Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
//===----- CGCUDANV.cpp - Interface to NVIDIA CUDA Runtime ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides a class for CUDA code generation targeting the NVIDIA CUDA
// runtime library.
//
//===----------------------------------------------------------------------===//

#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Cuda.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/Support/Format.h"

using namespace clang;
using namespace CodeGen;

namespace {
constexpr unsigned CudaFatMagic = 0x466243b1;
constexpr unsigned HIPFatMagic = 0x48495046; // "HIPF"

class CGNVCUDARuntime : public CGCUDARuntime {

private:
  llvm::IntegerType *IntTy, *SizeTy;
  llvm::Type *VoidTy;
  llvm::PointerType *CharPtrTy, *VoidPtrTy, *VoidPtrPtrTy;

  /// Convenience reference to LLVM Context
  llvm::LLVMContext &Context;
  /// Convenience reference to the current module
  llvm::Module &TheModule;
  /// Keeps track of kernel launch stubs and handles emitted in this module
  struct KernelInfo {
    llvm::Function *Kernel; // stub function to help launch kernel
    const Decl *D;
  };
  llvm::SmallVector<KernelInfo, 16> EmittedKernels;
  // Map a device stub function to a symbol for identifying kernel in host code.
  // For CUDA, the symbol for identifying the kernel is the same as the device
  // stub function. For HIP, they are different.
  llvm::DenseMap<llvm::Function *, llvm::GlobalValue *> KernelHandles;
  // Map a kernel handle to the kernel stub.
  llvm::DenseMap<llvm::GlobalValue *, llvm::Function *> KernelStubs;
  struct VarInfo {
    llvm::GlobalVariable *Var;
    const VarDecl *D;
    DeviceVarFlags Flags;
  };
  llvm::SmallVector<VarInfo, 16> DeviceVars;
  /// Keeps track of variable containing handle of GPU binary. Populated by
  /// ModuleCtorFunction() and used to create corresponding cleanup calls in
  /// ModuleDtorFunction()
  llvm::GlobalVariable *GpuBinaryHandle = nullptr;
  /// Whether we generate relocatable device code.
  bool RelocatableDeviceCode;
  /// Mangle context for device.
  std::unique_ptr<MangleContext> DeviceMC;

  llvm::FunctionCallee getSetupArgumentFn() const;
  llvm::FunctionCallee getLaunchFn() const;

  llvm::FunctionType *getRegisterGlobalsFnTy() const;
  llvm::FunctionType *getCallbackFnTy() const;
  llvm::FunctionType *getRegisterLinkedBinaryFnTy() const;
  std::string addPrefixToName(StringRef FuncName) const;
  std::string addUnderscoredPrefixToName(StringRef FuncName) const;

  /// Creates a function to register all kernel stubs generated in this module.
  llvm::Function *makeRegisterGlobalsFn();

  /// Helper function that generates a constant string and returns a pointer to
  /// the start of the string.  The result of this function can be used anywhere
  /// where the C code specifies const char*.
  llvm::Constant *makeConstantString(const std::string &Str,
                                     const std::string &Name = "",
                                     const std::string &SectionName = "",
                                     unsigned Alignment = 0) {
    llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
                               llvm::ConstantInt::get(SizeTy, 0)};
    auto ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
    llvm::GlobalVariable *GV =
        cast<llvm::GlobalVariable>(ConstStr.getPointer());
    if (!SectionName.empty()) {
      GV->setSection(SectionName);
      // Mark the address as used which make sure that this section isn't
      // merged and we will really have it in the object file.
      GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
    }
    if (Alignment)
      GV->setAlignment(llvm::Align(Alignment));

    return llvm::ConstantExpr::getGetElementPtr(ConstStr.getElementType(),
                                                ConstStr.getPointer(), Zeros);
  }

  /// Helper function that generates an empty dummy function returning void.
  llvm::Function *makeDummyFunction(llvm::FunctionType *FnTy) {
    assert(FnTy->getReturnType()->isVoidTy() &&
           "Can only generate dummy functions returning void!");
    llvm::Function *DummyFunc = llvm::Function::Create(
        FnTy, llvm::GlobalValue::InternalLinkage, "dummy", &TheModule);

    llvm::BasicBlock *DummyBlock =
        llvm::BasicBlock::Create(Context, "", DummyFunc);
    CGBuilderTy FuncBuilder(CGM, Context);
    FuncBuilder.SetInsertPoint(DummyBlock);
    FuncBuilder.CreateRetVoid();

    return DummyFunc;
  }

  void emitDeviceStubBodyLegacy(CodeGenFunction &CGF, FunctionArgList &Args);
  void emitDeviceStubBodyNew(CodeGenFunction &CGF, FunctionArgList &Args);
  std::string getDeviceSideName(const NamedDecl *ND) override;

  void registerDeviceVar(const VarDecl *VD, llvm::GlobalVariable &Var,
                         bool Extern, bool Constant) {
    DeviceVars.push_back({&Var,
                          VD,
                          {DeviceVarFlags::Variable, Extern, Constant,
                           VD->hasAttr<HIPManagedAttr>(),
                           /*Normalized*/ false, 0}});
  }
  void registerDeviceSurf(const VarDecl *VD, llvm::GlobalVariable &Var,
                          bool Extern, int Type) {
    DeviceVars.push_back({&Var,
                          VD,
                          {DeviceVarFlags::Surface, Extern, /*Constant*/ false,
                           /*Managed*/ false,
                           /*Normalized*/ false, Type}});
  }
  void registerDeviceTex(const VarDecl *VD, llvm::GlobalVariable &Var,
                         bool Extern, int Type, bool Normalized) {
    DeviceVars.push_back({&Var,
                          VD,
                          {DeviceVarFlags::Texture, Extern, /*Constant*/ false,
                           /*Managed*/ false, Normalized, Type}});
  }

  /// Creates module constructor function
  llvm::Function *makeModuleCtorFunction();
  /// Creates module destructor function
  llvm::Function *makeModuleDtorFunction();
  /// Transform managed variables for device compilation.
  void transformManagedVars();

public:
  CGNVCUDARuntime(CodeGenModule &CGM);

  llvm::GlobalValue *getKernelHandle(llvm::Function *F, GlobalDecl GD) override;
  llvm::Function *getKernelStub(llvm::GlobalValue *Handle) override {
    auto Loc = KernelStubs.find(Handle);
    assert(Loc != KernelStubs.end());
    return Loc->second;
  }
  void emitDeviceStub(CodeGenFunction &CGF, FunctionArgList &Args) override;
  void handleVarRegistration(const VarDecl *VD,
                             llvm::GlobalVariable &Var) override;
  void
  internalizeDeviceSideVar(const VarDecl *D,
                           llvm::GlobalValue::LinkageTypes &Linkage) override;

  llvm::Function *finalizeModule() override;
};

