Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
//===- CalledOnceCheck.cpp - Check 'called once' parameters ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/Analyses/CalledOnceCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/BitmaskEnum.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <memory>

using namespace clang;

namespace {
static constexpr unsigned EXPECTED_MAX_NUMBER_OF_PARAMS = 2;
template <class T>
using ParamSizedVector = llvm::SmallVector<T, EXPECTED_MAX_NUMBER_OF_PARAMS>;
static constexpr unsigned EXPECTED_NUMBER_OF_BASIC_BLOCKS = 8;
template <class T>
using CFGSizedVector = llvm::SmallVector<T, EXPECTED_NUMBER_OF_BASIC_BLOCKS>;
constexpr llvm::StringLiteral CONVENTIONAL_NAMES[] = {
    "completionHandler", "completion",      "withCompletionHandler",
    "withCompletion",    "completionBlock", "withCompletionBlock",
    "replyTo",           "reply",           "withReplyTo"};
constexpr llvm::StringLiteral CONVENTIONAL_SUFFIXES[] = {
    "WithCompletionHandler", "WithCompletion", "WithCompletionBlock",
    "WithReplyTo", "WithReply"};
constexpr llvm::StringLiteral CONVENTIONAL_CONDITIONS[] = {
    "error", "cancel", "shouldCall", "done", "OK", "success"};

struct KnownCalledOnceParameter {
  llvm::StringLiteral FunctionName;
  unsigned ParamIndex;
};
constexpr KnownCalledOnceParameter KNOWN_CALLED_ONCE_PARAMETERS[] = {
    {llvm::StringLiteral{"dispatch_async"}, 1},
    {llvm::StringLiteral{"dispatch_async_and_wait"}, 1},
    {llvm::StringLiteral{"dispatch_after"}, 2},
    {llvm::StringLiteral{"dispatch_sync"}, 1},
    {llvm::StringLiteral{"dispatch_once"}, 1},
    {llvm::StringLiteral{"dispatch_barrier_async"}, 1},
    {llvm::StringLiteral{"dispatch_barrier_async_and_wait"}, 1},
    {llvm::StringLiteral{"dispatch_barrier_sync"}, 1}};

class ParameterStatus {
public:
  // Status kind is basically the main part of parameter's status.
  // The kind represents our knowledge (so far) about a tracked parameter
  // in the context of this analysis.
  //
  // Since we want to report on missing and extraneous calls, we need to
  // track the fact whether paramater was called or not.  This automatically
  // decides two kinds: `NotCalled` and `Called`.
  //
  // One of the erroneous situations is the case when parameter is called only
  // on some of the paths.  We could've considered it `NotCalled`, but we want
  // to report double call warnings even if these two calls are not guaranteed
  // to happen in every execution.  We also don't want to have it as `Called`
  // because not calling tracked parameter on all of the paths is an error
  // on its own.  For these reasons, we need to have a separate kind,
  // `MaybeCalled`, and change `Called` to `DefinitelyCalled` to avoid
  // confusion.
  //
  // Two violations of calling parameter more than once and not calling it on
  // every path are not, however, mutually exclusive.  In situations where both
  // violations take place, we prefer to report ONLY double call.  It's always
  // harder to pinpoint a bug that has arisen when a user neglects to take the
  // right action (and therefore, no action is taken), than when a user takes
  // the wrong action.  And, in order to remember that we already reported
  // a double call, we need another kind: `Reported`.
  //
  // Our analysis is intra-procedural and, while in the perfect world,
  // developers only use tracked parameters to call them, in the real world,
  // the picture might be different.  Parameters can be stored in global
  // variables or leaked into other functions that we know nothing about.
  // We try to be lenient and trust users.  Another kind `Escaped` reflects
  // such situations.  We don't know if it gets called there or not, but we
  // should always think of `Escaped` as the best possible option.
  //
  // Some of the paths in the analyzed functions might end with a call
  // to noreturn functions.  Such paths are not required to have parameter
  // calls and we want to track that.  For the purposes of better diagnostics,
  // we don't want to reuse `Escaped` and, thus, have another kind `NoReturn`.
  //
  // Additionally, we have `NotVisited` kind that tells us nothing about
  // a tracked parameter, but is used for tracking analyzed (aka visited)
  // basic blocks.
  //
  // If we consider `|` to be a JOIN operation of two kinds coming from
  // two different paths, the following properties must hold:
  //
  //   1. for any Kind K: K | K == K
  //      Joining two identical kinds should result in the same kind.
  //
  //   2. for any Kind K: Reported | K == Reported
  //      Doesn't matter on which path it was reported, it still is.
  //
  //   3. for any Kind K: NoReturn | K == K
  //      We can totally ignore noreturn paths during merges.
  //
  //   4. DefinitelyCalled | NotCalled == MaybeCalled
  //      Called on one path, not called on another - that's simply
  //      a definition for MaybeCalled.
  //
  //   5. for any Kind K in [DefinitelyCalled, NotCalled, MaybeCalled]:
  //      Escaped | K == K
  //      Escaped mirrors other statuses after joins.
  //      Every situation, when we join any of the listed kinds K,
  //      is a violation.  For this reason, in order to assume the
  //      best outcome for this escape, we consider it to be the
  //      same as the other path.
  //
  //   6. for any Kind K in [DefinitelyCalled, NotCalled]:
  //      MaybeCalled | K == MaybeCalled
  //      MaybeCalled should basically stay after almost every join.
  enum Kind {
    // No-return paths should be absolutely transparent for the analysis.
    // 0x0 is the identity element for selected join operation (binary or).
    NoReturn = 0x0, /* 0000 */
    // Escaped marks situations when marked parameter escaped into
    // another function (so we can assume that it was possibly called there).
    Escaped = 0x1, /* 0001 */
    // Parameter was definitely called once at this point.
    DefinitelyCalled = 0x3, /* 0011 */
    // Kinds less or equal to NON_ERROR_STATUS are not considered errors.
    NON_ERROR_STATUS = DefinitelyCalled,
    // Parameter was not yet called.
    NotCalled = 0x5, /* 0101 */
    // Parameter was not called at least on one path leading to this point,
    // while there is also at least one path that it gets called.
    MaybeCalled = 0x7, /* 0111 */
    // Parameter was not yet analyzed.
    NotVisited = 0x8, /* 1000 */
    // We already reported a violation and stopped tracking calls for this
    // parameter.
    Reported = 0x15, /* 1111 */
    LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ Reported)
  };

  constexpr ParameterStatus() = default;
  /* implicit */ ParameterStatus(Kind K) : StatusKind(K) {
    assert(!seenAnyCalls(K) && "Can't initialize status without a call");
  }
  ParameterStatus(Kind K, const Expr *Call) : StatusKind(K), Call(Call) {
    assert(seenAnyCalls(K) && "This kind is not supposed to have a call");
  }

  const Expr &getCall() const {
    assert(seenAnyCalls(getKind()) && "ParameterStatus doesn't have a call");
    return *Call;
  }
  static bool seenAnyCalls(Kind K) {
    return (K & DefinitelyCalled) == DefinitelyCalled && K != Reported;
  }
  bool seenAnyCalls() const { return seenAnyCalls(getKind()); }

  static bool isErrorStatus(Kind K) { return K > NON_ERROR_STATUS; }
  bool isErrorStatus() const { return isErrorStatus(getKind()); }

  Kind getKind() const { return StatusKind; }

  void join(const ParameterStatus &Other) {
    // If we have a pointer already, let's keep it.
    // For the purposes of the analysis, it doesn't really matter
    // which call we report.
    //
    // If we don't have a pointer, let's take whatever gets joined.
    if (!Call) {
      Call = Other.Call;
    }
    // Join kinds.
    StatusKind |= Other.getKind();
  }

  bool operator==(const ParameterStatus &Other) const {
    // We compare only kinds, pointers on their own is only additional
    // information.
    return getKind() == Other.getKind();
  }

private:
  // It would've been a perfect place to use llvm::PointerIntPair, but
  // unfortunately NumLowBitsAvailable for clang::Expr had been reduced to 2.
  Kind StatusKind = NotVisited;
  const Expr *Call = nullptr;
};

