Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*	$NetBSD: rand-fortuna.c,v 1.3 2019/12/15 22:50:48 christos Exp $	*/

/*
 * fortuna.c
 *		Fortuna-like PRNG.
 *
 * Copyright (c) 2005 Marko Kreen
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *	  notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *	  notice, this list of conditions and the following disclaimer in the
 *	  documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.8 2006/10/04 00:29:46 momjian Exp $
 */

#include <config.h>
#include <krb5/roken.h>
#include <rand.h>
#include <heim_threads.h>

#ifdef KRB5
#include <krb5/krb5-types.h>
#endif

#include "randi.h"
#include "aes.h"
#include "sha.h"

/*
 * Why Fortuna-like: There does not seem to be any definitive reference
 * on Fortuna in the net.  Instead this implementation is based on
 * following references:
 *
 * http://en.wikipedia.org/wiki/Fortuna_(PRNG)
 *	 - Wikipedia article
 * http://jlcooke.ca/random/
 *	 - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
 */

/*
 * There is some confusion about whether and how to carry forward
 * the state of the pools.	Seems like original Fortuna does not
 * do it, resetting hash after each request.  I guess expecting
 * feeding to happen more often that requesting.   This is absolutely
 * unsuitable for pgcrypto, as nothing asynchronous happens here.
 *
 * J.L. Cooke fixed this by feeding previous hash to new re-initialized
 * hash context.
 *
 * Fortuna predecessor Yarrow requires ability to query intermediate
 * 'final result' from hash, without affecting it.
 *
 * This implementation uses the Yarrow method - asking intermediate
 * results, but continuing with old state.
 */


/*
 * Algorithm parameters
 */

#define NUM_POOLS		32

/* in microseconds */
#define RESEED_INTERVAL 100000	/* 0.1 sec */

/* for one big request, reseed after this many bytes */
#define RESEED_BYTES	(1024*1024)

/*
 * Skip reseed if pool 0 has less than this many
 * bytes added since last reseed.
 */
#define POOL0_FILL		(256/8)

/*
 * Algorithm constants
 */

/* Both cipher key size and hash result size */
#define BLOCK			32

/* cipher block size */
#define CIPH_BLOCK		16

/* for internal wrappers */
#define MD_CTX			SHA256_CTX
#define CIPH_CTX		AES_KEY

struct fortuna_state
{
    unsigned char	counter[CIPH_BLOCK];
    unsigned char	result[CIPH_BLOCK];
    unsigned char	key[BLOCK];
    MD_CTX		pool[NUM_POOLS];
    CIPH_CTX		ciph;
    unsigned		reseed_count;
    struct timeval	last_reseed_time;
    unsigned		pool0_bytes;
    unsigned		rnd_pos;
    int			tricks_done;
    pid_t		pid;
};
typedef struct fortuna_state FState;


/*
 * Use our own wrappers here.
 * - Need to get intermediate result from digest, without affecting it.
 * - Need re-set key on a cipher context.
 * - Algorithms are guaranteed to exist.
 * - No memory allocations.
 */

static void
ciph_init(CIPH_CTX * ctx, const unsigned char *key, int klen)
{
    AES_set_encrypt_key(key, klen * 8, ctx);
}

static void
ciph_encrypt(CIPH_CTX * ctx, const unsigned char *in, unsigned char *out)
{
    AES_encrypt(in, out, ctx);
}

static void
md_init(MD_CTX * ctx)
{
    SHA256_Init(ctx);
}

static void
md_update(MD_CTX * ctx, const unsigned char *data, int len)
{
    SHA256_Update(ctx, data, len);
}

static void
md_result(MD_CTX * ctx, unsigned char *dst)
{
    SHA256_CTX	tmp;

    memcpy(&tmp, ctx, sizeof(*ctx));
    SHA256_Final(dst, &tmp);
    memset_s(&tmp, sizeof(tmp), 0, sizeof(tmp));
}

