Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/*
  tre-match-approx.c - TRE approximate regex matching engine

  This software is released under a BSD-style license.
  See the file LICENSE for details and copyright.

*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /* HAVE_CONFIG_H */

#include "tre-alloca.h"

#define __USE_STRING_INLINES
#undef __NO_INLINE__

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#ifdef HAVE_WCHAR_H
#include <wchar.h>
#endif /* HAVE_WCHAR_H */
#ifdef HAVE_WCTYPE_H
#include <wctype.h>
#endif /* HAVE_WCTYPE_H */
#ifndef TRE_WCHAR
#include <ctype.h>
#endif /* !TRE_WCHAR */
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif /* HAVE_MALLOC_H */
#include <stdint.h>

#include "tre-internal.h"
#include "tre-match-utils.h"
#include "tre.h"
#include "xmalloc.h"

#define TRE_M_COST	0
#define TRE_M_NUM_INS	1
#define TRE_M_NUM_DEL	2
#define TRE_M_NUM_SUBST 3
#define TRE_M_NUM_ERR	4
#define TRE_M_LAST	5

#define TRE_M_MAX_DEPTH 3

typedef struct {
  /* State in the TNFA transition table. */
  tre_tnfa_transition_t *state;
  /* Position in input string. */
  int pos;
  /* Tag values. */
  int *tags;
  /* Matching parameters. */
  regaparams_t params;
  /* Nesting depth of parameters.  This is used as an index in
     the `costs' array. */
  int depth;
  /* Costs and counter values for different parameter nesting depths. */
  int costs[TRE_M_MAX_DEPTH + 1][TRE_M_LAST];
} tre_tnfa_approx_reach_t;


#ifdef TRE_DEBUG
/* Prints the `reach' array in a readable fashion with DPRINT. */
static void
tre_print_reach(const tre_tnfa_t *tnfa, tre_tnfa_approx_reach_t *reach,
		int pos, size_t num_tags)
{
  int id;

  /* Print each state on one line. */
  DPRINT(("  reach:\n"));
  for (id = 0; id < tnfa->num_states; id++)
    {
      int i, j;
      if (reach[id].pos < pos)
	continue;  /* Not reached. */
      DPRINT(("	 %03d, costs ", id));
      for (i = 0; i <= reach[id].depth; i++)
	{
	  DPRINT(("["));
	  for (j = 0; j < TRE_M_LAST; j++)
	    {
	      DPRINT(("%2d", reach[id].costs[i][j]));
	      if (j + 1 < TRE_M_LAST)
		DPRINT((","));
	    }
	  DPRINT(("]"));
	  if (i + 1 <= reach[id].depth)
	    DPRINT((", "));
	}
      DPRINT(("\n	tags "));
      for (i = 0; i < num_tags; i++)
	{
	  DPRINT(("%02d", reach[id].tags[i]));
	  if (i + 1 < num_tags)
	    DPRINT((","));
	}
      DPRINT(("\n"));
    }
  DPRINT(("\n"));
}
#endif /* TRE_DEBUG */


/* Sets the matching parameters in `reach' to the ones defined in the `pa'
   array.  If `pa' specifies default values, they are taken from
   `default_params'. */
inline static void
tre_set_params(tre_tnfa_approx_reach_t *reach,
	       int *pa, regaparams_t default_params)
{
  int value;

  /* If depth is increased reset costs and counters to zero for the
     new levels. */
  value = pa[TRE_PARAM_DEPTH];
  assert(value <= TRE_M_MAX_DEPTH);
  if (value > reach->depth)
    {
      int i, j;
      for (i = reach->depth + 1; i <= value; i++)
	for (j = 0; j < TRE_M_LAST; j++)
	  reach->costs[i][j] = 0;
    }
  reach->depth = value;

  /* Set insert cost. */
  value = pa[TRE_PARAM_COST_INS];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.cost_ins = default_params.cost_ins;
  else if (value != TRE_PARAM_UNSET)
    reach->params.cost_ins = value;

  /* Set delete cost. */
  value = pa[TRE_PARAM_COST_DEL];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.cost_del = default_params.cost_del;
  else if (value != TRE_PARAM_UNSET)
    reach->params.cost_del = value;