/// State aggregates statuses of all tracked parameters.
class State {
public:
  State(unsigned Size, ParameterStatus::Kind K = ParameterStatus::NotVisited)
      : ParamData(Size, K) {}

  /// Return status of a parameter with the given index.
  /// \{
  ParameterStatus &getStatusFor(unsigned Index) { return ParamData[Index]; }
  const ParameterStatus &getStatusFor(unsigned Index) const {
    return ParamData[Index];
  }
  /// \}

  /// Return true if parameter with the given index can be called.
  bool seenAnyCalls(unsigned Index) const {
    return getStatusFor(Index).seenAnyCalls();
  }
  /// Return a reference that we consider a call.
  ///
  /// Should only be used for parameters that can be called.
  const Expr &getCallFor(unsigned Index) const {
    return getStatusFor(Index).getCall();
  }
  /// Return status kind of parameter with the given index.
  ParameterStatus::Kind getKindFor(unsigned Index) const {
    return getStatusFor(Index).getKind();
  }

  bool isVisited() const {
    return llvm::all_of(ParamData, [](const ParameterStatus &S) {
      return S.getKind() != ParameterStatus::NotVisited;
    });
  }

  // Join other state into the current state.
  void join(const State &Other) {
    assert(ParamData.size() == Other.ParamData.size() &&
           "Couldn't join statuses with different sizes");
    for (auto Pair : llvm::zip(ParamData, Other.ParamData)) {
      std::get<0>(Pair).join(std::get<1>(Pair));
    }
  }

  using iterator = ParamSizedVector<ParameterStatus>::iterator;
  using const_iterator = ParamSizedVector<ParameterStatus>::const_iterator;

  iterator begin() { return ParamData.begin(); }
  iterator end() { return ParamData.end(); }

  const_iterator begin() const { return ParamData.begin(); }
  const_iterator end() const { return ParamData.end(); }

  bool operator==(const State &Other) const {
    return ParamData == Other.ParamData;
  }

private:
  ParamSizedVector<ParameterStatus> ParamData;
};

/// A simple class that finds DeclRefExpr in the given expression.
///
/// However, we don't want to find ANY nested DeclRefExpr skipping whatever
/// expressions on our way.  Only certain expressions considered "no-op"
/// for our task are indeed skipped.
class DeclRefFinder
    : public ConstStmtVisitor<DeclRefFinder, const DeclRefExpr *> {
public:
  /// Find a DeclRefExpr in the given expression.
  ///
  /// In its most basic form (ShouldRetrieveFromComparisons == false),
  /// this function can be simply reduced to the following question:
  ///
  ///   - If expression E is used as a function argument, could we say
  ///     that DeclRefExpr nested in E is used as an argument?
  ///
  /// According to this rule, we can say that parens, casts and dereferencing
  /// (dereferencing only applied to function pointers, but this is our case)
  /// can be skipped.
  ///
  /// When we should look into comparisons the question changes to:
  ///
  ///   - If expression E is used as a condition, could we say that
  ///     DeclRefExpr is being checked?
  ///
  /// And even though, these are two different questions, they have quite a lot
  /// in common.  Actually, we can say that whatever expression answers
  /// positively the first question also fits the second question as well.
  ///
  /// In addition, we skip binary operators == and !=, and unary opeartor !.
  static const DeclRefExpr *find(const Expr *E,
                                 bool ShouldRetrieveFromComparisons = false) {
    return DeclRefFinder(ShouldRetrieveFromComparisons).Visit(E);
  }

  const DeclRefExpr *VisitDeclRefExpr(const DeclRefExpr *DR) { return DR; }

  const DeclRefExpr *VisitUnaryOperator(const UnaryOperator *UO) {
    switch (UO->getOpcode()) {
    case UO_LNot:
      // We care about logical not only if we care about comparisons.
      if (!ShouldRetrieveFromComparisons)
        return nullptr;
      LLVM_FALLTHROUGH;
    // Function pointer/references can be dereferenced before a call.
    // That doesn't make it, however, any different from a regular call.
    // For this reason, dereference operation is a "no-op".
    case UO_Deref:
      return Visit(UO->getSubExpr());
    default:
      return nullptr;
    }
  }

  const DeclRefExpr *VisitBinaryOperator(const BinaryOperator *BO) {
    if (!ShouldRetrieveFromComparisons)
      return nullptr;

    switch (BO->getOpcode()) {
    case BO_EQ:
    case BO_NE: {
      const DeclRefExpr *LHS = Visit(BO->getLHS());
      return LHS ? LHS : Visit(BO->getRHS());
    }
    default:
      return nullptr;
    }
  }

  const DeclRefExpr *VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
    return Visit(OVE->getSourceExpr());
  }

  const DeclRefExpr *VisitCallExpr(const CallExpr *CE) {
    if (!ShouldRetrieveFromComparisons)
      return nullptr;

    // We want to see through some of the boolean builtin functions
    // that we are likely to see in conditions.
    switch (CE->getBuiltinCallee()) {
    case Builtin::BI__builtin_expect:
    case Builtin::BI__builtin_expect_with_probability: {
      assert(CE->getNumArgs() >= 2);

      const DeclRefExpr *Candidate = Visit(CE->getArg(0));
      return Candidate != nullptr ? Candidate : Visit(CE->getArg(1));
    }

    case Builtin::BI__builtin_unpredictable:
      return Visit(CE->getArg(0));

    default:
      return nullptr;
    }
  }

  const DeclRefExpr *VisitExpr(const Expr *E) {
    // It is a fallback method that gets called whenever the actual type
    // of the given expression is not covered.
    //
    // We first check if we have anything to skip.  And then repeat the whole
    // procedure for a nested expression instead.
    const Expr *DeclutteredExpr = E->IgnoreParenCasts();
    return E != DeclutteredExpr ? Visit(DeclutteredExpr) : nullptr;
  }

private:
  DeclRefFinder(bool ShouldRetrieveFromComparisons)
      : ShouldRetrieveFromComparisons(ShouldRetrieveFromComparisons) {}

  bool ShouldRetrieveFromComparisons;
};

const DeclRefExpr *findDeclRefExpr(const Expr *In,
                                   bool ShouldRetrieveFromComparisons = false) {
  return DeclRefFinder::find(In, ShouldRetrieveFromComparisons);
}

const ParmVarDecl *
findReferencedParmVarDecl(const Expr *In,
                          bool ShouldRetrieveFromComparisons = false) {
  if (const DeclRefExpr *DR =
          findDeclRefExpr(In, ShouldRetrieveFromComparisons)) {
    return dyn_cast<ParmVarDecl>(DR->getDecl());
  }

  return nullptr;
}

/// Return conditions expression of a statement if it has one.
const Expr *getCondition(const Stmt *S) {
  if (!S) {
    return nullptr;
  }

  if (const auto *If = dyn_cast<IfStmt>(S)) {
    return If->getCond();
  }
  if (const auto *Ternary = dyn_cast<AbstractConditionalOperator>(S)) {
    return Ternary->getCond();
  }

  return nullptr;
}

/// A small helper class that collects all named identifiers in the given
/// expression.  It traverses it recursively, so names from deeper levels
/// of the AST will end up in the results.
/// Results might have duplicate names, if this is a problem, convert to
/// string sets afterwards.
class NamesCollector : public RecursiveASTVisitor<NamesCollector> {
public:
  static constexpr unsigned EXPECTED_NUMBER_OF_NAMES = 5;
  using NameCollection =
      llvm::SmallVector<llvm::StringRef, EXPECTED_NUMBER_OF_NAMES>;

  static NameCollection collect(const Expr *From) {
    NamesCollector Impl;
    Impl.TraverseStmt(const_cast<Expr *>(From));
    return Impl.Result;
  }

  bool VisitDeclRefExpr(const DeclRefExpr *E) {
    Result.push_back(E->getDecl()->getName());
    return true;
  }

  bool VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
    llvm::StringRef Name;

    if (E->isImplicitProperty()) {
      ObjCMethodDecl *PropertyMethodDecl = nullptr;
      if (E->isMessagingGetter()) {
        PropertyMethodDecl = E->getImplicitPropertyGetter();
      } else {
        PropertyMethodDecl = E->getImplicitPropertySetter();
      }
      assert(PropertyMethodDecl &&
             "Implicit property must have associated declaration");
      Name = PropertyMethodDecl->getSelector().getNameForSlot(0);
    } else {
      assert(E->isExplicitProperty());
      Name = E->getExplicitProperty()->getName();
    }

