Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
//===--------------------------- DwarfParser.hpp --------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
//  Parses DWARF CFIs (FDEs and CIEs).
//
//===----------------------------------------------------------------------===//

#ifndef __DWARF_PARSER_HPP__
#define __DWARF_PARSER_HPP__

#include <cstdint>
#include <cstdlib>

#include "dwarf2.h"
#include "AddressSpace.hpp"

namespace _Unwind {

/// CFI_Parser does basic parsing of a CFI (Call Frame Information) records.
/// See Dwarf Spec for details:
///    http://refspecs.linuxbase.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
///
template <typename A, typename R> class CFI_Parser {
public:
  typedef typename A::pint_t pint_t;

  /// Information encoded in a CIE (Common Information Entry)
  struct CIE_Info {
    pint_t cieStart;
    pint_t cieLength;
    pint_t cieInstructions;
    pint_t personality;
    uint32_t codeAlignFactor;
    int dataAlignFactor;
    uint8_t pointerEncoding;
    uint8_t lsdaEncoding;
    uint8_t personalityEncoding;
    uint8_t personalityOffsetInCIE;
    bool isSignalFrame;
    bool fdesHaveAugmentationData;
    uint8_t returnAddressRegister;
  };

  /// Information about an FDE (Frame Description Entry)
  struct FDE_Info {
    pint_t fdeStart;
    pint_t fdeLength;
    pint_t fdeInstructions;
    pint_t pcStart;
    pint_t pcEnd;
    pint_t lsda;
  };

  /// Information about a frame layout and registers saved determined
  /// by "running" the DWARF FDE "instructions"
  enum {
    kMaxRegisterNumber = R::LAST_REGISTER + 1
  };
  enum RegisterSavedWhere {
    kRegisterUnused,
    kRegisterInCFA,
    kRegisterOffsetFromCFA,
    kRegisterInRegister,
    kRegisterAtExpression,
    kRegisterIsExpression,
  };
  struct RegisterLocation {
    RegisterSavedWhere location;
    int64_t value;
  };
  struct PrologInfo {
    uint32_t cfaRegister;
    int32_t cfaRegisterOffset; // CFA = (cfaRegister)+cfaRegisterOffset
    int64_t cfaExpression;     // CFA = expression
    uint32_t spExtraArgSize;
    uint32_t codeOffsetAtStackDecrement;
    RegisterLocation savedRegisters[kMaxRegisterNumber];
  };

  struct PrologInfoStackEntry {
    PrologInfoStackEntry(PrologInfoStackEntry *n, const PrologInfo &i)
        : next(n), info(i) {}
    PrologInfoStackEntry *next;
    PrologInfo info;
  };

  static void findPCRange(A &, pint_t, pint_t &, pint_t &);

  static bool decodeFDE(A &, pint_t, FDE_Info *, CIE_Info *,
                        unw_proc_info_t *ctx);
  static bool parseFDEInstructions(A &, const FDE_Info &, const CIE_Info &,
                                   pint_t, PrologInfo *, unw_proc_info_t *ctx);

  static bool parseCIE(A &, pint_t, CIE_Info *);

private:
  static bool parseInstructions(A &, pint_t, pint_t, const CIE_Info &, pint_t,
                                PrologInfoStackEntry *&, PrologInfo *,
                                unw_proc_info_t *ctx);
};

///
/// Parse a FDE and return the last PC it covers.
///
template <typename A, typename R>
void CFI_Parser<A, R>::findPCRange(A &addressSpace, pint_t fde, pint_t &pcStart,
                                   pint_t &pcEnd) {
  pcStart = 0;
  pcEnd = 0;
  pint_t p = fde;
  uint64_t cfiLength = addressSpace.get32(p);
  p += 4;
  if (cfiLength == 0xffffffff) {
    // 0xffffffff means length is really the next 8 Bytes.
    cfiLength = addressSpace.get64(p);
    p += 8;
  }
  if (cfiLength == 0)
    return;
  uint32_t ciePointer = addressSpace.get32(p);
  if (ciePointer == 0)
    return;
  pint_t nextCFI = p + cfiLength;
  pint_t cieStart = p - ciePointer;
  typename CFI_Parser<A, R>::CIE_Info cieInfo;
  if (!parseCIE(addressSpace, cieStart, &cieInfo))
    return;
  p += 4;
  // Parse pc begin and range.
  pcStart = addressSpace.getEncodedP(p, nextCFI, cieInfo.pointerEncoding, NULL);
  pcEnd = pcStart + addressSpace.getEncodedP(
                        p, nextCFI, cieInfo.pointerEncoding & 0x0F, NULL);
}

