/* $NetBSD: m_netbsd.c,v 1.26 2022/07/15 06:39:06 mrg Exp $ */
/*
* top - a top users display for Unix
*
* SYNOPSIS: For a NetBSD-1.5 (or later) system
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider.
* NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn.
* NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green.
* NetBSD-1.4/UVM port by matthew green.
* NetBSD-1.5 port by Simon Burge.
* NetBSD-1.6/UBC port by Tomas Svensson.
* -
* This is the machine-dependent module for NetBSD-1.5 and later
* works for:
* NetBSD-1.6ZC
* and should work for:
* NetBSD-2.0 (when released)
* -
* top does not need to be installed setuid or setgid with this module.
*
* LIBS: -lkvm
*
* CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR
*
* AUTHORS: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@cs.tu-berlin.de>
* Arne Helme <arne@acm.org>
* Luke Mewburn <lukem@NetBSD.org>
* matthew green <mrg@eterna.com.au>
* Simon Burge <simonb@NetBSD.org>
* Tomas Svensson <ts@unix1.net>
* Andrew Doran <ad@NetBSD.org>
*
*
* $Id: m_netbsd.c,v 1.26 2022/07/15 06:39:06 mrg Exp $
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: m_netbsd.c,v 1.26 2022/07/15 06:39:06 mrg Exp $");
#endif
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <sys/sched.h>
#include <sys/swap.h>
#include <uvm/uvm_extern.h>
#include <err.h>
#include <errno.h>
#include <kvm.h>
#include <math.h>
#include <ctype.h>
#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "os.h"
#include "top.h"
#include "machine.h"
#include "utils.h"
#include "display.h"
#include "loadavg.h"
#include "username.h"
static void percentages64(int, int *, u_int64_t *, u_int64_t *,
u_int64_t *);
/* get_process_info passes back a handle. This is what it looks like: */
struct handle {
struct process_select *sel;
struct kinfo_proc2 **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* define what weighted CPU is. */
#define weighted_cpu(pfx, pct, pp) ((pp)->pfx ## swtime == 0 ? 0.0 : \
((pct) / (1.0 - exp((pp)->pfx ## swtime * logcpu))))
/* what we consider to be process size: */
/* NetBSD introduced p_vm_msize with RLIMIT_AS */
#ifdef RLIMIT_AS
#define PROCSIZE(pp) \
((pp)->p_vm_msize)
#else
#define PROCSIZE(pp) \
((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
#endif
/*
* These definitions control the format of the per-process area
*/
static char Proc_header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define PROC_UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d%7s %5s %-9.9s%7s %5.*f%% %5.*f%% %s"
static char Thread_header[] =
" PID LID X PRI STATE TIME WCPU CPU NAME COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define THREAD_UNAME_START 12
#define Thread_format \
"%5d %5d %-8.8s %3d %-9.9s%7s %5.2f%% %5.2f%% %-9.9s %s"
/*
* Process state names for the "STATE" column of the display.