  /* Set substitute cost. */
  value = pa[TRE_PARAM_COST_SUBST];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.cost_subst = default_params.cost_subst;
  else
    reach->params.cost_subst = value;

  /* Set maximum cost. */
  value = pa[TRE_PARAM_COST_MAX];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.max_cost = default_params.max_cost;
  else if (value != TRE_PARAM_UNSET)
    reach->params.max_cost = value;

  /* Set maximum inserts. */
  value = pa[TRE_PARAM_MAX_INS];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.max_ins = default_params.max_ins;
  else if (value != TRE_PARAM_UNSET)
    reach->params.max_ins = value;

  /* Set maximum deletes. */
  value = pa[TRE_PARAM_MAX_DEL];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.max_del = default_params.max_del;
  else if (value != TRE_PARAM_UNSET)
    reach->params.max_del = value;

  /* Set maximum substitutes. */
  value = pa[TRE_PARAM_MAX_SUBST];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.max_subst = default_params.max_subst;
  else if (value != TRE_PARAM_UNSET)
    reach->params.max_subst = value;

  /* Set maximum number of errors. */
  value = pa[TRE_PARAM_MAX_ERR];
  if (value == TRE_PARAM_DEFAULT)
    reach->params.max_err = default_params.max_err;
  else if (value != TRE_PARAM_UNSET)
    reach->params.max_err = value;
}

reg_errcode_t
tre_tnfa_run_approx(const tre_tnfa_t *tnfa, const void *string, int len,
		    tre_str_type_t type, int *match_tags,
		    regamatch_t *match, regaparams_t default_params,
		    int eflags, int *match_end_ofs)
{
  /* State variables required by GET_NEXT_WCHAR. */
  tre_char_t prev_c = 0, next_c = 0;
  const char *str_byte = string;
  int pos = -1;
  unsigned int pos_add_next = 1;
#ifdef TRE_WCHAR
  const wchar_t *str_wide = string;
#ifdef TRE_MBSTATE
  mbstate_t mbstate;
#endif /* !TRE_WCHAR */
#endif /* TRE_WCHAR */
  int reg_notbol = eflags & REG_NOTBOL;
  int reg_noteol = eflags & REG_NOTEOL;
  int reg_newline = tnfa->cflags & REG_NEWLINE;
  size_t str_user_end = 0;

  int prev_pos;

  /* Number of tags. */
  size_t num_tags;
  /* The reach tables. */
  tre_tnfa_approx_reach_t *reach, *reach_next;
  /* Tag array for temporary use. */
  int *tmp_tags;

  /* End offset of best match so far, or -1 if no match found yet. */
  int match_eo = -1;
  /* Costs of the match. */
  int match_costs[TRE_M_LAST];

  /* Space for temporary data required for matching. */
  unsigned char *buf;

  size_t i, id;

  reg_errcode_t ret;

  if (!match_tags)
    num_tags = 0;
  else
    num_tags = tnfa->num_tags;

#ifdef TRE_MBSTATE
  memset(&mbstate, '\0', sizeof(mbstate));
#endif /* TRE_MBSTATE */

  DPRINT(("tre_tnfa_run_approx, input type %d, len %d, eflags %d, "
	  "match_tags %p\n",
	  type, len, eflags,
	  match_tags));
  DPRINT(("max cost %d, ins %d, del %d, subst %d\n",
	  default_params.max_cost,
	  default_params.cost_ins,
	  default_params.cost_del,
	  default_params.cost_subst));

  /* Allocate memory for temporary data required for matching.	This needs to
     be done for every matching operation to be thread safe.  This allocates
     everything in a single large block from the stack frame using alloca()
     or with malloc() if alloca is unavailable. */
  {
    unsigned char *buf_cursor;

    /* Ensure that tag_bytes*num_states cannot overflow, and that it don't
     * contribute more than 1/8 of SIZE_MAX to total_bytes. */
    if (num_tags > SIZE_MAX/(8 * sizeof(*tmp_tags) * tnfa->num_states))
      return REG_ESPACE;