///
/// Parse a FDE into a CIE_Info and an FDE_Info
///
template <typename A, typename R>
bool CFI_Parser<A, R>::decodeFDE(A &addressSpace, pint_t fdeStart,
                                 FDE_Info *fdeInfo, CIE_Info *cieInfo,
                                 unw_proc_info_t *ctx) {
  pint_t p = fdeStart;
  uint64_t cfiLength = addressSpace.get32(p);
  p += 4;
  if (cfiLength == 0xffffffff) {
    // 0xffffffff means length is really the next 8 Bytes.
    cfiLength = addressSpace.get64(p);
    p += 8;
  }
  if (cfiLength == 0)
    return false;
  uint32_t ciePointer = addressSpace.get32(p);
  if (ciePointer == 0)
    return false;
  pint_t nextCFI = p + cfiLength;
  pint_t cieStart = p - ciePointer;
  if (!parseCIE(addressSpace, cieStart, cieInfo))
    return false;
  p += 4;
  // Parse pc begin and range.
  pint_t pcStart =
      addressSpace.getEncodedP(p, nextCFI, cieInfo->pointerEncoding, ctx);
  pint_t pcRange = addressSpace.getEncodedP(
      p, nextCFI, cieInfo->pointerEncoding & 0x0F, ctx);
  // Parse rest of info.
  fdeInfo->lsda = 0;
  // Check for augmentation length
  if (cieInfo->fdesHaveAugmentationData) {
    uintptr_t augLen = addressSpace.getULEB128(p, nextCFI);
    pint_t endOfAug = p + augLen;
    if (cieInfo->lsdaEncoding != DW_EH_PE_omit) {
      // Peek at value (without indirection).  Zero means no LSDA.
      pint_t lsdaStart = p;
      if (addressSpace.getEncodedP(p, nextCFI, cieInfo->lsdaEncoding & 0x0F,
                                   ctx) != 0) {
        // Reset pointer and re-parse LSDA address.
        p = lsdaStart;
        fdeInfo->lsda =
            addressSpace.getEncodedP(p, nextCFI, cieInfo->lsdaEncoding, ctx);
      }
    }
    p = endOfAug;
  }
  fdeInfo->fdeStart = fdeStart;
  fdeInfo->fdeLength = nextCFI - fdeStart;
  fdeInfo->fdeInstructions = p;
  fdeInfo->pcStart = pcStart;
  fdeInfo->pcEnd = pcStart + pcRange;
  return true;
}

/// Extract info from a CIE
template <typename A, typename R>
bool CFI_Parser<A, R>::parseCIE(A &addressSpace, pint_t cie,
                                CIE_Info *cieInfo) {
  cieInfo->pointerEncoding = 0;
  cieInfo->lsdaEncoding = DW_EH_PE_omit;
  cieInfo->personalityEncoding = 0;
  cieInfo->personalityOffsetInCIE = 0;
  cieInfo->personality = 0;
  cieInfo->codeAlignFactor = 0;
  cieInfo->dataAlignFactor = 0;
  cieInfo->isSignalFrame = false;
  cieInfo->fdesHaveAugmentationData = false;
  cieInfo->cieStart = cie;
  pint_t p = cie;
  uint64_t cieLength = addressSpace.get32(p);
  p += 4;
  pint_t cieContentEnd = p + cieLength;
  if (cieLength == 0xffffffff) {
    // 0xffffffff means length is really the next 8 Bytes.
    cieLength = addressSpace.get64(p);
    p += 8;
    cieContentEnd = p + cieLength;
  }
  if (cieLength == 0)
    return true;
  // CIE ID is always 0
  if (addressSpace.get32(p) != 0)
    return false;
  p += 4;
  // Version is always 1 or 3
  uint8_t version = addressSpace.get8(p);
  if (version != 1 && version != 3)
    return false;
  ++p;
  // Save start of augmentation string and find end.
  pint_t strStart = p;
  while (addressSpace.get8(p) != 0)
    ++p;
  ++p;
  // Parse code alignment factor
  cieInfo->codeAlignFactor = addressSpace.getULEB128(p, cieContentEnd);
  // Parse data alignment factor
  cieInfo->dataAlignFactor = addressSpace.getSLEB128(p, cieContentEnd);
  // Parse return address register
  cieInfo->returnAddressRegister = R::dwarf2regno((uint8_t)addressSpace.getULEB128(p, cieContentEnd));
  // Parse augmentation data based on augmentation string.
  if (addressSpace.get8(strStart) == 'z') {
    // parse augmentation data length
    addressSpace.getULEB128(p, cieContentEnd);
    for (pint_t s = strStart; addressSpace.get8(s) != '\0'; ++s) {
      switch (addressSpace.get8(s)) {
      case 'z':
        cieInfo->fdesHaveAugmentationData = true;
        break;
      case 'P':
        cieInfo->personalityEncoding = addressSpace.get8(p);
        ++p;
        cieInfo->personalityOffsetInCIE = p - cie;
        cieInfo->personality = addressSpace.getEncodedP(
            p, cieContentEnd, cieInfo->personalityEncoding, NULL);
        break;
      case 'L':
        cieInfo->lsdaEncoding = addressSpace.get8(p);
        ++p;
        break;
      case 'R':
        cieInfo->pointerEncoding = addressSpace.get8(p);
        ++p;
        break;
      case 'S':
        cieInfo->isSignalFrame = true;
        break;
      default:
        // ignore unknown letters
        break;
      }
    }
  }
  cieInfo->cieLength = cieContentEnd - cieInfo->cieStart;
  cieInfo->cieInstructions = p;
  return true;
}

