Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/*	$NetBSD: timevalops.c,v 1.3 2020/05/25 20:47:36 christos Exp $	*/

#include "config.h"

//some unused features are still in the wrapper, unconverted

#include "ntp_types.h"
#include "ntp_fp.h"

#include "timevalops.h"

#include <math.h>
#include "unity.h"


#define TEST_ASSERT_EQUAL_timeval(a, b) {				\
    TEST_ASSERT_EQUAL_MESSAGE(a.tv_sec, b.tv_sec, "Field tv_sec");	\
    TEST_ASSERT_EQUAL_MESSAGE(a.tv_usec, b.tv_usec, "Field tv_usec");	\
}


static u_int32 my_tick_to_tsf(u_int32 ticks);
static u_int32 my_tsf_to_tick(u_int32 tsf);


// that's it...
typedef struct {
	long	usec;
	u_int32	frac;
} lfpfracdata ;

struct timeval timeval_init( time_t hi, long lo);
const bool timeval_isValid(struct timeval V);
l_fp l_fp_init(int32 i, u_int32 f);
bool AssertTimevalClose(const struct timeval m, const struct timeval n, const struct timeval limit);
bool AssertFpClose(const l_fp m, const l_fp n, const l_fp limit);

void setUp(void);
void test_Helpers1(void);
void test_Normalise(void);
void test_SignNoFrac(void);
void test_SignWithFrac(void);
void test_CmpFracEQ(void);
void test_CmpFracGT(void);
void test_CmpFracLT(void);
void test_AddFullNorm(void);
void test_AddFullOflow1(void);
void test_AddUsecNorm(void);
void test_AddUsecOflow1(void);
void test_SubFullNorm(void);
void test_SubFullOflow(void);
void test_SubUsecNorm(void);
void test_SubUsecOflow(void);
void test_Neg(void);
void test_AbsNoFrac(void);
void test_AbsWithFrac(void);
void test_Helpers2(void);
void test_ToLFPbittest(void);
void test_ToLFPrelPos(void);
void test_ToLFPrelNeg(void);
void test_ToLFPabs(void);
void test_FromLFPbittest(void);
void test_FromLFPrelPos(void);
void test_FromLFPrelNeg(void);
void test_LFProundtrip(void);
void test_ToString(void);


//**********************************MY CUSTOM FUNCTIONS***********************


void
setUp(void)
{
	init_lib();

	return;
}


struct timeval
timeval_init(time_t hi, long lo)
{
	struct timeval V; 

	V.tv_sec = hi; 
	V.tv_usec = lo;

	return V;
}


const bool
timeval_isValid(struct timeval V)
{

	return V.tv_usec >= 0 && V.tv_usec < 1000000;
}


l_fp
l_fp_init(int32 i, u_int32 f)
{
	l_fp temp;

	temp.l_i  = i;
	temp.l_uf = f;

	return temp;
}


bool
AssertTimevalClose(const struct timeval m, const struct timeval n, const struct timeval limit)
{
	struct timeval diff;

	diff = abs_tval(sub_tval(m, n));
	if (cmp_tval(limit, diff) >= 0)
		return TRUE;

	printf("m_expr which is %lld.%06lu \nand\n"
	       "n_expr which is %lld.%06lu\nare not close; diff=%lld.%06luusec\n",
	       (long long)m.tv_sec, m.tv_usec,
	       (long long)n.tv_sec, n.tv_usec,
	       (long long)diff.tv_sec, diff.tv_usec); 
	return FALSE;
}


bool
AssertFpClose(const l_fp m, const l_fp n, const l_fp limit)
{
	l_fp diff;

	if (L_ISGEQ(&m, &n)) {
		diff = m;
		L_SUB(&diff, &n);
	} else {
		diff = n;
		L_SUB(&diff, &m);
	}
	if (L_ISGEQ(&limit, &diff)) {
		return TRUE;
	}
	else {
		printf("m_expr which is %s \nand\nn_expr which is %s\nare not close; diff=%susec\n",
		       lfptoa(&m, 10), lfptoa(&n, 10), lfptoa(&diff, 10)); 
		return FALSE;
	}
}