    /* Likewise check reach_bytes. */
    if (tnfa->num_states > SIZE_MAX/(8 * sizeof(*reach_next)))
      return REG_ESPACE;

    /* Space needed for one array of tags. */
    size_t tag_bytes = sizeof(*tmp_tags) * num_tags;
    /* Space needed for one reach table. */
    size_t reach_bytes = sizeof(*reach_next) * tnfa->num_states;
    /* Total space needed. */
    size_t total_bytes = reach_bytes * 2 + (tnfa->num_states * 2 + 1 ) * tag_bytes;
    /* Add some extra to make sure we can align the pointers.  The multiplier
       used here must be equal to the number of ALIGN calls below. */
    total_bytes += (sizeof(long) - 1) * 3;

    /* Allocate the memory. */
#ifdef TRE_USE_ALLOCA
    buf = alloca(total_bytes);
#else /* !TRE_USE_ALLOCA */
    buf = xmalloc((unsigned)total_bytes);
#endif /* !TRE_USE_ALLOCA */
    if (!buf)
      return REG_ESPACE;
    memset(buf, 0, (size_t)total_bytes);

    /* Allocate `tmp_tags' from `buf'. */
    tmp_tags = (void *)buf;
    buf_cursor = buf + tag_bytes;
    buf_cursor += ALIGN(buf_cursor, long);

    /* Allocate `reach' from `buf'. */
    reach = (void *)buf_cursor;
    buf_cursor += reach_bytes;
    buf_cursor += ALIGN(buf_cursor, long);

    /* Allocate `reach_next' from `buf'. */
    reach_next = (void *)buf_cursor;
    buf_cursor += reach_bytes;
    buf_cursor += ALIGN(buf_cursor, long);

    /* Allocate tag arrays for `reach' and `reach_next' from `buf'. */
    for (i = 0; i < tnfa->num_states; i++)
      {
	reach[i].tags = (void *)buf_cursor;
	buf_cursor += tag_bytes;
	reach_next[i].tags = (void *)buf_cursor;
	buf_cursor += tag_bytes;
      }
    assert(buf_cursor <= buf + total_bytes);
  }

  for (i = 0; i < TRE_M_LAST; i++)
    match_costs[i] = INT_MAX;

  /* Mark the reach arrays empty. */
  for (i = 0; i < tnfa->num_states; i++)
    reach[i].pos = reach_next[i].pos = -2;

  prev_pos = pos;
  GET_NEXT_WCHAR();
  pos = 0;

  while (/*CONSTCOND*/(void)1,1)
    {
      DPRINT(("%03d:%2lc/%05d\n", pos, (tre_cint_t)next_c, (int)next_c));

      /* Add initial states to `reach_next' if an exact match has not yet
	 been found. */
      if (match_costs[TRE_M_COST] > 0)
	{
	  tre_tnfa_transition_t *trans;
	  DPRINT(("  init"));
	  for (trans = tnfa->initial; trans->state; trans++)
	    {
	      int stateid = trans->state_id;

	      /* If this state is not currently in `reach_next', add it
		 there. */
	      if (reach_next[stateid].pos < pos)
		{
		  if (trans->assertions && CHECK_ASSERTIONS(trans->assertions))
		    {
		      /* Assertions failed, don't add this state. */
		      DPRINT((" !%d (assert)", stateid));
		      continue;
		    }
		  DPRINT((" %d", stateid));
		  reach_next[stateid].state = trans->state;
		  reach_next[stateid].pos = pos;

		  /* Compute tag values after this transition. */
		  for (i = 0; i < num_tags; i++)
		    reach_next[stateid].tags[i] = -1;

		  if (trans->tags)
		    for (i = 0; trans->tags[i] >= 0; i++)
		      if ((size_t)trans->tags[i] < num_tags)
			reach_next[stateid].tags[trans->tags[i]] = pos;

		  /* Set the parameters, depth, and costs. */
		  reach_next[stateid].params = default_params;
		  reach_next[stateid].depth = 0;
		  for (i = 0; i < TRE_M_LAST; i++)
		    reach_next[stateid].costs[0][i] = 0;
		  if (trans->params)
		    tre_set_params(&reach_next[stateid], trans->params,
				   default_params);