*/
const char *state_abbrev[] = {
"", "IDLE", "RUN", "SLEEP", "STOP", "ZOMB", "DEAD", "CPU"
};
static kvm_t *kd;
static char *(*userprint)(int);
/* these are retrieved from the kernel in _init */
static double logcpu;
static int hz;
static int ccpu;
/* these are for calculating CPU state percentages */
static int ncpu = 0;
static u_int64_t *cp_time;
static u_int64_t *cp_old;
static u_int64_t *cp_diff;
/* these are for detailing the process states */
int process_states[8];
const char *procstatenames[] = {
"", " idle, ", " runnable, ", " sleeping, ", " stopped, ",
" zombie, ", " dead, ", " on CPU, ",
NULL
};
/* these are for detailing the CPU states */
int *cpu_states;
const char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
long memory_stats[7];
const char *memorynames[] = {
"K Act, ", "K Inact, ", "K Wired, ", "K Exec, ", "K File, ",
"K Free, ",
NULL
};
long swap_stats[6];
const char *swapnames[] = {
"K Total, ", "K Used, ", "K Free ", " Pools: ", "K Used, ",
NULL
};
/* these are names given to allowed sorting orders -- first is default */
const char *ordernames[] = {
"cpu",
"pri",
"res",
"size",
"state",
"time",
"pid",
"command",
"username",
NULL
};
/* forward definitions for comparison functions */
static int compare_cpu(struct proc **, struct proc **);
static int compare_prio(struct proc **, struct proc **);
static int compare_res(struct proc **, struct proc **);
static int compare_size(struct proc **, struct proc **);
static int compare_state(struct proc **, struct proc **);
static int compare_time(struct proc **, struct proc **);
static int compare_pid(struct proc **, struct proc **);
static int compare_command(struct proc **, struct proc **);
static int compare_username(struct proc **, struct proc **);
int (*proc_compares[])(struct proc **, struct proc **) = {
compare_cpu,
compare_prio,
compare_res,
compare_size,
compare_state,
compare_time,
compare_pid,
compare_command,
compare_username,
NULL
};
static char *format_next_lwp(caddr_t, char *(*)(int));
static char *format_next_proc(caddr_t, char *(*)(int));
static caddr_t get_proc_info(struct system_info *, struct process_select *,
int (*)(struct proc **, struct proc **));
static caddr_t get_lwp_info(struct system_info *, struct process_select *,
int (*)(struct proc **, struct proc **));
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int nlwp;
static int onlwp = -1;
static int pref_len;
static int lref_len;
static struct kinfo_proc2 *pbase;
static struct kinfo_lwp *lbase;
static struct kinfo_proc2 **pref;
static struct kinfo_lwp **lref;
static int maxswap;
static void *swapp;
static int procgen;
static int thread_nproc;
static int thread_onproc = -1;
static struct kinfo_proc2 *thread_pbase;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
int threadmode;
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/*
* Print swapped processes as <pname> and
* system processes as [pname]
*/
static const char *
get_pretty(const struct kinfo_proc2 *pp)
{
if ((pp->p_flag & P_SYSTEM) != 0)
return "[]";
if ((pp->p_flag & P_INMEM) == 0)
return "<>";
return "";
}
static const char *
get_command(const struct process_select *sel, struct kinfo_proc2 *pp)
{
static char cmdbuf[128];
const char *pretty;
char **argv;
if (pp == NULL)
return "<gone>";
pretty = get_pretty(pp);
if (sel->fullcmd == 0 || kd == NULL || (argv = kvm_getargv2(kd, pp,
sizeof(cmdbuf))) == NULL) {
if (pretty[0] != '\0' && pp->p_comm[0] != pretty[0])
snprintf(cmdbuf, sizeof(cmdbuf), "%c%s%c", pretty[0],
printable(pp->p_comm), pretty[1]);
else
strlcpy(cmdbuf, printable(pp->p_comm), sizeof(cmdbuf));
} else {
char *d = cmdbuf;
