Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/*	$NetBSD: uvm_km.c,v 1.165 2023/04/09 09:00:56 riastradh Exp $	*/

/*
 * Copyright (c) 1997 Charles D. Cranor and Washington University.
 * Copyright (c) 1991, 1993, The Regents of the University of California.
 *
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 * uvm_km.c: handle kernel memory allocation and management
 */

/*
 * overview of kernel memory management:
 *
 * the kernel virtual address space is mapped by "kernel_map."   kernel_map
 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
 *
 * the kernel_map has several "submaps."   submaps can only appear in
 * the kernel_map (user processes can't use them).   submaps "take over"
 * the management of a sub-range of the kernel's address space.  submaps
 * are typically allocated at boot time and are never released.   kernel
 * virtual address space that is mapped by a submap is locked by the
 * submap's lock -- not the kernel_map's lock.
 *
 * thus, the useful feature of submaps is that they allow us to break
 * up the locking and protection of the kernel address space into smaller
 * chunks.
 *
 * the vm system has several standard kernel submaps/arenas, including:
 *   kmem_arena => used for kmem/pool (memoryallocators(9))
 *   pager_map => used to map "buf" structures into kernel space
 *   exec_map => used during exec to handle exec args
 *   etc...
 *
 * The kmem_arena is a "special submap", as it lives in a fixed map entry
 * within the kernel_map and is controlled by vmem(9).
 *
 * the kernel allocates its private memory out of special uvm_objects whose
 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
 * are "special" and never die).   all kernel objects should be thought of
 * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
 * object is equal to the size of kernel virtual address space (i.e. the
 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
 *
 * note that just because a kernel object spans the entire kernel virtual
 * address space doesn't mean that it has to be mapped into the entire space.
 * large chunks of a kernel object's space go unused either because
 * that area of kernel VM is unmapped, or there is some other type of
 * object mapped into that range (e.g. a vnode).    for submap's kernel
 * objects, the only part of the object that can ever be populated is the
 * offsets that are managed by the submap.
 *
 * note that the "offset" in a kernel object is always the kernel virtual
 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
 * example:
 *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
 *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
 *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
 *   then that means that the page at offset 0x235000 in kernel_object is
 *   mapped at 0xf8235000.
 *
 * kernel object have one other special property: when the kernel virtual
 * memory mapping them is unmapped, the backing memory in the object is
 * freed right away.   this is done with the uvm_km_pgremove() function.
 * this has to be done because there is no backing store for kernel pages
 * and no need to save them after they are no longer referenced.
 *
 * Generic arenas:
 *
 * kmem_arena:
 *	Main arena controlling the kernel KVA used by other arenas.
 *
 * kmem_va_arena:
 *	Implements quantum caching in order to speedup allocations and
 *	reduce fragmentation.  The pool(9), unless created with a custom
 *	meta-data allocator, and kmem(9) subsystems use this arena.
 *
 * Arenas for meta-data allocations are used by vmem(9) and pool(9).
 * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
 * compensates this by importing larger chunks from kmem_arena.
 *
 * kmem_va_meta_arena:
 *	Space for meta-data.
 *
 * kmem_meta_arena:
 *	Imports from kmem_va_meta_arena.  Allocations from this arena are
 *	backed with the pages.
 *
 * Arena stacking:
 *
 *	kmem_arena
 *		kmem_va_arena
 *		kmem_va_meta_arena
 *			kmem_meta_arena
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.165 2023/04/09 09:00:56 riastradh Exp $");

#include "opt_uvmhist.h"

#include "opt_kmempages.h"

#ifndef NKMEMPAGES
#define NKMEMPAGES 0
#endif

/*
 * Defaults for lower and upper-bounds for the kmem_arena page count.
 * Can be overridden by kernel config options.
 */
#ifndef NKMEMPAGES_MIN
#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
#endif

#ifndef NKMEMPAGES_MAX
#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
#endif


#include <sys/param.h>
#include <sys/systm.h>
#include <sys/atomic.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/vmem.h>
#include <sys/vmem_impl.h>
#include <sys/kmem.h>
#include <sys/msan.h>

