Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
//  MCInsts.
//
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets.  The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
//    These attributes, recorded in enum attributeBits
//    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
//    provides a mapping from bitmasks to contexts, which are represented by
//    enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is.  The
//    disassembler distinguishes four kinds of opcodes, which are enumerated in
//    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
//    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
//    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
//    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
//    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
//    a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
//    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
//    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
//    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
//    ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
//    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
//    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
//    meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
//    (X86DisassemblerDecoderCommon.h) and its type is an entry from
//    OperandType (ibid.).  The encoding indicates how to read it from the
//    instruction; the type indicates how to interpret the value once it has
//    been read.  For example, a register operand could be stored in the R/M
//    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
//    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
//    register, for instance).  Given this information, the operands can be
//    extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
//    and operands into a format understandable by the client - in this case, an
//    MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself.  The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
//   invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
//   table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
//   factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
//   responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86DisassemblerDecoder.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::X86Disassembler;

#define DEBUG_TYPE "x86-disassembler"

#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);

// Specifies whether a ModR/M byte is needed and (if so) which
// instruction each possible value of the ModR/M byte corresponds to.  Once
// this information is known, we have narrowed down to a single instruction.
struct ModRMDecision {
  uint8_t modrm_type;
  uint16_t instructionIDs;
};

// Specifies which set of ModR/M->instruction tables to look at
// given a particular opcode.
struct OpcodeDecision {
  ModRMDecision modRMDecisions[256];
};

// Specifies which opcode->instruction tables to look at given
// a particular context (set of attributes).  Since there are many possible
// contexts, the decoder first uses CONTEXTS_SYM to determine which context
// applies given a specific set of attributes.  Hence there are only IC_max
// entries in this table, rather than 2^(ATTR_max).
struct ContextDecision {
  OpcodeDecision opcodeDecisions[IC_max];
};

#include "X86GenDisassemblerTables.inc"

static InstrUID decode(OpcodeType type, InstructionContext insnContext,
                       uint8_t opcode, uint8_t modRM) {
  const struct ModRMDecision *dec;

  switch (type) {
  case ONEBYTE:
    dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case TWOBYTE:
    dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case THREEBYTE_38:
    dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case THREEBYTE_3A:
    dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case XOP8_MAP:
    dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case XOP9_MAP:
    dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case XOPA_MAP:
    dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  case THREEDNOW_MAP:
    dec =
        &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
    break;
  }

  switch (dec->modrm_type) {
  default:
    llvm_unreachable("Corrupt table!  Unknown modrm_type");
    return 0;
  case MODRM_ONEENTRY:
    return modRMTable[dec->instructionIDs];
  case MODRM_SPLITRM:
    if (modFromModRM(modRM) == 0x3)
      return modRMTable[dec->instructionIDs + 1];
    return modRMTable[dec->instructionIDs];
  case MODRM_SPLITREG:
    if (modFromModRM(modRM) == 0x3)
      return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
    return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
  case MODRM_SPLITMISC:
    if (modFromModRM(modRM) == 0x3)
      return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
    return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
  case MODRM_FULL:
    return modRMTable[dec->instructionIDs + modRM];
  }
}

static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
  uint64_t offset = insn->readerCursor - insn->startLocation;
  if (offset >= insn->bytes.size())
    return true;
  byte = insn->bytes[offset];
  return false;
}

template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
  auto r = insn->bytes;
  uint64_t offset = insn->readerCursor - insn->startLocation;
  if (offset + sizeof(T) > r.size())
    return true;
  T ret = 0;
  for (unsigned i = 0; i < sizeof(T); ++i)
    ret |= (uint64_t)r[offset + i] << (i * 8);
  ptr = ret;
  insn->readerCursor += sizeof(T);
  return false;
}

static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
  return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
}

// Consumes all of an instruction's prefix bytes, and marks the
// instruction as having them.  Also sets the instruction's default operand,
// address, and other relevant data sizes to report operands correctly.
//
// insn must not be empty.
static int readPrefixes(struct InternalInstruction *insn) {
  bool isPrefix = true;
  uint8_t byte = 0;
  uint8_t nextByte;

  LLVM_DEBUG(dbgs() << "readPrefixes()");

  while (isPrefix) {
    // If we fail reading prefixes, just stop here and let the opcode reader
    // deal with it.
    if (consume(insn, byte))
      break;

    // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
    // break and let it be disassembled as a normal "instruction".
    if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
      break;

    if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
      // If the byte is 0xf2 or 0xf3, and any of the following conditions are
      // met:
      // - it is followed by a LOCK (0xf0) prefix
      // - it is followed by an xchg instruction
      // then it should be disassembled as a xacquire/xrelease not repne/rep.
      if (((nextByte == 0xf0) ||
           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
        insn->xAcquireRelease = true;
        if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
          break;
      }
      // Also if the byte is 0xf3, and the following condition is met:
      // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
      //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
      // then it should be disassembled as an xrelease not rep.
      if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
                           nextByte == 0xc6 || nextByte == 0xc7)) {
        insn->xAcquireRelease = true;
        break;
      }
      if (isREX(insn, nextByte)) {
        uint8_t nnextByte;
        // Go to REX prefix after the current one
        if (consume(insn, nnextByte))
          return -1;
        // We should be able to read next byte after REX prefix
        if (peek(insn, nnextByte))
          return -1;
        --insn->readerCursor;
      }
    }

    switch (byte) {
    case 0xf0: // LOCK
      insn->hasLockPrefix = true;
      break;
    case 0xf2: // REPNE/REPNZ
    case 0xf3: { // REP or REPE/REPZ
      uint8_t nextByte;
      if (peek(insn, nextByte))
        break;
      // TODO:
      //  1. There could be several 0x66
      //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
      //      it's not mandatory prefix
      //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
      //     0x0f exactly after it to be mandatory prefix
      if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
        // The last of 0xf2 /0xf3 is mandatory prefix
        insn->mandatoryPrefix = byte;
      insn->repeatPrefix = byte;
      break;
    }
    case 0x2e: // CS segment override -OR- Branch not taken
      insn->segmentOverride = SEG_OVERRIDE_CS;
      break;
    case 0x36: // SS segment override -OR- Branch taken
      insn->segmentOverride = SEG_OVERRIDE_SS;
      break;
    case 0x3e: // DS segment override
      insn->segmentOverride = SEG_OVERRIDE_DS;
      break;
    case 0x26: // ES segment override
      insn->segmentOverride = SEG_OVERRIDE_ES;
      break;
    case 0x64: // FS segment override
      insn->segmentOverride = SEG_OVERRIDE_FS;
      break;
    case 0x65: // GS segment override
      insn->segmentOverride = SEG_OVERRIDE_GS;
      break;
    case 0x66: { // Operand-size override {
      uint8_t nextByte;
      insn->hasOpSize = true;
      if (peek(insn, nextByte))
        break;
      // 0x66 can't overwrite existing mandatory prefix and should be ignored
      if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
        insn->mandatoryPrefix = byte;
      break;
    }
    case 0x67: // Address-size override
      insn->hasAdSize = true;
      break;
    default: // Not a prefix byte
      isPrefix = false;
      break;
    }

    if (isPrefix)
      LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
  }

  insn->vectorExtensionType = TYPE_NO_VEX_XOP;

  if (byte == 0x62) {
    uint8_t byte1, byte2;
    if (consume(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
      return -1;
    }

    if (peek(insn, byte2)) {
      LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
      return -1;
    }

    if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
      insn->vectorExtensionType = TYPE_EVEX;
    } else {
      --insn->readerCursor; // unconsume byte1
      --insn->readerCursor; // unconsume byte
    }

    if (insn->vectorExtensionType == TYPE_EVEX) {
      insn->vectorExtensionPrefix[0] = byte;
      insn->vectorExtensionPrefix[1] = byte1;
      if (consume(insn, insn->vectorExtensionPrefix[2])) {
        LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
        return -1;
      }
      if (consume(insn, insn->vectorExtensionPrefix[3])) {
        LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
        return -1;
      }