		  /* If this is the final state, mark the exact match. */
		  if (trans->state == tnfa->final)
		    {
		      match_eo = pos;
		      for (i = 0; i < num_tags; i++)
			match_tags[i] = reach_next[stateid].tags[i];
		      for (i = 0; i < TRE_M_LAST; i++)
			match_costs[i] = 0;
		    }
		}
	    }
	    DPRINT(("\n"));
	}


      /* Handle inserts.  This is done by pretending there's an epsilon
	 transition from each state in `reach' back to the same state.
	 We don't need to worry about the final state here; this will never
	 give a better match than what we already have. */
      for (id = 0; id < tnfa->num_states; id++)
	{
	  int depth;
	  int cost, cost0;

	  if (reach[id].pos != prev_pos)
	    {
	      DPRINT(("	 insert: %d not reached\n", id));
	      continue;	 /* Not reached. */
	    }

	  depth = reach[id].depth;

	  /* Compute and check cost at current depth. */
	  cost = reach[id].costs[depth][TRE_M_COST];
	  if (reach[id].params.cost_ins != TRE_PARAM_UNSET)
	    cost += reach[id].params.cost_ins;
	  if (cost > reach[id].params.max_cost)
	    continue;  /* Cost too large. */

	  /* Check number of inserts at current depth. */
	  if (reach[id].costs[depth][TRE_M_NUM_INS] + 1
	      > reach[id].params.max_ins)
	    continue;  /* Too many inserts. */

	  /* Check total number of errors at current depth. */
	  if (reach[id].costs[depth][TRE_M_NUM_ERR] + 1
	      > reach[id].params.max_err)
	    continue;  /* Too many errors. */

	  /* Compute overall cost. */
	  cost0 = cost;
	  if (depth > 0)
	    {
	      cost0 = reach[id].costs[0][TRE_M_COST];
	      if (reach[id].params.cost_ins != TRE_PARAM_UNSET)
		cost0 += reach[id].params.cost_ins;
	      else
		cost0 += default_params.cost_ins;
	    }

	  DPRINT(("  insert: from %d to %d, cost %d: ", id, id,
		  reach[id].costs[depth][TRE_M_COST]));
	  if (reach_next[id].pos == pos
	      && (cost0 >= reach_next[id].costs[0][TRE_M_COST]))
	    {
	      DPRINT(("lose\n"));
	      continue;
	    }
	  DPRINT(("win\n"));

	  /* Copy state, position, tags, parameters, and depth. */
	  reach_next[id].state = reach[id].state;
	  reach_next[id].pos = pos;
	  for (i = 0; i < num_tags; i++)
	    reach_next[id].tags[i] = reach[id].tags[i];
	  reach_next[id].params = reach[id].params;
	  reach_next[id].depth = reach[id].depth;

	  /* Set the costs after this transition. */
	  memcpy(reach_next[id].costs, reach[id].costs,
		 sizeof(reach_next[id].costs[0][0])
		 * TRE_M_LAST * (depth + 1));
	  reach_next[id].costs[depth][TRE_M_COST] = cost;
	  reach_next[id].costs[depth][TRE_M_NUM_INS]++;
	  reach_next[id].costs[depth][TRE_M_NUM_ERR]++;
	  if (depth > 0)
	    {
	      reach_next[id].costs[0][TRE_M_COST] = cost0;
	      reach_next[id].costs[0][TRE_M_NUM_INS]++;
	      reach_next[id].costs[0][TRE_M_NUM_ERR]++;
	    }

	}


      /* Handle deletes.  This is done by traversing through the whole TNFA
	 pretending that all transitions are epsilon transitions, until
	 no more states can be reached with better costs. */
      {
	/* XXX - dynamic ringbuffer size */
	tre_tnfa_approx_reach_t *ringbuffer[512];
	tre_tnfa_approx_reach_t **deque_start, **deque_end;

	deque_start = deque_end = ringbuffer;

	/* Add all states in `reach_next' to the deque. */
	for (id = 0; id < tnfa->num_states; id++)
	  {
	    if (reach_next[id].pos != pos)
	      continue;
	    *deque_end = &reach_next[id];
	    deque_end++;
	    assert(deque_end != deque_start);
	  }

