.\" $NetBSD: d2i_RSAPrivateKey.3,v 1.2 2023/05/31 19:42:44 christos Exp $
.\"
.\" Automatically generated by Pod::Man 4.14 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "d2i_RSAPrivateKey 3"
.TH d2i_RSAPrivateKey 3 "2023-05-07" "3.0.9" "OpenSSL"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
d2i_DSAPrivateKey,
d2i_DSAPrivateKey_bio,
d2i_DSAPrivateKey_fp,
d2i_DSAPublicKey,
d2i_DSA_PUBKEY,
d2i_DSA_PUBKEY_bio,
d2i_DSA_PUBKEY_fp,
d2i_DSAparams,
d2i_RSAPrivateKey,
d2i_RSAPrivateKey_bio,
d2i_RSAPrivateKey_fp,
d2i_RSAPublicKey,
d2i_RSAPublicKey_bio,
d2i_RSAPublicKey_fp,
d2i_RSA_PUBKEY,
d2i_RSA_PUBKEY_bio,
d2i_RSA_PUBKEY_fp,
d2i_DHparams,
d2i_DHparams_bio,
d2i_DHparams_fp,
d2i_ECPKParameters,
d2i_ECParameters,
d2i_ECPrivateKey,
d2i_ECPrivateKey_bio,
d2i_ECPrivateKey_fp,
d2i_EC_PUBKEY,
d2i_EC_PUBKEY_bio,
d2i_EC_PUBKEY_fp,
i2d_RSAPrivateKey,
i2d_RSAPrivateKey_bio,
i2d_RSAPrivateKey_fp,
i2d_RSAPublicKey,
i2d_RSAPublicKey_bio,
i2d_RSAPublicKey_fp,
i2d_RSA_PUBKEY,
i2d_RSA_PUBKEY_bio,
i2d_RSA_PUBKEY_fp,
i2d_DHparams,
i2d_DHparams_bio,
i2d_DHparams_fp,
i2d_DSAPrivateKey,
i2d_DSAPrivateKey_bio,
i2d_DSAPrivateKey_fp,
i2d_DSAPublicKey,
i2d_DSA_PUBKEY,
i2d_DSA_PUBKEY_bio,
i2d_DSA_PUBKEY_fp,
i2d_DSAparams,
i2d_ECPKParameters,
i2d_ECParameters,
i2d_ECPrivateKey,
i2d_ECPrivateKey_bio,
i2d_ECPrivateKey_fp,
i2d_EC_PUBKEY,
i2d_EC_PUBKEY_bio,
i2d_EC_PUBKEY_fp
\&\- DEPRECATED
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
The following functions have been deprecated since OpenSSL 3.0, and can be
hidden entirely by defining \fB\s-1OPENSSL_API_COMPAT\s0\fR with a suitable version value,
see \fBopenssl_user_macros\fR\|(7):
.PP
.Vb 12
\& TYPE *d2i_TYPEPrivateKey(TYPE **a, const unsigned char **ppin, long length);
\& TYPE *d2i_TYPEPrivateKey_bio(BIO *bp, TYPE **a);
\& TYPE *d2i_TYPEPrivateKey_fp(FILE *fp, TYPE **a);
\& TYPE *d2i_TYPEPublicKey(TYPE **a, const unsigned char **ppin, long length);
\& TYPE *d2i_TYPEPublicKey_bio(BIO *bp, TYPE **a);
\& TYPE *d2i_TYPEPublicKey_fp(FILE *fp, TYPE **a);
\& TYPE *d2i_TYPEparams(TYPE **a, const unsigned char **ppin, long length);
\& TYPE *d2i_TYPEparams_bio(BIO *bp, TYPE **a);
\& TYPE *d2i_TYPEparams_fp(FILE *fp, TYPE **a);
\& TYPE *d2i_TYPE_PUBKEY(TYPE **a, const unsigned char **ppin, long length);
\& TYPE *d2i_TYPE_PUBKEY_bio(BIO *bp, TYPE **a);
\& TYPE *d2i_TYPE_PUBKEY_fp(FILE *fp, TYPE **a);
\&
\& int i2d_TYPEPrivateKey(const TYPE *a, unsigned char **ppout);
\& int i2d_TYPEPrivateKey(TYPE *a, unsigned char **ppout);
\& int i2d_TYPEPrivateKey_fp(FILE *fp, const TYPE *a);
\& int i2d_TYPEPrivateKey_fp(FILE *fp, TYPE *a);
\& int i2d_TYPEPrivateKey_bio(BIO *bp, const TYPE *a);
\& int i2d_TYPEPrivateKey_bio(BIO *bp, TYPE *a);
\& int i2d_TYPEPublicKey(const TYPE *a, unsigned char **ppout);
\& int i2d_TYPEPublicKey(TYPE *a, unsigned char **ppout);
\& int i2d_TYPEPublicKey_fp(FILE *fp, const TYPE *a);
\& int i2d_TYPEPublicKey_fp(FILE *fp, TYPE *a);
\& int i2d_TYPEPublicKey_bio(BIO *bp, const TYPE *a);