      // We simulate the REX prefix for simplicity's sake
      if (insn->mode == MODE_64BIT) {
        insn->rexPrefix = 0x40 |
                          (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
                          (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
                          (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
                          (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
      }

      LLVM_DEBUG(
          dbgs() << format(
              "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
              insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
              insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
    }
  } else if (byte == 0xc4) {
    uint8_t byte1;
    if (peek(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
      return -1;
    }

    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
      insn->vectorExtensionType = TYPE_VEX_3B;
    else
      --insn->readerCursor;

    if (insn->vectorExtensionType == TYPE_VEX_3B) {
      insn->vectorExtensionPrefix[0] = byte;
      consume(insn, insn->vectorExtensionPrefix[1]);
      consume(insn, insn->vectorExtensionPrefix[2]);

      // We simulate the REX prefix for simplicity's sake

      if (insn->mode == MODE_64BIT)
        insn->rexPrefix = 0x40 |
                          (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
                          (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
                          (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
                          (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);

      LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
                                  insn->vectorExtensionPrefix[0],
                                  insn->vectorExtensionPrefix[1],
                                  insn->vectorExtensionPrefix[2]));
    }
  } else if (byte == 0xc5) {
    uint8_t byte1;
    if (peek(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
      return -1;
    }

    if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
      insn->vectorExtensionType = TYPE_VEX_2B;
    else
      --insn->readerCursor;

    if (insn->vectorExtensionType == TYPE_VEX_2B) {
      insn->vectorExtensionPrefix[0] = byte;
      consume(insn, insn->vectorExtensionPrefix[1]);

      if (insn->mode == MODE_64BIT)
        insn->rexPrefix =
            0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);

      switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
      default:
        break;
      case VEX_PREFIX_66:
        insn->hasOpSize = true;
        break;
      }

      LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
                                  insn->vectorExtensionPrefix[0],
                                  insn->vectorExtensionPrefix[1]));
    }
  } else if (byte == 0x8f) {
    uint8_t byte1;
    if (peek(insn, byte1)) {
      LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
      return -1;
    }

    if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
      insn->vectorExtensionType = TYPE_XOP;
    else
      --insn->readerCursor;

    if (insn->vectorExtensionType == TYPE_XOP) {
      insn->vectorExtensionPrefix[0] = byte;
      consume(insn, insn->vectorExtensionPrefix[1]);
      consume(insn, insn->vectorExtensionPrefix[2]);

      // We simulate the REX prefix for simplicity's sake

      if (insn->mode == MODE_64BIT)
        insn->rexPrefix = 0x40 |
                          (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
                          (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
                          (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
                          (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);

      switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
      default:
        break;
      case VEX_PREFIX_66:
        insn->hasOpSize = true;
        break;
      }

      LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
                                  insn->vectorExtensionPrefix[0],
                                  insn->vectorExtensionPrefix[1],
                                  insn->vectorExtensionPrefix[2]));
    }
  } else if (isREX(insn, byte)) {
    if (peek(insn, nextByte))
      return -1;
    insn->rexPrefix = byte;
    LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
  } else
    --insn->readerCursor;

  if (insn->mode == MODE_16BIT) {
    insn->registerSize = (insn->hasOpSize ? 4 : 2);
    insn->addressSize = (insn->hasAdSize ? 4 : 2);
    insn->displacementSize = (insn->hasAdSize ? 4 : 2);
    insn->immediateSize = (insn->hasOpSize ? 4 : 2);
  } else if (insn->mode == MODE_32BIT) {
    insn->registerSize = (insn->hasOpSize ? 2 : 4);
    insn->addressSize = (insn->hasAdSize ? 2 : 4);
    insn->displacementSize = (insn->hasAdSize ? 2 : 4);
    insn->immediateSize = (insn->hasOpSize ? 2 : 4);
  } else if (insn->mode == MODE_64BIT) {
    if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
      insn->registerSize = 8;
      insn->addressSize = (insn->hasAdSize ? 4 : 8);
      insn->displacementSize = 4;
      insn->immediateSize = 4;
      insn->hasOpSize = false;
    } else {
      insn->registerSize = (insn->hasOpSize ? 2 : 4);
      insn->addressSize = (insn->hasAdSize ? 4 : 8);
      insn->displacementSize = (insn->hasOpSize ? 2 : 4);
      insn->immediateSize = (insn->hasOpSize ? 2 : 4);
    }
  }

  return 0;
}

// Consumes the SIB byte to determine addressing information.
static int readSIB(struct InternalInstruction *insn) {
  SIBBase sibBaseBase = SIB_BASE_NONE;
  uint8_t index, base;

  LLVM_DEBUG(dbgs() << "readSIB()");
  switch (insn->addressSize) {
  case 2:
  default:
    llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
  case 4:
    insn->sibIndexBase = SIB_INDEX_EAX;
    sibBaseBase = SIB_BASE_EAX;
    break;
  case 8:
    insn->sibIndexBase = SIB_INDEX_RAX;
    sibBaseBase = SIB_BASE_RAX;
    break;
  }

  if (consume(insn, insn->sib))
    return -1;

  index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);

  if (index == 0x4) {
    insn->sibIndex = SIB_INDEX_NONE;
  } else {
    insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
  }

  insn->sibScale = 1 << scaleFromSIB(insn->sib);

  base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);

  switch (base) {
  case 0x5:
  case 0xd:
    switch (modFromModRM(insn->modRM)) {
    case 0x0:
      insn->eaDisplacement = EA_DISP_32;
      insn->sibBase = SIB_BASE_NONE;
      break;
    case 0x1:
      insn->eaDisplacement = EA_DISP_8;
      insn->sibBase = (SIBBase)(sibBaseBase + base);
      break;
    case 0x2:
      insn->eaDisplacement = EA_DISP_32;
      insn->sibBase = (SIBBase)(sibBaseBase + base);
      break;
    default:
      llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
    }
    break;
  default:
    insn->sibBase = (SIBBase)(sibBaseBase + base);
    break;
  }

  return 0;
}

static int readDisplacement(struct InternalInstruction *insn) {
  int8_t d8;
  int16_t d16;
  int32_t d32;
  LLVM_DEBUG(dbgs() << "readDisplacement()");

  insn->displacementOffset = insn->readerCursor - insn->startLocation;
  switch (insn->eaDisplacement) {
  case EA_DISP_NONE:
    break;
  case EA_DISP_8:
    if (consume(insn, d8))
      return -1;
    insn->displacement = d8;
    break;
  case EA_DISP_16:
    if (consume(insn, d16))
      return -1;
    insn->displacement = d16;
    break;
  case EA_DISP_32:
    if (consume(insn, d32))
      return -1;
    insn->displacement = d32;
    break;
  }

  return 0;
}

// Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
static int readModRM(struct InternalInstruction *insn) {
  uint8_t mod, rm, reg, evexrm;
  LLVM_DEBUG(dbgs() << "readModRM()");

  if (insn->consumedModRM)
    return 0;

  if (consume(insn, insn->modRM))
    return -1;
  insn->consumedModRM = true;

  mod = modFromModRM(insn->modRM);
  rm = rmFromModRM(insn->modRM);
  reg = regFromModRM(insn->modRM);

