Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
/* BFD back-end for Renesas Super-H COFF binaries.
   Copyright (C) 1993-2022 Free Software Foundation, Inc.
   Contributed by Cygnus Support.
   Written by Steve Chamberlain, <sac@cygnus.com>.
   Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */

#include "sysdep.h"
#include "bfd.h"
#include "libiberty.h"
#include "libbfd.h"
#include "bfdlink.h"
#include "coff/sh.h"
#include "coff/internal.h"

#undef  bfd_pe_print_pdata

#ifdef COFF_WITH_PE
#include "coff/pe.h"

#ifndef COFF_IMAGE_WITH_PE
static bool sh_align_load_span
  (bfd *, asection *, bfd_byte *,
   bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
   void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *);

#define _bfd_sh_align_load_span sh_align_load_span
#endif

#define	bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata

#else

#define	bfd_pe_print_pdata   NULL

#endif /* COFF_WITH_PE.  */

#include "libcoff.h"

/* Internal functions.  */

#ifdef COFF_WITH_PE
/* Can't build import tables with 2**4 alignment.  */
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	2
#else
/* Default section alignment to 2**4.  */
#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	4
#endif

#ifdef COFF_IMAGE_WITH_PE
/* Align PE executables.  */
#define COFF_PAGE_SIZE 0x1000
#endif

/* Generate long file names.  */
#define COFF_LONG_FILENAMES

#ifdef COFF_WITH_PE
/* Return TRUE if this relocation should
   appear in the output .reloc section.  */

static bool
in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
	    reloc_howto_type * howto)
{
  return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
}
#endif

static bfd_reloc_status_type
sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
static bool
sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
		     bfd_byte *, struct internal_reloc *,
		     struct internal_syment *, asection **);
static bool
sh_align_loads (bfd *, asection *, struct internal_reloc *,
		bfd_byte *, bool *);

/* The supported relocations.  There are a lot of relocations defined
   in coff/internal.h which we do not expect to ever see.  */
static reloc_howto_type sh_coff_howtos[] =
{
  EMPTY_HOWTO (0),
  EMPTY_HOWTO (1),
#ifdef COFF_WITH_PE
  /* Windows CE */
  HOWTO (R_SH_IMM32CE,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm32ce",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */
#else
  EMPTY_HOWTO (2),
#endif
  EMPTY_HOWTO (3), /* R_SH_PCREL8 */
  EMPTY_HOWTO (4), /* R_SH_PCREL16 */
  EMPTY_HOWTO (5), /* R_SH_HIGH8 */
  EMPTY_HOWTO (6), /* R_SH_IMM24 */
  EMPTY_HOWTO (7), /* R_SH_LOW16 */
  EMPTY_HOWTO (8),
  EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */

  HOWTO (R_SH_PCDISP8BY2,	/* type */
	 1,			/* rightshift */
	 2,			/* size */
	 8,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_signed, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcdisp8by2",	/* name */
	 true,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 true),			/* pcrel_offset */

  EMPTY_HOWTO (11), /* R_SH_PCDISP8 */

  HOWTO (R_SH_PCDISP,		/* type */
	 1,			/* rightshift */
	 2,			/* size */
	 12,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_signed, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcdisp12by2",	/* name */
	 true,			/* partial_inplace */
	 0xfff,			/* src_mask */
	 0xfff,			/* dst_mask */
	 true),			/* pcrel_offset */

  EMPTY_HOWTO (13),

  HOWTO (R_SH_IMM32,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm32",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  EMPTY_HOWTO (15),
#ifdef COFF_WITH_PE
  HOWTO (R_SH_IMAGEBASE,	/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "rva32",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */
#else
  EMPTY_HOWTO (16), /* R_SH_IMM8 */
#endif
  EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
  EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
  EMPTY_HOWTO (19), /* R_SH_IMM4 */
  EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
  EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */

  HOWTO (R_SH_PCRELIMM8BY2,	/* type */
	 1,			/* rightshift */
	 2,			/* size */
	 8,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_unsigned, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcrelimm8by2",	/* name */
	 true,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 true),			/* pcrel_offset */

  HOWTO (R_SH_PCRELIMM8BY4,	/* type */
	 2,			/* rightshift */
	 2,			/* size */
	 8,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_unsigned, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_pcrelimm8by4",	/* name */
	 true,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 true),			/* pcrel_offset */

  HOWTO (R_SH_IMM16,		/* type */
	 0,			/* rightshift */
	 2,			/* size */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_imm16",		/* name */
	 true,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH16,		/* type */
	 0,			/* rightshift */
	 2,			/* size */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch16",		/* name */
	 true,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH32,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch32",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_USES,		/* type */
	 0,			/* rightshift */
	 2,			/* size */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_uses",		/* name */
	 true,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_COUNT,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_count",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_ALIGN,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_align",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_CODE,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_code",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_DATA,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_data",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_LABEL,		/* type */
	 0,			/* rightshift */
	 4,			/* size */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_label",		/* name */
	 true,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_SH_SWITCH8,		/* type */
	 0,			/* rightshift */
	 1,			/* size */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 sh_reloc,		/* special_function */
	 "r_switch8",		/* name */
	 true,			/* partial_inplace */
	 0xff,			/* src_mask */
	 0xff,			/* dst_mask */
	 false)			/* pcrel_offset */
};

#define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])

/* Check for a bad magic number.  */
#define BADMAG(x) SHBADMAG(x)

/* Customize coffcode.h (this is not currently used).  */
#define SH 1

/* FIXME: This should not be set here.  */
#define __A_MAGIC_SET__

#ifndef COFF_WITH_PE
/* Swap the r_offset field in and out.  */
#define SWAP_IN_RELOC_OFFSET  H_GET_32
#define SWAP_OUT_RELOC_OFFSET H_PUT_32