	/* Repeat until the deque is empty. */
	while (deque_end != deque_start)
	  {
	    tre_tnfa_approx_reach_t *reach_p;
	    int depth;
	    int cost, cost0;
	    tre_tnfa_transition_t *trans;

	    /* Pop the first item off the deque. */
	    reach_p = *deque_start;
	    id = reach_p - reach_next;
	    depth = reach_p->depth;

	    /* Compute cost at current depth. */
	    cost = reach_p->costs[depth][TRE_M_COST];
	    if (reach_p->params.cost_del != TRE_PARAM_UNSET)
	      cost += reach_p->params.cost_del;

	    /* Check cost, number of deletes, and total number of errors
	       at current depth. */
	    if (cost > reach_p->params.max_cost
		|| (reach_p->costs[depth][TRE_M_NUM_DEL] + 1
		    > reach_p->params.max_del)
		|| (reach_p->costs[depth][TRE_M_NUM_ERR] + 1
		    > reach_p->params.max_err))
	      {
		/* Too many errors or cost too large. */
		DPRINT(("  delete: from %03d: cost too large\n", id));
		deque_start++;
		if (deque_start >= (ringbuffer + 512))
		  deque_start = ringbuffer;
		continue;
	      }

	    /* Compute overall cost. */
	    cost0 = cost;
	    if (depth > 0)
	      {
		cost0 = reach_p->costs[0][TRE_M_COST];
		if (reach_p->params.cost_del != TRE_PARAM_UNSET)
		  cost0 += reach_p->params.cost_del;
		else
		  cost0 += default_params.cost_del;
	      }

	    for (trans = reach_p->state; trans->state; trans++)
	      {
		int dest_id = trans->state_id;
		DPRINT(("  delete: from %03d to %03d, cost %d (%d): ",
			id, dest_id, cost0, reach_p->params.max_cost));

		if (trans->assertions && CHECK_ASSERTIONS(trans->assertions))
		  {
		    DPRINT(("assertion failed\n"));
		    continue;
		  }

		/* Compute tag values after this transition. */
		for (i = 0; i < num_tags; i++)
		  tmp_tags[i] = reach_p->tags[i];
		if (trans->tags)
		  for (i = 0; trans->tags[i] >= 0; i++)
		    if ((size_t)trans->tags[i] < num_tags)
		      tmp_tags[trans->tags[i]] = pos;

		/* If another path has also reached this state, choose the one
		   with the smallest cost or best tags if costs are equal. */
		if (reach_next[dest_id].pos == pos
		    && (cost0 > reach_next[dest_id].costs[0][TRE_M_COST]
			|| (cost0 == reach_next[dest_id].costs[0][TRE_M_COST]
			    && (!match_tags
				|| !tre_tag_order(num_tags,
						  tnfa->tag_directions,
						  tmp_tags,
						  reach_next[dest_id].tags)))))
		  {
		    DPRINT(("lose, cost0 %d, have %d\n",
			    cost0, reach_next[dest_id].costs[0][TRE_M_COST]));
		    continue;
		  }
		DPRINT(("win\n"));

		/* Set state, position, tags, parameters, depth, and costs. */
		reach_next[dest_id].state = trans->state;
		reach_next[dest_id].pos = pos;
		for (i = 0; i < num_tags; i++)
		  reach_next[dest_id].tags[i] = tmp_tags[i];

		reach_next[dest_id].params = reach_p->params;
		if (trans->params)
		  tre_set_params(&reach_next[dest_id], trans->params,
				 default_params);

		reach_next[dest_id].depth = reach_p->depth;
		memcpy(&reach_next[dest_id].costs,
		       reach_p->costs,
		       sizeof(reach_p->costs[0][0])
		       * TRE_M_LAST * (depth + 1));
		reach_next[dest_id].costs[depth][TRE_M_COST] = cost;
		reach_next[dest_id].costs[depth][TRE_M_NUM_DEL]++;
		reach_next[dest_id].costs[depth][TRE_M_NUM_ERR]++;
		if (depth > 0)
		  {
		    reach_next[dest_id].costs[0][TRE_M_COST] = cost0;
		    reach_next[dest_id].costs[0][TRE_M_NUM_DEL]++;
		    reach_next[dest_id].costs[0][TRE_M_NUM_ERR]++;
		  }