}

std::string CGNVCUDARuntime::addPrefixToName(StringRef FuncName) const {
  if (CGM.getLangOpts().HIP)
    return ((Twine("hip") + Twine(FuncName)).str());
  return ((Twine("cuda") + Twine(FuncName)).str());
}
std::string
CGNVCUDARuntime::addUnderscoredPrefixToName(StringRef FuncName) const {
  if (CGM.getLangOpts().HIP)
    return ((Twine("__hip") + Twine(FuncName)).str());
  return ((Twine("__cuda") + Twine(FuncName)).str());
}

CGNVCUDARuntime::CGNVCUDARuntime(CodeGenModule &CGM)
    : CGCUDARuntime(CGM), Context(CGM.getLLVMContext()),
      TheModule(CGM.getModule()),
      RelocatableDeviceCode(CGM.getLangOpts().GPURelocatableDeviceCode),
      DeviceMC(CGM.getContext().createMangleContext(
          CGM.getContext().getAuxTargetInfo())) {
  CodeGen::CodeGenTypes &Types = CGM.getTypes();
  ASTContext &Ctx = CGM.getContext();

  IntTy = CGM.IntTy;
  SizeTy = CGM.SizeTy;
  VoidTy = CGM.VoidTy;

  CharPtrTy = llvm::PointerType::getUnqual(Types.ConvertType(Ctx.CharTy));
  VoidPtrTy = cast<llvm::PointerType>(Types.ConvertType(Ctx.VoidPtrTy));
  VoidPtrPtrTy = VoidPtrTy->getPointerTo();
  if (CGM.getContext().getAuxTargetInfo()) {
    // If the host and device have different C++ ABIs, mark it as the device
    // mangle context so that the mangling needs to retrieve the additonal
    // device lambda mangling number instead of the regular host one.
    DeviceMC->setDeviceMangleContext(
        CGM.getContext().getTargetInfo().getCXXABI().isMicrosoft() &&
        CGM.getContext().getAuxTargetInfo()->getCXXABI().isItaniumFamily());
  }
}

llvm::FunctionCallee CGNVCUDARuntime::getSetupArgumentFn() const {
  // cudaError_t cudaSetupArgument(void *, size_t, size_t)
  llvm::Type *Params[] = {VoidPtrTy, SizeTy, SizeTy};
  return CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(IntTy, Params, false),
      addPrefixToName("SetupArgument"));
}

llvm::FunctionCallee CGNVCUDARuntime::getLaunchFn() const {
  if (CGM.getLangOpts().HIP) {
    // hipError_t hipLaunchByPtr(char *);
    return CGM.CreateRuntimeFunction(
        llvm::FunctionType::get(IntTy, CharPtrTy, false), "hipLaunchByPtr");
  } else {
    // cudaError_t cudaLaunch(char *);
    return CGM.CreateRuntimeFunction(
        llvm::FunctionType::get(IntTy, CharPtrTy, false), "cudaLaunch");
  }
}

llvm::FunctionType *CGNVCUDARuntime::getRegisterGlobalsFnTy() const {
  return llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false);
}

llvm::FunctionType *CGNVCUDARuntime::getCallbackFnTy() const {
  return llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
}

llvm::FunctionType *CGNVCUDARuntime::getRegisterLinkedBinaryFnTy() const {
  auto CallbackFnTy = getCallbackFnTy();
  auto RegisterGlobalsFnTy = getRegisterGlobalsFnTy();
  llvm::Type *Params[] = {RegisterGlobalsFnTy->getPointerTo(), VoidPtrTy,
                          VoidPtrTy, CallbackFnTy->getPointerTo()};
  return llvm::FunctionType::get(VoidTy, Params, false);
}

std::string CGNVCUDARuntime::getDeviceSideName(const NamedDecl *ND) {
  GlobalDecl GD;
  // D could be either a kernel or a variable.
  if (auto *FD = dyn_cast<FunctionDecl>(ND))
    GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
  else
    GD = GlobalDecl(ND);
  std::string DeviceSideName;
  MangleContext *MC;
  if (CGM.getLangOpts().CUDAIsDevice)
    MC = &CGM.getCXXABI().getMangleContext();
  else
    MC = DeviceMC.get();
  if (MC->shouldMangleDeclName(ND)) {
    SmallString<256> Buffer;
    llvm::raw_svector_ostream Out(Buffer);
    MC->mangleName(GD, Out);
    DeviceSideName = std::string(Out.str());
  } else
    DeviceSideName = std::string(ND->getIdentifier()->getName());

  // Make unique name for device side static file-scope variable for HIP.
  if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
      CGM.getLangOpts().GPURelocatableDeviceCode &&
      !CGM.getLangOpts().CUID.empty()) {
    SmallString<256> Buffer;
    llvm::raw_svector_ostream Out(Buffer);
    Out << DeviceSideName;
    CGM.printPostfixForExternalizedStaticVar(Out);
    DeviceSideName = std::string(Out.str());
  }
  return DeviceSideName;
}

void CGNVCUDARuntime::emitDeviceStub(CodeGenFunction &CGF,
                                     FunctionArgList &Args) {
  EmittedKernels.push_back({CGF.CurFn, CGF.CurFuncDecl});
  if (auto *GV = dyn_cast<llvm::GlobalVariable>(KernelHandles[CGF.CurFn])) {
    GV->setLinkage(CGF.CurFn->getLinkage());
    GV->setInitializer(CGF.CurFn);
  }
  if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
                         CudaFeature::CUDA_USES_NEW_LAUNCH) ||
      (CGF.getLangOpts().HIP && CGF.getLangOpts().HIPUseNewLaunchAPI))
    emitDeviceStubBodyNew(CGF, Args);
  else
    emitDeviceStubBodyLegacy(CGF, Args);
}

// CUDA 9.0+ uses new way to launch kernels. Parameters are packed in a local
// array and kernels are launched using cudaLaunchKernel().
void CGNVCUDARuntime::emitDeviceStubBodyNew(CodeGenFunction &CGF,
                                            FunctionArgList &Args) {
  // Build the shadow stack entry at the very start of the function.