/*
 * initialize state
 */
static void
init_state(FState * st)
{
    int			i;

    memset(st, 0, sizeof(*st));
    for (i = 0; i < NUM_POOLS; i++)
	md_init(&st->pool[i]);
    st->pid = getpid();
}

/*
 * Endianess does not matter.
 * It just needs to change without repeating.
 */
static void
inc_counter(FState * st)
{
    uint32_t   *val = (uint32_t *) st->counter;

    if (++val[0])
	return;
    if (++val[1])
	return;
    if (++val[2])
	return;
    ++val[3];
}

/*
 * This is called 'cipher in counter mode'.
 */
static void
encrypt_counter(FState * st, unsigned char *dst)
{
    ciph_encrypt(&st->ciph, st->counter, dst);
    inc_counter(st);
}


/*
 * The time between reseed must be at least RESEED_INTERVAL
 * microseconds.
 */
static int
enough_time_passed(FState * st)
{
    int			ok;
    struct timeval tv;
    struct timeval *last = &st->last_reseed_time;

    gettimeofday(&tv, NULL);

    /* check how much time has passed */
    ok = 0;
    if (tv.tv_sec > last->tv_sec + 1)
	ok = 1;
    else if (tv.tv_sec == last->tv_sec + 1)
    {
	if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
	    ok = 1;
    }
    else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
	ok = 1;

    /* reseed will happen, update last_reseed_time */
    if (ok)
	memcpy(last, &tv, sizeof(tv));

    memset_s(&tv, sizeof(tv), 0, sizeof(tv));

    return ok;
}

/*
 * generate new key from all the pools
 */
static void
reseed(FState * st)
{
    unsigned	k;
    unsigned	n;
    MD_CTX		key_md;
    unsigned char	buf[BLOCK];

    /* set pool as empty */
    st->pool0_bytes = 0;

    /*
     * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
     */
    n = ++st->reseed_count;

    /*
     * The goal: use k-th pool only 1/(2^k) of the time.
     */
    md_init(&key_md);
    for (k = 0; k < NUM_POOLS; k++)
    {
	md_result(&st->pool[k], buf);
	md_update(&key_md, buf, BLOCK);

	if (n & 1 || !n)
	    break;
	n >>= 1;
    }

    /* add old key into mix too */
    md_update(&key_md, st->key, BLOCK);

    /* add pid to make output diverse after fork() */
    md_update(&key_md, (const unsigned char *)&st->pid, sizeof(st->pid));

    /* now we have new key */
    md_result(&key_md, st->key);

    /* use new key */
    ciph_init(&st->ciph, st->key, BLOCK);

    memset_s(&key_md, sizeof(key_md), 0, sizeof(key_md));
    memset_s(buf, sizeof(buf), 0, sizeof(buf));
}

/*
 * Pick a random pool.	This uses key bytes as random source.
 */
static unsigned
get_rand_pool(FState * st)
{
    unsigned	rnd;

    /*
     * This slightly prefers lower pools - thats OK.
     */
    rnd = st->key[st->rnd_pos] % NUM_POOLS;

    st->rnd_pos++;
    if (st->rnd_pos >= BLOCK)
	st->rnd_pos = 0;

    return rnd;
}

/*
 * update pools
 */
static void
add_entropy(FState * st, const unsigned char *data, unsigned len)
{
    unsigned		pos;
    unsigned char	hash[BLOCK];
    MD_CTX		md;

    /* hash given data */
    md_init(&md);
    md_update(&md, data, len);
    md_result(&md, hash);

    /*
     * Make sure the pool 0 is initialized, then update randomly.
     */
    if (st->reseed_count == 0)
	pos = 0;
    else
	pos = get_rand_pool(st);
    md_update(&st->pool[pos], hash, BLOCK);

    if (pos == 0)
	st->pool0_bytes += len;

    memset_s(hash, sizeof(hash), 0, sizeof(hash));
    memset_s(&md, sizeof(hash), 0, sizeof(md));
}