  // This goes by insn->registerSize to pick the correct register, which messes
  // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
  // fixupReg().
  switch (insn->registerSize) {
  case 2:
    insn->regBase = MODRM_REG_AX;
    insn->eaRegBase = EA_REG_AX;
    break;
  case 4:
    insn->regBase = MODRM_REG_EAX;
    insn->eaRegBase = EA_REG_EAX;
    break;
  case 8:
    insn->regBase = MODRM_REG_RAX;
    insn->eaRegBase = EA_REG_RAX;
    break;
  }

  reg |= rFromREX(insn->rexPrefix) << 3;
  rm |= bFromREX(insn->rexPrefix) << 3;

  evexrm = 0;
  if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
    reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
    evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
  }

  insn->reg = (Reg)(insn->regBase + reg);

  switch (insn->addressSize) {
  case 2: {
    EABase eaBaseBase = EA_BASE_BX_SI;

    switch (mod) {
    case 0x0:
      if (rm == 0x6) {
        insn->eaBase = EA_BASE_NONE;
        insn->eaDisplacement = EA_DISP_16;
        if (readDisplacement(insn))
          return -1;
      } else {
        insn->eaBase = (EABase)(eaBaseBase + rm);
        insn->eaDisplacement = EA_DISP_NONE;
      }
      break;
    case 0x1:
      insn->eaBase = (EABase)(eaBaseBase + rm);
      insn->eaDisplacement = EA_DISP_8;
      insn->displacementSize = 1;
      if (readDisplacement(insn))
        return -1;
      break;
    case 0x2:
      insn->eaBase = (EABase)(eaBaseBase + rm);
      insn->eaDisplacement = EA_DISP_16;
      if (readDisplacement(insn))
        return -1;
      break;
    case 0x3:
      insn->eaBase = (EABase)(insn->eaRegBase + rm);
      if (readDisplacement(insn))
        return -1;
      break;
    }
    break;
  }
  case 4:
  case 8: {
    EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);

    switch (mod) {
    case 0x0:
      insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
      // In determining whether RIP-relative mode is used (rm=5),
      // or whether a SIB byte is present (rm=4),
      // the extension bits (REX.b and EVEX.x) are ignored.
      switch (rm & 7) {
      case 0x4: // SIB byte is present
        insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
        if (readSIB(insn) || readDisplacement(insn))
          return -1;
        break;
      case 0x5: // RIP-relative
        insn->eaBase = EA_BASE_NONE;
        insn->eaDisplacement = EA_DISP_32;
        if (readDisplacement(insn))
          return -1;
        break;
      default:
        insn->eaBase = (EABase)(eaBaseBase + rm);
        break;
      }
      break;
    case 0x1:
      insn->displacementSize = 1;
      LLVM_FALLTHROUGH;
    case 0x2:
      insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
      switch (rm & 7) {
      case 0x4: // SIB byte is present
        insn->eaBase = EA_BASE_sib;
        if (readSIB(insn) || readDisplacement(insn))
          return -1;
        break;
      default:
        insn->eaBase = (EABase)(eaBaseBase + rm);
        if (readDisplacement(insn))
          return -1;
        break;
      }
      break;
    case 0x3:
      insn->eaDisplacement = EA_DISP_NONE;
      insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
      break;
    }
    break;
  }
  } // switch (insn->addressSize)

  return 0;
}

#define GENERIC_FIXUP_FUNC(name, base, prefix, mask)                           \
  static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
                       uint8_t index, uint8_t *valid) {                        \
    *valid = 1;                                                                \
    switch (type) {                                                            \
    default:                                                                   \
      debug("Unhandled register type");                                        \
      *valid = 0;                                                              \
      return 0;                                                                \
    case TYPE_Rv:                                                              \
      return base + index;                                                     \
    case TYPE_R8:                                                              \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      if (insn->rexPrefix && index >= 4 && index <= 7) {                       \
        return prefix##_SPL + (index - 4);                                     \
      } else {                                                                 \
        return prefix##_AL + index;                                            \
      }                                                                        \
    case TYPE_R16:                                                             \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      return prefix##_AX + index;                                              \
    case TYPE_R32:                                                             \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      return prefix##_EAX + index;                                             \
    case TYPE_R64:                                                             \
      index &= mask;                                                           \
      if (index > 0xf)                                                         \
        *valid = 0;                                                            \
      return prefix##_RAX + index;                                             \
    case TYPE_ZMM:                                                             \
      return prefix##_ZMM0 + index;                                            \
    case TYPE_YMM:                                                             \
      return prefix##_YMM0 + index;                                            \
    case TYPE_XMM:                                                             \
      return prefix##_XMM0 + index;                                            \
    case TYPE_TMM:                                                             \
      if (index > 7)                                                           \
        *valid = 0;                                                            \
      return prefix##_TMM0 + index;                                            \
    case TYPE_VK:                                                              \
      index &= 0xf;                                                            \
      if (index > 7)                                                           \
        *valid = 0;                                                            \
      return prefix##_K0 + index;                                              \
    case TYPE_VK_PAIR:                                                         \
      if (index > 7)                                                           \
        *valid = 0;                                                            \
      return prefix##_K0_K1 + (index / 2);                                     \
    case TYPE_MM64:                                                            \
      return prefix##_MM0 + (index & 0x7);                                     \
    case TYPE_SEGMENTREG:                                                      \
      if ((index & 7) > 5)                                                     \
        *valid = 0;                                                            \
      return prefix##_ES + (index & 7);                                        \
    case TYPE_DEBUGREG:                                                        \
      return prefix##_DR0 + index;                                             \
    case TYPE_CONTROLREG:                                                      \
      return prefix##_CR0 + index;                                             \
    case TYPE_BNDR:                                                            \
      if (index > 3)                                                           \
        *valid = 0;                                                            \
      return prefix##_BND0 + index;                                            \
    case TYPE_MVSIBX:                                                          \
      return prefix##_XMM0 + index;                                            \
    case TYPE_MVSIBY:                                                          \
      return prefix##_YMM0 + index;                                            \
    case TYPE_MVSIBZ:                                                          \
      return prefix##_ZMM0 + index;                                            \
    }                                                                          \
  }

// Consult an operand type to determine the meaning of the reg or R/M field. If
// the operand is an XMM operand, for example, an operand would be XMM0 instead
// of AX, which readModRM() would otherwise misinterpret it as.
//
// @param insn  - The instruction containing the operand.
// @param type  - The operand type.
// @param index - The existing value of the field as reported by readModRM().
// @param valid - The address of a uint8_t.  The target is set to 1 if the
//                field is valid for the register class; 0 if not.
// @return      - The proper value.
GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)

// Consult an operand specifier to determine which of the fixup*Value functions
// to use in correcting readModRM()'ss interpretation.
//
// @param insn  - See fixup*Value().
// @param op    - The operand specifier.
// @return      - 0 if fixup was successful; -1 if the register returned was
//                invalid for its class.
static int fixupReg(struct InternalInstruction *insn,
                    const struct OperandSpecifier *op) {
  uint8_t valid;
  LLVM_DEBUG(dbgs() << "fixupReg()");

  switch ((OperandEncoding)op->encoding) {
  default:
    debug("Expected a REG or R/M encoding in fixupReg");
    return -1;
  case ENCODING_VVVV:
    insn->vvvv =
        (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
    if (!valid)
      return -1;
    break;
  case ENCODING_REG:
    insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
                                   insn->reg - insn->regBase, &valid);
    if (!valid)
      return -1;
    break;
  case ENCODING_SIB:
  CASE_ENCODING_RM:
    if (insn->eaBase >= insn->eaRegBase) {
      insn->eaBase = (EABase)fixupRMValue(
          insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
      if (!valid)
        return -1;
    }
    break;
  }

  return 0;
}

// Read the opcode (except the ModR/M byte in the case of extended or escape
// opcodes).
static bool readOpcode(struct InternalInstruction *insn) {
  uint8_t current;
  LLVM_DEBUG(dbgs() << "readOpcode()");