  // Calculate amount of space we will need for all arguments.  If we have no
  // args, allocate a single pointer so we still have a valid pointer to the
  // argument array that we can pass to runtime, even if it will be unused.
  Address KernelArgs = CGF.CreateTempAlloca(
      VoidPtrTy, CharUnits::fromQuantity(16), "kernel_args",
      llvm::ConstantInt::get(SizeTy, std::max<size_t>(1, Args.size())));
  // Store pointers to the arguments in a locally allocated launch_args.
  for (unsigned i = 0; i < Args.size(); ++i) {
    llvm::Value* VarPtr = CGF.GetAddrOfLocalVar(Args[i]).getPointer();
    llvm::Value *VoidVarPtr = CGF.Builder.CreatePointerCast(VarPtr, VoidPtrTy);
    CGF.Builder.CreateDefaultAlignedStore(
        VoidVarPtr, CGF.Builder.CreateConstGEP1_32(KernelArgs.getPointer(), i));
  }

  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");

  // Lookup cudaLaunchKernel/hipLaunchKernel function.
  // cudaError_t cudaLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
  //                              void **args, size_t sharedMem,
  //                              cudaStream_t stream);
  // hipError_t hipLaunchKernel(const void *func, dim3 gridDim, dim3 blockDim,
  //                            void **args, size_t sharedMem,
  //                            hipStream_t stream);
  TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
  auto LaunchKernelName = addPrefixToName("LaunchKernel");
  IdentifierInfo &cudaLaunchKernelII =
      CGM.getContext().Idents.get(LaunchKernelName);
  FunctionDecl *cudaLaunchKernelFD = nullptr;
  for (auto *Result : DC->lookup(&cudaLaunchKernelII)) {
    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Result))
      cudaLaunchKernelFD = FD;
  }

  if (cudaLaunchKernelFD == nullptr) {
    CGM.Error(CGF.CurFuncDecl->getLocation(),
              "Can't find declaration for " + LaunchKernelName);
    return;
  }
  // Create temporary dim3 grid_dim, block_dim.
  ParmVarDecl *GridDimParam = cudaLaunchKernelFD->getParamDecl(1);
  QualType Dim3Ty = GridDimParam->getType();
  Address GridDim =
      CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "grid_dim");
  Address BlockDim =
      CGF.CreateMemTemp(Dim3Ty, CharUnits::fromQuantity(8), "block_dim");
  Address ShmemSize =
      CGF.CreateTempAlloca(SizeTy, CGM.getSizeAlign(), "shmem_size");
  Address Stream =
      CGF.CreateTempAlloca(VoidPtrTy, CGM.getPointerAlign(), "stream");
  llvm::FunctionCallee cudaPopConfigFn = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(IntTy,
                              {/*gridDim=*/GridDim.getType(),
                               /*blockDim=*/BlockDim.getType(),
                               /*ShmemSize=*/ShmemSize.getType(),
                               /*Stream=*/Stream.getType()},
                              /*isVarArg=*/false),
      addUnderscoredPrefixToName("PopCallConfiguration"));

  CGF.EmitRuntimeCallOrInvoke(cudaPopConfigFn,
                              {GridDim.getPointer(), BlockDim.getPointer(),
                               ShmemSize.getPointer(), Stream.getPointer()});

  // Emit the call to cudaLaunch
  llvm::Value *Kernel =
      CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], VoidPtrTy);
  CallArgList LaunchKernelArgs;
  LaunchKernelArgs.add(RValue::get(Kernel),
                       cudaLaunchKernelFD->getParamDecl(0)->getType());
  LaunchKernelArgs.add(RValue::getAggregate(GridDim), Dim3Ty);
  LaunchKernelArgs.add(RValue::getAggregate(BlockDim), Dim3Ty);
  LaunchKernelArgs.add(RValue::get(KernelArgs.getPointer()),
                       cudaLaunchKernelFD->getParamDecl(3)->getType());
  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(ShmemSize)),
                       cudaLaunchKernelFD->getParamDecl(4)->getType());
  LaunchKernelArgs.add(RValue::get(CGF.Builder.CreateLoad(Stream)),
                       cudaLaunchKernelFD->getParamDecl(5)->getType());

  QualType QT = cudaLaunchKernelFD->getType();
  QualType CQT = QT.getCanonicalType();
  llvm::Type *Ty = CGM.getTypes().ConvertType(CQT);
  llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(Ty);

  const CGFunctionInfo &FI =
      CGM.getTypes().arrangeFunctionDeclaration(cudaLaunchKernelFD);
  llvm::FunctionCallee cudaLaunchKernelFn =
      CGM.CreateRuntimeFunction(FTy, LaunchKernelName);
  CGF.EmitCall(FI, CGCallee::forDirect(cudaLaunchKernelFn), ReturnValueSlot(),
               LaunchKernelArgs);
  CGF.EmitBranch(EndBlock);

  CGF.EmitBlock(EndBlock);
}

void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
                                               FunctionArgList &Args) {
  // Emit a call to cudaSetupArgument for each arg in Args.
  llvm::FunctionCallee cudaSetupArgFn = getSetupArgumentFn();
  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
  CharUnits Offset = CharUnits::Zero();
  for (const VarDecl *A : Args) {
    auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
    Offset = Offset.alignTo(TInfo.Align);
    llvm::Value *Args[] = {
        CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
                                      VoidPtrTy),
        llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
        llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
    };
    llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
    llvm::Constant *Zero = llvm::ConstantInt::get(IntTy, 0);
    llvm::Value *CBZero = CGF.Builder.CreateICmpEQ(CB, Zero);
    llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
    CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
    CGF.EmitBlock(NextBlock);
    Offset += TInfo.Width;
  }

  // Emit the call to cudaLaunch
  llvm::FunctionCallee cudaLaunchFn = getLaunchFn();
  llvm::Value *Arg =
      CGF.Builder.CreatePointerCast(KernelHandles[CGF.CurFn], CharPtrTy);
  CGF.EmitRuntimeCallOrInvoke(cudaLaunchFn, Arg);
  CGF.EmitBranch(EndBlock);