\& int i2d_TYPEPublicKey_bio(BIO *bp, TYPE *a);
\& int i2d_TYPEparams(const TYPE *a, unsigned char **ppout);
\& int i2d_TYPEparams(TYPE *a, unsigned char **ppout);
\& int i2d_TYPEparams_fp(FILE *fp, const TYPE *a);
\& int i2d_TYPEparams_fp(FILE *fp, TYPE *a);
\& int i2d_TYPEparams_bio(BIO *bp, const TYPE *a);
\& int i2d_TYPEparams_bio(BIO *bp, TYPE *a);
\& int i2d_TYPE_PUBKEY(const TYPE *a, unsigned char **ppout);
\& int i2d_TYPE_PUBKEY(TYPE *a, unsigned char **ppout);
\& int i2d_TYPE_PUBKEY_fp(FILE *fp, const TYPE *a);
\& int i2d_TYPE_PUBKEY_fp(FILE *fp, TYPE *a);
\& int i2d_TYPE_PUBKEY_bio(BIO *bp, const TYPE *a);
\& int i2d_TYPE_PUBKEY_bio(BIO *bp, TYPE *a);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
All functions described here are deprecated. Please use \s-1\fBOSSL_DECODER\s0\fR\|(3)
instead of the \fBd2i\fR functions and \s-1\fBOSSL_ENCODER\s0\fR\|(3) instead of the \fBi2d\fR
functions. See \*(L"Migration\*(R" below.
.PP
In the description here, \fB\f(BI\s-1TYPE\s0\fB\fR is used a placeholder for any of the
OpenSSL datatypes, such as \fB\s-1RSA\s0\fR.
The function parameters \fIppin\fR and \fIppout\fR are generally either both named
\&\fIpp\fR in the headers, or \fIin\fR and \fIout\fR.
.PP
All the functions here behave the way that's described in \fBd2i_X509\fR\|(3).
.PP
Please note that not all functions in the synopsis are available for all key
types. For example, there are no \fBd2i_RSAparams()\fR or \fBi2d_RSAparams()\fR,
because the PKCS#1 \fB\s-1RSA\s0\fR structure doesn't include any key parameters.
.PP
\&\fBd2i_\f(BI\s-1TYPE\s0\fBPrivateKey\fR() and derivates thereof decode \s-1DER\s0 encoded
\&\fB\f(BI\s-1TYPE\s0\fB\fR private key data organized in a type specific structure.
.PP
\&\fBd2i_\f(BI\s-1TYPE\s0\fBPublicKey\fR() and derivates thereof decode \s-1DER\s0 encoded
\&\fB\f(BI\s-1TYPE\s0\fB\fR public key data organized in a type specific structure.
.PP
\&\fBd2i_\f(BI\s-1TYPE\s0\fBparams\fR() and derivates thereof decode \s-1DER\s0 encoded \fB\f(BI\s-1TYPE\s0\fB\fR
key parameters organized in a type specific structure.
.PP
\&\fBd2i_\f(BI\s-1TYPE\s0\fB_PUBKEY\fR() and derivates thereof decode \s-1DER\s0 encoded \fB\f(BI\s-1TYPE\s0\fB\fR
public key data organized in a \fBSubjectPublicKeyInfo\fR structure.
.PP
\&\fBi2d_\f(BI\s-1TYPE\s0\fBPrivateKey\fR() and derivates thereof encode the private key
\&\fB\f(BI\s-1TYPE\s0\fB\fR data into a type specific \s-1DER\s0 encoded structure.
.PP
\&\fBi2d_\f(BI\s-1TYPE\s0\fBPublicKey\fR() and derivates thereof encode the public key
\&\fB\f(BI\s-1TYPE\s0\fB\fR data into a type specific \s-1DER\s0 encoded structure.
.PP
\&\fBi2d_\f(BI\s-1TYPE\s0\fBparams\fR() and derivates thereof encode the \fB\f(BI\s-1TYPE\s0\fB\fR key
parameters data into a type specific \s-1DER\s0 encoded structure.
.PP
\&\fBi2d_\f(BI\s-1TYPE\s0\fB_PUBKEY\fR() and derivates thereof encode the public key
\&\fB\f(BI\s-1TYPE\s0\fB\fR data into a \s-1DER\s0 encoded \fBSubjectPublicKeyInfo\fR structure.