  insn->opcodeType = ONEBYTE;
  if (insn->vectorExtensionType == TYPE_EVEX) {
    switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
    default:
      LLVM_DEBUG(
          dbgs() << format("Unhandled mm field for instruction (0x%hhx)",
                           mmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
      return true;
    case VEX_LOB_0F:
      insn->opcodeType = TWOBYTE;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F38:
      insn->opcodeType = THREEBYTE_38;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F3A:
      insn->opcodeType = THREEBYTE_3A;
      return consume(insn, insn->opcode);
    }
  } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
    switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
    default:
      LLVM_DEBUG(
          dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
                           mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
      return true;
    case VEX_LOB_0F:
      insn->opcodeType = TWOBYTE;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F38:
      insn->opcodeType = THREEBYTE_38;
      return consume(insn, insn->opcode);
    case VEX_LOB_0F3A:
      insn->opcodeType = THREEBYTE_3A;
      return consume(insn, insn->opcode);
    }
  } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
    insn->opcodeType = TWOBYTE;
    return consume(insn, insn->opcode);
  } else if (insn->vectorExtensionType == TYPE_XOP) {
    switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
    default:
      LLVM_DEBUG(
          dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
                           mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
      return true;
    case XOP_MAP_SELECT_8:
      insn->opcodeType = XOP8_MAP;
      return consume(insn, insn->opcode);
    case XOP_MAP_SELECT_9:
      insn->opcodeType = XOP9_MAP;
      return consume(insn, insn->opcode);
    case XOP_MAP_SELECT_A:
      insn->opcodeType = XOPA_MAP;
      return consume(insn, insn->opcode);
    }
  }

  if (consume(insn, current))
    return true;

  if (current == 0x0f) {
    LLVM_DEBUG(
        dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
    if (consume(insn, current))
      return true;

    if (current == 0x38) {
      LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
                                  current));
      if (consume(insn, current))
        return true;

      insn->opcodeType = THREEBYTE_38;
    } else if (current == 0x3a) {
      LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
                                  current));
      if (consume(insn, current))
        return true;

      insn->opcodeType = THREEBYTE_3A;
    } else if (current == 0x0f) {
      LLVM_DEBUG(
          dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));

      // Consume operands before the opcode to comply with the 3DNow encoding
      if (readModRM(insn))
        return true;

      if (consume(insn, current))
        return true;

      insn->opcodeType = THREEDNOW_MAP;
    } else {
      LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
      insn->opcodeType = TWOBYTE;
    }
  } else if (insn->mandatoryPrefix)
    // The opcode with mandatory prefix must start with opcode escape.
    // If not it's legacy repeat prefix
    insn->mandatoryPrefix = 0;

  // At this point we have consumed the full opcode.
  // Anything we consume from here on must be unconsumed.
  insn->opcode = current;

  return false;
}

// Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
static bool is16BitEquivalent(const char *orig, const char *equiv) {
  for (int i = 0;; i++) {
    if (orig[i] == '\0' && equiv[i] == '\0')
      return true;
    if (orig[i] == '\0' || equiv[i] == '\0')
      return false;
    if (orig[i] != equiv[i]) {
      if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
        continue;
      if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
        continue;
      if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
        continue;
      return false;
    }
  }
}

// Determine whether this instruction is a 64-bit instruction.
static bool is64Bit(const char *name) {
  for (int i = 0;; ++i) {
    if (name[i] == '\0')
      return false;
    if (name[i] == '6' && name[i + 1] == '4')
      return true;
  }
}

// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
// for extended and escape opcodes, and using a supplied attribute mask.
static int getInstructionIDWithAttrMask(uint16_t *instructionID,
                                        struct InternalInstruction *insn,
                                        uint16_t attrMask) {
  auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
  const ContextDecision *decision;
  switch (insn->opcodeType) {
  case ONEBYTE:
    decision = &ONEBYTE_SYM;
    break;
  case TWOBYTE:
    decision = &TWOBYTE_SYM;
    break;
  case THREEBYTE_38:
    decision = &THREEBYTE38_SYM;
    break;
  case THREEBYTE_3A:
    decision = &THREEBYTE3A_SYM;
    break;
  case XOP8_MAP:
    decision = &XOP8_MAP_SYM;
    break;
  case XOP9_MAP:
    decision = &XOP9_MAP_SYM;
    break;
  case XOPA_MAP:
    decision = &XOPA_MAP_SYM;
    break;
  case THREEDNOW_MAP:
    decision = &THREEDNOW_MAP_SYM;
    break;
  }

  if (decision->opcodeDecisions[insnCtx]
          .modRMDecisions[insn->opcode]
          .modrm_type != MODRM_ONEENTRY) {
    if (readModRM(insn))
      return -1;
    *instructionID =
        decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
  } else {
    *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
  }

  return 0;
}

// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
// for extended and escape opcodes. Determines the attributes and context for
// the instruction before doing so.
static int getInstructionID(struct InternalInstruction *insn,
                            const MCInstrInfo *mii) {
  uint16_t attrMask;
  uint16_t instructionID;

  LLVM_DEBUG(dbgs() << "getID()");

  attrMask = ATTR_NONE;

  if (insn->mode == MODE_64BIT)
    attrMask |= ATTR_64BIT;

  if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
    attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;

    if (insn->vectorExtensionType == TYPE_EVEX) {
      switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXKZ;
      if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXB;
      if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXK;
      if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_VEXL;
      if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
        attrMask |= ATTR_EVEXL2;
    } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
      switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
        attrMask |= ATTR_VEXL;
    } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
      switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
        attrMask |= ATTR_VEXL;
    } else if (insn->vectorExtensionType == TYPE_XOP) {
      switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
      case VEX_PREFIX_66:
        attrMask |= ATTR_OPSIZE;
        break;
      case VEX_PREFIX_F3:
        attrMask |= ATTR_XS;
        break;
      case VEX_PREFIX_F2:
        attrMask |= ATTR_XD;
        break;
      }

      if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
        attrMask |= ATTR_VEXL;
    } else {
      return -1;
    }
  } else if (!insn->mandatoryPrefix) {
    // If we don't have mandatory prefix we should use legacy prefixes here
    if (insn->hasOpSize && (insn->mode != MODE_16BIT))
      attrMask |= ATTR_OPSIZE;
    if (insn->hasAdSize)
      attrMask |= ATTR_ADSIZE;
    if (insn->opcodeType == ONEBYTE) {
      if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
        // Special support for PAUSE
        attrMask |= ATTR_XS;
    } else {
      if (insn->repeatPrefix == 0xf2)
        attrMask |= ATTR_XD;
      else if (insn->repeatPrefix == 0xf3)
        attrMask |= ATTR_XS;
    }
  } else {
    switch (insn->mandatoryPrefix) {
    case 0xf2:
      attrMask |= ATTR_XD;
      break;
    case 0xf3:
      attrMask |= ATTR_XS;
      break;
    case 0x66:
      if (insn->mode != MODE_16BIT)
        attrMask |= ATTR_OPSIZE;
      break;
    case 0x67:
      attrMask |= ATTR_ADSIZE;
      break;
    }
  }

  if (insn->rexPrefix & 0x08) {
    attrMask |= ATTR_REXW;
    attrMask &= ~ATTR_ADSIZE;
  }

  if (insn->mode == MODE_16BIT) {
    // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
    // of the AdSize prefix is inverted w.r.t. 32-bit mode.
    if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
      attrMask ^= ATTR_ADSIZE;
    // If we're in 16-bit mode and this is one of the relative jumps and opsize
    // prefix isn't present, we need to force the opsize attribute since the
    // prefix is inverted relative to 32-bit mode.
    if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
        (insn->opcode == 0xE8 || insn->opcode == 0xE9))
      attrMask |= ATTR_OPSIZE;

    if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
        insn->opcode >= 0x80 && insn->opcode <= 0x8F)
      attrMask |= ATTR_OPSIZE;
  }


  if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
    return -1;