  CGF.EmitBlock(EndBlock);
}

// Replace the original variable Var with the address loaded from variable
// ManagedVar populated by HIP runtime.
static void replaceManagedVar(llvm::GlobalVariable *Var,
                              llvm::GlobalVariable *ManagedVar) {
  SmallVector<SmallVector<llvm::User *, 8>, 8> WorkList;
  for (auto &&VarUse : Var->uses()) {
    WorkList.push_back({VarUse.getUser()});
  }
  while (!WorkList.empty()) {
    auto &&WorkItem = WorkList.pop_back_val();
    auto *U = WorkItem.back();
    if (isa<llvm::ConstantExpr>(U)) {
      for (auto &&UU : U->uses()) {
        WorkItem.push_back(UU.getUser());
        WorkList.push_back(WorkItem);
        WorkItem.pop_back();
      }
      continue;
    }
    if (auto *I = dyn_cast<llvm::Instruction>(U)) {
      llvm::Value *OldV = Var;
      llvm::Instruction *NewV =
          new llvm::LoadInst(Var->getType(), ManagedVar, "ld.managed", false,
                             llvm::Align(Var->getAlignment()), I);
      WorkItem.pop_back();
      // Replace constant expressions directly or indirectly using the managed
      // variable with instructions.
      for (auto &&Op : WorkItem) {
        auto *CE = cast<llvm::ConstantExpr>(Op);
        auto *NewInst = llvm::createReplacementInstr(CE, I);
        NewInst->replaceUsesOfWith(OldV, NewV);
        OldV = CE;
        NewV = NewInst;
      }
      I->replaceUsesOfWith(OldV, NewV);
    } else {
      llvm_unreachable("Invalid use of managed variable");
    }
  }
}

/// Creates a function that sets up state on the host side for CUDA objects that
/// have a presence on both the host and device sides. Specifically, registers
/// the host side of kernel functions and device global variables with the CUDA
/// runtime.
/// \code
/// void __cuda_register_globals(void** GpuBinaryHandle) {
///    __cudaRegisterFunction(GpuBinaryHandle,Kernel0,...);
///    ...
///    __cudaRegisterFunction(GpuBinaryHandle,KernelM,...);
///    __cudaRegisterVar(GpuBinaryHandle, GlobalVar0, ...);
///    ...
///    __cudaRegisterVar(GpuBinaryHandle, GlobalVarN, ...);
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeRegisterGlobalsFn() {
  // No need to register anything
  if (EmittedKernels.empty() && DeviceVars.empty())
    return nullptr;

  llvm::Function *RegisterKernelsFunc = llvm::Function::Create(
      getRegisterGlobalsFnTy(), llvm::GlobalValue::InternalLinkage,
      addUnderscoredPrefixToName("_register_globals"), &TheModule);
  llvm::BasicBlock *EntryBB =
      llvm::BasicBlock::Create(Context, "entry", RegisterKernelsFunc);
  CGBuilderTy Builder(CGM, Context);
  Builder.SetInsertPoint(EntryBB);

  // void __cudaRegisterFunction(void **, const char *, char *, const char *,
  //                             int, uint3*, uint3*, dim3*, dim3*, int*)
  llvm::Type *RegisterFuncParams[] = {
      VoidPtrPtrTy, CharPtrTy, CharPtrTy, CharPtrTy, IntTy,
      VoidPtrTy,    VoidPtrTy, VoidPtrTy, VoidPtrTy, IntTy->getPointerTo()};
  llvm::FunctionCallee RegisterFunc = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(IntTy, RegisterFuncParams, false),
      addUnderscoredPrefixToName("RegisterFunction"));

  // Extract GpuBinaryHandle passed as the first argument passed to
  // __cuda_register_globals() and generate __cudaRegisterFunction() call for
  // each emitted kernel.
  llvm::Argument &GpuBinaryHandlePtr = *RegisterKernelsFunc->arg_begin();
  for (auto &&I : EmittedKernels) {
    llvm::Constant *KernelName =
        makeConstantString(getDeviceSideName(cast<NamedDecl>(I.D)));
    llvm::Constant *NullPtr = llvm::ConstantPointerNull::get(VoidPtrTy);
    llvm::Value *Args[] = {
        &GpuBinaryHandlePtr,
        Builder.CreateBitCast(KernelHandles[I.Kernel], VoidPtrTy),
        KernelName,
        KernelName,
        llvm::ConstantInt::get(IntTy, -1),
        NullPtr,
        NullPtr,
        NullPtr,
        NullPtr,
        llvm::ConstantPointerNull::get(IntTy->getPointerTo())};
    Builder.CreateCall(RegisterFunc, Args);
  }

  llvm::Type *VarSizeTy = IntTy;
  // For HIP or CUDA 9.0+, device variable size is type of `size_t`.
  if (CGM.getLangOpts().HIP ||
      ToCudaVersion(CGM.getTarget().getSDKVersion()) >= CudaVersion::CUDA_90)
    VarSizeTy = SizeTy;