//---------------------------------------------------

static const lfpfracdata fdata[] = {
	{      0, 0x00000000 }, {   7478, 0x01ea1405 },
	{  22077, 0x05a6d699 }, { 125000, 0x20000000 },
	{ 180326, 0x2e29d841 }, { 207979, 0x353e1c9b },
	{ 250000, 0x40000000 }, { 269509, 0x44fe8ab5 },
	{ 330441, 0x5497c808 }, { 333038, 0x5541fa76 },
	{ 375000, 0x60000000 }, { 394734, 0x650d4995 },
	{ 446327, 0x72427c7c }, { 500000, 0x80000000 },
	{ 517139, 0x846338b4 }, { 571953, 0x926b8306 },
	{ 587353, 0x965cc426 }, { 625000, 0xa0000000 },
	{ 692136, 0xb12fd32c }, { 750000, 0xc0000000 },
	{ 834068, 0xd5857aff }, { 848454, 0xd9344806 },
	{ 854222, 0xdaae4b02 }, { 861465, 0xdc88f862 },
	{ 875000, 0xe0000000 }, { 910661, 0xe921144d },
	{ 922162, 0xec12cf10 }, { 942190, 0xf1335d25 }
};


u_int32
my_tick_to_tsf(u_int32 ticks)
{
	// convert microseconds to l_fp fractional units, using double
	// precision float calculations or, if available, 64bit integer
	// arithmetic. This should give the precise fraction, rounded to
	// the nearest representation.

#ifdef HAVE_U_INT64
	return (u_int32)((( ((u_int64)(ticks)) << 32) + 500000) / 1000000); //I put too much () when casting just to be safe
#else
	return (u_int32)( ((double)(ticks)) * 4294.967296 + 0.5);
#endif
	// And before you ask: if ticks >= 1000000, the result is
	// truncated nonsense, so don't use it out-of-bounds.
}


u_int32
my_tsf_to_tick(u_int32 tsf)
{
	// Inverse operation: converts fraction to microseconds.
#ifdef HAVE_U_INT64
	return (u_int32)( ((u_int64)(tsf) * 1000000 + 0x80000000) >> 32); //CHECK ME!!!
#else
	return (u_int32)(double(tsf) / 4294.967296 + 0.5);
#endif
	// Beware: The result might be 10^6 due to rounding!
}


//*******************************END OF CUSTOM FUNCTIONS*********************


// ---------------------------------------------------------------------
// test support stuff - part1
// ---------------------------------------------------------------------

void
test_Helpers1(void)
{
	struct timeval x;

	for (x.tv_sec = -2; x.tv_sec < 3; x.tv_sec++) {
		x.tv_usec = -1;
		TEST_ASSERT_FALSE(timeval_isValid(x));
		x.tv_usec = 0;
		TEST_ASSERT_TRUE(timeval_isValid(x));
		x.tv_usec = 999999;
		TEST_ASSERT_TRUE(timeval_isValid(x));
		x.tv_usec = 1000000;
		TEST_ASSERT_FALSE(timeval_isValid(x));
	}

	return;
}


//----------------------------------------------------------------------
// test normalisation
//----------------------------------------------------------------------

void
test_Normalise(void)
{
	long ns;

	for (ns = -2000000000; ns <= 2000000000; ns += 10000000) {
		struct timeval x = timeval_init(0, ns);

		x = normalize_tval(x);
		TEST_ASSERT_TRUE(timeval_isValid(x));
	}

	return;
}

//----------------------------------------------------------------------
// test classification
//----------------------------------------------------------------------

void
test_SignNoFrac(void)
{
	int i;

	// sign test, no fraction
	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 0);
		int	     E = (i > 0) - (i < 0);
		int	     r = test_tval(a);

		TEST_ASSERT_EQUAL(E, r);
	}

	return;
}


void
test_SignWithFrac(void)
{
	// sign test, with fraction
	int i;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 10);
		int	     E = (i >= 0) - (i < 0);
		int	     r = test_tval(a);