    Result.push_back(Name);
    return true;
  }

private:
  NamesCollector() = default;
  NameCollection Result;
};

/// Check whether the given expression mentions any of conventional names.
bool mentionsAnyOfConventionalNames(const Expr *E) {
  NamesCollector::NameCollection MentionedNames = NamesCollector::collect(E);

  return llvm::any_of(MentionedNames, [](llvm::StringRef ConditionName) {
    return llvm::any_of(
        CONVENTIONAL_CONDITIONS,
        [ConditionName](const llvm::StringLiteral &Conventional) {
          return ConditionName.contains_lower(Conventional);
        });
  });
}

/// Clarification is a simple pair of a reason why parameter is not called
/// on every path and a statement to blame.
struct Clarification {
  NeverCalledReason Reason;
  const Stmt *Location;
};

/// A helper class that can produce a clarification based on the given pair
/// of basic blocks.
class NotCalledClarifier
    : public ConstStmtVisitor<NotCalledClarifier,
                              llvm::Optional<Clarification>> {
public:
  /// The main entrypoint for the class, the function that tries to find the
  /// clarification of how to explain which sub-path starts with a CFG edge
  /// from Conditional to SuccWithoutCall.
  ///
  /// This means that this function has one precondition:
  ///   SuccWithoutCall should be a successor block for Conditional.
  ///
  /// Because clarification is not needed for non-trivial pairs of blocks
  /// (i.e. SuccWithoutCall is not the only successor), it returns meaningful
  /// results only for such cases.  For this very reason, the parent basic
  /// block, Conditional, is named that way, so it is clear what kind of
  /// block is expected.
  static llvm::Optional<Clarification>
  clarify(const CFGBlock *Conditional, const CFGBlock *SuccWithoutCall) {
    if (const Stmt *Terminator = Conditional->getTerminatorStmt()) {
      return NotCalledClarifier{Conditional, SuccWithoutCall}.Visit(Terminator);
    }
    return llvm::None;
  }

  llvm::Optional<Clarification> VisitIfStmt(const IfStmt *If) {
    return VisitBranchingBlock(If, NeverCalledReason::IfThen);
  }

  llvm::Optional<Clarification>
  VisitAbstractConditionalOperator(const AbstractConditionalOperator *Ternary) {
    return VisitBranchingBlock(Ternary, NeverCalledReason::IfThen);
  }

  llvm::Optional<Clarification> VisitSwitchStmt(const SwitchStmt *Switch) {
    const Stmt *CaseToBlame = SuccInQuestion->getLabel();
    if (!CaseToBlame) {
      // If interesting basic block is not labeled, it means that this
      // basic block does not represent any of the cases.
      return Clarification{NeverCalledReason::SwitchSkipped, Switch};
    }

    for (const SwitchCase *Case = Switch->getSwitchCaseList(); Case;
         Case = Case->getNextSwitchCase()) {
      if (Case == CaseToBlame) {
        return Clarification{NeverCalledReason::Switch, Case};
      }
    }

    llvm_unreachable("Found unexpected switch structure");
  }

  llvm::Optional<Clarification> VisitForStmt(const ForStmt *For) {
    return VisitBranchingBlock(For, NeverCalledReason::LoopEntered);
  }

  llvm::Optional<Clarification> VisitWhileStmt(const WhileStmt *While) {
    return VisitBranchingBlock(While, NeverCalledReason::LoopEntered);
  }

  llvm::Optional<Clarification>
  VisitBranchingBlock(const Stmt *Terminator, NeverCalledReason DefaultReason) {
    assert(Parent->succ_size() == 2 &&
           "Branching block should have exactly two successors");
    unsigned SuccessorIndex = getSuccessorIndex(Parent, SuccInQuestion);
    NeverCalledReason ActualReason =
        updateForSuccessor(DefaultReason, SuccessorIndex);
    return Clarification{ActualReason, Terminator};
  }

  llvm::Optional<Clarification> VisitBinaryOperator(const BinaryOperator *) {
    // We don't want to report on short-curcuit logical operations.
    return llvm::None;
  }

  llvm::Optional<Clarification> VisitStmt(const Stmt *Terminator) {
    // If we got here, we didn't have a visit function for more derived
    // classes of statement that this terminator actually belongs to.
    //
    // This is not a good scenario and should not happen in practice, but
    // at least we'll warn the user.
    return Clarification{NeverCalledReason::FallbackReason, Terminator};
  }

  static unsigned getSuccessorIndex(const CFGBlock *Parent,
                                    const CFGBlock *Child) {
    CFGBlock::const_succ_iterator It = llvm::find(Parent->succs(), Child);
    assert(It != Parent->succ_end() &&
           "Given blocks should be in parent-child relationship");
    return It - Parent->succ_begin();
  }

  static NeverCalledReason
  updateForSuccessor(NeverCalledReason ReasonForTrueBranch,
                     unsigned SuccessorIndex) {
    assert(SuccessorIndex <= 1);
    unsigned RawReason =
        static_cast<unsigned>(ReasonForTrueBranch) + SuccessorIndex;
    assert(RawReason <=
           static_cast<unsigned>(NeverCalledReason::LARGEST_VALUE));
    return static_cast<NeverCalledReason>(RawReason);
  }

private:
  NotCalledClarifier(const CFGBlock *Parent, const CFGBlock *SuccInQuestion)
      : Parent(Parent), SuccInQuestion(SuccInQuestion) {}

  const CFGBlock *Parent, *SuccInQuestion;
};

class CalledOnceChecker : public ConstStmtVisitor<CalledOnceChecker> {
public:
  static void check(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
                    bool CheckConventionalParameters) {
    CalledOnceChecker(AC, Handler, CheckConventionalParameters).check();
  }

private:
  CalledOnceChecker(AnalysisDeclContext &AC, CalledOnceCheckHandler &Handler,
                    bool CheckConventionalParameters)
      : FunctionCFG(*AC.getCFG()), AC(AC), Handler(Handler),
        CheckConventionalParameters(CheckConventionalParameters),
        CurrentState(0) {
    initDataStructures();
    assert((size() == 0 || !States.empty()) &&
           "Data structures are inconsistent");
  }

  //===----------------------------------------------------------------------===//
  //                            Initializing functions
  //===----------------------------------------------------------------------===//

  void initDataStructures() {
    const Decl *AnalyzedDecl = AC.getDecl();

    if (const auto *Function = dyn_cast<FunctionDecl>(AnalyzedDecl)) {
      findParamsToTrack(Function);
    } else if (const auto *Method = dyn_cast<ObjCMethodDecl>(AnalyzedDecl)) {
      findParamsToTrack(Method);
    } else if (const auto *Block = dyn_cast<BlockDecl>(AnalyzedDecl)) {
      findCapturesToTrack(Block);
      findParamsToTrack(Block);
    }