.PP
For example, \fBd2i_RSAPrivateKey()\fR and \fBd2i_RSAPublicKey()\fR expects the
structure defined by PKCS#1.
Similarly, \fBi2d_RSAPrivateKey()\fR and \fBi2d_RSAPublicKey()\fR produce \s-1DER\s0 encoded
string organized according to PKCS#1.
.SS "Migration"
.IX Subsection "Migration"
Migration from the diverse \fB\f(BI\s-1TYPE\s0\fB\fRs requires using corresponding new
OpenSSL types. For all \fB\f(BI\s-1TYPE\s0\fB\fRs described here, the corresponding new
type is \fB\s-1EVP_PKEY\s0\fR. The rest of this section assumes that this has been
done, exactly how to do that is described elsewhere.
.PP
There are two migration paths:
.IP "\(bu" 4
Replace
b<d2i_\fI\s-1TYPE\s0\fR\fBPrivateKey()\fR> with \fBd2i_PrivateKey\fR\|(3),
b<d2i_\fI\s-1TYPE\s0\fR\fBPublicKey()\fR> with \fBd2i_PublicKey\fR\|(3),
b<d2i_\fI\s-1TYPE\s0\fR\fBparams()\fR> with \fBd2i_KeyParams\fR\|(3),
b<d2i_\fI\s-1TYPE\s0\fR\fB_PUBKEY()\fR> with \fBd2i_PUBKEY\fR\|(3),
b<i2d_\fI\s-1TYPE\s0\fR\fBPrivateKey()\fR> with \fBi2d_PrivateKey\fR\|(3),
b<i2d_\fI\s-1TYPE\s0\fR\fBPublicKey()\fR> with \fBi2d_PublicKey\fR\|(3),
b<i2d_\fI\s-1TYPE\s0\fR\fBparams()\fR> with \fBi2d_KeyParams\fR\|(3),
b<i2d_\fI\s-1TYPE\s0\fR\fB_PUBKEY()\fR> with \fBi2d_PUBKEY\fR\|(3).
A caveat is that \fBi2d_PrivateKey\fR\|(3) may output a \s-1DER\s0 encoded PKCS#8
outermost structure instead of the type specific structure, and that
\&\fBd2i_PrivateKey\fR\|(3) recognises and unpacks a PKCS#8 structures.
.IP "\(bu" 4
Use \s-1\fBOSSL_DECODER\s0\fR\|(3) and \s-1\fBOSSL_ENCODER\s0\fR\|(3). How to migrate is described
below. All those descriptions assume that the key to be encoded is in the
variable \fIpkey\fR.
.PP
\fIMigrating \f(BIi2d\fI functions to \f(BI\s-1OSSL_ENCODER\s0\fI\fR
.IX Subsection "Migrating i2d functions to OSSL_ENCODER"
.PP
The exact \s-1\fBOSSL_ENCODER\s0\fR\|(3) output is driven by arguments rather than by
function names. The sample code to get \s-1DER\s0 encoded output in a type
specific structure is uniform, the only things that vary are the selection
of what part of the \fB\s-1EVP_PKEY\s0\fR should be output, and the structure. The
\&\fBi2d\fR functions names can therefore be translated into two variables,
\&\fIselection\fR and \fIstructure\fR as follows:
.IP "\fBi2d_\f(BI\s-1TYPE\s0\fBPrivateKey\fR() translates into:" 4
.IX Item "i2d_TYPEPrivateKey() translates into:"
.Vb 2
\& int selection = EVP_PKEY_PRIVATE_KEY;
\& const char *structure = "type\-specific";
.Ve
.IP "\fBi2d_\f(BI\s-1TYPE\s0\fBPublicKey\fR() translates into:" 4
.IX Item "i2d_TYPEPublicKey() translates into:"
.Vb 2
\& int selection = EVP_PKEY_PUBLIC_KEY;
\& const char *structure = "type\-specific";
.Ve
.IP "\fBi2d_\f(BI\s-1TYPE\s0\fBparams\fR() translates into:" 4
.IX Item "i2d_TYPEparams() translates into:"
.Vb 2
\& int selection = EVP_PKEY_PARAMETERS;
\& const char *structure = "type\-specific";
.Ve
.IP "\fBi2d_\f(BI\s-1TYPE\s0\fB_PUBKEY\fR() translates into:" 4
.IX Item "i2d_TYPE_PUBKEY() translates into:"
.Vb 2
\& int selection = EVP_PKEY_PUBLIC_KEY;
\& const char *structure = "SubjectPublicKeyInfo";
.Ve
.PP
The following sample code does the rest of the work:
.PP
.Vb 10
\& unsigned char *p = buffer; /* |buffer| is supplied by the caller */
\& size_t len = buffer_size; /* assumed be the size of |buffer| */
\& OSSL_ENCODER_CTX *ctx =
\& OSSL_ENCODER_CTX_new_for_pkey(pkey, selection, "DER", structure,
\& NULL, NULL);
\& if (ctx == NULL) {
\& /* fatal error handling */
\& }
\& if (OSSL_ENCODER_CTX_get_num_encoders(ctx) == 0) {
\& OSSL_ENCODER_CTX_free(ctx);
\& /* non\-fatal error handling */
\& }
\& if (!OSSL_ENCODER_to_data(ctx, &p, &len)) {
\& OSSL_ENCODER_CTX_free(ctx);
\& /* error handling */
\& }
\& OSSL_ENCODER_CTX_free(ctx);
.Ve
.SH "NOTES"
.IX Header "NOTES"
The letters \fBi\fR and \fBd\fR in \fBi2d_\f(BI\s-1TYPE\s0\fB\fR() stand for
\&\*(L"internal\*(R" (that is, an internal C structure) and \*(L"\s-1DER\*(R"\s0 respectively.