/*
 * Just take 2 next blocks as new key
 */
static void
rekey(FState * st)
{
    encrypt_counter(st, st->key);
    encrypt_counter(st, st->key + CIPH_BLOCK);
    ciph_init(&st->ciph, st->key, BLOCK);
}

/*
 * Hide public constants. (counter, pools > 0)
 *
 * This can also be viewed as spreading the startup
 * entropy over all of the components.
 */
static void
startup_tricks(FState * st)
{
    int			i;
    unsigned char	buf[BLOCK];

    /* Use next block as counter. */
    encrypt_counter(st, st->counter);

    /* Now shuffle pools, excluding #0 */
    for (i = 1; i < NUM_POOLS; i++)
    {
	encrypt_counter(st, buf);
	encrypt_counter(st, buf + CIPH_BLOCK);
	md_update(&st->pool[i], buf, BLOCK);
    }
    memset_s(buf, sizeof(buf), 0, sizeof(buf));

    /* Hide the key. */
    rekey(st);

    /* This can be done only once. */
    st->tricks_done = 1;
}

static void
extract_data(FState * st, unsigned count, unsigned char *dst)
{
    unsigned	n;
    unsigned	block_nr = 0;
    pid_t	pid = getpid();

    /* Should we reseed? */
    if (st->pool0_bytes >= POOL0_FILL || st->reseed_count == 0)
	if (enough_time_passed(st))
	    reseed(st);

    /* Do some randomization on first call */
    if (!st->tricks_done)
	startup_tricks(st);

    /* If we forked, force a reseed again */
    if (pid != st->pid) {
	st->pid = pid;
	reseed(st);
    }

    while (count > 0)
    {
	/* produce bytes */
	encrypt_counter(st, st->result);

	/* copy result */
	if (count > CIPH_BLOCK)
	    n = CIPH_BLOCK;
	else
	    n = count;
	memcpy(dst, st->result, n);
	dst += n;
	count -= n;

	/* must not give out too many bytes with one key */
	block_nr++;
	if (block_nr > (RESEED_BYTES / CIPH_BLOCK))
	{
	    rekey(st);
	    block_nr = 0;
	}
    }
    /* Set new key for next request. */
    rekey(st);
}

/*
 * public interface
 */

static FState	main_state;
static int	init_done;
static int	have_entropy;
#define FORTUNA_RESEED_BYTE	10000
static unsigned	resend_bytes;

/*
 * This mutex protects all of the above static elements from concurrent
 * access by multiple threads
 */
static HEIMDAL_MUTEX fortuna_mutex = HEIMDAL_MUTEX_INITIALIZER;

/*
 * Try our best to do an inital seed
 */
#define INIT_BYTES	128

/*
 * fortuna_mutex must be held across calls to this function
 */

static int
fortuna_reseed(void)
{
    int entropy_p = 0;

    if (!init_done)
	abort();

#ifndef NO_RAND_UNIX_METHOD
    {
	unsigned char buf[INIT_BYTES];
	if ((*hc_rand_unix_method.bytes)(buf, sizeof(buf)) == 1) {
	    add_entropy(&main_state, buf, sizeof(buf));
	    entropy_p = 1;
	    memset_s(buf, sizeof(buf), 0, sizeof(buf));
	}
    }
#endif
#ifdef HAVE_ARC4RANDOM
    {
	uint32_t buf[INIT_BYTES / sizeof(uint32_t)];
	int i;

	for (i = 0; i < sizeof(buf)/sizeof(buf[0]); i++)
	    buf[i] = arc4random();
	add_entropy(&main_state, (void *)buf, sizeof(buf));
	entropy_p = 1;
    }
#endif
    /*
     * Fall back to gattering data from timer and secret files, this
     * is really the last resort.
     */
    if (!entropy_p) {
	/* to save stackspace */
	union {
	    unsigned char buf[INIT_BYTES];
	    unsigned char shad[1001];
	} u;
	int fd;