if (pretty[0] != '\0' && argv[0][0] != pretty[0])
*d++ = pretty[0];
while (*argv) {
const char *s = printable(*argv++);
while (d < cmdbuf + sizeof(cmdbuf) - 2 &&
(*d++ = *s++) != '\0')
continue;
if (d > cmdbuf && d < cmdbuf + sizeof(cmdbuf) - 2 &&
d[-1] == '\0')
d[-1] = ' ';
}
if (pretty[0] != '\0' && pretty[0] == cmdbuf[0])
*d++ = pretty[1];
*d++ = '\0';
}
return cmdbuf;
}
int
machine_init(statics)
struct statics *statics;
{
int pagesize;
int mib[2];
size_t size;
struct clockinfo clockinfo;
struct timespec boottime;
if ((kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, "kvm_open")) == NULL)
return -1;
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
size = sizeof(ncpu);
if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1) {
fprintf(stderr, "top: sysctl hw.ncpu failed: %s\n",
strerror(errno));
return(-1);
}
statics->ncpu = ncpu;
cp_time = malloc(sizeof(cp_time[0]) * CPUSTATES * ncpu);
mib[0] = CTL_KERN;
mib[1] = KERN_CP_TIME;
size = sizeof(cp_time[0]) * CPUSTATES * ncpu;
if (sysctl(mib, 2, cp_time, &size, NULL, 0) < 0) {
fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n",
strerror(errno));
return(-1);
}
/* Handle old call that returned only aggregate */
if (size == sizeof(cp_time[0]) * CPUSTATES)
ncpu = 1;
cpu_states = malloc(sizeof(cpu_states[0]) * CPUSTATES * ncpu);
cp_old = calloc(CPUSTATES * ncpu, sizeof(cp_old[0]));
cp_diff = malloc(sizeof(cp_diff[0]) * CPUSTATES * ncpu);
if (cpu_states == NULL || cp_time == NULL || cp_old == NULL ||
cp_diff == NULL) {
fprintf(stderr, "top: machine_init: %s\n",
strerror(errno));
return(-1);
}
mib[0] = CTL_KERN;
mib[1] = KERN_CCPU;
size = sizeof(ccpu);
if (sysctl(mib, 2, &ccpu, &size, NULL, 0) == -1) {
fprintf(stderr, "top: sysctl kern.ccpu failed: %s\n",
strerror(errno));
return(-1);
}
mib[0] = CTL_KERN;
mib[1] = KERN_CLOCKRATE;
size = sizeof(clockinfo);
if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) == -1) {
fprintf(stderr, "top: sysctl kern.clockrate failed: %s\n",
strerror(errno));
return(-1);
}
hz = clockinfo.stathz;
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
lbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
nlwp = 0;
onlwp = -1;
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
#ifdef notyet
statics->ncpu = ncpu;
#endif
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->swap_names = swapnames;
statics->order_names = ordernames;
statics->flags.threads = 1;
statics->flags.fullcmds = 1;
mib[0] = CTL_KERN;
mib[1] = KERN_BOOTTIME;
size = sizeof(boottime);
if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
boottime.tv_sec != 0)
statics->boottime = boottime.tv_sec;
else
statics->boottime = 0;
/* all done! */
return(0);
}
char *
format_process_header(struct process_select *sel, caddr_t handle, int count)
{
char *header;
char *ptr;
const char *uname_field = sel->usernames ? "USERNAME" : " UID ";
if (sel->threads) {
header = Thread_header;
ptr = header + THREAD_UNAME_START;
} else {
header = Proc_header;
ptr = header + PROC_UNAME_START;
}
while (*uname_field != '\0') {
*ptr++ = *uname_field++;
}
return(header);
}
char *
format_header(char *uname_field)
{
char *header = Proc_header;
char *ptr = header + PROC_UNAME_START;
while (*uname_field != '\0') {
*ptr++ = *uname_field++;
}
return(header);
}
void
get_system_info(struct system_info *si)
{
size_t ssize;
int mib[2];
struct uvmexp_sysctl uvmexp;
struct swapent *sep;
u_int64_t totalsize, totalinuse;
int size, inuse, ncounted, i;
int rnswap, nswap;
mib[0] = CTL_KERN;
mib[1] = KERN_CP_TIME;
ssize = sizeof(cp_time[0]) * CPUSTATES * ncpu;
if (sysctl(mib, 2, cp_time, &ssize, NULL, 0) < 0) {
fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n",
strerror(errno));
quit(23);
}
if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) {
int j;
warn("can't getloadavg");
for (j = 0; j < NUM_AVERAGES; j++)
si->load_avg[j] = 0.0;
}
/* convert cp_time counts to percentages */
for (i = 0; i < ncpu; i++) {
int j = i * CPUSTATES;
percentages64(CPUSTATES, cpu_states + j, cp_time + j, cp_old + j,
cp_diff + j);
}
mib[0] = CTL_VM;
mib[1] = VM_UVMEXP2;
ssize = sizeof(uvmexp);
if (sysctl(mib, 2, &uvmexp, &ssize, NULL, 0) < 0) {
fprintf(stderr, "top: sysctl vm.uvmexp2 failed: %s\n",
strerror(errno));
quit(23);
}
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(uvmexp.active);
memory_stats[1] = pagetok(uvmexp.inactive);
memory_stats[2] = pagetok(uvmexp.wired);
memory_stats[3] = pagetok(uvmexp.execpages);
memory_stats[4] = pagetok(uvmexp.filepages);
memory_stats[5] = pagetok(uvmexp.free);
swap_stats[0] = swap_stats[1] = swap_stats[2] = 0;
do {
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap < 1)
break;
if (nswap > maxswap) {
if (swapp)
free(swapp);
swapp = sep = malloc(nswap * sizeof(*sep));
if (sep == NULL)
break;
maxswap = nswap;
} else
sep = swapp;
rnswap = swapctl(SWAP_STATS, (void *)sep, nswap);
if (nswap != rnswap)
break;
totalsize = totalinuse = ncounted = 0;
for (; rnswap-- > 0; sep++) {
ncounted++;
size = sep->se_nblks;
inuse = sep->se_inuse;
totalsize += size;
totalinuse += inuse;
}
swap_stats[0] = dbtob(totalsize) / 1024;
swap_stats[1] = dbtob(totalinuse) / 1024;
swap_stats[2] = dbtob(totalsize) / 1024 - swap_stats[1];
} while (0);
swap_stats[4] = pagetok(uvmexp.poolpages);
memory_stats[6] = -1;
swap_stats[3] = swap_stats[5] = -1;
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
si->swap = swap_stats;
si->last_pid = -1;
}
static struct kinfo_proc2 *
proc_from_thread(struct kinfo_lwp *pl)
{
struct kinfo_proc2 *pp = thread_pbase;
int i;
for (i = 0; i < thread_nproc; i++, pp++)
if ((pid_t)pp->p_pid == (pid_t)pl->l_pid)
return pp;
return NULL;
}
static int
uid_from_thread(struct kinfo_lwp *pl)
{
struct kinfo_proc2 *pp;
if ((pp = proc_from_thread(pl)) == NULL)
return -1;
return pp->p_ruid;
}
caddr_t
get_process_info(struct system_info *si, struct process_select *sel, int c)
{
userprint = sel->usernames ? username : itoa7;
if ((threadmode = sel->threads) != 0)
return get_lwp_info(si, sel, proc_compares[c]);
else
return get_proc_info(si, sel, proc_compares[c]);
}
static caddr_t
get_proc_info(struct system_info *si, struct process_select *sel,
int (*compare)(struct proc **, struct proc **))
{
int i;
int total_procs;
int active_procs;
struct kinfo_proc2 **prefp, **n;
struct kinfo_proc2 *pp;
int op, arg;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
char *show_command;
static struct handle handle;
procgen++;
if (sel->pid == (pid_t)-1) {
op = KERN_PROC_ALL;
arg = 0;
} else {
op = KERN_PROC_PID;
arg = sel->pid;
}
pbase = kvm_getproc2(kd, op, arg, sizeof(struct kinfo_proc2), &nproc);
if (pbase == NULL) {
if (sel->pid != (pid_t)-1) {
nproc = 0;
} else {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
}
if (nproc > onproc) {
n = (struct kinfo_proc2 **) realloc(pref,
sizeof(struct kinfo_proc2 *) * nproc);
if (n == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
pref = n;
onproc = nproc;
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (pp->p_stat != 0 && (show_system || ((pp->p_flag & P_SYSTEM) == 0))) {
total_procs++;
process_states[(unsigned char) pp->p_stat]++;
if (pp->p_stat != LSZOMB &&
(show_idle || (pp->p_pctcpu != 0) ||
(pp->p_stat == LSRUN || pp->p_stat == LSONPROC)) &&
(!show_uid || pp->p_ruid == (uid_t)sel->uid) &&