So \fBi2d_\f(BI\s-1TYPE\s0\fB\fR() converts from internal to \s-1DER.\s0
.PP
The functions can also understand \fB\s-1BER\s0\fR forms.
.PP
The actual \s-1TYPE\s0 structure passed to \fBi2d_\f(BI\s-1TYPE\s0\fB\fR() must be a valid
populated \fB\f(BI\s-1TYPE\s0\fB\fR structure \*(-- it \fBcannot\fR simply be fed with an
empty structure such as that returned by \fBTYPE_new()\fR.
.PP
The encoded data is in binary form and may contain embedded zeros.
Therefore, any \s-1FILE\s0 pointers or BIOs should be opened in binary mode.
Functions such as \fBstrlen()\fR will \fBnot\fR return the correct length
of the encoded structure.
.PP
The ways that \fI*ppin\fR and \fI*ppout\fR are incremented after the operation
can trap the unwary. See the \fB\s-1WARNINGS\s0\fR section in \fBd2i_X509\fR\|(3) for some
common errors.
The reason for this-auto increment behaviour is to reflect a typical
usage of \s-1ASN1\s0 functions: after one structure is encoded or decoded
another will be processed after it.
.PP
The following points about the data types might be useful:
.IP "\fB\s-1DSA_PUBKEY\s0\fR" 4
.IX Item "DSA_PUBKEY"
Represents a \s-1DSA\s0 public key using a \fBSubjectPublicKeyInfo\fR structure.
.IP "\fBDSAPublicKey\fR, \fBDSAPrivateKey\fR" 4
.IX Item "DSAPublicKey, DSAPrivateKey"
Use a non-standard OpenSSL format and should be avoided; use \fB\s-1DSA_PUBKEY\s0\fR,
\&\fBPEM_write_PrivateKey\fR\|(3), or similar instead.
.SH "RETURN VALUES"
.IX Header "RETURN VALUES"
\&\fBd2i_\f(BI\s-1TYPE\s0\fB\fR(), \fBd2i_\f(BI\s-1TYPE\s0\fB_bio\fR() and \fBd2i_\f(BI\s-1TYPE\s0\fB_fp\fR() return a valid
\&\fB\f(BI\s-1TYPE\s0\fB\fR structure or \s-1NULL\s0 if an error occurs. If the \*(L"reuse\*(R" capability has
been used with a valid structure being passed in via \fIa\fR, then the object is
freed in the event of error and \fI*a\fR is set to \s-1NULL.\s0
.PP
\&\fBi2d_\f(BI\s-1TYPE\s0\fB\fR() returns the number of bytes successfully encoded or a negative
value if an error occurs.
.PP
\&\fBi2d_\f(BI\s-1TYPE\s0\fB_bio\fR() and \fBi2d_\f(BI\s-1TYPE\s0\fB_fp\fR() return 1 for success and 0 if an
error occurs.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\s-1\fBOSSL_ENCODER\s0\fR\|(3), \s-1\fBOSSL_DECODER\s0\fR\|(3),
\&\fBd2i_PrivateKey\fR\|(3), \fBd2i_PublicKey\fR\|(3), \fBd2i_KeyParams\fR\|(3),
\&\fBd2i_PUBKEY\fR\|(3),
\&\fBi2d_PrivateKey\fR\|(3), \fBi2d_PublicKey\fR\|(3), \fBi2d_KeyParams\fR\|(3),
\&\fBi2d_PUBKEY\fR\|(3)
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2020\-2021 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.