  // void __cudaRegisterVar(void **, char *, char *, const char *,
  //                        int, int, int, int)
  llvm::Type *RegisterVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
                                     CharPtrTy,    IntTy,     VarSizeTy,
                                     IntTy,        IntTy};
  llvm::FunctionCallee RegisterVar = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidTy, RegisterVarParams, false),
      addUnderscoredPrefixToName("RegisterVar"));
  // void __hipRegisterManagedVar(void **, char *, char *, const char *,
  //                              size_t, unsigned)
  llvm::Type *RegisterManagedVarParams[] = {VoidPtrPtrTy, CharPtrTy, CharPtrTy,
                                            CharPtrTy,    VarSizeTy, IntTy};
  llvm::FunctionCallee RegisterManagedVar = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidTy, RegisterManagedVarParams, false),
      addUnderscoredPrefixToName("RegisterManagedVar"));
  // void __cudaRegisterSurface(void **, const struct surfaceReference *,
  //                            const void **, const char *, int, int);
  llvm::FunctionCallee RegisterSurf = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(
          VoidTy, {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy},
          false),
      addUnderscoredPrefixToName("RegisterSurface"));
  // void __cudaRegisterTexture(void **, const struct textureReference *,
  //                            const void **, const char *, int, int, int)
  llvm::FunctionCallee RegisterTex = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(
          VoidTy,
          {VoidPtrPtrTy, VoidPtrTy, CharPtrTy, CharPtrTy, IntTy, IntTy, IntTy},
          false),
      addUnderscoredPrefixToName("RegisterTexture"));
  for (auto &&Info : DeviceVars) {
    llvm::GlobalVariable *Var = Info.Var;
    assert((!Var->isDeclaration() || Info.Flags.isManaged()) &&
           "External variables should not show up here, except HIP managed "
           "variables");
    llvm::Constant *VarName = makeConstantString(getDeviceSideName(Info.D));
    switch (Info.Flags.getKind()) {
    case DeviceVarFlags::Variable: {
      uint64_t VarSize =
          CGM.getDataLayout().getTypeAllocSize(Var->getValueType());
      if (Info.Flags.isManaged()) {
        auto ManagedVar = new llvm::GlobalVariable(
            CGM.getModule(), Var->getType(),
            /*isConstant=*/false, Var->getLinkage(),
            /*Init=*/Var->isDeclaration()
                ? nullptr
                : llvm::ConstantPointerNull::get(Var->getType()),
            /*Name=*/"", /*InsertBefore=*/nullptr,
            llvm::GlobalVariable::NotThreadLocal);
        ManagedVar->setDSOLocal(Var->isDSOLocal());
        ManagedVar->setVisibility(Var->getVisibility());
        ManagedVar->setExternallyInitialized(true);
        ManagedVar->takeName(Var);
        Var->setName(Twine(ManagedVar->getName() + ".managed"));
        replaceManagedVar(Var, ManagedVar);
        llvm::Value *Args[] = {
            &GpuBinaryHandlePtr,
            Builder.CreateBitCast(ManagedVar, VoidPtrTy),
            Builder.CreateBitCast(Var, VoidPtrTy),
            VarName,
            llvm::ConstantInt::get(VarSizeTy, VarSize),
            llvm::ConstantInt::get(IntTy, Var->getAlignment())};
        if (!Var->isDeclaration())
          Builder.CreateCall(RegisterManagedVar, Args);
      } else {
        llvm::Value *Args[] = {
            &GpuBinaryHandlePtr,
            Builder.CreateBitCast(Var, VoidPtrTy),
            VarName,
            VarName,
            llvm::ConstantInt::get(IntTy, Info.Flags.isExtern()),
            llvm::ConstantInt::get(VarSizeTy, VarSize),
            llvm::ConstantInt::get(IntTy, Info.Flags.isConstant()),
            llvm::ConstantInt::get(IntTy, 0)};
        Builder.CreateCall(RegisterVar, Args);
      }
      break;
    }
    case DeviceVarFlags::Surface:
      Builder.CreateCall(
          RegisterSurf,
          {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
           VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
           llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
      break;
    case DeviceVarFlags::Texture:
      Builder.CreateCall(
          RegisterTex,
          {&GpuBinaryHandlePtr, Builder.CreateBitCast(Var, VoidPtrTy), VarName,
           VarName, llvm::ConstantInt::get(IntTy, Info.Flags.getSurfTexType()),
           llvm::ConstantInt::get(IntTy, Info.Flags.isNormalized()),
           llvm::ConstantInt::get(IntTy, Info.Flags.isExtern())});
      break;
    }
  }

  Builder.CreateRetVoid();
  return RegisterKernelsFunc;
}

/// Creates a global constructor function for the module:
///
/// For CUDA:
/// \code
/// void __cuda_module_ctor(void*) {
///     Handle = __cudaRegisterFatBinary(GpuBinaryBlob);
///     __cuda_register_globals(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_ctor(void*) {
///     if (__hip_gpubin_handle == 0) {
///         __hip_gpubin_handle  = __hipRegisterFatBinary(GpuBinaryBlob);
///         __hip_register_globals(__hip_gpubin_handle);
///     }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleCtorFunction() {
  bool IsHIP = CGM.getLangOpts().HIP;
  bool IsCUDA = CGM.getLangOpts().CUDA;
  // No need to generate ctors/dtors if there is no GPU binary.
  StringRef CudaGpuBinaryFileName = CGM.getCodeGenOpts().CudaGpuBinaryFileName;
  if (CudaGpuBinaryFileName.empty() && !IsHIP)
    return nullptr;
  if ((IsHIP || (IsCUDA && !RelocatableDeviceCode)) && EmittedKernels.empty() &&
      DeviceVars.empty())
    return nullptr;

  // void __{cuda|hip}_register_globals(void* handle);
  llvm::Function *RegisterGlobalsFunc = makeRegisterGlobalsFn();
  // We always need a function to pass in as callback. Create a dummy
  // implementation if we don't need to register anything.
  if (RelocatableDeviceCode && !RegisterGlobalsFunc)
    RegisterGlobalsFunc = makeDummyFunction(getRegisterGlobalsFnTy());

  // void ** __{cuda|hip}RegisterFatBinary(void *);
  llvm::FunctionCallee RegisterFatbinFunc = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidPtrPtrTy, VoidPtrTy, false),
      addUnderscoredPrefixToName("RegisterFatBinary"));
  // struct { int magic, int version, void * gpu_binary, void * dont_care };
  llvm::StructType *FatbinWrapperTy =
      llvm::StructType::get(IntTy, IntTy, VoidPtrTy, VoidPtrTy);

  // Register GPU binary with the CUDA runtime, store returned handle in a
  // global variable and save a reference in GpuBinaryHandle to be cleaned up
  // in destructor on exit. Then associate all known kernels with the GPU binary
  // handle so CUDA runtime can figure out what to call on the GPU side.
  std::unique_ptr<llvm::MemoryBuffer> CudaGpuBinary = nullptr;
  if (!CudaGpuBinaryFileName.empty()) {
    llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CudaGpuBinaryOrErr =
        llvm::MemoryBuffer::getFileOrSTDIN(CudaGpuBinaryFileName);
    if (std::error_code EC = CudaGpuBinaryOrErr.getError()) {
      CGM.getDiags().Report(diag::err_cannot_open_file)
          << CudaGpuBinaryFileName << EC.message();
      return nullptr;
    }
    CudaGpuBinary = std::move(CudaGpuBinaryOrErr.get());
  }

  llvm::Function *ModuleCtorFunc = llvm::Function::Create(
      llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
      llvm::GlobalValue::InternalLinkage,
      addUnderscoredPrefixToName("_module_ctor"), &TheModule);
  llvm::BasicBlock *CtorEntryBB =
      llvm::BasicBlock::Create(Context, "entry", ModuleCtorFunc);
  CGBuilderTy CtorBuilder(CGM, Context);

  CtorBuilder.SetInsertPoint(CtorEntryBB);

  const char *FatbinConstantName;
  const char *FatbinSectionName;
  const char *ModuleIDSectionName;
  StringRef ModuleIDPrefix;
  llvm::Constant *FatBinStr;
  unsigned FatMagic;
  if (IsHIP) {
    FatbinConstantName = ".hip_fatbin";
    FatbinSectionName = ".hipFatBinSegment";