/// "Run" the dwarf instructions and create the abstact PrologInfo for an FDE.
template <typename A, typename R>
bool CFI_Parser<A, R>::parseFDEInstructions(A &addressSpace,
                                            const FDE_Info &fdeInfo,
                                            const CIE_Info &cieInfo,
                                            pint_t upToPC, PrologInfo *results,
                                            unw_proc_info_t *ctx) {
  // Clear results.
  memset(results, 0, sizeof(*results));
  PrologInfoStackEntry *rememberStack = NULL;

  // First parse the CIE then FDE instructions.
  if (!parseInstructions(addressSpace, cieInfo.cieInstructions,
                         cieInfo.cieStart + cieInfo.cieLength, cieInfo,
                         (pint_t)(-1), rememberStack, results, ctx))
    return false;
  return parseInstructions(addressSpace, fdeInfo.fdeInstructions,
                           fdeInfo.fdeStart + fdeInfo.fdeLength, cieInfo,
                           upToPC - fdeInfo.pcStart, rememberStack, results,
                           ctx);
}

/// "Run" the DWARF instructions.
template <typename A, typename R>
bool
CFI_Parser<A, R>::parseInstructions(A &addressSpace, pint_t instructions,
                                    pint_t instructionsEnd,
                                    const CIE_Info &cieInfo, pint_t pcoffset,
                                    PrologInfoStackEntry *&rememberStack,
                                    PrologInfo *results, unw_proc_info_t *ctx) {
  pint_t p = instructions;
  uint32_t codeOffset = 0;
  PrologInfo initialState = *results;

  // See Dwarf Spec, section 6.4.2 for details on unwind opcodes.
  while (p < instructionsEnd && codeOffset < pcoffset) {
    uint64_t reg;
    uint64_t reg2;
    int64_t offset;
    uint64_t length;
    uint8_t opcode = addressSpace.get8(p);
    uint8_t operand;
    PrologInfoStackEntry *entry;
    ++p;
    switch (opcode) {
    case DW_CFA_nop:
      break;
    case DW_CFA_set_loc:
      codeOffset = addressSpace.getEncodedP(p, instructionsEnd,
                                            cieInfo.pointerEncoding, ctx);
      break;
    case DW_CFA_advance_loc1:
      codeOffset += (addressSpace.get8(p) * cieInfo.codeAlignFactor);
      p += 1;
      break;
    case DW_CFA_advance_loc2:
      codeOffset += (addressSpace.get16(p) * cieInfo.codeAlignFactor);
      p += 2;
      break;
    case DW_CFA_advance_loc4:
      codeOffset += (addressSpace.get32(p) * cieInfo.codeAlignFactor);
      p += 4;
      break;
    case DW_CFA_offset_extended:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      offset =
          addressSpace.getULEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      if (reg > kMaxRegisterNumber)
        return false;
      results->savedRegisters[reg].location = kRegisterInCFA;
      results->savedRegisters[reg].value = offset;
      break;
    case DW_CFA_restore_extended:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      results->savedRegisters[reg] = initialState.savedRegisters[reg];
      break;
    case DW_CFA_undefined:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      results->savedRegisters[reg].location = kRegisterUnused;
      break;
    case DW_CFA_same_value:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      // "same value" means register was stored in frame, but its current
      // value has not changed, so no need to restore from frame.
      // We model this as if the register was never saved.
      results->savedRegisters[reg].location = kRegisterUnused;
      break;
    case DW_CFA_register:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      reg2 = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      if (reg2 > kMaxRegisterNumber)
        return false;
      results->savedRegisters[reg].location = kRegisterInRegister;
      results->savedRegisters[reg].value = reg2;
      break;
    case DW_CFA_remember_state:
      // avoid operator new, because that would be an upward dependency
      entry = (PrologInfoStackEntry *)malloc(sizeof(PrologInfoStackEntry));
      if (entry == NULL)
        return false;