(!show_command ||
strstr(get_command(sel, pp),
show_command) != NULL)) {
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL) {
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc2 *),
(int (*)(const void *, const void *))compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
handle.sel = sel;
return((caddr_t)&handle);
}
static caddr_t
get_lwp_info(struct system_info *si, struct process_select *sel,
int (*compare)(struct proc **, struct proc **))
{
int i;
int total_lwps;
int active_lwps;
struct kinfo_lwp **lrefp, **n;
struct kinfo_lwp *lp;
struct kinfo_proc2 *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
char *show_command;
static struct handle handle;
pp = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2),
&thread_nproc);
if (pp == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
if (thread_pbase == NULL || thread_nproc != thread_onproc) {
free(thread_pbase);
thread_onproc = thread_nproc;
thread_pbase = calloc(sizeof(struct kinfo_proc2), thread_nproc);
if (thread_pbase == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
}
memcpy(thread_pbase, pp, sizeof(struct kinfo_proc2) * thread_nproc);
lbase = kvm_getlwps(kd, -1, 0, sizeof(struct kinfo_lwp), &nlwp);
if (lbase == NULL) {
#ifdef notyet
if (sel->pid != (pid_t)-1) {
nproc = 0;
nlwp = 0;
}
else
#endif
{
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
}
if (nlwp > onlwp) {
n = (struct kinfo_lwp **) realloc(lref,
sizeof(struct kinfo_lwp *) * nlwp);
if (n == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
lref = n;
onlwp = nlwp;
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command;
/* count up thread states and get pointers to interesting threads */
total_lwps = 0;
active_lwps = 0;
memset((char *)process_states, 0, sizeof(process_states));
lrefp = lref;
for (lp = lbase, i = 0; i < nlwp; lp++, i++) {
if (sel->pid != (pid_t)-1 && sel->pid != (pid_t)lp->l_pid)
continue;
/*
* Place pointers to each valid lwp structure in lref[].
* thread slots that are actually in use have a non-zero
* status field. threads with L_SYSTEM set are system
* threads---these get ignored unless show_sysprocs is set.
*/
if (lp->l_stat != 0 && (show_system || ((lp->l_flag & LW_SYSTEM) == 0))) {
total_lwps++;
process_states[(unsigned char) lp->l_stat]++;
if (lp->l_stat != LSZOMB &&
(show_idle || (lp->l_pctcpu != 0) ||
(lp->l_stat == LSRUN || lp->l_stat == LSONPROC)) &&
(!show_uid || uid_from_thread(lp) == sel->uid) &&
(!show_command ||
strstr(get_command(sel, proc_from_thread(lp)),
show_command) != NULL)) {
*lrefp++ = lp;
active_lwps++;
}
}
}
/* if requested, sort the "interesting" threads */
if (compare != NULL) {
qsort((char *)lref, active_lwps, sizeof(struct kinfo_lwp *),
(int (*)(const void *, const void *))compare);
}
/* remember active and total counts */
si->p_total = total_lwps;
si->p_active = lref_len = active_lwps;
/* pass back a handle */
handle.next_proc = (struct kinfo_proc2 **)lref;
handle.remaining = active_lwps;
handle.sel = sel;
return((caddr_t)&handle);
}
char *
format_next_process(caddr_t handle, char *(*get_userid)(int))
{
if (threadmode)
return format_next_lwp(handle, get_userid);
else
return format_next_proc(handle, get_userid);
}
char *
format_next_proc(caddr_t handle, char *(*get_userid)(int))
{
struct kinfo_proc2 *pp;
long cputime;
double pct, wcpu, cpu;
struct handle *hp;
const char *statep;
#ifdef KI_NOCPU
char state[10];
#endif
char wmesg[KI_WMESGLEN + 1];
static char fmt[MAX_COLS]; /* static area where result is built */
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
#if 0
/* This does not produce the correct results */