#include <uvm/uvm.h>

/*
 * global data structures
 */

struct vm_map *kernel_map = NULL;

/*
 * local data structures
 */

static struct vm_map		kernel_map_store;
static struct vm_map_entry	kernel_image_mapent_store;
static struct vm_map_entry	kernel_kmem_mapent_store;

size_t nkmempages = 0;
vaddr_t kmembase;
vsize_t kmemsize;

static struct vmem kmem_arena_store;
vmem_t *kmem_arena = NULL;
static struct vmem kmem_va_arena_store;
vmem_t *kmem_va_arena;

/*
 * kmeminit_nkmempages: calculate the size of kmem_arena.
 */
void
kmeminit_nkmempages(void)
{
	size_t npages;

	if (nkmempages != 0) {
		/*
		 * It's already been set (by us being here before)
		 * bail out now;
		 */
		return;
	}

#if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
	npages = physmem;
#else

#if defined(KMSAN)
	npages = (physmem / 4);
#elif defined(PMAP_MAP_POOLPAGE)
	npages = (physmem / 4);
#else
	npages = (physmem / 3) * 2;
#endif /* defined(PMAP_MAP_POOLPAGE) */

#if !defined(NKMEMPAGES_MAX_UNLIMITED)
	if (npages > NKMEMPAGES_MAX)
		npages = NKMEMPAGES_MAX;
#endif

#endif

	if (npages < NKMEMPAGES_MIN)
		npages = NKMEMPAGES_MIN;

	nkmempages = npages;
}

/*
 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
 * KVM already allocated for text, data, bss, and static data structures).
 *
 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
 *    we assume that [vmin -> start] has already been allocated and that
 *    "end" is the end.
 */

void
uvm_km_bootstrap(vaddr_t start, vaddr_t end)
{
	bool kmem_arena_small;
	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
	struct uvm_map_args args;
	int error;

	UVMHIST_FUNC(__func__);
	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);

	kmeminit_nkmempages();
	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
	kmem_arena_small = kmemsize < 64 * 1024 * 1024;

	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);

	/*
	 * next, init kernel memory objects.
	 */

	/* kernel_object: for pageable anonymous kernel memory */
	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);

	/*
	 * init the map and reserve any space that might already
	 * have been allocated kernel space before installing.
	 */

	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
	kernel_map_store.pmap = pmap_kernel();
	if (start != base) {
		error = uvm_map_prepare(&kernel_map_store,
		    base, start - base,
		    NULL, UVM_UNKNOWN_OFFSET, 0,
		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
		if (!error) {
			kernel_image_mapent_store.flags =
			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
			error = uvm_map_enter(&kernel_map_store, &args,
			    &kernel_image_mapent_store);
		}

		if (error)
			panic(
			    "uvm_km_bootstrap: could not reserve space for kernel");

		kmembase = args.uma_start + args.uma_size;
	} else {
		kmembase = base;
	}

	error = uvm_map_prepare(&kernel_map_store,
	    kmembase, kmemsize,
	    NULL, UVM_UNKNOWN_OFFSET, 0,
	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
	if (!error) {
		kernel_kmem_mapent_store.flags =
		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
		error = uvm_map_enter(&kernel_map_store, &args,
		    &kernel_kmem_mapent_store);
	}

	if (error)
		panic("uvm_km_bootstrap: could not reserve kernel kmem");

	/*
	 * install!
	 */

	kernel_map = &kernel_map_store;

	pool_subsystem_init();

	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
#ifdef PMAP_GROWKERNEL
	/*
	 * kmem_arena VA allocations happen independently of uvm_map.
	 * grow kernel to accommodate the kmem_arena.
	 */
	if (uvm_maxkaddr < kmembase + kmemsize) {
		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
		    uvm_maxkaddr, kmembase, kmemsize);
	}
#endif

	vmem_subsystem_init(kmem_arena);

	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
	    kmembase, kmemsize, 0,0);

	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
	    VM_NOSLEEP, IPL_VM);

	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
}

/*
 * uvm_km_init: init the kernel maps virtual memory caches
 * and start the pool/kmem allocator.
 */
void
uvm_km_init(void)
{
	kmem_init();
}