		TEST_ASSERT_EQUAL(E, r);
	}

	return;
}

//----------------------------------------------------------------------
// test compare
//----------------------------------------------------------------------
void
test_CmpFracEQ(void)
{
	int i, j;

	// fractions are equal
	for (i = -4; i <= 4; ++i)
		for (j = -4; j <= 4; ++j) {
			struct timeval a = timeval_init(i, 200);
			struct timeval b = timeval_init(j, 200);
			int	     E = (i > j) - (i < j);
			int	     r = cmp_tval_denorm(a, b);

			TEST_ASSERT_EQUAL(E, r);
		}

	return;
}


void
test_CmpFracGT(void)
{
	// fraction a bigger fraction b
	int i, j;

	for (i = -4; i <= 4; ++i)
		for (j = -4; j <= 4; ++j) {
			struct timeval a = timeval_init( i , 999800);
			struct timeval b = timeval_init( j , 200);
			int	     E = (i >= j) - (i < j);
			int	     r = cmp_tval_denorm(a, b);

			TEST_ASSERT_EQUAL(E, r);
		}

	return;
}


void
test_CmpFracLT(void)
{
	// fraction a less fraction b
	int i, j;

	for (i = -4; i <= 4; ++i)
		for (j = -4; j <= 4; ++j) {
			struct timeval a = timeval_init(i, 200);
			struct timeval b = timeval_init(j, 999800);
			int	     E = (i > j) - (i <= j);
			int	     r = cmp_tval_denorm(a, b);

			TEST_ASSERT_EQUAL(E, r);
		}

	return;
}

//----------------------------------------------------------------------
// Test addition (sum)
//----------------------------------------------------------------------

void
test_AddFullNorm(void)
{
	int i, j;

	for (i = -4; i <= 4; ++i)
		for (j = -4; j <= 4; ++j) {
			struct timeval a = timeval_init(i, 200);
			struct timeval b = timeval_init(j, 400);
			struct timeval E = timeval_init(i + j, 200 + 400);
			struct timeval c;

			c = add_tval(a, b);
			TEST_ASSERT_EQUAL_timeval(E, c);
		}

	return;
}


void
test_AddFullOflow1(void)
{
	int i, j;

	for (i = -4; i <= 4; ++i)
		for (j = -4; j <= 4; ++j) {
			struct timeval a = timeval_init(i, 200);
			struct timeval b = timeval_init(j, 999900);
			struct timeval E = timeval_init(i + j + 1, 100);
			struct timeval c;

			c = add_tval(a, b);
			TEST_ASSERT_EQUAL_timeval(E, c);
		}

	return;
}


void
test_AddUsecNorm(void)
{
	int i;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 200);
		struct timeval E = timeval_init(i, 600);
		struct timeval c;

		c = add_tval_us(a, 600 - 200);
		TEST_ASSERT_EQUAL_timeval(E, c);
	}

	return;
}


void
test_AddUsecOflow1(void)
{
	int i;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 200);
		struct timeval E = timeval_init(i + 1, 100);
		struct timeval c;

		c = add_tval_us(a, MICROSECONDS - 100);
		TEST_ASSERT_EQUAL_timeval(E, c);
	}

	return;
}

//----------------------------------------------------------------------
// test subtraction (difference)
//----------------------------------------------------------------------

void
test_SubFullNorm(void)
{
	int i, j;

	for (i = -4; i <= 4; ++i)
		for (j = -4; j <= 4; ++j) {
			struct timeval a = timeval_init(i, 600);
			struct timeval b = timeval_init(j, 400);
			struct timeval E = timeval_init(i - j, 600 - 400);
			struct timeval c;

			c = sub_tval(a, b);
			TEST_ASSERT_EQUAL_timeval(E, c);
		}

	return;
}


void
test_SubFullOflow(void)
{
	int i, j;

	for (i = -4; i <= 4; ++i)
		for (j = -4; j <= 4; ++j) {
			struct timeval a = timeval_init(i, 100);
			struct timeval b = timeval_init(j, 999900);
			struct timeval E = timeval_init(i - j - 1, 200);
			struct timeval c;