  // The following clauses compensate for limitations of the tables.

  if (insn->mode != MODE_64BIT &&
      insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
    // The tables can't distinquish between cases where the W-bit is used to
    // select register size and cases where its a required part of the opcode.
    if ((insn->vectorExtensionType == TYPE_EVEX &&
         wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
        (insn->vectorExtensionType == TYPE_VEX_3B &&
         wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
        (insn->vectorExtensionType == TYPE_XOP &&
         wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {

      uint16_t instructionIDWithREXW;
      if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
                                       attrMask | ATTR_REXW)) {
        insn->instructionID = instructionID;
        insn->spec = &INSTRUCTIONS_SYM[instructionID];
        return 0;
      }

      auto SpecName = mii->getName(instructionIDWithREXW);
      // If not a 64-bit instruction. Switch the opcode.
      if (!is64Bit(SpecName.data())) {
        insn->instructionID = instructionIDWithREXW;
        insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
        return 0;
      }
    }
  }

  // Absolute moves, umonitor, and movdir64b need special handling.
  // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
  //  inverted w.r.t.
  // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
  //  any position.
  if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
      (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
      (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
    // Make sure we observed the prefixes in any position.
    if (insn->hasAdSize)
      attrMask |= ATTR_ADSIZE;
    if (insn->hasOpSize)
      attrMask |= ATTR_OPSIZE;

    // In 16-bit, invert the attributes.
    if (insn->mode == MODE_16BIT) {
      attrMask ^= ATTR_ADSIZE;

      // The OpSize attribute is only valid with the absolute moves.
      if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
        attrMask ^= ATTR_OPSIZE;
    }

    if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
      return -1;

    insn->instructionID = instructionID;
    insn->spec = &INSTRUCTIONS_SYM[instructionID];
    return 0;
  }

  if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
      !(attrMask & ATTR_OPSIZE)) {
    // The instruction tables make no distinction between instructions that
    // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
    // particular spot (i.e., many MMX operations). In general we're
    // conservative, but in the specific case where OpSize is present but not in
    // the right place we check if there's a 16-bit operation.
    const struct InstructionSpecifier *spec;
    uint16_t instructionIDWithOpsize;
    llvm::StringRef specName, specWithOpSizeName;

    spec = &INSTRUCTIONS_SYM[instructionID];

    if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
                                     attrMask | ATTR_OPSIZE)) {
      // ModRM required with OpSize but not present. Give up and return the
      // version without OpSize set.
      insn->instructionID = instructionID;
      insn->spec = spec;
      return 0;
    }

    specName = mii->getName(instructionID);
    specWithOpSizeName = mii->getName(instructionIDWithOpsize);

    if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
        (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
      insn->instructionID = instructionIDWithOpsize;
      insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
    } else {
      insn->instructionID = instructionID;
      insn->spec = spec;
    }
    return 0;
  }

  if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
      insn->rexPrefix & 0x01) {
    // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
    // as XCHG %r8, %eax.
    const struct InstructionSpecifier *spec;
    uint16_t instructionIDWithNewOpcode;
    const struct InstructionSpecifier *specWithNewOpcode;

    spec = &INSTRUCTIONS_SYM[instructionID];

    // Borrow opcode from one of the other XCHGar opcodes
    insn->opcode = 0x91;

    if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
                                     attrMask)) {
      insn->opcode = 0x90;

      insn->instructionID = instructionID;
      insn->spec = spec;
      return 0;
    }

    specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];

    // Change back
    insn->opcode = 0x90;

    insn->instructionID = instructionIDWithNewOpcode;
    insn->spec = specWithNewOpcode;

    return 0;
  }

  insn->instructionID = instructionID;
  insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];

  return 0;
}

// Read an operand from the opcode field of an instruction and interprets it
// appropriately given the operand width. Handles AddRegFrm instructions.
//
// @param insn  - the instruction whose opcode field is to be read.
// @param size  - The width (in bytes) of the register being specified.
//                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
//                RAX.
// @return      - 0 on success; nonzero otherwise.
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
  LLVM_DEBUG(dbgs() << "readOpcodeRegister()");

  if (size == 0)
    size = insn->registerSize;

  switch (size) {
  case 1:
    insn->opcodeRegister = (Reg)(
        MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
        insn->opcodeRegister < MODRM_REG_AL + 0x8) {
      insn->opcodeRegister =
          (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
    }

    break;
  case 2:
    insn->opcodeRegister = (Reg)(
        MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    break;
  case 4:
    insn->opcodeRegister =
        (Reg)(MODRM_REG_EAX +
              ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    break;
  case 8:
    insn->opcodeRegister =
        (Reg)(MODRM_REG_RAX +
              ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
    break;
  }

  return 0;
}

// Consume an immediate operand from an instruction, given the desired operand
// size.
//
// @param insn  - The instruction whose operand is to be read.
// @param size  - The width (in bytes) of the operand.
// @return      - 0 if the immediate was successfully consumed; nonzero
//                otherwise.
static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
  uint8_t imm8;
  uint16_t imm16;
  uint32_t imm32;
  uint64_t imm64;

  LLVM_DEBUG(dbgs() << "readImmediate()");

  assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");

  insn->immediateSize = size;
  insn->immediateOffset = insn->readerCursor - insn->startLocation;

  switch (size) {
  case 1:
    if (consume(insn, imm8))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm8;
    break;
  case 2:
    if (consume(insn, imm16))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm16;
    break;
  case 4:
    if (consume(insn, imm32))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm32;
    break;
  case 8:
    if (consume(insn, imm64))
      return -1;
    insn->immediates[insn->numImmediatesConsumed] = imm64;
    break;
  default:
    llvm_unreachable("invalid size");
  }

  insn->numImmediatesConsumed++;

  return 0;
}

// Consume vvvv from an instruction if it has a VEX prefix.
static int readVVVV(struct InternalInstruction *insn) {
  LLVM_DEBUG(dbgs() << "readVVVV()");

  int vvvv;
  if (insn->vectorExtensionType == TYPE_EVEX)
    vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
            vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
  else if (insn->vectorExtensionType == TYPE_VEX_3B)
    vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
  else if (insn->vectorExtensionType == TYPE_VEX_2B)
    vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
  else if (insn->vectorExtensionType == TYPE_XOP)
    vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
  else
    return -1;

  if (insn->mode != MODE_64BIT)
    vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.

  insn->vvvv = static_cast<Reg>(vvvv);
  return 0;
}

// Read an mask register from the opcode field of an instruction.
//
// @param insn    - The instruction whose opcode field is to be read.
// @return        - 0 on success; nonzero otherwise.
static int readMaskRegister(struct InternalInstruction *insn) {
  LLVM_DEBUG(dbgs() << "readMaskRegister()");

  if (insn->vectorExtensionType != TYPE_EVEX)
    return -1;

  insn->writemask =
      static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
  return 0;
}

// Consults the specifier for an instruction and consumes all
// operands for that instruction, interpreting them as it goes.
static int readOperands(struct InternalInstruction *insn) {
  int hasVVVV, needVVVV;
  int sawRegImm = 0;

  LLVM_DEBUG(dbgs() << "readOperands()");

  // If non-zero vvvv specified, make sure one of the operands uses it.
  hasVVVV = !readVVVV(insn);
  needVVVV = hasVVVV && (insn->vvvv != 0);

  for (const auto &Op : x86OperandSets[insn->spec->operands]) {
    switch (Op.encoding) {
    case ENCODING_NONE:
    case ENCODING_SI:
    case ENCODING_DI:
      break;
    CASE_ENCODING_VSIB:
      // VSIB can use the V2 bit so check only the other bits.
      if (needVVVV)
        needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
      if (readModRM(insn))
        return -1;