/*
 * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
 * is allocated all references to that area of VM must go through it.  this
 * allows the locking of VAs in kernel_map to be broken up into regions.
 *
 * => if `fixed' is true, *vmin specifies where the region described
 *   pager_map => used to map "buf" structures into kernel space
 *      by the submap must start
 * => if submap is non NULL we use that as the submap, otherwise we
 *	alloc a new map
 */

struct vm_map *
uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    struct vm_map *submap)
{
	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

	KASSERT(vm_map_pmap(map) == pmap_kernel());

	size = round_page(size);	/* round up to pagesize */

	/*
	 * first allocate a blank spot in the parent map
	 */

	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
	    UVM_ADV_RANDOM, mapflags)) != 0) {
		panic("%s: unable to allocate space in parent map", __func__);
	}

	/*
	 * set VM bounds (vmin is filled in by uvm_map)
	 */

	*vmax = *vmin + size;

	/*
	 * add references to pmap and create or init the submap
	 */

	pmap_reference(vm_map_pmap(map));
	if (submap == NULL) {
		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
	}
	uvm_map_setup(submap, *vmin, *vmax, flags);
	submap->pmap = vm_map_pmap(map);

	/*
	 * now let uvm_map_submap plug in it...
	 */

	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
		panic("uvm_km_suballoc: submap allocation failed");

	return(submap);
}

/*
 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
 */

void
uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
{
	struct uvm_object * const uobj = uvm_kernel_object;
	const voff_t start = startva - vm_map_min(kernel_map);
	const voff_t end = endva - vm_map_min(kernel_map);
	struct vm_page *pg;
	voff_t curoff, nextoff;
	int swpgonlydelta = 0;
	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
	KASSERT(startva < endva);
	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);

	rw_enter(uobj->vmobjlock, RW_WRITER);
	pmap_remove(pmap_kernel(), startva, endva);
	for (curoff = start; curoff < end; curoff = nextoff) {
		nextoff = curoff + PAGE_SIZE;
		pg = uvm_pagelookup(uobj, curoff);
		if (pg != NULL && pg->flags & PG_BUSY) {
			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
			rw_enter(uobj->vmobjlock, RW_WRITER);
			nextoff = curoff;
			continue;
		}

		/*
		 * free the swap slot, then the page.
		 */

		if (pg == NULL &&
		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
			swpgonlydelta++;
		}
		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
		if (pg != NULL) {
			uvm_pagefree(pg);
		}
	}
	rw_exit(uobj->vmobjlock);

	if (swpgonlydelta > 0) {
		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
	}
}


/*
 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
 *    regions.
 *
 * => when you unmap a part of anonymous kernel memory you want to toss
 *    the pages right away.    (this is called from uvm_unmap_...).
 * => none of the pages will ever be busy, and none of them will ever
 *    be on the active or inactive queues (because they have no object).
 */

void
uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
{
#define __PGRM_BATCH 16
	struct vm_page *pg;
	paddr_t pa[__PGRM_BATCH];
	int npgrm, i;
	vaddr_t va, batch_vastart;

	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

	KASSERT(VM_MAP_IS_KERNEL(map));
	KASSERTMSG(vm_map_min(map) <= start,
	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
	    " (size=%#"PRIxVSIZE")",
	    vm_map_min(map), start, end - start);
	KASSERT(start < end);
	KASSERT(end <= vm_map_max(map));

	for (va = start; va < end;) {
		batch_vastart = va;
		/* create a batch of at most __PGRM_BATCH pages to free */
		for (i = 0;
		     i < __PGRM_BATCH && va < end;
		     va += PAGE_SIZE) {
			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
				continue;
			}
			i++;
		}
		npgrm = i;
		/* now remove the mappings */
		pmap_kremove(batch_vastart, va - batch_vastart);
		/* and free the pages */
		for (i = 0; i < npgrm; i++) {
			pg = PHYS_TO_VM_PAGE(pa[i]);
			KASSERT(pg);
			KASSERT(pg->uobject == NULL);
			KASSERT(pg->uanon == NULL);
			KASSERT((pg->flags & PG_BUSY) == 0);
			uvm_pagefree(pg);
		}
	}
#undef __PGRM_BATCH
}