      entry->next = rememberStack;
      entry->info = *results;
      rememberStack = entry;
      break;
    case DW_CFA_restore_state:
      if (rememberStack == NULL)
        return false;
      {
        PrologInfoStackEntry *top = rememberStack;
        *results = top->info;
        rememberStack = top->next;
        free((char *)top);
      }
      break;
    case DW_CFA_def_cfa:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      offset = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber)
        return false;
      results->cfaRegister = reg;
      results->cfaRegisterOffset = offset;
      break;
    case DW_CFA_def_cfa_register:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      results->cfaRegister = reg;
      break;
    case DW_CFA_def_cfa_offset:
      results->cfaRegisterOffset = addressSpace.getULEB128(p, instructionsEnd);
      results->codeOffsetAtStackDecrement = codeOffset;
      break;
    case DW_CFA_def_cfa_expression:
      results->cfaRegister = 0;
      results->cfaExpression = p;
      length = addressSpace.getULEB128(p, instructionsEnd);
      p += length;
      break;
    case DW_CFA_expression:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      results->savedRegisters[reg].location = kRegisterAtExpression;
      results->savedRegisters[reg].value = p;
      length = addressSpace.getULEB128(p, instructionsEnd);
      p += length;
      break;
    case DW_CFA_offset_extended_sf:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      offset =
          addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      results->savedRegisters[reg].location = kRegisterInCFA;
      results->savedRegisters[reg].value = offset;
      break;
    case DW_CFA_def_cfa_sf:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      offset =
          addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      if (reg > kMaxRegisterNumber)
        return false;
      results->cfaRegister = reg;
      results->cfaRegisterOffset = offset;
      break;
    case DW_CFA_def_cfa_offset_sf:
      results->cfaRegisterOffset =
          addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      results->codeOffsetAtStackDecrement = codeOffset;
      break;
    case DW_CFA_val_offset:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      offset =
          addressSpace.getULEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      if (reg > kMaxRegisterNumber)
        return false;
      results->savedRegisters[reg].location = kRegisterOffsetFromCFA;
      results->savedRegisters[reg].value = offset;
      break;
    case DW_CFA_val_offset_sf:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      offset =
          addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      results->savedRegisters[reg].location = kRegisterOffsetFromCFA;
      results->savedRegisters[reg].value = offset;
      break;
    case DW_CFA_val_expression:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      results->savedRegisters[reg].location = kRegisterIsExpression;
      results->savedRegisters[reg].value = p;
      length = addressSpace.getULEB128(p, instructionsEnd);
      p += length;
      break;
    case DW_CFA_GNU_window_save:
#if defined(__sparc__)
      for (reg = 8; reg < 16; ++reg) {
        results->savedRegisters[reg].location = kRegisterInRegister;
        results->savedRegisters[reg].value = reg + 16;
      }
      for (reg = 16; reg < 32; ++reg) {
        results->savedRegisters[reg].location = kRegisterInCFA;
        results->savedRegisters[reg].value = (reg - 16) * sizeof(typename R::reg_t);
      }
      break;
#else
      return false;
#endif
    case DW_CFA_GNU_args_size:
      offset = addressSpace.getULEB128(p, instructionsEnd);
      results->spExtraArgSize = offset;
      break;
    case DW_CFA_GNU_negative_offset_extended:
      reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
      if (reg > kMaxRegisterNumber)
        return false;
      offset =
          addressSpace.getULEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      results->savedRegisters[reg].location = kRegisterInCFA;
      results->savedRegisters[reg].value = -offset;
      break;
    default:
      operand = opcode & 0x3F;
      switch (opcode & 0xC0) {
      case DW_CFA_offset:
        reg = R::dwarf2regno(operand);
        if (reg > kMaxRegisterNumber)
          return false;
        offset = addressSpace.getULEB128(p, instructionsEnd) *
                 cieInfo.dataAlignFactor;
        results->savedRegisters[reg].location = kRegisterInCFA;
        results->savedRegisters[reg].value = offset;
        break;
      case DW_CFA_advance_loc:
        codeOffset += operand * cieInfo.codeAlignFactor;
        break;
      case DW_CFA_restore:
        reg = R::dwarf2regno(operand);
        if (reg > kMaxRegisterNumber)
          return false;
        results->savedRegisters[reg] = initialState.savedRegisters[reg];
        break;
      default:
        return false;
      }
    }
  }

  return true;
}

} // namespace _Unwind

#endif // __DWARF_PARSER_HPP__