/* Swap out extra information in the reloc structure.  */
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)	\
  do						\
    {						\
      dst->r_stuff[0] = 'S';			\
      dst->r_stuff[1] = 'C';			\
    }						\
  while (0)
#endif

/* Get the value of a symbol, when performing a relocation.  */

static long
get_symbol_value (asymbol *symbol)
{
  bfd_vma relocation;

  if (bfd_is_com_section (symbol->section))
    relocation = 0;
  else
    relocation = (symbol->value +
		  symbol->section->output_section->vma +
		  symbol->section->output_offset);

  return relocation;
}

#ifdef COFF_WITH_PE
/* Convert an rtype to howto for the COFF backend linker.
   Copied from coff-i386.  */
#define coff_rtype_to_howto coff_sh_rtype_to_howto


static reloc_howto_type *
coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
			asection * sec,
			struct internal_reloc * rel,
			struct coff_link_hash_entry * h,
			struct internal_syment * sym,
			bfd_vma * addendp)
{
  reloc_howto_type * howto;

  howto = sh_coff_howtos + rel->r_type;

  *addendp = 0;

  if (howto->pc_relative)
    *addendp += sec->vma;

  if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
    {
      /* This is a common symbol.  The section contents include the
	 size (sym->n_value) as an addend.  The relocate_section
	 function will be adding in the final value of the symbol.  We
	 need to subtract out the current size in order to get the
	 correct result.  */
      BFD_ASSERT (h != NULL);
    }

  if (howto->pc_relative)
    {
      *addendp -= 4;

      /* If the symbol is defined, then the generic code is going to
	 add back the symbol value in order to cancel out an
	 adjustment it made to the addend.  However, we set the addend
	 to 0 at the start of this function.  We need to adjust here,
	 to avoid the adjustment the generic code will make.  FIXME:
	 This is getting a bit hackish.  */
      if (sym != NULL && sym->n_scnum != 0)
	*addendp -= sym->n_value;
    }

  if (rel->r_type == R_SH_IMAGEBASE)
    *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;

  return howto;
}

#endif /* COFF_WITH_PE */

/* This structure is used to map BFD reloc codes to SH PE relocs.  */
struct shcoff_reloc_map
{
  bfd_reloc_code_real_type bfd_reloc_val;
  unsigned char shcoff_reloc_val;
};

#ifdef COFF_WITH_PE
/* An array mapping BFD reloc codes to SH PE relocs.  */
static const struct shcoff_reloc_map sh_reloc_map[] =
{
  { BFD_RELOC_32, R_SH_IMM32CE },
  { BFD_RELOC_RVA, R_SH_IMAGEBASE },
  { BFD_RELOC_CTOR, R_SH_IMM32CE },
};
#else
/* An array mapping BFD reloc codes to SH PE relocs.  */
static const struct shcoff_reloc_map sh_reloc_map[] =
{
  { BFD_RELOC_32, R_SH_IMM32 },
  { BFD_RELOC_CTOR, R_SH_IMM32 },
};
#endif

/* Given a BFD reloc code, return the howto structure for the
   corresponding SH PE reloc.  */
#define coff_bfd_reloc_type_lookup	sh_coff_reloc_type_lookup
#define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup

static reloc_howto_type *
sh_coff_reloc_type_lookup (bfd *abfd,
			   bfd_reloc_code_real_type code)
{
  unsigned int i;

  for (i = ARRAY_SIZE (sh_reloc_map); i--;)
    if (sh_reloc_map[i].bfd_reloc_val == code)
      return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];

  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
		      abfd, (unsigned int) code);
  return NULL;
}

static reloc_howto_type *
sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
			   const char *r_name)
{
  unsigned int i;

  for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
    if (sh_coff_howtos[i].name != NULL
	&& strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
      return &sh_coff_howtos[i];

  return NULL;
}

/* This macro is used in coffcode.h to get the howto corresponding to
   an internal reloc.  */

#define RTYPE2HOWTO(relent, internal)		\
  ((relent)->howto =				\
   ((internal)->r_type < SH_COFF_HOWTO_COUNT	\
    ? &sh_coff_howtos[(internal)->r_type]	\
    : (reloc_howto_type *) NULL))

/* This is the same as the macro in coffcode.h, except that it copies
   r_offset into reloc_entry->addend for some relocs.  */
#define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)		\
  {								\
    coff_symbol_type *coffsym = (coff_symbol_type *) NULL;	\
    if (ptr && bfd_asymbol_bfd (ptr) != abfd)			\
      coffsym = (obj_symbols (abfd)				\
		 + (cache_ptr->sym_ptr_ptr - symbols));		\
    else if (ptr)						\
      coffsym = coff_symbol_from (ptr);				\
    if (coffsym != (coff_symbol_type *) NULL			\
	&& coffsym->native->u.syment.n_scnum == 0)		\
      cache_ptr->addend = 0;					\
    else if (ptr && bfd_asymbol_bfd (ptr) == abfd		\
	     && ptr->section != (asection *) NULL)		\
      cache_ptr->addend = - (ptr->section->vma + ptr->value);	\
    else							\
      cache_ptr->addend = 0;					\
    if ((reloc).r_type == R_SH_SWITCH8				\
	|| (reloc).r_type == R_SH_SWITCH16			\
	|| (reloc).r_type == R_SH_SWITCH32			\
	|| (reloc).r_type == R_SH_USES				\
	|| (reloc).r_type == R_SH_COUNT				\
	|| (reloc).r_type == R_SH_ALIGN)			\
      cache_ptr->addend = (reloc).r_offset;			\
  }