#if defined(DEBUG)
void
uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
{
	vaddr_t va;
	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

	KDASSERT(VM_MAP_IS_KERNEL(map));
	KDASSERT(vm_map_min(map) <= start);
	KDASSERT(start < end);
	KDASSERT(end <= vm_map_max(map));

	for (va = start; va < end; va += PAGE_SIZE) {
		paddr_t pa;

		if (pmap_extract(pmap_kernel(), va, &pa)) {
			panic("uvm_km_check_empty: va %p has pa %#llx",
			    (void *)va, (long long)pa);
		}
		/*
		 * kernel_object should not have pages for the corresponding
		 * region.  check it.
		 *
		 * why trylock?  because:
		 * - caller might not want to block.
		 * - we can recurse when allocating radix_node for
		 *   kernel_object.
		 */
		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
			struct vm_page *pg;

			pg = uvm_pagelookup(uvm_kernel_object,
			    va - vm_map_min(kernel_map));
			rw_exit(uvm_kernel_object->vmobjlock);
			if (pg) {
				panic("uvm_km_check_empty: "
				    "has page hashed at %p",
				    (const void *)va);
			}
		}
	}
}
#endif /* defined(DEBUG) */

/*
 * uvm_km_alloc: allocate an area of kernel memory.
 *
 * => NOTE: we can return 0 even if we can wait if there is not enough
 *	free VM space in the map... caller should be prepared to handle
 *	this case.
 * => we return KVA of memory allocated
 */

vaddr_t
uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
{
	vaddr_t kva, loopva;
	vaddr_t offset;
	vsize_t loopsize;
	struct vm_page *pg;
	struct uvm_object *obj;
	int pgaflags;
	vm_prot_t prot, vaprot;
	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

	KASSERT(vm_map_pmap(map) == pmap_kernel());
	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);

	/*
	 * setup for call
	 */

	kva = vm_map_min(map);	/* hint */
	size = round_page(size);
	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
	    (uintptr_t)map, (uintptr_t)obj, size, flags);

	/*
	 * allocate some virtual space
	 */

	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
	    UVM_ADV_RANDOM,
	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
	     | UVM_KMF_COLORMATCH)))) != 0)) {
		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
		return(0);
	}

	/*
	 * if all we wanted was VA, return now
	 */

	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
		return(kva);
	}

	/*
	 * recover object offset from virtual address
	 */

	offset = kva - vm_map_min(kernel_map);
	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);

	/*
	 * now allocate and map in the memory... note that we are the only ones
	 * whom should ever get a handle on this area of VM.
	 */

	loopva = kva;
	loopsize = size;

	pgaflags = UVM_FLAG_COLORMATCH;
	if (flags & UVM_KMF_NOWAIT)
		pgaflags |= UVM_PGA_USERESERVE;
	if (flags & UVM_KMF_ZERO)
		pgaflags |= UVM_PGA_ZERO;
	prot = VM_PROT_READ | VM_PROT_WRITE;
	if (flags & UVM_KMF_EXEC)
		prot |= VM_PROT_EXECUTE;
	while (loopsize) {
		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
		    "loopva=%#"PRIxVADDR, loopva);

		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
#ifdef UVM_KM_VMFREELIST
		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
#else
		   UVM_PGA_STRAT_NORMAL, 0
#endif
		   );

		/*
		 * out of memory?
		 */

		if (__predict_false(pg == NULL)) {
			if ((flags & UVM_KMF_NOWAIT) ||
			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
				/* free everything! */
				uvm_km_free(map, kva, size,
				    flags & UVM_KMF_TYPEMASK);
				return (0);
			} else {
				uvm_wait("km_getwait2");	/* sleep here */
				continue;
			}
		}

		pg->flags &= ~PG_BUSY;	/* new page */
		UVM_PAGE_OWN(pg, NULL);

		/*
		 * map it in
		 */

		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
		    prot, PMAP_KMPAGE);
		loopva += PAGE_SIZE;
		offset += PAGE_SIZE;
		loopsize -= PAGE_SIZE;
	}

	pmap_update(pmap_kernel());

	if ((flags & UVM_KMF_ZERO) == 0) {
		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
	}