		if (trans->state == tnfa->final
		    && (match_eo < 0
			|| match_costs[TRE_M_COST] > cost0
			|| (match_costs[TRE_M_COST] == cost0
			    && (num_tags > 0
				&& tmp_tags[0] <= match_tags[0]))))
		  {
		    DPRINT(("	 setting new match at %d, cost %d\n",
			    pos, cost0));
		    match_eo = pos;
		    memcpy(match_costs, reach_next[dest_id].costs[0],
			   sizeof(match_costs[0]) * TRE_M_LAST);
		    for (i = 0; i < num_tags; i++)
		      match_tags[i] = tmp_tags[i];
		  }

		/* Add to the end of the deque. */
		*deque_end = &reach_next[dest_id];
		deque_end++;
		if (deque_end >= (ringbuffer + 512))
		  deque_end = ringbuffer;
		assert(deque_end != deque_start);
	      }
	    deque_start++;
	    if (deque_start >= (ringbuffer + 512))
	      deque_start = ringbuffer;
	  }

      }

#ifdef TRE_DEBUG
      tre_print_reach(tnfa, reach_next, pos, num_tags);
#endif /* TRE_DEBUG */

      /* Check for end of string. */
      if (len < 0)
	{
	  if (type == STR_USER)
	    {
	      if (str_user_end)
		break;
	    }
	  else if (next_c == L'\0')
	    break;
	}
      else
	{
	  if (pos >= len)
	    break;
	}

      prev_pos = pos;
      GET_NEXT_WCHAR();

      /* Swap `reach' and `reach_next'. */
      {
	tre_tnfa_approx_reach_t *tmp;
	tmp = reach;
	reach = reach_next;
	reach_next = tmp;
      }

      /* Handle exact matches and substitutions. */
      for (id = 0; id < tnfa->num_states; id++)
	{
	  tre_tnfa_transition_t *trans;

	  if (reach[id].pos < prev_pos)
	    continue;  /* Not reached. */
	  for (trans = reach[id].state; trans->state; trans++)
	    {
	      int dest_id;
	      int depth;
	      int cost, cost0, err;

	      if (trans->assertions
		  && (CHECK_ASSERTIONS(trans->assertions)
		      || CHECK_CHAR_CLASSES(trans, tnfa, eflags)))
		{
		  DPRINT(("  exact,  from %d: assert failed\n", id));
		  continue;
		}

	      depth = reach[id].depth;
	      dest_id = trans->state_id;

	      cost = reach[id].costs[depth][TRE_M_COST];
	      cost0 = reach[id].costs[0][TRE_M_COST];
	      err = 0;

	      if (trans->code_min > (tre_cint_t)prev_c
		  || trans->code_max < (tre_cint_t)prev_c)
		{
		  /* Handle substitutes.  The required character was not in
		     the string, so match it in place of whatever was supposed
		     to be there and increase costs accordingly. */
		  err = 1;

		  /* Compute and check cost at current depth. */
		  cost = reach[id].costs[depth][TRE_M_COST];
		  if (reach[id].params.cost_subst != TRE_PARAM_UNSET)
		    cost += reach[id].params.cost_subst;
		  if (cost > reach[id].params.max_cost)
		    continue; /* Cost too large. */

		  /* Check number of substitutes at current depth. */
		  if (reach[id].costs[depth][TRE_M_NUM_SUBST] + 1
		      > reach[id].params.max_subst)
		    continue; /* Too many substitutes. */

		  /* Check total number of errors at current depth. */
		  if (reach[id].costs[depth][TRE_M_NUM_ERR] + 1
		      > reach[id].params.max_err)
		    continue; /* Too many errors. */