/* This is the howto function for the SH relocations.  */

static bfd_reloc_status_type
sh_reloc (bfd *      abfd,
	  arelent *  reloc_entry,
	  asymbol *  symbol_in,
	  void *     data,
	  asection * input_section,
	  bfd *      output_bfd,
	  char **    error_message ATTRIBUTE_UNUSED)
{
  bfd_vma insn;
  bfd_vma sym_value;
  unsigned short r_type;
  bfd_vma addr = reloc_entry->address;
  bfd_byte *hit_data = addr + (bfd_byte *) data;

  r_type = reloc_entry->howto->type;

  if (output_bfd != NULL)
    {
      /* Partial linking--do nothing.  */
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
    }

  /* Almost all relocs have to do with relaxing.  If any work must be
     done for them, it has been done in sh_relax_section.  */
  if (r_type != R_SH_IMM32
#ifdef COFF_WITH_PE
      && r_type != R_SH_IMM32CE
      && r_type != R_SH_IMAGEBASE
#endif
      && (r_type != R_SH_PCDISP
	  || (symbol_in->flags & BSF_LOCAL) != 0))
    return bfd_reloc_ok;

  if (symbol_in != NULL
      && bfd_is_und_section (symbol_in->section))
    return bfd_reloc_undefined;

  if (addr > input_section->size)
    return bfd_reloc_outofrange;

  sym_value = get_symbol_value (symbol_in);

  switch (r_type)
    {
    case R_SH_IMM32:
#ifdef COFF_WITH_PE
    case R_SH_IMM32CE:
#endif
      insn = bfd_get_32 (abfd, hit_data);
      insn += sym_value + reloc_entry->addend;
      bfd_put_32 (abfd, insn, hit_data);
      break;
#ifdef COFF_WITH_PE
    case R_SH_IMAGEBASE:
      insn = bfd_get_32 (abfd, hit_data);
      insn += sym_value + reloc_entry->addend;
      insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
      bfd_put_32 (abfd, insn, hit_data);
      break;
#endif
    case R_SH_PCDISP:
      insn = bfd_get_16 (abfd, hit_data);
      sym_value += reloc_entry->addend;
      sym_value -= (input_section->output_section->vma
		    + input_section->output_offset
		    + addr
		    + 4);
      sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1;
      insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff);
      bfd_put_16 (abfd, insn, hit_data);
      if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0)
	return bfd_reloc_overflow;
      break;
    default:
      abort ();
      break;
    }

  return bfd_reloc_ok;
}

#define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match

/* We can do relaxing.  */
#define coff_bfd_relax_section sh_relax_section

/* We use the special COFF backend linker.  */
#define coff_relocate_section sh_relocate_section

/* When relaxing, we need to use special code to get the relocated
   section contents.  */
#define coff_bfd_get_relocated_section_contents \
  sh_coff_get_relocated_section_contents

#include "coffcode.h"

static bool
sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);

/* This function handles relaxing on the SH.

   Function calls on the SH look like this:

       movl  L1,r0
       ...
       jsr   @r0
       ...
     L1:
       .long function

   The compiler and assembler will cooperate to create R_SH_USES
   relocs on the jsr instructions.  The r_offset field of the
   R_SH_USES reloc is the PC relative offset to the instruction which
   loads the register (the r_offset field is computed as though it
   were a jump instruction, so the offset value is actually from four
   bytes past the instruction).  The linker can use this reloc to
   determine just which function is being called, and thus decide
   whether it is possible to replace the jsr with a bsr.

   If multiple function calls are all based on a single register load
   (i.e., the same function is called multiple times), the compiler
   guarantees that each function call will have an R_SH_USES reloc.
   Therefore, if the linker is able to convert each R_SH_USES reloc
   which refers to that address, it can safely eliminate the register
   load.

   When the assembler creates an R_SH_USES reloc, it examines it to
   determine which address is being loaded (L1 in the above example).
   It then counts the number of references to that address, and
   creates an R_SH_COUNT reloc at that address.  The r_offset field of
   the R_SH_COUNT reloc will be the number of references.  If the
   linker is able to eliminate a register load, it can use the
   R_SH_COUNT reloc to see whether it can also eliminate the function
   address.

   SH relaxing also handles another, unrelated, matter.  On the SH, if
   a load or store instruction is not aligned on a four byte boundary,
   the memory cycle interferes with the 32 bit instruction fetch,
   causing a one cycle bubble in the pipeline.  Therefore, we try to
   align load and store instructions on four byte boundaries if we
   can, by swapping them with one of the adjacent instructions.  */

static bool
sh_relax_section (bfd *abfd,
		  asection *sec,
		  struct bfd_link_info *link_info,
		  bool *again)
{
  struct internal_reloc *internal_relocs;
  bool have_code;
  struct internal_reloc *irel, *irelend;
  bfd_byte *contents = NULL;

  *again = false;

  if (bfd_link_relocatable (link_info)
      || (sec->flags & SEC_RELOC) == 0
      || sec->reloc_count == 0)
    return true;

  if (coff_section_data (abfd, sec) == NULL)
    {
      size_t amt = sizeof (struct coff_section_tdata);
      sec->used_by_bfd = bfd_zalloc (abfd, amt);
      if (sec->used_by_bfd == NULL)
	return false;
    }

  internal_relocs = (_bfd_coff_read_internal_relocs
		     (abfd, sec, link_info->keep_memory,
		      (bfd_byte *) NULL, false,
		      (struct internal_reloc *) NULL));
  if (internal_relocs == NULL)
    goto error_return;

  have_code = false;