cputime = pp->p_uticks + pp->p_sticks + pp->p_iticks;
#else
cputime = pp->p_rtime_sec; /* This does not count interrupts */
#endif
/* calculate the base for CPU percentages */
pct = pctdouble(pp->p_pctcpu);
if (pp->p_stat == LSSLEEP) {
strlcpy(wmesg, pp->p_wmesg, sizeof(wmesg));
statep = wmesg;
} else
statep = state_abbrev[(unsigned)pp->p_stat];
#ifdef KI_NOCPU
/* Post-1.5 change: add CPU number if appropriate */
if (pp->p_cpuid != KI_NOCPU && ncpu > 1) {
switch (pp->p_stat) {
case LSONPROC:
case LSRUN:
case LSSLEEP:
case LSIDL:
(void)snprintf(state, sizeof(state), "%.6s/%u",
statep, (unsigned int)pp->p_cpuid);
statep = state;
break;
}
}
#endif
wcpu = 100.0 * weighted_cpu(p_, pct, pp);
cpu = 100.0 * pct;
/* format this entry */
sprintf(fmt,
Proc_format,
pp->p_pid,
(*userprint)(pp->p_ruid),
pp->p_priority,
pp->p_nice - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(pp->p_vm_rssize)),
statep,
format_time(cputime),
(wcpu >= 100.0) ? 0 : 2, wcpu,
(cpu >= 100.0) ? 0 : 2, cpu,
get_command(hp->sel, pp));
/* return the result */
return(fmt);
}
static char *
countable(char *p, size_t width)
{
size_t len = strlen(p);
if (len < width) { // shorter than width, ok
return p;
}
size_t first, last = len - 1;
for (first = len - 1; isdigit((unsigned char)p[first]); first--) {
continue;
}
if (first == len - 1) { // no digits, ok
return p;
}
first++;
last = len - first;
if (width < last + 1) { // if not enough for digits, done
return p;
}
size_t start = width - last - 1; // compute starting point
p[start] = '*'; // put a star
memmove(p + start + 1, p + first, last + 1); // move digits and NUL
return p;
}
static char *
format_next_lwp(caddr_t handle, char *(*get_userid)(int))
{
struct kinfo_proc2 *pp;
struct kinfo_lwp *pl;
long cputime;
double pct;
struct handle *hp;
const char *statep;
#ifdef KI_NOCPU
char state[10];
#endif
char wmesg[KI_WMESGLEN + 1];
static char fmt[MAX_COLS]; /* static area where result is built */
int uid;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pl = (struct kinfo_lwp *)*(hp->next_proc++);
hp->remaining--;
pp = proc_from_thread(pl);
/* get the process's user struct and set cputime */
uid = pp ? pp->p_ruid : 0;
cputime = pl->l_rtime_sec;
/* calculate the base for CPU percentages */
pct = pctdouble(pl->l_pctcpu);
if (pl->l_stat == LSSLEEP) {
strlcpy(wmesg, pl->l_wmesg, sizeof(wmesg));
statep = wmesg;
} else
statep = state_abbrev[(unsigned)pl->l_stat];
#ifdef KI_NOCPU
/* Post-1.5 change: add CPU number if appropriate */
if (pl->l_cpuid != KI_NOCPU && ncpu > 1) {
switch (pl->l_stat) {
case LSONPROC:
case LSRUN:
case LSSLEEP:
case LSIDL:
(void)snprintf(state, sizeof(state), "%.6s/%u",
statep, (unsigned int)pl->l_cpuid);
statep = state;
break;
}
}
#endif
if (pl->l_name[0] == '\0') {
pl->l_name[0] = '-';
pl->l_name[1] = '\0';
}
/* format this entry */
sprintf(fmt,
Thread_format,
pl->l_pid,
pl->l_lid,
(*userprint)(uid),
pl->l_priority,
statep,
format_time(cputime),
100.0 * weighted_cpu(l_, pct, pl),
100.0 * pct,
countable(printable(pl->l_name), 9),
get_command(hp->sel, pp));
/* return the result */
return(fmt);
}
/* comparison routines for qsort */
/*
* There are currently four possible comparison routines. main selects
* one of these by indexing in to the array proc_compares.
*
* Possible keys are defined as macros below. Currently these keys are
* defined: percent CPU, CPU ticks, process state, resident set size,
* total virtual memory usage. The process states are ordered as follows
* (from least to most important): WAIT, zombie, sleep, stop, start, run.
* The array declaration below maps a process state index into a number
* that reflects this ordering.