    // Have something to track, let's init states for every block from the CFG.
    if (size() != 0) {
      States =
          CFGSizedVector<State>(FunctionCFG.getNumBlockIDs(), State(size()));
    }
  }

  void findCapturesToTrack(const BlockDecl *Block) {
    for (const auto &Capture : Block->captures()) {
      if (const auto *P = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
        // Parameter DeclContext is its owning function or method.
        const DeclContext *ParamContext = P->getDeclContext();
        if (shouldBeCalledOnce(ParamContext, P)) {
          TrackedParams.push_back(P);
        }
      }
    }
  }

  template <class FunctionLikeDecl>
  void findParamsToTrack(const FunctionLikeDecl *Function) {
    for (unsigned Index : llvm::seq<unsigned>(0u, Function->param_size())) {
      if (shouldBeCalledOnce(Function, Index)) {
        TrackedParams.push_back(Function->getParamDecl(Index));
      }
    }
  }

  //===----------------------------------------------------------------------===//
  //                         Main logic 'check' functions
  //===----------------------------------------------------------------------===//

  void check() {
    // Nothing to check here: we don't have marked parameters.
    if (size() == 0 || isPossiblyEmptyImpl())
      return;

    assert(
        llvm::none_of(States, [](const State &S) { return S.isVisited(); }) &&
        "None of the blocks should be 'visited' before the analysis");

    // For our task, both backward and forward approaches suite well.
    // However, in order to report better diagnostics, we decided to go with
    // backward analysis.
    //
    // Let's consider the following CFG and how forward and backward analyses
    // will work for it.
    //
    //                  FORWARD:           |                 BACKWARD:
    //                    #1               |                     #1
    //                +---------+          |               +-----------+
    //                |   if    |          |               |MaybeCalled|
    //                +---------+          |               +-----------+
    //                |NotCalled|          |               |    if     |
    //                +---------+          |               +-----------+
    //                 /       \           |                 /       \
    //         #2     /         \  #3      |         #2     /         \  #3
    // +----------------+      +---------+ | +----------------+      +---------+
    // |     foo()      |      |   ...   | | |DefinitelyCalled|      |NotCalled|
    // +----------------+      +---------+ | +----------------+      +---------+
    // |DefinitelyCalled|      |NotCalled| | |     foo()      |      |   ...   |
    // +----------------+      +---------+ | +----------------+      +---------+
    //                \         /          |                \         /
    //                 \  #4   /           |                 \  #4   /
    //               +-----------+         |                +---------+
    //               |    ...    |         |                |NotCalled|
    //               +-----------+         |                +---------+
    //               |MaybeCalled|         |                |   ...   |
    //               +-----------+         |                +---------+
    //
    // The most natural way to report lacking call in the block #3 would be to
    // message that the false branch of the if statement in the block #1 doesn't
    // have a call.  And while with the forward approach we'll need to find a
    // least common ancestor or something like that to find the 'if' to blame,
    // backward analysis gives it to us out of the box.
    BackwardDataflowWorklist Worklist(FunctionCFG, AC);

    // Let's visit EXIT.
    const CFGBlock *Exit = &FunctionCFG.getExit();
    assignState(Exit, State(size(), ParameterStatus::NotCalled));
    Worklist.enqueuePredecessors(Exit);

    while (const CFGBlock *BB = Worklist.dequeue()) {
      assert(BB && "Worklist should filter out null blocks");
      check(BB);
      assert(CurrentState.isVisited() &&
             "After the check, basic block should be visited");

      // Traverse successor basic blocks if the status of this block
      // has changed.
      if (assignState(BB, CurrentState)) {
        Worklist.enqueuePredecessors(BB);
      }
    }

    // Check that we have all tracked parameters at the last block.
    // As we are performing a backward version of the analysis,
    // it should be the ENTRY block.
    checkEntry(&FunctionCFG.getEntry());
  }

  void check(const CFGBlock *BB) {
    // We start with a state 'inherited' from all the successors.
    CurrentState = joinSuccessors(BB);
    assert(CurrentState.isVisited() &&
           "Shouldn't start with a 'not visited' state");

    // This is the 'exit' situation, broken promises are probably OK
    // in such scenarios.
    if (BB->hasNoReturnElement()) {
      markNoReturn();
      // This block still can have calls (even multiple calls) and
      // for this reason there is no early return here.
    }

    // We use a backward dataflow propagation and for this reason we
    // should traverse basic blocks bottom-up.
    for (const CFGElement &Element : llvm::reverse(*BB)) {
      if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
        check(S->getStmt());
      }
    }
  }
  void check(const Stmt *S) { Visit(S); }

  void checkEntry(const CFGBlock *Entry) {
    // We finalize this algorithm with the ENTRY block because
    // we use a backward version of the analysis.  This is where
    // we can judge that some of the tracked parameters are not called on
    // every path from ENTRY to EXIT.

    const State &EntryStatus = getState(Entry);
    llvm::BitVector NotCalledOnEveryPath(size(), false);
    llvm::BitVector NotUsedOnEveryPath(size(), false);

    // Check if there are no calls of the marked parameter at all
    for (const auto &IndexedStatus : llvm::enumerate(EntryStatus)) {
      const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());

      switch (IndexedStatus.value().getKind()) {
      case ParameterStatus::NotCalled:
        // If there were places where this parameter escapes (aka being used),
        // we can provide a more useful diagnostic by pointing at the exact
        // branches where it is not even mentioned.
        if (!hasEverEscaped(IndexedStatus.index())) {
          // This parameter is was not used at all, so we should report the
          // most generic version of the warning.
          if (isCaptured(Parameter)) {
            // We want to specify that it was captured by the block.
            Handler.handleCapturedNeverCalled(Parameter, AC.getDecl(),
                                              !isExplicitlyMarked(Parameter));
          } else {
            Handler.handleNeverCalled(Parameter,
                                      !isExplicitlyMarked(Parameter));
          }
        } else {
          // Mark it as 'interesting' to figure out which paths don't even
          // have escapes.
          NotUsedOnEveryPath[IndexedStatus.index()] = true;
        }

        break;
      case ParameterStatus::MaybeCalled:
        // If we have 'maybe called' at this point, we have an error
        // that there is at least one path where this parameter
        // is not called.
        //
        // However, reporting the warning with only that information can be
        // too vague for the users.  For this reason, we mark such parameters
        // as "interesting" for further analysis.
        NotCalledOnEveryPath[IndexedStatus.index()] = true;
        break;
      default:
        break;
      }
    }

    // Early exit if we don't have parameters for extra analysis...
    if (NotCalledOnEveryPath.none() && NotUsedOnEveryPath.none() &&
        // ... or if we've seen variables with cleanup functions.
        // We can't reason that we've seen every path in this case,
        // and thus abandon reporting any warnings that imply that.
        !FunctionHasCleanupVars)
      return;

    // We are looking for a pair of blocks A, B so that the following is true:
    //   * A is a predecessor of B
    //   * B is marked as NotCalled
    //   * A has at least one successor marked as either
    //     Escaped or DefinitelyCalled
    //
    // In that situation, it is guaranteed that B is the first block of the path
    // where the user doesn't call or use parameter in question.
    //
    // For this reason, branch A -> B can be used for reporting.
    //
    // This part of the algorithm is guarded by a condition that the function
    // does indeed have a violation of contract.  For this reason, we can
    // spend more time to find a good spot to place the warning.
    //
    // The following algorithm has the worst case complexity of O(V + E),
    // where V is the number of basic blocks in FunctionCFG,
    //       E is the number of edges between blocks in FunctionCFG.
    for (const CFGBlock *BB : FunctionCFG) {
      if (!BB)
        continue;

      const State &BlockState = getState(BB);

      for (unsigned Index : llvm::seq(0u, size())) {
        // We don't want to use 'isLosingCall' here because we want to report
        // the following situation as well:
        //
        //           MaybeCalled
        //            |  ...  |
        //    MaybeCalled   NotCalled
        //
        // Even though successor is not 'DefinitelyCalled', it is still useful
        // to report it, it is still a path without a call.
        if (NotCalledOnEveryPath[Index] &&
            BlockState.getKindFor(Index) == ParameterStatus::MaybeCalled) {

          findAndReportNotCalledBranches(BB, Index);
        } else if (NotUsedOnEveryPath[Index] &&
                   isLosingEscape(BlockState, BB, Index)) {

          findAndReportNotCalledBranches(BB, Index, /* IsEscape = */ true);
        }
      }
    }
  }