	/* add timer info */
	if ((*hc_rand_timer_method.bytes)(u.buf, sizeof(u.buf)) == 1)
	    add_entropy(&main_state, u.buf, sizeof(u.buf));
	/* add /etc/shadow */
	fd = open("/etc/shadow", O_RDONLY, 0);
	if (fd >= 0) {
	    ssize_t n;
	    rk_cloexec(fd);
	    /* add_entropy will hash the buf */
	    while ((n = read(fd, (char *)u.shad, sizeof(u.shad))) > 0)
		add_entropy(&main_state, u.shad, sizeof(u.shad));
	    close(fd);
	}

	memset_s(&u, sizeof(u), 0, sizeof(u));

	entropy_p = 1; /* sure about this ? */
    }
    {
	pid_t pid = getpid();
	add_entropy(&main_state, (void *)&pid, sizeof(pid));
    }
    {
	struct timeval tv;
	gettimeofday(&tv, NULL);
	add_entropy(&main_state, (void *)&tv, sizeof(tv));
    }
#ifdef HAVE_GETUID
    {
	uid_t u = getuid();
	add_entropy(&main_state, (void *)&u, sizeof(u));
    }
#endif
    return entropy_p;
}

/*
 * fortuna_mutex must be held by callers of this function
 */
static int
fortuna_init(void)
{
    if (!init_done)
    {
	init_state(&main_state);
	init_done = 1;
    }
    if (!have_entropy)
	have_entropy = fortuna_reseed();
    return (init_done && have_entropy);
}



static void
fortuna_seed(const void *indata, int size)
{
    HEIMDAL_MUTEX_lock(&fortuna_mutex);

    fortuna_init();
    add_entropy(&main_state, indata, size);
    if (size >= INIT_BYTES)
	have_entropy = 1;

    HEIMDAL_MUTEX_unlock(&fortuna_mutex);
}

static int
fortuna_bytes(unsigned char *outdata, int size)
{
    int ret = 0;

    HEIMDAL_MUTEX_lock(&fortuna_mutex);

    if (!fortuna_init())
	goto out;

    resend_bytes += size;
    if (resend_bytes > FORTUNA_RESEED_BYTE || resend_bytes < size) {
	resend_bytes = 0;
	fortuna_reseed();
    }
    extract_data(&main_state, size, outdata);
    ret = 1;

out:
    HEIMDAL_MUTEX_unlock(&fortuna_mutex);

    return ret;
}

static void
fortuna_cleanup(void)
{
    HEIMDAL_MUTEX_lock(&fortuna_mutex);

    init_done = 0;
    have_entropy = 0;
    memset_s(&main_state, sizeof(main_state), 0, sizeof(main_state));

    HEIMDAL_MUTEX_unlock(&fortuna_mutex);
}

static void
fortuna_add(const void *indata, int size, double entropi)
{
    fortuna_seed(indata, size);
}

static int
fortuna_pseudorand(unsigned char *outdata, int size)
{
    return fortuna_bytes(outdata, size);
}

static int
fortuna_status(void)
{
    int result;

    HEIMDAL_MUTEX_lock(&fortuna_mutex);
    result = fortuna_init();
    HEIMDAL_MUTEX_unlock(&fortuna_mutex);

    return result ? 1 : 0;
}

#if defined(__GNUC__) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901)
const RAND_METHOD hc_rand_fortuna_method = {
    .seed = fortuna_seed,
    .bytes = fortuna_bytes,
    .cleanup = fortuna_cleanup,
    .add = fortuna_add,
    .pseudorand = fortuna_pseudorand,
    .status = fortuna_status
};
#else
const RAND_METHOD hc_rand_fortuna_method = {
    fortuna_seed,
    fortuna_bytes,
    fortuna_cleanup,
    fortuna_add,
    fortuna_pseudorand,
    fortuna_status
};
#endif

const RAND_METHOD *
RAND_fortuna_method(void)
{
    return &hc_rand_fortuna_method;
}