      // Reject if SIB wasn't used.
      if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
        return -1;

      // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
      if (insn->sibIndex == SIB_INDEX_NONE)
        insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);

      // If EVEX.v2 is set this is one of the 16-31 registers.
      if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
          v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
        insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);

      // Adjust the index register to the correct size.
      switch ((OperandType)Op.type) {
      default:
        debug("Unhandled VSIB index type");
        return -1;
      case TYPE_MVSIBX:
        insn->sibIndex =
            (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
        break;
      case TYPE_MVSIBY:
        insn->sibIndex =
            (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
        break;
      case TYPE_MVSIBZ:
        insn->sibIndex =
            (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
        break;
      }

      // Apply the AVX512 compressed displacement scaling factor.
      if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
        insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
      break;
    case ENCODING_SIB:
      // Reject if SIB wasn't used.
      if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
        return -1;
      if (readModRM(insn))
        return -1;
      if (fixupReg(insn, &Op))
        return -1;
      break;
    case ENCODING_REG:
    CASE_ENCODING_RM:
      if (readModRM(insn))
        return -1;
      if (fixupReg(insn, &Op))
        return -1;
      // Apply the AVX512 compressed displacement scaling factor.
      if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
        insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
      break;
    case ENCODING_IB:
      if (sawRegImm) {
        // Saw a register immediate so don't read again and instead split the
        // previous immediate. FIXME: This is a hack.
        insn->immediates[insn->numImmediatesConsumed] =
            insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
        ++insn->numImmediatesConsumed;
        break;
      }
      if (readImmediate(insn, 1))
        return -1;
      if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
        sawRegImm = 1;
      break;
    case ENCODING_IW:
      if (readImmediate(insn, 2))
        return -1;
      break;
    case ENCODING_ID:
      if (readImmediate(insn, 4))
        return -1;
      break;
    case ENCODING_IO:
      if (readImmediate(insn, 8))
        return -1;
      break;
    case ENCODING_Iv:
      if (readImmediate(insn, insn->immediateSize))
        return -1;
      break;
    case ENCODING_Ia:
      if (readImmediate(insn, insn->addressSize))
        return -1;
      break;
    case ENCODING_IRC:
      insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
                 lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
      break;
    case ENCODING_RB:
      if (readOpcodeRegister(insn, 1))
        return -1;
      break;
    case ENCODING_RW:
      if (readOpcodeRegister(insn, 2))
        return -1;
      break;
    case ENCODING_RD:
      if (readOpcodeRegister(insn, 4))
        return -1;
      break;
    case ENCODING_RO:
      if (readOpcodeRegister(insn, 8))
        return -1;
      break;
    case ENCODING_Rv:
      if (readOpcodeRegister(insn, 0))
        return -1;
      break;
    case ENCODING_CC:
      insn->immediates[1] = insn->opcode & 0xf;
      break;
    case ENCODING_FP:
      break;
    case ENCODING_VVVV:
      needVVVV = 0; // Mark that we have found a VVVV operand.
      if (!hasVVVV)
        return -1;
      if (insn->mode != MODE_64BIT)
        insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
      if (fixupReg(insn, &Op))
        return -1;
      break;
    case ENCODING_WRITEMASK:
      if (readMaskRegister(insn))
        return -1;
      break;
    case ENCODING_DUP:
      break;
    default:
      LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
      return -1;
    }
  }

  // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
  if (needVVVV)
    return -1;

  return 0;
}

namespace llvm {

// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
namespace X86 {
  enum {
    BX_SI = 500,
    BX_DI = 501,
    BP_SI = 502,
    BP_DI = 503,
    sib   = 504,
    sib64 = 505
  };
} // namespace X86

} // namespace llvm

static bool translateInstruction(MCInst &target,
                                InternalInstruction &source,
                                const MCDisassembler *Dis);

namespace {

/// Generic disassembler for all X86 platforms. All each platform class should
/// have to do is subclass the constructor, and provide a different
/// disassemblerMode value.
class X86GenericDisassembler : public MCDisassembler {
  std::unique_ptr<const MCInstrInfo> MII;
public:
  X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
                         std::unique_ptr<const MCInstrInfo> MII);
public:
  DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
                              ArrayRef<uint8_t> Bytes, uint64_t Address,
                              raw_ostream &cStream) const override;

private:
  DisassemblerMode              fMode;
};

} // namespace

X86GenericDisassembler::X86GenericDisassembler(
                                         const MCSubtargetInfo &STI,
                                         MCContext &Ctx,
                                         std::unique_ptr<const MCInstrInfo> MII)
  : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
  const FeatureBitset &FB = STI.getFeatureBits();
  if (FB[X86::Mode16Bit]) {
    fMode = MODE_16BIT;
    return;
  } else if (FB[X86::Mode32Bit]) {
    fMode = MODE_32BIT;
    return;
  } else if (FB[X86::Mode64Bit]) {
    fMode = MODE_64BIT;
    return;
  }

  llvm_unreachable("Invalid CPU mode");
}

MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
    MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
    raw_ostream &CStream) const {
  CommentStream = &CStream;

  InternalInstruction Insn;
  memset(&Insn, 0, sizeof(InternalInstruction));
  Insn.bytes = Bytes;
  Insn.startLocation = Address;
  Insn.readerCursor = Address;
  Insn.mode = fMode;

  if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
      getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
      readOperands(&Insn)) {
    Size = Insn.readerCursor - Address;
    return Fail;
  }

  Insn.operands = x86OperandSets[Insn.spec->operands];
  Insn.length = Insn.readerCursor - Insn.startLocation;
  Size = Insn.length;
  if (Size > 15)
    LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");

  bool Ret = translateInstruction(Instr, Insn, this);
  if (!Ret) {
    unsigned Flags = X86::IP_NO_PREFIX;
    if (Insn.hasAdSize)
      Flags |= X86::IP_HAS_AD_SIZE;
    if (!Insn.mandatoryPrefix) {
      if (Insn.hasOpSize)
        Flags |= X86::IP_HAS_OP_SIZE;
      if (Insn.repeatPrefix == 0xf2)
        Flags |= X86::IP_HAS_REPEAT_NE;
      else if (Insn.repeatPrefix == 0xf3 &&
               // It should not be 'pause' f3 90
               Insn.opcode != 0x90)
        Flags |= X86::IP_HAS_REPEAT;
      if (Insn.hasLockPrefix)
        Flags |= X86::IP_HAS_LOCK;
    }
    Instr.setFlags(Flags);
  }
  return (!Ret) ? Success : Fail;
}

//
// Private code that translates from struct InternalInstructions to MCInsts.
//

/// translateRegister - Translates an internal register to the appropriate LLVM
///   register, and appends it as an operand to an MCInst.
///
/// @param mcInst     - The MCInst to append to.
/// @param reg        - The Reg to append.
static void translateRegister(MCInst &mcInst, Reg reg) {
#define ENTRY(x) X86::x,
  static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
#undef ENTRY

  MCPhysReg llvmRegnum = llvmRegnums[reg];
  mcInst.addOperand(MCOperand::createReg(llvmRegnum));
}

/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
/// immediate Value in the MCInst.
///
/// @param Value      - The immediate Value, has had any PC adjustment made by
///                     the caller.
/// @param isBranch   - If the instruction is a branch instruction
/// @param Address    - The starting address of the instruction
/// @param Offset     - The byte offset to this immediate in the instruction
/// @param Width      - The byte width of this immediate in the instruction
///
/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
/// called then that function is called to get any symbolic information for the
/// immediate in the instruction using the Address, Offset and Width.  If that
/// returns non-zero then the symbolic information it returns is used to create
/// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
/// returns zero and isBranch is true then a symbol look up for immediate Value
/// is done and if a symbol is found an MCExpr is created with that, else
/// an MCExpr with the immediate Value is created.  This function returns true
/// if it adds an operand to the MCInst and false otherwise.
static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
                                     uint64_t Address, uint64_t Offset,
                                     uint64_t Width, MCInst &MI,
                                     const MCDisassembler *Dis) {
  return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
                                       Offset, Width);
}