  /// Check potential call of a tracked parameter.
  void checkDirectCall(const CallExpr *Call) {
    if (auto Index = getIndexOfCallee(Call)) {
      processCallFor(*Index, Call);
    }
  }

  /// Check the call expression for being an indirect call of one of the tracked
  /// parameters.  It is indirect in the sense that this particular call is not
  /// calling the parameter itself, but rather uses it as the argument.
  template <class CallLikeExpr>
  void checkIndirectCall(const CallLikeExpr *CallOrMessage) {
    // CallExpr::arguments does not interact nicely with llvm::enumerate.
    llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
        CallOrMessage->getArgs(), CallOrMessage->getNumArgs());

    // Let's check if any of the call arguments is a point of interest.
    for (const auto &Argument : llvm::enumerate(Arguments)) {
      if (auto Index = getIndexOfExpression(Argument.value())) {
        if (shouldBeCalledOnce(CallOrMessage, Argument.index())) {
          // If the corresponding parameter is marked as 'called_once' we should
          // consider it as a call.
          processCallFor(*Index, CallOrMessage);
        } else {
          // Otherwise, we mark this parameter as escaped, which can be
          // interpreted both as called or not called depending on the context.
          processEscapeFor(*Index);
        }
        // Otherwise, let's keep the state as it is.
      }
    }
  }

  /// Process call of the parameter with the given index
  void processCallFor(unsigned Index, const Expr *Call) {
    ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);

    if (CurrentParamStatus.seenAnyCalls()) {

      // At this point, this parameter was called, so this is a second call.
      const ParmVarDecl *Parameter = getParameter(Index);
      Handler.handleDoubleCall(
          Parameter, &CurrentState.getCallFor(Index), Call,
          !isExplicitlyMarked(Parameter),
          // We are sure that the second call is definitely
          // going to happen if the status is 'DefinitelyCalled'.
          CurrentParamStatus.getKind() == ParameterStatus::DefinitelyCalled);

      // Mark this parameter as already reported on, so we don't repeat
      // warnings.
      CurrentParamStatus = ParameterStatus::Reported;

    } else if (CurrentParamStatus.getKind() != ParameterStatus::Reported) {
      // If we didn't report anything yet, let's mark this parameter
      // as called.
      ParameterStatus Called(ParameterStatus::DefinitelyCalled, Call);
      CurrentParamStatus = Called;
    }
  }

  /// Process escape of the parameter with the given index
  void processEscapeFor(unsigned Index) {
    ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(Index);

    // Escape overrides whatever error we think happened.
    if (CurrentParamStatus.isErrorStatus()) {
      CurrentParamStatus = ParameterStatus::Escaped;
    }
  }

  void findAndReportNotCalledBranches(const CFGBlock *Parent, unsigned Index,
                                      bool IsEscape = false) {
    for (const CFGBlock *Succ : Parent->succs()) {
      if (!Succ)
        continue;

      if (getState(Succ).getKindFor(Index) == ParameterStatus::NotCalled) {
        assert(Parent->succ_size() >= 2 &&
               "Block should have at least two successors at this point");
        if (auto Clarification = NotCalledClarifier::clarify(Parent, Succ)) {
          const ParmVarDecl *Parameter = getParameter(Index);
          Handler.handleNeverCalled(
              Parameter, AC.getDecl(), Clarification->Location,
              Clarification->Reason, !IsEscape, !isExplicitlyMarked(Parameter));
        }
      }
    }
  }

  //===----------------------------------------------------------------------===//
  //                   Predicate functions to check parameters
  //===----------------------------------------------------------------------===//

  /// Return true if parameter is explicitly marked as 'called_once'.
  static bool isExplicitlyMarked(const ParmVarDecl *Parameter) {
    return Parameter->hasAttr<CalledOnceAttr>();
  }

  /// Return true if the given name matches conventional pattens.
  static bool isConventional(llvm::StringRef Name) {
    return llvm::count(CONVENTIONAL_NAMES, Name) != 0;
  }

  /// Return true if the given name has conventional suffixes.
  static bool hasConventionalSuffix(llvm::StringRef Name) {
    return llvm::any_of(CONVENTIONAL_SUFFIXES, [Name](llvm::StringRef Suffix) {
      return Name.endswith(Suffix);
    });
  }

  /// Return true if the given type can be used for conventional parameters.
  static bool isConventional(QualType Ty) {
    if (!Ty->isBlockPointerType()) {
      return false;
    }

    QualType BlockType = Ty->castAs<BlockPointerType>()->getPointeeType();
    // Completion handlers should have a block type with void return type.
    return BlockType->castAs<FunctionType>()->getReturnType()->isVoidType();
  }

  /// Return true if the only parameter of the function is conventional.
  static bool isOnlyParameterConventional(const FunctionDecl *Function) {
    IdentifierInfo *II = Function->getIdentifier();
    return Function->getNumParams() == 1 && II &&
           hasConventionalSuffix(II->getName());
  }

  /// Return true/false if 'swift_async' attribute states that the given
  /// parameter is conventionally called once.
  /// Return llvm::None if the given declaration doesn't have 'swift_async'
  /// attribute.
  static llvm::Optional<bool> isConventionalSwiftAsync(const Decl *D,
                                                       unsigned ParamIndex) {
    if (const SwiftAsyncAttr *A = D->getAttr<SwiftAsyncAttr>()) {
      if (A->getKind() == SwiftAsyncAttr::None) {
        return false;
      }

      return A->getCompletionHandlerIndex().getASTIndex() == ParamIndex;
    }
    return llvm::None;
  }

  /// Return true if the specified selector represents init method.
  static bool isInitMethod(Selector MethodSelector) {
    return MethodSelector.getMethodFamily() == OMF_init;
  }

  /// Return true if the specified selector piece matches conventions.
  static bool isConventionalSelectorPiece(Selector MethodSelector,
                                          unsigned PieceIndex,
                                          QualType PieceType) {
    if (!isConventional(PieceType) || isInitMethod(MethodSelector)) {
      return false;
    }

    if (MethodSelector.getNumArgs() == 1) {
      assert(PieceIndex == 0);
      return hasConventionalSuffix(MethodSelector.getNameForSlot(0));
    }

    llvm::StringRef PieceName = MethodSelector.getNameForSlot(PieceIndex);
    return isConventional(PieceName) || hasConventionalSuffix(PieceName);
  }

  bool shouldBeCalledOnce(const ParmVarDecl *Parameter) const {
    return isExplicitlyMarked(Parameter) ||
           (CheckConventionalParameters &&
            (isConventional(Parameter->getName()) ||
             hasConventionalSuffix(Parameter->getName())) &&
            isConventional(Parameter->getType()));
  }

  bool shouldBeCalledOnce(const DeclContext *ParamContext,
                          const ParmVarDecl *Param) {
    unsigned ParamIndex = Param->getFunctionScopeIndex();
    if (const auto *Function = dyn_cast<FunctionDecl>(ParamContext)) {
      return shouldBeCalledOnce(Function, ParamIndex);
    }
    if (const auto *Method = dyn_cast<ObjCMethodDecl>(ParamContext)) {
      return shouldBeCalledOnce(Method, ParamIndex);
    }
    return shouldBeCalledOnce(Param);
  }

  bool shouldBeCalledOnce(const BlockDecl *Block, unsigned ParamIndex) const {
    return shouldBeCalledOnce(Block->getParamDecl(ParamIndex));
  }

  bool shouldBeCalledOnce(const FunctionDecl *Function,
                          unsigned ParamIndex) const {
    if (ParamIndex >= Function->getNumParams()) {
      return false;
    }
    // 'swift_async' goes first and overrides anything else.
    if (auto ConventionalAsync =
            isConventionalSwiftAsync(Function, ParamIndex)) {
      return ConventionalAsync.getValue();
    }

    return shouldBeCalledOnce(Function->getParamDecl(ParamIndex)) ||
           (CheckConventionalParameters &&
            isOnlyParameterConventional(Function));
  }

  bool shouldBeCalledOnce(const ObjCMethodDecl *Method,
                          unsigned ParamIndex) const {
    Selector MethodSelector = Method->getSelector();
    if (ParamIndex >= MethodSelector.getNumArgs()) {
      return false;
    }