	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
	return(kva);
}

/*
 * uvm_km_protect: change the protection of an allocated area
 */

int
uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
{
	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
}

/*
 * uvm_km_free: free an area of kernel memory
 */

void
uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
{
	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
	KASSERT((addr & PAGE_MASK) == 0);
	KASSERT(vm_map_pmap(map) == pmap_kernel());

	size = round_page(size);

	if (flags & UVM_KMF_PAGEABLE) {
		uvm_km_pgremove(addr, addr + size);
	} else if (flags & UVM_KMF_WIRED) {
		/*
		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
		 * remove it after.  See comment below about KVA visibility.
		 */
		uvm_km_pgremove_intrsafe(map, addr, addr + size);
	}

	/*
	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
	 * KVA becomes globally available.
	 */

	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
}

/* Sanity; must specify both or none. */
#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
#error Must specify MAP and UNMAP together.
#endif

#if defined(PMAP_ALLOC_POOLPAGE) && \
    !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
#error Must specify ALLOC with MAP and UNMAP
#endif

int
uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    vmem_addr_t *addr)
{
	struct vm_page *pg;
	vmem_addr_t va;
	int rc;
	vaddr_t loopva;
	vsize_t loopsize;

	size = round_page(size);

#if defined(PMAP_MAP_POOLPAGE)
	if (size == PAGE_SIZE) {
again:
#ifdef PMAP_ALLOC_POOLPAGE
		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
		   0 : UVM_PGA_USERESERVE);
#else
		pg = uvm_pagealloc(NULL, 0, NULL,
		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
#endif /* PMAP_ALLOC_POOLPAGE */
		if (__predict_false(pg == NULL)) {
			if (flags & VM_SLEEP) {
				uvm_wait("plpg");
				goto again;
			}
			return ENOMEM;
		}
		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
		KASSERT(va != 0);
		*addr = va;
		return 0;
	}
#endif /* PMAP_MAP_POOLPAGE */

	rc = vmem_alloc(vm, size, flags, &va);
	if (rc != 0)
		return rc;

#ifdef PMAP_GROWKERNEL
	/*
	 * These VA allocations happen independently of uvm_map
	 * so this allocation must not extend beyond the current limit.
	 */
	KASSERTMSG(uvm_maxkaddr >= va + size,
	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
	    uvm_maxkaddr, va, size);
#endif

	loopva = va;
	loopsize = size;

	while (loopsize) {
		paddr_t pa __diagused;
		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
		    " pa=%#"PRIxPADDR" vmem=%p",
		    loopva, loopsize, pa, vm);

		pg = uvm_pagealloc(NULL, loopva, NULL,
		    UVM_FLAG_COLORMATCH
		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
		if (__predict_false(pg == NULL)) {
			if (flags & VM_SLEEP) {
				uvm_wait("plpg");
				continue;
			} else {
				uvm_km_pgremove_intrsafe(kernel_map, va,
				    va + size);
				vmem_free(vm, va, size);
				return ENOMEM;
			}
		}

		pg->flags &= ~PG_BUSY;	/* new page */
		UVM_PAGE_OWN(pg, NULL);
		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);

		loopva += PAGE_SIZE;
		loopsize -= PAGE_SIZE;
	}
	pmap_update(pmap_kernel());

	*addr = va;

	return 0;
}

void
uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
{

	size = round_page(size);
#if defined(PMAP_UNMAP_POOLPAGE)
	if (size == PAGE_SIZE) {
		paddr_t pa;

		pa = PMAP_UNMAP_POOLPAGE(addr);
		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
		return;
	}
#endif /* PMAP_UNMAP_POOLPAGE */
	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
	pmap_update(pmap_kernel());

	vmem_free(vm, addr, size);
}

bool
uvm_km_va_starved_p(void)
{
	vmem_size_t total;
	vmem_size_t free;

	if (kmem_arena == NULL)
		return false;

	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
	free = vmem_size(kmem_arena, VMEM_FREE);

	return (free < (total / 10));
}