/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
/// referenced by a load instruction with the base register that is the rip.
/// These can often be addresses in a literal pool.  The Address of the
/// instruction and its immediate Value are used to determine the address
/// being referenced in the literal pool entry.  The SymbolLookUp call back will
/// return a pointer to a literal 'C' string if the referenced address is an
/// address into a section with 'C' string literals.
static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
                                            const void *Decoder) {
  const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
  Dis->tryAddingPcLoadReferenceComment(Value, Address);
}

static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
  0,        // SEG_OVERRIDE_NONE
  X86::CS,
  X86::SS,
  X86::DS,
  X86::ES,
  X86::FS,
  X86::GS
};

/// translateSrcIndex   - Appends a source index operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction.
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
  unsigned baseRegNo;

  if (insn.mode == MODE_64BIT)
    baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
  else if (insn.mode == MODE_32BIT)
    baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
  else {
    assert(insn.mode == MODE_16BIT);
    baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
  }
  MCOperand baseReg = MCOperand::createReg(baseRegNo);
  mcInst.addOperand(baseReg);

  MCOperand segmentReg;
  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
  mcInst.addOperand(segmentReg);
  return false;
}

/// translateDstIndex   - Appends a destination index operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction.

static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
  unsigned baseRegNo;

  if (insn.mode == MODE_64BIT)
    baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
  else if (insn.mode == MODE_32BIT)
    baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
  else {
    assert(insn.mode == MODE_16BIT);
    baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
  }
  MCOperand baseReg = MCOperand::createReg(baseRegNo);
  mcInst.addOperand(baseReg);
  return false;
}

/// translateImmediate  - Appends an immediate operand to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param immediate    - The immediate value to append.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The internal instruction.
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
                               const OperandSpecifier &operand,
                               InternalInstruction &insn,
                               const MCDisassembler *Dis) {
  // Sign-extend the immediate if necessary.

  OperandType type = (OperandType)operand.type;

  bool isBranch = false;
  uint64_t pcrel = 0;
  if (type == TYPE_REL) {
    isBranch = true;
    pcrel = insn.startLocation +
            insn.immediateOffset + insn.immediateSize;
    switch (operand.encoding) {
    default:
      break;
    case ENCODING_Iv:
      switch (insn.displacementSize) {
      default:
        break;
      case 1:
        if(immediate & 0x80)
          immediate |= ~(0xffull);
        break;
      case 2:
        if(immediate & 0x8000)
          immediate |= ~(0xffffull);
        break;
      case 4:
        if(immediate & 0x80000000)
          immediate |= ~(0xffffffffull);
        break;
      case 8:
        break;
      }
      break;
    case ENCODING_IB:
      if(immediate & 0x80)
        immediate |= ~(0xffull);
      break;
    case ENCODING_IW:
      if(immediate & 0x8000)
        immediate |= ~(0xffffull);
      break;
    case ENCODING_ID:
      if(immediate & 0x80000000)
        immediate |= ~(0xffffffffull);
      break;
    }
  }
  // By default sign-extend all X86 immediates based on their encoding.
  else if (type == TYPE_IMM) {
    switch (operand.encoding) {
    default:
      break;
    case ENCODING_IB:
      if(immediate & 0x80)
        immediate |= ~(0xffull);
      break;
    case ENCODING_IW:
      if(immediate & 0x8000)
        immediate |= ~(0xffffull);
      break;
    case ENCODING_ID:
      if(immediate & 0x80000000)
        immediate |= ~(0xffffffffull);
      break;
    case ENCODING_IO:
      break;
    }
  }

  switch (type) {
  case TYPE_XMM:
    mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
    return;
  case TYPE_YMM:
    mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
    return;
  case TYPE_ZMM:
    mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
    return;
  default:
    // operand is 64 bits wide.  Do nothing.
    break;
  }

  if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
                               insn.immediateOffset, insn.immediateSize,
                               mcInst, Dis))
    mcInst.addOperand(MCOperand::createImm(immediate));

  if (type == TYPE_MOFFS) {
    MCOperand segmentReg;
    segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
    mcInst.addOperand(segmentReg);
  }
}

/// translateRMRegister - Translates a register stored in the R/M field of the
///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The internal instruction to extract the R/M field
///                       from.
/// @return             - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst &mcInst,
                                InternalInstruction &insn) {
  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
    debug("A R/M register operand may not have a SIB byte");
    return true;
  }

  switch (insn.eaBase) {
  default:
    debug("Unexpected EA base register");
    return true;
  case EA_BASE_NONE:
    debug("EA_BASE_NONE for ModR/M base");
    return true;
#define ENTRY(x) case EA_BASE_##x:
  ALL_EA_BASES
#undef ENTRY
    debug("A R/M register operand may not have a base; "
          "the operand must be a register.");
    return true;
#define ENTRY(x)                                                      \
  case EA_REG_##x:                                                    \
    mcInst.addOperand(MCOperand::createReg(X86::x)); break;
  ALL_REGS
#undef ENTRY
  }

  return false;
}

/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
///   fields of an internal instruction (and possibly its SIB byte) to a memory
///   operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
///                       from.
/// @param ForceSIB     - The instruction must use SIB.
/// @return             - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
                              const MCDisassembler *Dis,
                              bool ForceSIB = false) {
  // Addresses in an MCInst are represented as five operands:
  //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
  //                                SIB base
  //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
  //                                scale amount
  //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
  //                                the index (which is multiplied by the
  //                                scale amount)
  //   4. displacement  (immediate) 0, or the displacement if there is one
  //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
  //                                if we have segment overrides

  MCOperand baseReg;
  MCOperand scaleAmount;
  MCOperand indexReg;
  MCOperand displacement;
  MCOperand segmentReg;
  uint64_t pcrel = 0;

  if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
    if (insn.sibBase != SIB_BASE_NONE) {
      switch (insn.sibBase) {
      default:
        debug("Unexpected sibBase");
        return true;
#define ENTRY(x)                                          \
      case SIB_BASE_##x:                                  \
        baseReg = MCOperand::createReg(X86::x); break;
      ALL_SIB_BASES
#undef ENTRY
      }
    } else {
      baseReg = MCOperand::createReg(X86::NoRegister);
    }

    if (insn.sibIndex != SIB_INDEX_NONE) {
      switch (insn.sibIndex) {
      default:
        debug("Unexpected sibIndex");
        return true;
#define ENTRY(x)                                          \
      case SIB_INDEX_##x:                                 \
        indexReg = MCOperand::createReg(X86::x); break;
      EA_BASES_32BIT
      EA_BASES_64BIT
      REGS_XMM
      REGS_YMM
      REGS_ZMM
#undef ENTRY
      }
    } else {
      // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
      // but no index is used and modrm alone should have been enough.
      // -No base register in 32-bit mode. In 64-bit mode this is used to
      //  avoid rip-relative addressing.
      // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
      //  base always requires a SIB byte.
      // -A scale other than 1 is used.
      if (!ForceSIB &&
          (insn.sibScale != 1 ||
           (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
           (insn.sibBase != SIB_BASE_NONE &&
            insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
            insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
        indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
                                                                X86::RIZ);
      } else
        indexReg = MCOperand::createReg(X86::NoRegister);
    }