    ModuleIDSectionName = "__hip_module_id";
    ModuleIDPrefix = "__hip_";

    if (CudaGpuBinary) {
      // If fatbin is available from early finalization, create a string
      // literal containing the fat binary loaded from the given file.
      const unsigned HIPCodeObjectAlign = 4096;
      FatBinStr =
          makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
                             FatbinConstantName, HIPCodeObjectAlign);
    } else {
      // If fatbin is not available, create an external symbol
      // __hip_fatbin in section .hip_fatbin. The external symbol is supposed
      // to contain the fat binary but will be populated somewhere else,
      // e.g. by lld through link script.
      FatBinStr = new llvm::GlobalVariable(
        CGM.getModule(), CGM.Int8Ty,
        /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr,
        "__hip_fatbin", nullptr,
        llvm::GlobalVariable::NotThreadLocal);
      cast<llvm::GlobalVariable>(FatBinStr)->setSection(FatbinConstantName);
    }

    FatMagic = HIPFatMagic;
  } else {
    if (RelocatableDeviceCode)
      FatbinConstantName = CGM.getTriple().isMacOSX()
                               ? "__NV_CUDA,__nv_relfatbin"
                               : "__nv_relfatbin";
    else
      FatbinConstantName =
          CGM.getTriple().isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin";
    // NVIDIA's cuobjdump looks for fatbins in this section.
    FatbinSectionName =
        CGM.getTriple().isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment";

    ModuleIDSectionName = CGM.getTriple().isMacOSX()
                              ? "__NV_CUDA,__nv_module_id"
                              : "__nv_module_id";
    ModuleIDPrefix = "__nv_";

    // For CUDA, create a string literal containing the fat binary loaded from
    // the given file.
    FatBinStr = makeConstantString(std::string(CudaGpuBinary->getBuffer()), "",
                                   FatbinConstantName, 8);
    FatMagic = CudaFatMagic;
  }

  // Create initialized wrapper structure that points to the loaded GPU binary
  ConstantInitBuilder Builder(CGM);
  auto Values = Builder.beginStruct(FatbinWrapperTy);
  // Fatbin wrapper magic.
  Values.addInt(IntTy, FatMagic);
  // Fatbin version.
  Values.addInt(IntTy, 1);
  // Data.
  Values.add(FatBinStr);
  // Unused in fatbin v1.
  Values.add(llvm::ConstantPointerNull::get(VoidPtrTy));
  llvm::GlobalVariable *FatbinWrapper = Values.finishAndCreateGlobal(
      addUnderscoredPrefixToName("_fatbin_wrapper"), CGM.getPointerAlign(),
      /*constant*/ true);
  FatbinWrapper->setSection(FatbinSectionName);

  // There is only one HIP fat binary per linked module, however there are
  // multiple constructor functions. Make sure the fat binary is registered
  // only once. The constructor functions are executed by the dynamic loader
  // before the program gains control. The dynamic loader cannot execute the
  // constructor functions concurrently since doing that would not guarantee
  // thread safety of the loaded program. Therefore we can assume sequential
  // execution of constructor functions here.
  if (IsHIP) {
    auto Linkage = CudaGpuBinary ? llvm::GlobalValue::InternalLinkage :
        llvm::GlobalValue::LinkOnceAnyLinkage;
    llvm::BasicBlock *IfBlock =
        llvm::BasicBlock::Create(Context, "if", ModuleCtorFunc);
    llvm::BasicBlock *ExitBlock =
        llvm::BasicBlock::Create(Context, "exit", ModuleCtorFunc);
    // The name, size, and initialization pattern of this variable is part
    // of HIP ABI.
    GpuBinaryHandle = new llvm::GlobalVariable(
        TheModule, VoidPtrPtrTy, /*isConstant=*/false,
        Linkage,
        /*Initializer=*/llvm::ConstantPointerNull::get(VoidPtrPtrTy),
        "__hip_gpubin_handle");
    GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
    // Prevent the weak symbol in different shared libraries being merged.
    if (Linkage != llvm::GlobalValue::InternalLinkage)
      GpuBinaryHandle->setVisibility(llvm::GlobalValue::HiddenVisibility);
    Address GpuBinaryAddr(
        GpuBinaryHandle,
        CharUnits::fromQuantity(GpuBinaryHandle->getAlignment()));
    {
      auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
      llvm::Constant *Zero =
          llvm::Constant::getNullValue(HandleValue->getType());
      llvm::Value *EQZero = CtorBuilder.CreateICmpEQ(HandleValue, Zero);
      CtorBuilder.CreateCondBr(EQZero, IfBlock, ExitBlock);
    }
    {
      CtorBuilder.SetInsertPoint(IfBlock);
      // GpuBinaryHandle = __hipRegisterFatBinary(&FatbinWrapper);
      llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
          RegisterFatbinFunc,
          CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
      CtorBuilder.CreateStore(RegisterFatbinCall, GpuBinaryAddr);
      CtorBuilder.CreateBr(ExitBlock);
    }
    {
      CtorBuilder.SetInsertPoint(ExitBlock);
      // Call __hip_register_globals(GpuBinaryHandle);
      if (RegisterGlobalsFunc) {
        auto HandleValue = CtorBuilder.CreateLoad(GpuBinaryAddr);
        CtorBuilder.CreateCall(RegisterGlobalsFunc, HandleValue);
      }
    }
  } else if (!RelocatableDeviceCode) {
    // Register binary with CUDA runtime. This is substantially different in
    // default mode vs. separate compilation!
    // GpuBinaryHandle = __cudaRegisterFatBinary(&FatbinWrapper);
    llvm::CallInst *RegisterFatbinCall = CtorBuilder.CreateCall(
        RegisterFatbinFunc,
        CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy));
    GpuBinaryHandle = new llvm::GlobalVariable(
        TheModule, VoidPtrPtrTy, false, llvm::GlobalValue::InternalLinkage,
        llvm::ConstantPointerNull::get(VoidPtrPtrTy), "__cuda_gpubin_handle");
    GpuBinaryHandle->setAlignment(CGM.getPointerAlign().getAsAlign());
    CtorBuilder.CreateAlignedStore(RegisterFatbinCall, GpuBinaryHandle,
                                   CGM.getPointerAlign());

    // Call __cuda_register_globals(GpuBinaryHandle);
    if (RegisterGlobalsFunc)
      CtorBuilder.CreateCall(RegisterGlobalsFunc, RegisterFatbinCall);