    // 'swift_async' goes first and overrides anything else.
    if (auto ConventionalAsync = isConventionalSwiftAsync(Method, ParamIndex)) {
      return ConventionalAsync.getValue();
    }

    const ParmVarDecl *Parameter = Method->getParamDecl(ParamIndex);
    return shouldBeCalledOnce(Parameter) ||
           (CheckConventionalParameters &&
            isConventionalSelectorPiece(MethodSelector, ParamIndex,
                                        Parameter->getType()));
  }

  bool shouldBeCalledOnce(const CallExpr *Call, unsigned ParamIndex) const {
    const FunctionDecl *Function = Call->getDirectCallee();
    return Function && shouldBeCalledOnce(Function, ParamIndex);
  }

  bool shouldBeCalledOnce(const ObjCMessageExpr *Message,
                          unsigned ParamIndex) const {
    const ObjCMethodDecl *Method = Message->getMethodDecl();
    return Method && ParamIndex < Method->param_size() &&
           shouldBeCalledOnce(Method, ParamIndex);
  }

  //===----------------------------------------------------------------------===//
  //                               Utility methods
  //===----------------------------------------------------------------------===//

  bool isCaptured(const ParmVarDecl *Parameter) const {
    if (const BlockDecl *Block = dyn_cast<BlockDecl>(AC.getDecl())) {
      return Block->capturesVariable(Parameter);
    }
    return false;
  }

  // Return a call site where the block is called exactly once or null otherwise
  const Expr *getBlockGuaraneedCallSite(const BlockExpr *Block) const {
    ParentMap &PM = AC.getParentMap();

    // We don't want to track the block through assignments and so on, instead
    // we simply see how the block used and if it's used directly in a call,
    // we decide based on call to what it is.
    //
    // In order to do this, we go up the parents of the block looking for
    // a call or a message expressions.  These might not be immediate parents
    // of the actual block expression due to casts and parens, so we skip them.
    for (const Stmt *Prev = Block, *Current = PM.getParent(Block);
         Current != nullptr; Prev = Current, Current = PM.getParent(Current)) {
      // Skip no-op (for our case) operations.
      if (isa<CastExpr>(Current) || isa<ParenExpr>(Current))
        continue;

      // At this point, Prev represents our block as an immediate child of the
      // call.
      if (const auto *Call = dyn_cast<CallExpr>(Current)) {
        // It might be the call of the Block itself...
        if (Call->getCallee() == Prev)
          return Call;

        // ...or it can be an indirect call of the block.
        return shouldBlockArgumentBeCalledOnce(Call, Prev) ? Call : nullptr;
      }
      if (const auto *Message = dyn_cast<ObjCMessageExpr>(Current)) {
        return shouldBlockArgumentBeCalledOnce(Message, Prev) ? Message
                                                              : nullptr;
      }

      break;
    }

    return nullptr;
  }

  template <class CallLikeExpr>
  bool shouldBlockArgumentBeCalledOnce(const CallLikeExpr *CallOrMessage,
                                       const Stmt *BlockArgument) const {
    // CallExpr::arguments does not interact nicely with llvm::enumerate.
    llvm::ArrayRef<const Expr *> Arguments = llvm::makeArrayRef(
        CallOrMessage->getArgs(), CallOrMessage->getNumArgs());

    for (const auto &Argument : llvm::enumerate(Arguments)) {
      if (Argument.value() == BlockArgument) {
        return shouldBlockArgumentBeCalledOnce(CallOrMessage, Argument.index());
      }
    }

    return false;
  }

  bool shouldBlockArgumentBeCalledOnce(const CallExpr *Call,
                                       unsigned ParamIndex) const {
    const FunctionDecl *Function = Call->getDirectCallee();
    return shouldBlockArgumentBeCalledOnce(Function, ParamIndex) ||
           shouldBeCalledOnce(Call, ParamIndex);
  }

  bool shouldBlockArgumentBeCalledOnce(const ObjCMessageExpr *Message,
                                       unsigned ParamIndex) const {
    // At the moment, we don't have any Obj-C methods we want to specifically
    // check in here.
    return shouldBeCalledOnce(Message, ParamIndex);
  }

  static bool shouldBlockArgumentBeCalledOnce(const FunctionDecl *Function,
                                              unsigned ParamIndex) {
    // There is a list of important API functions that while not following
    // conventions nor being directly annotated, still guarantee that the
    // callback parameter will be called exactly once.
    //
    // Here we check if this is the case.
    return Function &&
           llvm::any_of(KNOWN_CALLED_ONCE_PARAMETERS,
                        [Function, ParamIndex](
                            const KnownCalledOnceParameter &Reference) {
                          return Reference.FunctionName ==
                                     Function->getName() &&
                                 Reference.ParamIndex == ParamIndex;
                        });
  }

  /// Return true if the analyzed function is actually a default implementation
  /// of the method that has to be overriden.
  ///
  /// These functions can have tracked parameters, but wouldn't call them
  /// because they are not designed to perform any meaningful actions.
  ///
  /// There are a couple of flavors of such default implementations:
  ///   1. Empty methods or methods with a single return statement
  ///   2. Methods that have one block with a call to no return function
  ///   3. Methods with only assertion-like operations
  bool isPossiblyEmptyImpl() const {
    if (!isa<ObjCMethodDecl>(AC.getDecl())) {
      // We care only about functions that are not supposed to be called.
      // Only methods can be overriden.
      return false;
    }

    // Case #1 (without return statements)
    if (FunctionCFG.size() == 2) {
      // Method has only two blocks: ENTRY and EXIT.
      // This is equivalent to empty function.
      return true;
    }

    // Case #2
    if (FunctionCFG.size() == 3) {
      const CFGBlock &Entry = FunctionCFG.getEntry();
      if (Entry.succ_empty()) {
        return false;
      }

      const CFGBlock *OnlyBlock = *Entry.succ_begin();
      // Method has only one block, let's see if it has a no-return
      // element.
      if (OnlyBlock && OnlyBlock->hasNoReturnElement()) {
        return true;
      }
      // Fallthrough, CFGs with only one block can fall into #1 and #3 as well.
    }

    // Cases #1 (return statements) and #3.
    //
    // It is hard to detect that something is an assertion or came
    // from assertion.  Here we use a simple heuristic:
    //
    //   - If it came from a macro, it can be an assertion.
    //
    // Additionally, we can't assume a number of basic blocks or the CFG's
    // structure because assertions might include loops and conditions.
    return llvm::all_of(FunctionCFG, [](const CFGBlock *BB) {
      if (!BB) {
        // Unreachable blocks are totally fine.
        return true;
      }