  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma laddr, paddr, symval;
      unsigned short insn;
      struct internal_reloc *irelfn, *irelscan, *irelcount;
      struct internal_syment sym;
      bfd_signed_vma foff;

      if (irel->r_type == R_SH_CODE)
	have_code = true;

      if (irel->r_type != R_SH_USES)
	continue;

      /* Get the section contents.  */
      if (contents == NULL)
	{
	  if (coff_section_data (abfd, sec)->contents != NULL)
	    contents = coff_section_data (abfd, sec)->contents;
	  else
	    {
	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
		goto error_return;
	    }
	}

      /* The r_offset field of the R_SH_USES reloc will point us to
	 the register load.  The 4 is because the r_offset field is
	 computed as though it were a jump offset, which are based
	 from 4 bytes after the jump instruction.  */
      laddr = irel->r_vaddr - sec->vma + 4;
      /* Careful to sign extend the 32-bit offset.  */
      laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
      if (laddr >= sec->size)
	{
	  /* xgettext: c-format */
	  _bfd_error_handler
	    (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"),
	     abfd, (uint64_t) irel->r_vaddr);
	  continue;
	}
      insn = bfd_get_16 (abfd, contents + laddr);

      /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
      if ((insn & 0xf000) != 0xd000)
	{
	  _bfd_error_handler
	    /* xgettext: c-format */
	    (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"),
	     abfd, (uint64_t) irel->r_vaddr, insn);
	  continue;
	}

      /* Get the address from which the register is being loaded.  The
	 displacement in the mov.l instruction is quadrupled.  It is a
	 displacement from four bytes after the movl instruction, but,
	 before adding in the PC address, two least significant bits
	 of the PC are cleared.  We assume that the section is aligned
	 on a four byte boundary.  */
      paddr = insn & 0xff;
      paddr *= 4;
      paddr += (laddr + 4) &~ (bfd_vma) 3;
      if (paddr >= sec->size)
	{
	  _bfd_error_handler
	    /* xgettext: c-format */
	    (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"),
	     abfd, (uint64_t) irel->r_vaddr);
	  continue;
	}

      /* Get the reloc for the address from which the register is
	 being loaded.  This reloc will tell us which function is
	 actually being called.  */
      paddr += sec->vma;
      for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
	if (irelfn->r_vaddr == paddr
#ifdef COFF_WITH_PE
	    && (irelfn->r_type == R_SH_IMM32
		|| irelfn->r_type == R_SH_IMM32CE
		|| irelfn->r_type == R_SH_IMAGEBASE)

#else
	    && irelfn->r_type == R_SH_IMM32
#endif
	    )
	  break;
      if (irelfn >= irelend)
	{
	  _bfd_error_handler
	    /* xgettext: c-format */
	    (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"),
	     abfd, (uint64_t) paddr);
	  continue;
	}

      /* Get the value of the symbol referred to by the reloc.  */
      if (! _bfd_coff_get_external_symbols (abfd))
	goto error_return;
      bfd_coff_swap_sym_in (abfd,
			    ((bfd_byte *) obj_coff_external_syms (abfd)
			     + (irelfn->r_symndx
				* bfd_coff_symesz (abfd))),
			    &sym);
      if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
	{
	  _bfd_error_handler
	    /* xgettext: c-format */
	    (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"),
	     abfd, (uint64_t) paddr);
	  continue;
	}

      if (sym.n_sclass != C_EXT)
	{
	  symval = (sym.n_value
		    - sec->vma
		    + sec->output_section->vma
		    + sec->output_offset);
	}
      else
	{
	  struct coff_link_hash_entry *h;

	  h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
	  BFD_ASSERT (h != NULL);
	  if (h->root.type != bfd_link_hash_defined
	      && h->root.type != bfd_link_hash_defweak)
	    {
	      /* This appears to be a reference to an undefined
		 symbol.  Just ignore it--it will be caught by the
		 regular reloc processing.  */
	      continue;
	    }

	  symval = (h->root.u.def.value
		    + h->root.u.def.section->output_section->vma
		    + h->root.u.def.section->output_offset);
	}

      symval += bfd_get_32 (abfd, contents + paddr - sec->vma);

      /* See if this function call can be shortened.  */
      foff = (symval
	      - (irel->r_vaddr
		 - sec->vma
		 + sec->output_section->vma
		 + sec->output_offset
		 + 4));
      if (foff < -0x1000 || foff >= 0x1000)
	{
	  /* After all that work, we can't shorten this function call.  */
	  continue;
	}

      /* Shorten the function call.  */

      /* For simplicity of coding, we are going to modify the section
	 contents, the section relocs, and the BFD symbol table.  We
	 must tell the rest of the code not to free up this
	 information.  It would be possible to instead create a table
	 of changes which have to be made, as is done in coff-mips.c;
	 that would be more work, but would require less memory when
	 the linker is run.  */

      coff_section_data (abfd, sec)->relocs = internal_relocs;
      coff_section_data (abfd, sec)->keep_relocs = true;

      coff_section_data (abfd, sec)->contents = contents;
      coff_section_data (abfd, sec)->keep_contents = true;

      obj_coff_keep_syms (abfd) = true;

      /* Replace the jsr with a bsr.  */

      /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
	 replace the jsr with a bsr.  */
      irel->r_type = R_SH_PCDISP;
      irel->r_symndx = irelfn->r_symndx;
      if (sym.n_sclass != C_EXT)
	{
	  /* If this needs to be changed because of future relaxing,
	     it will be handled here like other internal PCDISP
	     relocs.  */
	  bfd_put_16 (abfd,
		      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
		      contents + irel->r_vaddr - sec->vma);
	}
      else
	{
	  /* We can't fully resolve this yet, because the external
	     symbol value may be changed by future relaxing.  We let
	     the final link phase handle it.  */
	  bfd_put_16 (abfd, (bfd_vma) 0xb000,
		      contents + irel->r_vaddr - sec->vma);
	}