			c = sub_tval(a, b);
			TEST_ASSERT_EQUAL_timeval(E, c);
		}

	return;
}


void
test_SubUsecNorm(void)
{
	int i = -4;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 600);
		struct timeval E = timeval_init(i, 200);
		struct timeval c;

		c = sub_tval_us(a, 600 - 200);
		TEST_ASSERT_EQUAL_timeval(E, c);
	}

	return;
}


void
test_SubUsecOflow(void)
{
	int i = -4;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 100);
		struct timeval E = timeval_init(i - 1, 200);
		struct timeval c;

		c = sub_tval_us(a, MICROSECONDS - 100);
		TEST_ASSERT_EQUAL_timeval(E, c);
	}

	return;
}

//----------------------------------------------------------------------
// test negation
//----------------------------------------------------------------------

void
test_Neg(void)
{
	int i = -4;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 100);
		struct timeval b;
		struct timeval c;

		b = neg_tval(a);
		c = add_tval(a, b);
		TEST_ASSERT_EQUAL(0, test_tval(c));
	}

	return;
}

//----------------------------------------------------------------------
// test abs value
//----------------------------------------------------------------------

void
test_AbsNoFrac(void)
{
	int i = -4;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 0);
		struct timeval b;

		b = abs_tval(a);
		TEST_ASSERT_EQUAL((i != 0), test_tval(b));
	}

	return;
}


void
test_AbsWithFrac(void)
{
	int i = -4;

	for (i = -4; i <= 4; ++i) {
		struct timeval a = timeval_init(i, 100);
		struct timeval b;

		b = abs_tval(a);
		TEST_ASSERT_EQUAL(1, test_tval(b));
	}

	return;
}

// ---------------------------------------------------------------------
// test support stuff -- part 2
// ---------------------------------------------------------------------


void
test_Helpers2(void)
{
	struct timeval limit = timeval_init(0, 2);
	struct timeval x, y;
	long i;

	for (x.tv_sec = -2; x.tv_sec < 3; x.tv_sec++) {
		for (x.tv_usec = 1;
		     x.tv_usec < 1000000;
		     x.tv_usec += 499999) {
			for (i = -4; i < 5; ++i) {
				y = x;
				y.tv_usec += i;
				if (i >= -2 && i <= 2) {
					TEST_ASSERT_TRUE(AssertTimevalClose(x, y, limit));//ASSERT_PRED_FORMAT2(isClose, x, y);
				}
				else {
					TEST_ASSERT_FALSE(AssertTimevalClose(x, y, limit));
				}
			}
		}
	}

	return;
}

// and the global predicate instances we're using here

//static l_fp lfpClose =  l_fp_init(0, 1); //static AssertFpClose FpClose(0, 1);
//static struct timeval timevalClose = timeval_init(0, 1); //static AssertTimevalClose TimevalClose(0, 1);

//----------------------------------------------------------------------
// conversion to l_fp
//----------------------------------------------------------------------

void
test_ToLFPbittest(void)
{
	l_fp lfpClose =  l_fp_init(0, 1);

	u_int32 i = 0;
	for (i = 0; i < 1000000; ++i) {
		struct timeval a = timeval_init(1, i);
		l_fp E = l_fp_init(1, my_tick_to_tsf(i));
		l_fp r;

		r = tval_intv_to_lfp(a);
		TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose));	//ASSERT_PRED_FORMAT2(FpClose, E, r);
	}

	return;
}


void
test_ToLFPrelPos(void)
{
	l_fp lfpClose =  l_fp_init(0, 1);
	int i = 0;

	for (i = 0; i < COUNTOF(fdata); ++i) {
		struct timeval a = timeval_init(1, fdata[i].usec);
		l_fp E = l_fp_init(1, fdata[i].frac);
		l_fp r;

		r = tval_intv_to_lfp(a);
		TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose));
	}

	return;
}


void
test_ToLFPrelNeg(void)
{
	l_fp lfpClose =  l_fp_init(0, 1);
	int i = 0;

	for (i = 0; i < COUNTOF(fdata); ++i) {
		struct timeval a = timeval_init(-1, fdata[i].usec);
		l_fp E = l_fp_init(~0, fdata[i].frac);
		l_fp    r;