*/
/*
* First, the possible comparison keys. These are defined in such a way
* that they can be merely listed in the source code to define the actual
* desired ordering.
*/
#define ORDERKEY_PCTCPU(pfx) \
if (lresult = (pctcpu)(p2)->pfx ## pctcpu - (pctcpu)(p1)->pfx ## pctcpu,\
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS(pfx) \
if (lresult = (pctcpu)(p2)->pfx ## rtime_sec \
- (pctcpu)(p1)->pfx ## rtime_sec,\
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_STATE(pfx) \
if ((result = sorted_state[(int)(p2)->pfx ## stat] - \
sorted_state[(int)(p1)->pfx ## stat] ) == 0)
#define ORDERKEY_PRIO(pfx) \
if ((result = (p2)->pfx ## priority - (p1)->pfx ## priority) == 0)
#define ORDERKEY_RSSIZE \
if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
#define ORDERKEY_MEM \
if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0)
#define ORDERKEY_SIZE(v1, v2) \
if ((result = (v2 - v1)) == 0)
/*
* Now the array that maps process state to a weight.
* The order of the elements should match those in state_abbrev[]
*/
static int sorted_state[] = {
0, /* (not used) ? */
1, /* "start" SIDL */
4, /* "run" SRUN */
3, /* "sleep" SSLEEP */
3, /* "stop" SSTOP */
2, /* "dead" SDEAD */
1, /* "zomb" SZOMB */
5, /* "onproc" SONPROC */
};
/* compare_cpu - the comparison function for sorting by CPU percentage */
static int
compare_cpu(pp1, pp2)
struct proc **pp1, **pp2;
{
int result;
pctcpu lresult;
if (threadmode) {
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
ORDERKEY_PCTCPU(l_)
ORDERKEY_CPTICKS(l_)
ORDERKEY_STATE(l_)
ORDERKEY_PRIO(l_)
return result;
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
ORDERKEY_PCTCPU(p_)
ORDERKEY_CPTICKS(p_)
ORDERKEY_STATE(p_)
ORDERKEY_PRIO(p_)
ORDERKEY_RSSIZE
ORDERKEY_MEM
return result;
}
return (result);
}
/* compare_prio - the comparison function for sorting by process priority */
static int
compare_prio(pp1, pp2)
struct proc **pp1, **pp2;
{
int result;
pctcpu lresult;
if (threadmode) {
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
ORDERKEY_PRIO(l_)
ORDERKEY_PCTCPU(l_)
ORDERKEY_CPTICKS(l_)
ORDERKEY_STATE(l_)
return result;
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
ORDERKEY_PRIO(p_)
ORDERKEY_PCTCPU(p_)
ORDERKEY_CPTICKS(p_)
ORDERKEY_STATE(p_)
ORDERKEY_RSSIZE
ORDERKEY_MEM
return result;
}
return (result);
}
/* compare_res - the comparison function for sorting by resident set size */
static int
compare_res(pp1, pp2)
struct proc **pp1, **pp2;
{
int result;
pctcpu lresult;
if (threadmode) {
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
ORDERKEY_PCTCPU(l_)
ORDERKEY_CPTICKS(l_)
ORDERKEY_STATE(l_)
ORDERKEY_PRIO(l_)
return result;
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU(p_)
ORDERKEY_CPTICKS(p_)
ORDERKEY_STATE(p_)
ORDERKEY_PRIO(p_)
return result;
}
return (result);
}
static int
compare_pid(pp1, pp2)
struct proc **pp1, **pp2;
{
if (threadmode) {
struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
struct kinfo_proc2 *p1 = proc_from_thread(l1);
struct kinfo_proc2 *p2 = proc_from_thread(l2);
return p2->p_pid - p1->p_pid;
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
return p2->p_pid - p1->p_pid;
}
}
static int
compare_command(pp1, pp2)
struct proc **pp1, **pp2;
{
if (threadmode) {
struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
struct kinfo_proc2 *p1 = proc_from_thread(l1);
struct kinfo_proc2 *p2 = proc_from_thread(l2);
return strcmp(p2->p_comm, p1->p_comm);
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