      /* See if there is another R_SH_USES reloc referring to the same
	 register load.  */
      for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
	if (irelscan->r_type == R_SH_USES
	    && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
	  break;
      if (irelscan < irelend)
	{
	  /* Some other function call depends upon this register load,
	     and we have not yet converted that function call.
	     Indeed, we may never be able to convert it.  There is
	     nothing else we can do at this point.  */
	  continue;
	}

      /* Look for a R_SH_COUNT reloc on the location where the
	 function address is stored.  Do this before deleting any
	 bytes, to avoid confusion about the address.  */
      for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
	if (irelcount->r_vaddr == paddr
	    && irelcount->r_type == R_SH_COUNT)
	  break;

      /* Delete the register load.  */
      if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
	goto error_return;

      /* That will change things, so, just in case it permits some
	 other function call to come within range, we should relax
	 again.  Note that this is not required, and it may be slow.  */
      *again = true;

      /* Now check whether we got a COUNT reloc.  */
      if (irelcount >= irelend)
	{
	  _bfd_error_handler
	    /* xgettext: c-format */
	    (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"),
	     abfd, (uint64_t) paddr);
	  continue;
	}

      /* The number of uses is stored in the r_offset field.  We've
	 just deleted one.  */
      if (irelcount->r_offset == 0)
	{
	  /* xgettext: c-format */
	  _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"),
			      abfd, (uint64_t) paddr);
	  continue;
	}

      --irelcount->r_offset;

      /* If there are no more uses, we can delete the address.  Reload
	 the address from irelfn, in case it was changed by the
	 previous call to sh_relax_delete_bytes.  */
      if (irelcount->r_offset == 0)
	{
	  if (! sh_relax_delete_bytes (abfd, sec,
				       irelfn->r_vaddr - sec->vma, 4))
	    goto error_return;
	}

      /* We've done all we can with that function call.  */
    }

  /* Look for load and store instructions that we can align on four
     byte boundaries.  */
  if (have_code)
    {
      bool swapped;

      /* Get the section contents.  */
      if (contents == NULL)
	{
	  if (coff_section_data (abfd, sec)->contents != NULL)
	    contents = coff_section_data (abfd, sec)->contents;
	  else
	    {
	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
		goto error_return;
	    }
	}

      if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
	goto error_return;

      if (swapped)
	{
	  coff_section_data (abfd, sec)->relocs = internal_relocs;
	  coff_section_data (abfd, sec)->keep_relocs = true;

	  coff_section_data (abfd, sec)->contents = contents;
	  coff_section_data (abfd, sec)->keep_contents = true;

	  obj_coff_keep_syms (abfd) = true;
	}
    }

  if (internal_relocs != NULL
      && internal_relocs != coff_section_data (abfd, sec)->relocs)
    {
      if (! link_info->keep_memory)
	free (internal_relocs);
      else
	coff_section_data (abfd, sec)->relocs = internal_relocs;
    }

  if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
    {
      if (! link_info->keep_memory)
	free (contents);
      else
	/* Cache the section contents for coff_link_input_bfd.  */
	coff_section_data (abfd, sec)->contents = contents;
    }

  return true;

 error_return:
  if (internal_relocs != coff_section_data (abfd, sec)->relocs)
    free (internal_relocs);
  if (contents != coff_section_data (abfd, sec)->contents)
    free (contents);
  return false;
}

/* Delete some bytes from a section while relaxing.  */

static bool
sh_relax_delete_bytes (bfd *abfd,
		       asection *sec,
		       bfd_vma addr,
		       int count)
{
  bfd_byte *contents;
  struct internal_reloc *irel, *irelend;
  struct internal_reloc *irelalign;
  bfd_vma toaddr;
  bfd_byte *esym, *esymend;
  bfd_size_type symesz;
  struct coff_link_hash_entry **sym_hash;
  asection *o;

  contents = coff_section_data (abfd, sec)->contents;

  /* The deletion must stop at the next ALIGN reloc for an alignment
     power larger than the number of bytes we are deleting.  */

  irelalign = NULL;
  toaddr = sec->size;

  irel = coff_section_data (abfd, sec)->relocs;
  irelend = irel + sec->reloc_count;
  for (; irel < irelend; irel++)
    {
      if (irel->r_type == R_SH_ALIGN
	  && irel->r_vaddr - sec->vma > addr
	  && count < (1 << irel->r_offset))
	{
	  irelalign = irel;
	  toaddr = irel->r_vaddr - sec->vma;
	  break;
	}
    }

  /* Actually delete the bytes.  */
  memmove (contents + addr, contents + addr + count,
	   (size_t) (toaddr - addr - count));
  if (irelalign == NULL)
    sec->size -= count;
  else
    {
      int i;

#define NOP_OPCODE (0x0009)

      BFD_ASSERT ((count & 1) == 0);
      for (i = 0; i < count; i += 2)
	bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
    }

  /* Adjust all the relocs.  */
  for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
    {
      bfd_vma nraddr, stop;
      bfd_vma start = 0;
      int insn = 0;
      struct internal_syment sym;
      int off, adjust, oinsn;
      bfd_signed_vma voff = 0;
      bool overflow;

      /* Get the new reloc address.  */
      nraddr = irel->r_vaddr - sec->vma;
      if ((irel->r_vaddr - sec->vma > addr
	   && irel->r_vaddr - sec->vma < toaddr)
	  || (irel->r_type == R_SH_ALIGN
	      && irel->r_vaddr - sec->vma == toaddr))
	nraddr -= count;