      // Return statements can have sub-expressions that are represented as
      // separate statements of a basic block.  We should allow this.
      // This parent map will be initialized with a parent tree for all
      // subexpressions of the block's return statement (if it has one).
      std::unique_ptr<ParentMap> ReturnChildren;

      return llvm::all_of(
          llvm::reverse(*BB), // we should start with return statements, if we
                              // have any, i.e. from the bottom of the block
          [&ReturnChildren](const CFGElement &Element) {
            if (Optional<CFGStmt> S = Element.getAs<CFGStmt>()) {
              const Stmt *SuspiciousStmt = S->getStmt();

              if (isa<ReturnStmt>(SuspiciousStmt)) {
                // Let's initialize this structure to test whether
                // some further statement is a part of this return.
                ReturnChildren = std::make_unique<ParentMap>(
                    const_cast<Stmt *>(SuspiciousStmt));
                // Return statements are allowed as part of #1.
                return true;
              }

              return SuspiciousStmt->getBeginLoc().isMacroID() ||
                     (ReturnChildren &&
                      ReturnChildren->hasParent(SuspiciousStmt));
            }
            return true;
          });
    });
  }

  /// Check if parameter with the given index has ever escaped.
  bool hasEverEscaped(unsigned Index) const {
    return llvm::any_of(States, [Index](const State &StateForOneBB) {
      return StateForOneBB.getKindFor(Index) == ParameterStatus::Escaped;
    });
  }

  /// Return status stored for the given basic block.
  /// \{
  State &getState(const CFGBlock *BB) {
    assert(BB);
    return States[BB->getBlockID()];
  }
  const State &getState(const CFGBlock *BB) const {
    assert(BB);
    return States[BB->getBlockID()];
  }
  /// \}

  /// Assign status to the given basic block.
  ///
  /// Returns true when the stored status changed.
  bool assignState(const CFGBlock *BB, const State &ToAssign) {
    State &Current = getState(BB);
    if (Current == ToAssign) {
      return false;
    }

    Current = ToAssign;
    return true;
  }

  /// Join all incoming statuses for the given basic block.
  State joinSuccessors(const CFGBlock *BB) const {
    auto Succs =
        llvm::make_filter_range(BB->succs(), [this](const CFGBlock *Succ) {
          return Succ && this->getState(Succ).isVisited();
        });
    // We came to this block from somewhere after all.
    assert(!Succs.empty() &&
           "Basic block should have at least one visited successor");

    State Result = getState(*Succs.begin());

    for (const CFGBlock *Succ : llvm::drop_begin(Succs, 1)) {
      Result.join(getState(Succ));
    }

    if (const Expr *Condition = getCondition(BB->getTerminatorStmt())) {
      handleConditional(BB, Condition, Result);
    }

    return Result;
  }

  void handleConditional(const CFGBlock *BB, const Expr *Condition,
                         State &ToAlter) const {
    handleParameterCheck(BB, Condition, ToAlter);
    if (SuppressOnConventionalErrorPaths) {
      handleConventionalCheck(BB, Condition, ToAlter);
    }
  }

  void handleParameterCheck(const CFGBlock *BB, const Expr *Condition,
                            State &ToAlter) const {
    // In this function, we try to deal with the following pattern:
    //
    //   if (parameter)
    //     parameter(...);
    //
    // It's not good to show a warning here because clearly 'parameter'
    // couldn't and shouldn't be called on the 'else' path.
    //
    // Let's check if this if statement has a check involving one of
    // the tracked parameters.
    if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(
            Condition,
            /* ShouldRetrieveFromComparisons = */ true)) {
      if (const auto Index = getIndex(*Parameter)) {
        ParameterStatus &CurrentStatus = ToAlter.getStatusFor(*Index);

        // We don't want to deep dive into semantics of the check and
        // figure out if that check was for null or something else.
        // We simply trust the user that they know what they are doing.
        //
        // For this reason, in the following loop we look for the
        // best-looking option.
        for (const CFGBlock *Succ : BB->succs()) {
          if (!Succ)
            continue;

          const ParameterStatus &StatusInSucc =
              getState(Succ).getStatusFor(*Index);

          if (StatusInSucc.isErrorStatus()) {
            continue;
          }

          // Let's use this status instead.
          CurrentStatus = StatusInSucc;

          if (StatusInSucc.getKind() == ParameterStatus::DefinitelyCalled) {
            // This is the best option to have and we already found it.
            break;
          }

          // If we found 'Escaped' first, we still might find 'DefinitelyCalled'
          // on the other branch.  And we prefer the latter.
        }
      }
    }
  }

  void handleConventionalCheck(const CFGBlock *BB, const Expr *Condition,
                               State &ToAlter) const {
    // Even when the analysis is technically correct, it is a widespread pattern
    // not to call completion handlers in some scenarios.  These usually have
    // typical conditional names, such as 'error' or 'cancel'.
    if (!mentionsAnyOfConventionalNames(Condition)) {
      return;
    }

    for (const auto &IndexedStatus : llvm::enumerate(ToAlter)) {
      const ParmVarDecl *Parameter = getParameter(IndexedStatus.index());
      // Conventions do not apply to explicitly marked parameters.
      if (isExplicitlyMarked(Parameter)) {
        continue;
      }

      ParameterStatus &CurrentStatus = IndexedStatus.value();
      // If we did find that on one of the branches the user uses the callback
      // and doesn't on the other path, we believe that they know what they are
      // doing and trust them.
      //
      // There are two possible scenarios for that:
      //   1. Current status is 'MaybeCalled' and one of the branches is
      //      'DefinitelyCalled'
      //   2. Current status is 'NotCalled' and one of the branches is 'Escaped'
      if (isLosingCall(ToAlter, BB, IndexedStatus.index()) ||
          isLosingEscape(ToAlter, BB, IndexedStatus.index())) {
        CurrentStatus = ParameterStatus::Escaped;
      }
    }
  }

  bool isLosingCall(const State &StateAfterJoin, const CFGBlock *JoinBlock,
                    unsigned ParameterIndex) const {
    // Let's check if the block represents DefinitelyCalled -> MaybeCalled
    // transition.
    return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
                        ParameterStatus::MaybeCalled,
                        ParameterStatus::DefinitelyCalled);
  }

  bool isLosingEscape(const State &StateAfterJoin, const CFGBlock *JoinBlock,
                      unsigned ParameterIndex) const {
    // Let's check if the block represents Escaped -> NotCalled transition.
    return isLosingJoin(StateAfterJoin, JoinBlock, ParameterIndex,
                        ParameterStatus::NotCalled, ParameterStatus::Escaped);
  }

  bool isLosingJoin(const State &StateAfterJoin, const CFGBlock *JoinBlock,
                    unsigned ParameterIndex, ParameterStatus::Kind AfterJoin,
                    ParameterStatus::Kind BeforeJoin) const {
    assert(!ParameterStatus::isErrorStatus(BeforeJoin) &&
           ParameterStatus::isErrorStatus(AfterJoin) &&
           "It's not a losing join if statuses do not represent "
           "correct-to-error transition");

    const ParameterStatus &CurrentStatus =
        StateAfterJoin.getStatusFor(ParameterIndex);

    return CurrentStatus.getKind() == AfterJoin &&
           anySuccessorHasStatus(JoinBlock, ParameterIndex, BeforeJoin);
  }

  /// Return true if any of the successors of the given basic block has
  /// a specified status for the given parameter.
  bool anySuccessorHasStatus(const CFGBlock *Parent, unsigned ParameterIndex,
                             ParameterStatus::Kind ToFind) const {
    return llvm::any_of(
        Parent->succs(), [this, ParameterIndex, ToFind](const CFGBlock *Succ) {
          return Succ && getState(Succ).getKindFor(ParameterIndex) == ToFind;
        });
  }

  /// Check given expression that was discovered to escape.
  void checkEscapee(const Expr *E) {
    if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
      checkEscapee(*Parameter);
    }
  }