    // Call __cudaRegisterFatBinaryEnd(Handle) if this CUDA version needs it.
    if (CudaFeatureEnabled(CGM.getTarget().getSDKVersion(),
                           CudaFeature::CUDA_USES_FATBIN_REGISTER_END)) {
      // void __cudaRegisterFatBinaryEnd(void **);
      llvm::FunctionCallee RegisterFatbinEndFunc = CGM.CreateRuntimeFunction(
          llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
          "__cudaRegisterFatBinaryEnd");
      CtorBuilder.CreateCall(RegisterFatbinEndFunc, RegisterFatbinCall);
    }
  } else {
    // Generate a unique module ID.
    SmallString<64> ModuleID;
    llvm::raw_svector_ostream OS(ModuleID);
    OS << ModuleIDPrefix << llvm::format("%" PRIx64, FatbinWrapper->getGUID());
    llvm::Constant *ModuleIDConstant = makeConstantString(
        std::string(ModuleID.str()), "", ModuleIDSectionName, 32);

    // Create an alias for the FatbinWrapper that nvcc will look for.
    llvm::GlobalAlias::create(llvm::GlobalValue::ExternalLinkage,
                              Twine("__fatbinwrap") + ModuleID, FatbinWrapper);

    // void __cudaRegisterLinkedBinary%ModuleID%(void (*)(void *), void *,
    // void *, void (*)(void **))
    SmallString<128> RegisterLinkedBinaryName("__cudaRegisterLinkedBinary");
    RegisterLinkedBinaryName += ModuleID;
    llvm::FunctionCallee RegisterLinkedBinaryFunc = CGM.CreateRuntimeFunction(
        getRegisterLinkedBinaryFnTy(), RegisterLinkedBinaryName);

    assert(RegisterGlobalsFunc && "Expecting at least dummy function!");
    llvm::Value *Args[] = {RegisterGlobalsFunc,
                           CtorBuilder.CreateBitCast(FatbinWrapper, VoidPtrTy),
                           ModuleIDConstant,
                           makeDummyFunction(getCallbackFnTy())};
    CtorBuilder.CreateCall(RegisterLinkedBinaryFunc, Args);
  }

  // Create destructor and register it with atexit() the way NVCC does it. Doing
  // it during regular destructor phase worked in CUDA before 9.2 but results in
  // double-free in 9.2.
  if (llvm::Function *CleanupFn = makeModuleDtorFunction()) {
    // extern "C" int atexit(void (*f)(void));
    llvm::FunctionType *AtExitTy =
        llvm::FunctionType::get(IntTy, CleanupFn->getType(), false);
    llvm::FunctionCallee AtExitFunc =
        CGM.CreateRuntimeFunction(AtExitTy, "atexit", llvm::AttributeList(),
                                  /*Local=*/true);
    CtorBuilder.CreateCall(AtExitFunc, CleanupFn);
  }

  CtorBuilder.CreateRetVoid();
  return ModuleCtorFunc;
}

/// Creates a global destructor function that unregisters the GPU code blob
/// registered by constructor.
///
/// For CUDA:
/// \code
/// void __cuda_module_dtor(void*) {
///     __cudaUnregisterFatBinary(Handle);
/// }
/// \endcode
///
/// For HIP:
/// \code
/// void __hip_module_dtor(void*) {
///     if (__hip_gpubin_handle) {
///         __hipUnregisterFatBinary(__hip_gpubin_handle);
///         __hip_gpubin_handle = 0;
///     }
/// }
/// \endcode
llvm::Function *CGNVCUDARuntime::makeModuleDtorFunction() {
  // No need for destructor if we don't have a handle to unregister.
  if (!GpuBinaryHandle)
    return nullptr;

  // void __cudaUnregisterFatBinary(void ** handle);
  llvm::FunctionCallee UnregisterFatbinFunc = CGM.CreateRuntimeFunction(
      llvm::FunctionType::get(VoidTy, VoidPtrPtrTy, false),
      addUnderscoredPrefixToName("UnregisterFatBinary"));

  llvm::Function *ModuleDtorFunc = llvm::Function::Create(
      llvm::FunctionType::get(VoidTy, VoidPtrTy, false),
      llvm::GlobalValue::InternalLinkage,
      addUnderscoredPrefixToName("_module_dtor"), &TheModule);

  llvm::BasicBlock *DtorEntryBB =
      llvm::BasicBlock::Create(Context, "entry", ModuleDtorFunc);
  CGBuilderTy DtorBuilder(CGM, Context);
  DtorBuilder.SetInsertPoint(DtorEntryBB);

  Address GpuBinaryAddr(GpuBinaryHandle, CharUnits::fromQuantity(
                                             GpuBinaryHandle->getAlignment()));
  auto HandleValue = DtorBuilder.CreateLoad(GpuBinaryAddr);
  // There is only one HIP fat binary per linked module, however there are
  // multiple destructor functions. Make sure the fat binary is unregistered
  // only once.
  if (CGM.getLangOpts().HIP) {
    llvm::BasicBlock *IfBlock =
        llvm::BasicBlock::Create(Context, "if", ModuleDtorFunc);
    llvm::BasicBlock *ExitBlock =
        llvm::BasicBlock::Create(Context, "exit", ModuleDtorFunc);
    llvm::Constant *Zero = llvm::Constant::getNullValue(HandleValue->getType());
    llvm::Value *NEZero = DtorBuilder.CreateICmpNE(HandleValue, Zero);
    DtorBuilder.CreateCondBr(NEZero, IfBlock, ExitBlock);

    DtorBuilder.SetInsertPoint(IfBlock);
    DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
    DtorBuilder.CreateStore(Zero, GpuBinaryAddr);
    DtorBuilder.CreateBr(ExitBlock);

    DtorBuilder.SetInsertPoint(ExitBlock);
  } else {
    DtorBuilder.CreateCall(UnregisterFatbinFunc, HandleValue);
  }
  DtorBuilder.CreateRetVoid();
  return ModuleDtorFunc;
}

CGCUDARuntime *CodeGen::CreateNVCUDARuntime(CodeGenModule &CGM) {
  return new CGNVCUDARuntime(CGM);
}

void CGNVCUDARuntime::internalizeDeviceSideVar(
    const VarDecl *D, llvm::GlobalValue::LinkageTypes &Linkage) {
  // For -fno-gpu-rdc, host-side shadows of external declarations of device-side
  // global variables become internal definitions. These have to be internal in
  // order to prevent name conflicts with global host variables with the same
  // name in a different TUs.
  //
  // For -fgpu-rdc, the shadow variables should not be internalized because
  // they may be accessed by different TU.
  if (CGM.getLangOpts().GPURelocatableDeviceCode)
    return;