return strcmp(p2->p_comm, p1->p_comm);
}
}
static int
compare_username(pp1, pp2)
struct proc **pp1, **pp2;
{
if (threadmode) {
struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
struct kinfo_proc2 *p1 = proc_from_thread(l1);
struct kinfo_proc2 *p2 = proc_from_thread(l2);
return strcmp(p2->p_login, p1->p_login);
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
return strcmp(p2->p_login, p1->p_login);
}
}
/* compare_size - the comparison function for sorting by total memory usage */
static int
compare_size(pp1, pp2)
struct proc **pp1, **pp2;
{
int result;
pctcpu lresult;
if (threadmode) {
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
ORDERKEY_PCTCPU(l_)
ORDERKEY_CPTICKS(l_)
ORDERKEY_STATE(l_)
ORDERKEY_PRIO(l_)
return result;
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU(p_)
ORDERKEY_CPTICKS(p_)
ORDERKEY_STATE(p_)
ORDERKEY_PRIO(p_)
return result;
}
return (result);
}
/* compare_state - the comparison function for sorting by process state */
static int
compare_state(pp1, pp2)
struct proc **pp1, **pp2;
{
int result;
pctcpu lresult;
if (threadmode) {
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
ORDERKEY_STATE(l_)
ORDERKEY_PCTCPU(l_)
ORDERKEY_CPTICKS(l_)
ORDERKEY_PRIO(l_)
return result;
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
ORDERKEY_STATE(p_)
ORDERKEY_PCTCPU(p_)
ORDERKEY_CPTICKS(p_)
ORDERKEY_PRIO(p_)
ORDERKEY_RSSIZE
ORDERKEY_MEM
return result;
}
return (result);
}
/* compare_time - the comparison function for sorting by total CPU time */
static int
compare_time(pp1, pp2)
struct proc **pp1, **pp2;
{
int result;
pctcpu lresult;
if (threadmode) {
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
ORDERKEY_CPTICKS(l_)
ORDERKEY_PCTCPU(l_)
ORDERKEY_STATE(l_)
ORDERKEY_PRIO(l_)
return result;
} else {
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
ORDERKEY_CPTICKS(p_)
ORDERKEY_PCTCPU(p_)
ORDERKEY_STATE(p_)
ORDERKEY_PRIO(p_)
ORDERKEY_MEM
ORDERKEY_RSSIZE
return result;
}
return (result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int
proc_owner(pid)
int pid;
{
int cnt;
struct kinfo_proc2 **prefp;
struct kinfo_proc2 *pp;
if (threadmode)
return(-1);
prefp = pref;
cnt = pref_len;
while (--cnt >= 0) {
pp = *prefp++;
if (pp->p_pid == (pid_t)pid)
return(pp->p_ruid);
}
return(-1);
}
/*
* percentages(cnt, out, new, old, diffs) - calculate percentage change
* between array "old" and "new", putting the percentages i "out".
* "cnt" is size of each array and "diffs" is used for scratch space.
* The array "old" is updated on each call.
* The routine assumes modulo arithmetic. This function is especially
* useful on BSD mchines for calculating CPU state percentages.
*/
static void
percentages64(cnt, out, new, old, diffs)
int cnt;
int *out;
u_int64_t *new;
u_int64_t *old;
u_int64_t *diffs;
{
int i;
u_int64_t change;
u_int64_t total_change;
u_int64_t *dp;
u_int64_t half_total;
/* initialization */
total_change = 0;
dp = diffs;
/* calculate changes for each state and the overall change */
for (i = 0; i < cnt; i++) {
/*
* Don't worry about wrapping - even at hz=1GHz, a
* u_int64_t will last at least 544 years.
*/
change = *new - *old;
total_change += (*dp++ = change);
*old++ = *new++;
}
/* avoid divide by zero potential */
if (total_change == 0)
total_change = 1;
/* calculate percentages based on overall change, rounding up */
half_total = total_change / 2;
for (i = 0; i < cnt; i++)
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
}