		  /* Compute overall cost. */
		  cost0 = cost;
		  if (depth > 0)
		    {
		      cost0 = reach[id].costs[0][TRE_M_COST];
		      if (reach[id].params.cost_subst != TRE_PARAM_UNSET)
			cost0 += reach[id].params.cost_subst;
		      else
			cost0 += default_params.cost_subst;
		    }
		  DPRINT(("  subst,  from %03d to %03d, cost %d: ",
			  id, dest_id, cost0));
		}
	      else
		DPRINT(("  exact,  from %03d to %03d, cost %d: ",
			id, dest_id, cost0));

	      /* Compute tag values after this transition. */
	      for (i = 0; i < num_tags; i++)
		tmp_tags[i] = reach[id].tags[i];
	      if (trans->tags)
		for (i = 0; trans->tags[i] >= 0; i++)
		  if ((size_t)trans->tags[i] < num_tags)
		    tmp_tags[trans->tags[i]] = pos;

	      /* If another path has also reached this state, choose the
		 one with the smallest cost or best tags if costs are equal. */
	      if (reach_next[dest_id].pos == pos
		  && (cost0 > reach_next[dest_id].costs[0][TRE_M_COST]
		      || (cost0 == reach_next[dest_id].costs[0][TRE_M_COST]
			  && !tre_tag_order(num_tags, tnfa->tag_directions,
					    tmp_tags,
					    reach_next[dest_id].tags))))
		{
		  DPRINT(("lose\n"));
		  continue;
		}
	      DPRINT(("win %d %d\n",
		      reach_next[dest_id].pos,
		      reach_next[dest_id].costs[0][TRE_M_COST]));

	      /* Set state, position, tags, and depth. */
	      reach_next[dest_id].state = trans->state;
	      reach_next[dest_id].pos = pos;
	      for (i = 0; i < num_tags; i++)
		reach_next[dest_id].tags[i] = tmp_tags[i];
	      reach_next[dest_id].depth = reach[id].depth;

	      /* Set parameters. */
	      reach_next[dest_id].params = reach[id].params;
	      if (trans->params)
		tre_set_params(&reach_next[dest_id], trans->params,
			       default_params);

	      /* Set the costs after this transition. */
	      memcpy(&reach_next[dest_id].costs,
		     reach[id].costs,
		     sizeof(reach[id].costs[0][0])
		     * TRE_M_LAST * (depth + 1));
	      reach_next[dest_id].costs[depth][TRE_M_COST] = cost;
	      reach_next[dest_id].costs[depth][TRE_M_NUM_SUBST] += err;
	      reach_next[dest_id].costs[depth][TRE_M_NUM_ERR] += err;
	      if (depth > 0)
		{
		  reach_next[dest_id].costs[0][TRE_M_COST] = cost0;
		  reach_next[dest_id].costs[0][TRE_M_NUM_SUBST] += err;
		  reach_next[dest_id].costs[0][TRE_M_NUM_ERR] += err;
		}

	      if (trans->state == tnfa->final
		  && (match_eo < 0
		      || cost0 < match_costs[TRE_M_COST]
		      || (cost0 == match_costs[TRE_M_COST]
			  && num_tags > 0 && tmp_tags[0] <= match_tags[0])))
		{
		  DPRINT(("    setting new match at %d, cost %d\n",
			  pos, cost0));
		  match_eo = pos;
		  for (i = 0; i < TRE_M_LAST; i++)
		    match_costs[i] = reach_next[dest_id].costs[0][i];
		  for (i = 0; i < num_tags; i++)
		    match_tags[i] = tmp_tags[i];
		}
	    }
	}
    }

  DPRINT(("match end offset = %d, match cost = %d\n", match_eo,
	  match_costs[TRE_M_COST]));

  match->cost = match_costs[TRE_M_COST];
  match->num_ins = match_costs[TRE_M_NUM_INS];
  match->num_del = match_costs[TRE_M_NUM_DEL];
  match->num_subst = match_costs[TRE_M_NUM_SUBST];
  *match_end_ofs = match_eo;

  ret = match_eo >= 0 ? REG_OK : REG_NOMATCH;
error_exit:
#ifndef TRE_USE_ALLOCA
  if (buf)
    xfree(buf);
#endif /* !TRE_USE_ALLOCA */
  return ret;
}