		r = tval_intv_to_lfp(a);
		TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose));
	}

	return;
}


void
test_ToLFPabs(void)
{
	l_fp lfpClose =  l_fp_init(0, 1);
	int i = 0;

	for (i = 0; i < COUNTOF(fdata); ++i) {
		struct timeval a = timeval_init(1, fdata[i].usec);
		l_fp E = l_fp_init(1 + JAN_1970, fdata[i].frac);
		l_fp    r;

		r = tval_stamp_to_lfp(a);
		TEST_ASSERT_TRUE(AssertFpClose(E, r, lfpClose));
	}

	return;
}

//----------------------------------------------------------------------
// conversion from l_fp
//----------------------------------------------------------------------

void
test_FromLFPbittest(void)
{
	struct timeval timevalClose = timeval_init(0, 1);
	// Not *exactly* a bittest, because 2**32 tests would take a
	// really long time even on very fast machines! So we do test
	// every 1000 fractional units.
	u_int32 tsf = 0;

	for (tsf = 0; tsf < ~((u_int32)(1000)); tsf += 1000) {
		struct timeval E = timeval_init(1, my_tsf_to_tick(tsf));
		l_fp a = l_fp_init(1, tsf);
		struct timeval r;

		r = lfp_intv_to_tval(a);
		// The conversion might be off by one microsecond when
		// comparing to calculated value.
		TEST_ASSERT_TRUE(AssertTimevalClose(E, r, timevalClose));
	}

	return;
}


void
test_FromLFPrelPos(void)
{
	struct timeval timevalClose = timeval_init(0, 1);
	int i = 0;

	for (i = 0; i < COUNTOF(fdata); ++i) {
		l_fp a = l_fp_init(1, fdata[i].frac);
		struct timeval E = timeval_init(1, fdata[i].usec);
		struct timeval r;

		r = lfp_intv_to_tval(a);
		TEST_ASSERT_TRUE(AssertTimevalClose(E, r, timevalClose));
	}

	return;
}


void
test_FromLFPrelNeg(void)
{
	struct timeval timevalClose = timeval_init(0, 1);
	int i = 0;

	for (i = 0; i < COUNTOF(fdata); ++i) {
		l_fp a = l_fp_init(~0, fdata[i].frac);
		struct timeval E = timeval_init(-1, fdata[i].usec);
		struct timeval r;

		r = lfp_intv_to_tval(a);
		TEST_ASSERT_TRUE(AssertTimevalClose(E, r, timevalClose));
	}

	return;
}


// usec -> frac -> usec roundtrip, using a prime start and increment
void
test_LFProundtrip(void)
{
	int32_t t = -1;
	u_int32 i = 5;

	for (t = -1; t < 2; ++t)
		for (i = 5; i < 1000000; i += 11) {
			struct timeval E = timeval_init(t, i);
			l_fp a;
			struct timeval r;

			a = tval_intv_to_lfp(E);
			r = lfp_intv_to_tval(a);
			TEST_ASSERT_EQUAL_timeval(E, r);
		}

	return;
}

//----------------------------------------------------------------------
// string formatting
//----------------------------------------------------------------------

void
test_ToString(void)
{
	static const struct {
		time_t	     sec;
		long	     usec;
		const char * repr;
	} data [] = {
		{ 0, 0,	 "0.000000" },
		{ 2, 0,	 "2.000000" },
		{-2, 0, "-2.000000" },
		{ 0, 1,	 "0.000001" },
		{ 0,-1,	"-0.000001" },
		{ 1,-1,	 "0.999999" },
		{-1, 1, "-0.999999" },
		{-1,-1, "-1.000001" },
	};
	int i;

	for (i = 0; i < COUNTOF(data); ++i) {
		struct timeval a = timeval_init(data[i].sec, data[i].usec);
		const char *  E = data[i].repr;
		const char *  r = tvaltoa(a);

		TEST_ASSERT_EQUAL_STRING(E, r);
	}

	return;
}

// -*- EOF -*-