      /* See if this reloc was for the bytes we have deleted, in which
	 case we no longer care about it.  Don't delete relocs which
	 represent addresses, though.  */
      if (irel->r_vaddr - sec->vma >= addr
	  && irel->r_vaddr - sec->vma < addr + count
	  && irel->r_type != R_SH_ALIGN
	  && irel->r_type != R_SH_CODE
	  && irel->r_type != R_SH_DATA
	  && irel->r_type != R_SH_LABEL)
	irel->r_type = R_SH_UNUSED;

      /* If this is a PC relative reloc, see if the range it covers
	 includes the bytes we have deleted.  */
      switch (irel->r_type)
	{
	default:
	  break;

	case R_SH_PCDISP8BY2:
	case R_SH_PCDISP:
	case R_SH_PCRELIMM8BY2:
	case R_SH_PCRELIMM8BY4:
	  start = irel->r_vaddr - sec->vma;
	  insn = bfd_get_16 (abfd, contents + nraddr);
	  break;
	}

      switch (irel->r_type)
	{
	default:
	  start = stop = addr;
	  break;

	case R_SH_IMM32:
#ifdef COFF_WITH_PE
	case R_SH_IMM32CE:
	case R_SH_IMAGEBASE:
#endif
	  /* If this reloc is against a symbol defined in this
	     section, and the symbol will not be adjusted below, we
	     must check the addend to see it will put the value in
	     range to be adjusted, and hence must be changed.  */
	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irel->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass != C_EXT
	      && sym.n_scnum == sec->target_index
	      && ((bfd_vma) sym.n_value <= addr
		  || (bfd_vma) sym.n_value >= toaddr))
	    {
	      bfd_vma val;

	      val = bfd_get_32 (abfd, contents + nraddr);
	      val += sym.n_value;
	      if (val > addr && val < toaddr)
		bfd_put_32 (abfd, val - count, contents + nraddr);
	    }
	  start = stop = addr;
	  break;

	case R_SH_PCDISP8BY2:
	  off = insn & 0xff;
	  if (off & 0x80)
	    off -= 0x100;
	  stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
	  break;

	case R_SH_PCDISP:
	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irel->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass == C_EXT)
	    start = stop = addr;
	  else
	    {
	      off = insn & 0xfff;
	      if (off & 0x800)
		off -= 0x1000;
	      stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
	    }
	  break;

	case R_SH_PCRELIMM8BY2:
	  off = insn & 0xff;
	  stop = start + 4 + off * 2;
	  break;

	case R_SH_PCRELIMM8BY4:
	  off = insn & 0xff;
	  stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
	  break;

	case R_SH_SWITCH8:
	case R_SH_SWITCH16:
	case R_SH_SWITCH32:
	  /* These relocs types represent
	       .word L2-L1
	     The r_offset field holds the difference between the reloc
	     address and L1.  That is the start of the reloc, and
	     adding in the contents gives us the top.  We must adjust
	     both the r_offset field and the section contents.  */

	  start = irel->r_vaddr - sec->vma;
	  stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);

	  if (start > addr
	      && start < toaddr
	      && (stop <= addr || stop >= toaddr))
	    irel->r_offset += count;
	  else if (stop > addr
		   && stop < toaddr
		   && (start <= addr || start >= toaddr))
	    irel->r_offset -= count;

	  start = stop;

	  if (irel->r_type == R_SH_SWITCH16)
	    voff = bfd_get_signed_16 (abfd, contents + nraddr);
	  else if (irel->r_type == R_SH_SWITCH8)
	    voff = bfd_get_8 (abfd, contents + nraddr);
	  else
	    voff = bfd_get_signed_32 (abfd, contents + nraddr);
	  stop = (bfd_vma) ((bfd_signed_vma) start + voff);

	  break;

	case R_SH_USES:
	  start = irel->r_vaddr - sec->vma;
	  stop = (bfd_vma) ((bfd_signed_vma) start
			    + (long) irel->r_offset
			    + 4);
	  break;
	}

      if (start > addr
	  && start < toaddr
	  && (stop <= addr || stop >= toaddr))
	adjust = count;
      else if (stop > addr
	       && stop < toaddr
	       && (start <= addr || start >= toaddr))
	adjust = - count;
      else
	adjust = 0;

      if (adjust != 0)
	{
	  oinsn = insn;
	  overflow = false;
	  switch (irel->r_type)
	    {
	    default:
	      abort ();
	      break;

	    case R_SH_PCDISP8BY2:
	    case R_SH_PCRELIMM8BY2:
	      insn += adjust / 2;
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = true;
	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
	      break;

	    case R_SH_PCDISP:
	      insn += adjust / 2;
	      if ((oinsn & 0xf000) != (insn & 0xf000))
		overflow = true;
	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
	      break;

	    case R_SH_PCRELIMM8BY4:
	      BFD_ASSERT (adjust == count || count >= 4);
	      if (count >= 4)
		insn += adjust / 4;
	      else
		{
		  if ((irel->r_vaddr & 3) == 0)
		    ++insn;
		}
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = true;
	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
	      break;

	    case R_SH_SWITCH8:
	      voff += adjust;
	      if (voff < 0 || voff >= 0xff)
		overflow = true;
	      bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
	      break;

	    case R_SH_SWITCH16:
	      voff += adjust;
	      if (voff < - 0x8000 || voff >= 0x8000)
		overflow = true;
	      bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
	      break;

	    case R_SH_SWITCH32:
	      voff += adjust;
	      bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
	      break;

	    case R_SH_USES:
	      irel->r_offset += adjust;
	      break;
	    }

	  if (overflow)
	    {
	      _bfd_error_handler
		/* xgettext: c-format */
		(_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
		 abfd, (uint64_t) irel->r_vaddr);
	      bfd_set_error (bfd_error_bad_value);
	      return false;
	    }
	}

      irel->r_vaddr = nraddr + sec->vma;
    }

  /* Look through all the other sections.  If there contain any IMM32
     relocs against internal symbols which we are not going to adjust
     below, we may need to adjust the addends.  */
  for (o = abfd->sections; o != NULL; o = o->next)
    {
      struct internal_reloc *internal_relocs;
      struct internal_reloc *irelscan, *irelscanend;
      bfd_byte *ocontents;

      if (o == sec
	  || (o->flags & SEC_RELOC) == 0
	  || o->reloc_count == 0)
	continue;