  /// Check given parameter that was discovered to escape.
  void checkEscapee(const ParmVarDecl &Parameter) {
    if (auto Index = getIndex(Parameter)) {
      processEscapeFor(*Index);
    }
  }

  /// Mark all parameters in the current state as 'no-return'.
  void markNoReturn() {
    for (ParameterStatus &PS : CurrentState) {
      PS = ParameterStatus::NoReturn;
    }
  }

  /// Check if the given assignment represents suppression and act on it.
  void checkSuppression(const BinaryOperator *Assignment) {
    // Suppression has the following form:
    //    parameter = 0;
    // 0 can be of any form (NULL, nil, etc.)
    if (auto Index = getIndexOfExpression(Assignment->getLHS())) {

      // We don't care what is written in the RHS, it could be whatever
      // we can interpret as 0.
      if (auto Constant =
              Assignment->getRHS()->IgnoreParenCasts()->getIntegerConstantExpr(
                  AC.getASTContext())) {

        ParameterStatus &CurrentParamStatus = CurrentState.getStatusFor(*Index);

        if (0 == *Constant && CurrentParamStatus.seenAnyCalls()) {
          // Even though this suppression mechanism is introduced to tackle
          // false positives for multiple calls, the fact that the user has
          // to use suppression can also tell us that we couldn't figure out
          // how different paths cancel each other out.  And if that is true,
          // we will most certainly have false positives about parameters not
          // being called on certain paths.
          //
          // For this reason, we abandon tracking this parameter altogether.
          CurrentParamStatus = ParameterStatus::Reported;
        }
      }
    }
  }

public:
  //===----------------------------------------------------------------------===//
  //                            Tree traversal methods
  //===----------------------------------------------------------------------===//

  void VisitCallExpr(const CallExpr *Call) {
    // This call might be a direct call, i.e. a parameter call...
    checkDirectCall(Call);
    // ... or an indirect call, i.e. when parameter is an argument.
    checkIndirectCall(Call);
  }

  void VisitObjCMessageExpr(const ObjCMessageExpr *Message) {
    // The most common situation that we are defending against here is
    // copying a tracked parameter.
    if (const Expr *Receiver = Message->getInstanceReceiver()) {
      checkEscapee(Receiver);
    }
    // Message expressions unlike calls, could not be direct.
    checkIndirectCall(Message);
  }

  void VisitBlockExpr(const BlockExpr *Block) {
    // Block expressions are tricky.  It is a very common practice to capture
    // completion handlers by blocks and use them there.
    // For this reason, it is important to analyze blocks and report warnings
    // for completion handler misuse in blocks.
    //
    // However, it can be quite difficult to track how the block itself is being
    // used.  The full precise anlysis of that will be similar to alias analysis
    // for completion handlers and can be too heavyweight for a compile-time
    // diagnostic.  Instead, we judge about the immediate use of the block.
    //
    // Here, we try to find a call expression where we know due to conventions,
    // annotations, or other reasons that the block is called once and only
    // once.
    const Expr *CalledOnceCallSite = getBlockGuaraneedCallSite(Block);

    // We need to report this information to the handler because in the
    // situation when we know that the block is called exactly once, we can be
    // stricter in terms of reported diagnostics.
    if (CalledOnceCallSite) {
      Handler.handleBlockThatIsGuaranteedToBeCalledOnce(Block->getBlockDecl());
    } else {
      Handler.handleBlockWithNoGuarantees(Block->getBlockDecl());
    }

    for (const auto &Capture : Block->getBlockDecl()->captures()) {
      if (const auto *Param = dyn_cast<ParmVarDecl>(Capture.getVariable())) {
        if (auto Index = getIndex(*Param)) {
          if (CalledOnceCallSite) {
            // The call site of a block can be considered a call site of the
            // captured parameter we track.
            processCallFor(*Index, CalledOnceCallSite);
          } else {
            // We still should consider this block as an escape for parameter,
            // if we don't know about its call site or the number of time it
            // can be invoked.
            processEscapeFor(*Index);
          }
        }
      }
    }
  }

  void VisitBinaryOperator(const BinaryOperator *Op) {
    if (Op->getOpcode() == clang::BO_Assign) {
      // Let's check if one of the tracked parameters is assigned into
      // something, and if it is we don't want to track extra variables, so we
      // consider it as an escapee.
      checkEscapee(Op->getRHS());

      // Let's check whether this assignment is a suppression.
      checkSuppression(Op);
    }
  }

  void VisitDeclStmt(const DeclStmt *DS) {
    // Variable initialization is not assignment and should be handled
    // separately.
    //
    // Multiple declarations can be a part of declaration statement.
    for (const auto *Declaration : DS->getDeclGroup()) {
      if (const auto *Var = dyn_cast<VarDecl>(Declaration)) {
        if (Var->getInit()) {
          checkEscapee(Var->getInit());
        }

        if (Var->hasAttr<CleanupAttr>()) {
          FunctionHasCleanupVars = true;
        }
      }
    }
  }

  void VisitCStyleCastExpr(const CStyleCastExpr *Cast) {
    // We consider '(void)parameter' as a manual no-op escape.
    // It should be used to explicitly tell the analysis that this parameter
    // is intentionally not called on this path.
    if (Cast->getType().getCanonicalType()->isVoidType()) {
      checkEscapee(Cast->getSubExpr());
    }
  }

  void VisitObjCAtThrowStmt(const ObjCAtThrowStmt *) {
    // It is OK not to call marked parameters on exceptional paths.
    markNoReturn();
  }

private:
  unsigned size() const { return TrackedParams.size(); }

  llvm::Optional<unsigned> getIndexOfCallee(const CallExpr *Call) const {
    return getIndexOfExpression(Call->getCallee());
  }

  llvm::Optional<unsigned> getIndexOfExpression(const Expr *E) const {
    if (const ParmVarDecl *Parameter = findReferencedParmVarDecl(E)) {
      return getIndex(*Parameter);
    }

    return llvm::None;
  }

  llvm::Optional<unsigned> getIndex(const ParmVarDecl &Parameter) const {
    // Expected number of parameters that we actually track is 1.
    //
    // Also, the maximum number of declared parameters could not be on a scale
    // of hundreds of thousands.
    //
    // In this setting, linear search seems reasonable and even performs better
    // than bisection.
    ParamSizedVector<const ParmVarDecl *>::const_iterator It =
        llvm::find(TrackedParams, &Parameter);

    if (It != TrackedParams.end()) {
      return It - TrackedParams.begin();
    }

    return llvm::None;
  }

  const ParmVarDecl *getParameter(unsigned Index) const {
    assert(Index < TrackedParams.size());
    return TrackedParams[Index];
  }

  const CFG &FunctionCFG;
  AnalysisDeclContext &AC;
  CalledOnceCheckHandler &Handler;
  bool CheckConventionalParameters;
  // As of now, we turn this behavior off.  So, we still are going to report
  // missing calls on paths that look like it was intentional.
  // Technically such reports are true positives, but they can make some users
  // grumpy because of the sheer number of warnings.
  // It can be turned back on if we decide that we want to have the other way
  // around.
  bool SuppressOnConventionalErrorPaths = false;

  // The user can annotate variable declarations with cleanup functions, which
  // essentially imposes a custom destructor logic on that variable.
  // It is possible to use it, however, to call tracked parameters on all exits
  // from the function.  For this reason, we track the fact that the function
  // actually has these.
  bool FunctionHasCleanupVars = false;

  State CurrentState;
  ParamSizedVector<const ParmVarDecl *> TrackedParams;
  CFGSizedVector<State> States;
};

} // end anonymous namespace

namespace clang {
void checkCalledOnceParameters(AnalysisDeclContext &AC,
                               CalledOnceCheckHandler &Handler,
                               bool CheckConventionalParameters) {
  CalledOnceChecker::check(AC, Handler, CheckConventionalParameters);
}
} // end namespace clang