    scaleAmount = MCOperand::createImm(insn.sibScale);
  } else {
    switch (insn.eaBase) {
    case EA_BASE_NONE:
      if (insn.eaDisplacement == EA_DISP_NONE) {
        debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
        return true;
      }
      if (insn.mode == MODE_64BIT){
        pcrel = insn.startLocation +
                insn.displacementOffset + insn.displacementSize;
        tryAddingPcLoadReferenceComment(insn.startLocation +
                                        insn.displacementOffset,
                                        insn.displacement + pcrel, Dis);
        // Section 2.2.1.6
        baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
                                                               X86::RIP);
      }
      else
        baseReg = MCOperand::createReg(X86::NoRegister);

      indexReg = MCOperand::createReg(X86::NoRegister);
      break;
    case EA_BASE_BX_SI:
      baseReg = MCOperand::createReg(X86::BX);
      indexReg = MCOperand::createReg(X86::SI);
      break;
    case EA_BASE_BX_DI:
      baseReg = MCOperand::createReg(X86::BX);
      indexReg = MCOperand::createReg(X86::DI);
      break;
    case EA_BASE_BP_SI:
      baseReg = MCOperand::createReg(X86::BP);
      indexReg = MCOperand::createReg(X86::SI);
      break;
    case EA_BASE_BP_DI:
      baseReg = MCOperand::createReg(X86::BP);
      indexReg = MCOperand::createReg(X86::DI);
      break;
    default:
      indexReg = MCOperand::createReg(X86::NoRegister);
      switch (insn.eaBase) {
      default:
        debug("Unexpected eaBase");
        return true;
        // Here, we will use the fill-ins defined above.  However,
        //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
        //   sib and sib64 were handled in the top-level if, so they're only
        //   placeholders to keep the compiler happy.
#define ENTRY(x)                                        \
      case EA_BASE_##x:                                 \
        baseReg = MCOperand::createReg(X86::x); break;
      ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
      ALL_REGS
#undef ENTRY
        debug("A R/M memory operand may not be a register; "
              "the base field must be a base.");
        return true;
      }
    }

    scaleAmount = MCOperand::createImm(1);
  }

  displacement = MCOperand::createImm(insn.displacement);

  segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);

  mcInst.addOperand(baseReg);
  mcInst.addOperand(scaleAmount);
  mcInst.addOperand(indexReg);
  if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
                               insn.startLocation, insn.displacementOffset,
                               insn.displacementSize, mcInst, Dis))
    mcInst.addOperand(displacement);
  mcInst.addOperand(segmentReg);
  return false;
}

/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
///   byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The instruction to extract Mod, R/M, and SIB fields
///                       from.
/// @return             - 0 on success; nonzero otherwise
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
                        InternalInstruction &insn, const MCDisassembler *Dis) {
  switch (operand.type) {
  default:
    debug("Unexpected type for a R/M operand");
    return true;
  case TYPE_R8:
  case TYPE_R16:
  case TYPE_R32:
  case TYPE_R64:
  case TYPE_Rv:
  case TYPE_MM64:
  case TYPE_XMM:
  case TYPE_YMM:
  case TYPE_ZMM:
  case TYPE_TMM:
  case TYPE_VK_PAIR:
  case TYPE_VK:
  case TYPE_DEBUGREG:
  case TYPE_CONTROLREG:
  case TYPE_BNDR:
    return translateRMRegister(mcInst, insn);
  case TYPE_M:
  case TYPE_MVSIBX:
  case TYPE_MVSIBY:
  case TYPE_MVSIBZ:
    return translateRMMemory(mcInst, insn, Dis);
  case TYPE_MSIB:
    return translateRMMemory(mcInst, insn, Dis, true);
  }
}

/// translateFPRegister - Translates a stack position on the FPU stack to its
///   LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param stackPos     - The stack position to translate.
static void translateFPRegister(MCInst &mcInst,
                                uint8_t stackPos) {
  mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
}

/// translateMaskRegister - Translates a 3-bit mask register number to
///   LLVM form, and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param maskRegNum   - Number of mask register from 0 to 7.
/// @return             - false on success; true otherwise.
static bool translateMaskRegister(MCInst &mcInst,
                                uint8_t maskRegNum) {
  if (maskRegNum >= 8) {
    debug("Invalid mask register number");
    return true;
  }

  mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
  return false;
}

/// translateOperand - Translates an operand stored in an internal instruction
///   to LLVM's format and appends it to an MCInst.
///
/// @param mcInst       - The MCInst to append to.
/// @param operand      - The operand, as stored in the descriptor table.
/// @param insn         - The internal instruction.
/// @return             - false on success; true otherwise.
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
                             InternalInstruction &insn,
                             const MCDisassembler *Dis) {
  switch (operand.encoding) {
  default:
    debug("Unhandled operand encoding during translation");
    return true;
  case ENCODING_REG:
    translateRegister(mcInst, insn.reg);
    return false;
  case ENCODING_WRITEMASK:
    return translateMaskRegister(mcInst, insn.writemask);
  case ENCODING_SIB:
  CASE_ENCODING_RM:
  CASE_ENCODING_VSIB:
    return translateRM(mcInst, operand, insn, Dis);
  case ENCODING_IB:
  case ENCODING_IW:
  case ENCODING_ID:
  case ENCODING_IO:
  case ENCODING_Iv:
  case ENCODING_Ia:
    translateImmediate(mcInst,
                       insn.immediates[insn.numImmediatesTranslated++],
                       operand,
                       insn,
                       Dis);
    return false;
  case ENCODING_IRC:
    mcInst.addOperand(MCOperand::createImm(insn.RC));
    return false;
  case ENCODING_SI:
    return translateSrcIndex(mcInst, insn);
  case ENCODING_DI:
    return translateDstIndex(mcInst, insn);
  case ENCODING_RB:
  case ENCODING_RW:
  case ENCODING_RD:
  case ENCODING_RO:
  case ENCODING_Rv:
    translateRegister(mcInst, insn.opcodeRegister);
    return false;
  case ENCODING_CC:
    mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
    return false;
  case ENCODING_FP:
    translateFPRegister(mcInst, insn.modRM & 7);
    return false;
  case ENCODING_VVVV:
    translateRegister(mcInst, insn.vvvv);
    return false;
  case ENCODING_DUP:
    return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
                            insn, Dis);
  }
}

/// translateInstruction - Translates an internal instruction and all its
///   operands to an MCInst.
///
/// @param mcInst       - The MCInst to populate with the instruction's data.
/// @param insn         - The internal instruction.
/// @return             - false on success; true otherwise.
static bool translateInstruction(MCInst &mcInst,
                                InternalInstruction &insn,
                                const MCDisassembler *Dis) {
  if (!insn.spec) {
    debug("Instruction has no specification");
    return true;
  }

  mcInst.clear();
  mcInst.setOpcode(insn.instructionID);
  // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
  // prefix bytes should be disassembled as xrelease and xacquire then set the
  // opcode to those instead of the rep and repne opcodes.
  if (insn.xAcquireRelease) {
    if(mcInst.getOpcode() == X86::REP_PREFIX)
      mcInst.setOpcode(X86::XRELEASE_PREFIX);
    else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
      mcInst.setOpcode(X86::XACQUIRE_PREFIX);
  }

  insn.numImmediatesTranslated = 0;

  for (const auto &Op : insn.operands) {
    if (Op.encoding != ENCODING_NONE) {
      if (translateOperand(mcInst, Op, insn, Dis)) {
        return true;
      }
    }
  }

  return false;
}

static MCDisassembler *createX86Disassembler(const Target &T,
                                             const MCSubtargetInfo &STI,
                                             MCContext &Ctx) {
  std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
  return new X86GenericDisassembler(STI, Ctx, std::move(MII));
}

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
  // Register the disassembler.
  TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
                                         createX86Disassembler);
  TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
                                         createX86Disassembler);
}