      /* We always cache the relocs.  Perhaps, if info->keep_memory is
	 FALSE, we should free them, if we are permitted to, when we
	 leave sh_coff_relax_section.  */
      internal_relocs = (_bfd_coff_read_internal_relocs
			 (abfd, o, true, (bfd_byte *) NULL, false,
			  (struct internal_reloc *) NULL));
      if (internal_relocs == NULL)
	return false;

      ocontents = NULL;
      irelscanend = internal_relocs + o->reloc_count;
      for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
	{
	  struct internal_syment sym;

#ifdef COFF_WITH_PE
	  if (irelscan->r_type != R_SH_IMM32
	      && irelscan->r_type != R_SH_IMAGEBASE
	      && irelscan->r_type != R_SH_IMM32CE)
#else
	  if (irelscan->r_type != R_SH_IMM32)
#endif
	    continue;

	  bfd_coff_swap_sym_in (abfd,
				((bfd_byte *) obj_coff_external_syms (abfd)
				 + (irelscan->r_symndx
				    * bfd_coff_symesz (abfd))),
				&sym);
	  if (sym.n_sclass != C_EXT
	      && sym.n_scnum == sec->target_index
	      && ((bfd_vma) sym.n_value <= addr
		  || (bfd_vma) sym.n_value >= toaddr))
	    {
	      bfd_vma val;

	      if (ocontents == NULL)
		{
		  if (coff_section_data (abfd, o)->contents != NULL)
		    ocontents = coff_section_data (abfd, o)->contents;
		  else
		    {
		      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
			return false;
		      /* We always cache the section contents.
			 Perhaps, if info->keep_memory is FALSE, we
			 should free them, if we are permitted to,
			 when we leave sh_coff_relax_section.  */
		      coff_section_data (abfd, o)->contents = ocontents;
		    }
		}

	      val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
	      val += sym.n_value;
	      if (val > addr && val < toaddr)
		bfd_put_32 (abfd, val - count,
			    ocontents + irelscan->r_vaddr - o->vma);

	      coff_section_data (abfd, o)->keep_contents = true;
	    }
	}
    }

  /* Adjusting the internal symbols will not work if something has
     already retrieved the generic symbols.  It would be possible to
     make this work by adjusting the generic symbols at the same time.
     However, this case should not arise in normal usage.  */
  if (obj_symbols (abfd) != NULL
      || obj_raw_syments (abfd) != NULL)
    {
      _bfd_error_handler
	(_("%pB: fatal: generic symbols retrieved before relaxing"), abfd);
      bfd_set_error (bfd_error_invalid_operation);
      return false;
    }

  /* Adjust all the symbols.  */
  sym_hash = obj_coff_sym_hashes (abfd);
  symesz = bfd_coff_symesz (abfd);
  esym = (bfd_byte *) obj_coff_external_syms (abfd);
  esymend = esym + obj_raw_syment_count (abfd) * symesz;
  while (esym < esymend)
    {
      struct internal_syment isym;

      bfd_coff_swap_sym_in (abfd, esym, &isym);

      if (isym.n_scnum == sec->target_index
	  && (bfd_vma) isym.n_value > addr
	  && (bfd_vma) isym.n_value < toaddr)
	{
	  isym.n_value -= count;

	  bfd_coff_swap_sym_out (abfd, &isym, esym);

	  if (*sym_hash != NULL)
	    {
	      BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
			  || (*sym_hash)->root.type == bfd_link_hash_defweak);
	      BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
			  && (*sym_hash)->root.u.def.value < toaddr);
	      (*sym_hash)->root.u.def.value -= count;
	    }
	}

      esym += (isym.n_numaux + 1) * symesz;
      sym_hash += isym.n_numaux + 1;
    }

  /* See if we can move the ALIGN reloc forward.  We have adjusted
     r_vaddr for it already.  */
  if (irelalign != NULL)
    {
      bfd_vma alignto, alignaddr;

      alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
      alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
			     1 << irelalign->r_offset);
      if (alignto != alignaddr)
	{
	  /* Tail recursion.  */
	  return sh_relax_delete_bytes (abfd, sec, alignaddr,
					(int) (alignto - alignaddr));
	}
    }

  return true;
}

/* This is yet another version of the SH opcode table, used to rapidly
   get information about a particular instruction.  */

/* The opcode map is represented by an array of these structures.  The
   array is indexed by the high order four bits in the instruction.  */

struct sh_major_opcode
{
  /* A pointer to the instruction list.  This is an array which
     contains all the instructions with this major opcode.  */
  const struct sh_minor_opcode *minor_opcodes;
  /* The number of elements in minor_opcodes.  */
  unsigned short count;
};