  // __shared__ variables are odd. Shadows do get created, but
  // they are not registered with the CUDA runtime, so they
  // can't really be used to access their device-side
  // counterparts. It's not clear yet whether it's nvcc's bug or
  // a feature, but we've got to do the same for compatibility.
  if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
      D->hasAttr<CUDASharedAttr>() ||
      D->getType()->isCUDADeviceBuiltinSurfaceType() ||
      D->getType()->isCUDADeviceBuiltinTextureType()) {
    Linkage = llvm::GlobalValue::InternalLinkage;
  }
}

void CGNVCUDARuntime::handleVarRegistration(const VarDecl *D,
                                            llvm::GlobalVariable &GV) {
  if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
    // Shadow variables and their properties must be registered with CUDA
    // runtime. Skip Extern global variables, which will be registered in
    // the TU where they are defined.
    //
    // Don't register a C++17 inline variable. The local symbol can be
    // discarded and referencing a discarded local symbol from outside the
    // comdat (__cuda_register_globals) is disallowed by the ELF spec.
    //
    // HIP managed variables need to be always recorded in device and host
    // compilations for transformation.
    //
    // HIP managed variables and variables in CUDADeviceVarODRUsedByHost are
    // added to llvm.compiler-used, therefore they are safe to be registered.
    if ((!D->hasExternalStorage() && !D->isInline()) ||
        CGM.getContext().CUDADeviceVarODRUsedByHost.contains(D) ||
        D->hasAttr<HIPManagedAttr>()) {
      registerDeviceVar(D, GV, !D->hasDefinition(),
                        D->hasAttr<CUDAConstantAttr>());
    }
  } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
             D->getType()->isCUDADeviceBuiltinTextureType()) {
    // Builtin surfaces and textures and their template arguments are
    // also registered with CUDA runtime.
    const auto *TD = cast<ClassTemplateSpecializationDecl>(
        D->getType()->castAs<RecordType>()->getDecl());
    const TemplateArgumentList &Args = TD->getTemplateArgs();
    if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
      assert(Args.size() == 2 &&
             "Unexpected number of template arguments of CUDA device "
             "builtin surface type.");
      auto SurfType = Args[1].getAsIntegral();
      if (!D->hasExternalStorage())
        registerDeviceSurf(D, GV, !D->hasDefinition(), SurfType.getSExtValue());
    } else {
      assert(Args.size() == 3 &&
             "Unexpected number of template arguments of CUDA device "
             "builtin texture type.");
      auto TexType = Args[1].getAsIntegral();
      auto Normalized = Args[2].getAsIntegral();
      if (!D->hasExternalStorage())
        registerDeviceTex(D, GV, !D->hasDefinition(), TexType.getSExtValue(),
                          Normalized.getZExtValue());
    }
  }
}

// Transform managed variables to pointers to managed variables in device code.
// Each use of the original managed variable is replaced by a load from the
// transformed managed variable. The transformed managed variable contains
// the address of managed memory which will be allocated by the runtime.
void CGNVCUDARuntime::transformManagedVars() {
  for (auto &&Info : DeviceVars) {
    llvm::GlobalVariable *Var = Info.Var;
    if (Info.Flags.getKind() == DeviceVarFlags::Variable &&
        Info.Flags.isManaged()) {
      auto ManagedVar = new llvm::GlobalVariable(
          CGM.getModule(), Var->getType(),
          /*isConstant=*/false, Var->getLinkage(),
          /*Init=*/Var->isDeclaration()
              ? nullptr
              : llvm::ConstantPointerNull::get(Var->getType()),
          /*Name=*/"", /*InsertBefore=*/nullptr,
          llvm::GlobalVariable::NotThreadLocal,
          CGM.getContext().getTargetAddressSpace(LangAS::cuda_device));
      ManagedVar->setDSOLocal(Var->isDSOLocal());
      ManagedVar->setVisibility(Var->getVisibility());
      ManagedVar->setExternallyInitialized(true);
      replaceManagedVar(Var, ManagedVar);
      ManagedVar->takeName(Var);
      Var->setName(Twine(ManagedVar->getName()) + ".managed");
      // Keep managed variables even if they are not used in device code since
      // they need to be allocated by the runtime.
      if (!Var->isDeclaration()) {
        assert(!ManagedVar->isDeclaration());
        CGM.addCompilerUsedGlobal(Var);
        CGM.addCompilerUsedGlobal(ManagedVar);
      }
    }
  }
}

// Returns module constructor to be added.
llvm::Function *CGNVCUDARuntime::finalizeModule() {
  if (CGM.getLangOpts().CUDAIsDevice) {
    transformManagedVars();

    // Mark ODR-used device variables as compiler used to prevent it from being
    // eliminated by optimization. This is necessary for device variables
    // ODR-used by host functions. Sema correctly marks them as ODR-used no
    // matter whether they are ODR-used by device or host functions.
    //
    // We do not need to do this if the variable has used attribute since it
    // has already been added.
    //
    // Static device variables have been externalized at this point, therefore
    // variables with LLVM private or internal linkage need not be added.
    for (auto &&Info : DeviceVars) {
      auto Kind = Info.Flags.getKind();
      if (!Info.Var->isDeclaration() &&
          !llvm::GlobalValue::isLocalLinkage(Info.Var->getLinkage()) &&
          (Kind == DeviceVarFlags::Variable ||
           Kind == DeviceVarFlags::Surface ||
           Kind == DeviceVarFlags::Texture) &&
          Info.D->isUsed() && !Info.D->hasAttr<UsedAttr>()) {
        CGM.addCompilerUsedGlobal(Info.Var);
      }
    }
    return nullptr;
  }
  return makeModuleCtorFunction();
}

llvm::GlobalValue *CGNVCUDARuntime::getKernelHandle(llvm::Function *F,
                                                    GlobalDecl GD) {
  auto Loc = KernelHandles.find(F);
  if (Loc != KernelHandles.end())
    return Loc->second;

  if (!CGM.getLangOpts().HIP) {
    KernelHandles[F] = F;
    KernelStubs[F] = F;
    return F;
  }

  auto *Var = new llvm::GlobalVariable(
      TheModule, F->getType(), /*isConstant=*/true, F->getLinkage(),
      /*Initializer=*/nullptr,
      CGM.getMangledName(
          GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel)));
  Var->setAlignment(CGM.getPointerAlign().getAsAlign());
  Var->setDSOLocal(F->isDSOLocal());
  Var->setVisibility(F->getVisibility());
  KernelHandles[F] = Var;
  KernelStubs[Var] = F;
  return Var;
}