1, reg);
		break;

	case SLJIT_LESS_EQUAL_F64:
		GET_CR_BIT(4 + 1, reg);
		INVERT_BIT(reg);
		break;

	case SLJIT_OVERFLOW:
	case SLJIT_MUL_OVERFLOW:
		GET_CR_BIT(3, reg);
		break;

	case SLJIT_NOT_OVERFLOW:
	case SLJIT_MUL_NOT_OVERFLOW:
		GET_CR_BIT(3, reg);
		INVERT_BIT(reg);
		break;

	case SLJIT_EQUAL_F64:
		GET_CR_BIT(4 + 2, reg);
		break;

	case SLJIT_NOT_EQUAL_F64:
		GET_CR_BIT(4 + 2, reg);
		INVERT_BIT(reg);
		break;

	case SLJIT_UNORDERED_F64:
		GET_CR_BIT(4 + 3, reg);
		break;

	case SLJIT_ORDERED_F64:
		GET_CR_BIT(4 + 3, reg);
		INVERT_BIT(reg);
		break;

	default:
		SLJIT_UNREACHABLE();
		break;
	}

	if (op < SLJIT_ADD) {
#if (defined SLJIT_CONFIG_PPC_64 && SLJIT_CONFIG_PPC_64)
		if (op == SLJIT_MOV)
			input_flags = WORD_DATA;
		else {
			op = SLJIT_MOV_U32;
			input_flags = INT_DATA;
		}
#else
		op = SLJIT_MOV;
		input_flags = WORD_DATA;
#endif
		if (reg != TMP_REG2)
			return SLJIT_SUCCESS;
		return emit_op(compiler, op, input_flags, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
	}

#if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \
		|| (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS)
	compiler->skip_checks = 1;
#endif
	return sljit_emit_op2(compiler, op | flags, dst, original_dstw, src, srcw, TMP_REG2, 0);
}

SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
	struct sljit_const *const_;
	sljit_s32 reg;

	CHECK_ERROR_PTR();
	CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
	ADJUST_LOCAL_OFFSET(dst, dstw);

	const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
	PTR_FAIL_IF(!const_);
	set_const(const_, compiler);

	reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;

	PTR_FAIL_IF(emit_const(compiler, reg, init_value));

	if (dst & SLJIT_MEM)
		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
	return const_;
}