/* This structure holds information for a set of SH opcodes.  The
   instruction code is anded with the mask value, and the resulting
   value is used to search the order opcode list.  */

struct sh_minor_opcode
{
  /* The sorted opcode list.  */
  const struct sh_opcode *opcodes;
  /* The number of elements in opcodes.  */
  unsigned short count;
  /* The mask value to use when searching the opcode list.  */
  unsigned short mask;
};

/* This structure holds information for an SH instruction.  An array
   of these structures is sorted in order by opcode.  */

struct sh_opcode
{
  /* The code for this instruction, after it has been anded with the
     mask value in the sh_major_opcode structure.  */
  unsigned short opcode;
  /* Flags for this instruction.  */
  unsigned long flags;
};

/* Flag which appear in the sh_opcode structure.  */

/* This instruction loads a value from memory.  */
#define LOAD (0x1)

/* This instruction stores a value to memory.  */
#define STORE (0x2)

/* This instruction is a branch.  */
#define BRANCH (0x4)

/* This instruction has a delay slot.  */
#define DELAY (0x8)

/* This instruction uses the value in the register in the field at
   mask 0x0f00 of the instruction.  */
#define USES1 (0x10)
#define USES1_REG(x) ((x & 0x0f00) >> 8)

/* This instruction uses the value in the register in the field at
   mask 0x00f0 of the instruction.  */
#define USES2 (0x20)
#define USES2_REG(x) ((x & 0x00f0) >> 4)

/* This instruction uses the value in register 0.  */
#define USESR0 (0x40)

/* This instruction sets the value in the register in the field at
   mask 0x0f00 of the instruction.  */
#define SETS1 (0x80)
#define SETS1_REG(x) ((x & 0x0f00) >> 8)

/* This instruction sets the value in the register in the field at
   mask 0x00f0 of the instruction.  */
#define SETS2 (0x100)
#define SETS2_REG(x) ((x & 0x00f0) >> 4)

/* This instruction sets register 0.  */
#define SETSR0 (0x200)

/* This instruction sets a special register.  */
#define SETSSP (0x400)

/* This instruction uses a special register.  */
#define USESSP (0x800)

/* This instruction uses the floating point register in the field at
   mask 0x0f00 of the instruction.  */
#define USESF1 (0x1000)
#define USESF1_REG(x) ((x & 0x0f00) >> 8)

/* This instruction uses the floating point register in the field at
   mask 0x00f0 of the instruction.  */
#define USESF2 (0x2000)
#define USESF2_REG(x) ((x & 0x00f0) >> 4)

/* This instruction uses floating point register 0.  */
#define USESF0 (0x4000)

/* This instruction sets the floating point register in the field at
   mask 0x0f00 of the instruction.  */
#define SETSF1 (0x8000)
#define SETSF1_REG(x) ((x & 0x0f00) >> 8)

#define USESAS (0x10000)
#define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
#define USESR8 (0x20000)
#define SETSAS (0x40000)
#define SETSAS_REG(x) USESAS_REG (x)

#define MAP(a) a, sizeof a / sizeof a[0]

#ifndef COFF_IMAGE_WITH_PE

/* The opcode maps.  */

static const struct sh_opcode sh_opcode00[] =
{
  { 0x0008, SETSSP },			/* clrt */
  { 0x0009, 0 },			/* nop */
  { 0x000b, BRANCH | DELAY | USESSP },	/* rts */
  { 0x0018, SETSSP },			/* sett */
  { 0x0019, SETSSP },			/* div0u */
  { 0x001b, 0 },			/* sleep */
  { 0x0028, SETSSP },			/* clrmac */
  { 0x002b, BRANCH | DELAY | SETSSP },	/* rte */
  { 0x0038, USESSP | SETSSP },		/* ldtlb */
  { 0x0048, SETSSP },			/* clrs */
  { 0x0058, SETSSP }			/* sets */
};

static const struct sh_opcode sh_opcode01[] =
{
  { 0x0003, BRANCH | DELAY | USES1 | SETSSP },	/* bsrf rn */
  { 0x000a, SETS1 | USESSP },			/* sts mach,rn */
  { 0x001a, SETS1 | USESSP },			/* sts macl,rn */
  { 0x0023, BRANCH | DELAY | USES1 },		/* braf rn */
  { 0x0029, SETS1 | USESSP },			/* movt rn */
  { 0x002a, SETS1 | USESSP },			/* sts pr,rn */
  { 0x005a, SETS1 | USESSP },			/* sts fpul,rn */
  { 0x006a, SETS1 | USESSP },			/* sts fpscr,rn / sts dsr,rn */
  { 0x0083, LOAD | USES1 },			/* pref @rn */
  { 0x007a, SETS1 | USESSP },			/* sts a0,rn */
  { 0x008a, SETS1 | USESSP },			/* sts x0,rn */
  { 0x009a, SETS1 | USESSP },			/* sts x1,rn */
  { 0x00aa, SETS1 | USESSP },			/* sts y0,rn */
  { 0x00ba, SETS1 | USESSP }			/* sts y1,rn */
};

static const struct sh_opcode sh_opcode02[] =
{
  { 0x0002, SETS1 | USESSP },			/* stc <special_reg>,rn */
  { 0x0004, STORE | USES1 | USES2 | USESR0 },	/* mov.b rm,@(r0,rn) */
  { 0x0005, STORE | USES1 | USES2 | USESR0 },	/* mov.w rm,@(r0,rn) */
  { 0x0006, STORE | USES1 | USES2 | USESR0 },	/* mov.l rm,@(r0,rn) */
  { 0x0007, SETSSP | USES1 | USES2 },		/* mul.l rm,rn */
  { 0x000c, LOAD | SETS1 | USES2 | USESR0 },	/* mov.b @(r0,rm),rn */
  { 0x000d, LOAD | SETS1 | USES2 | USESR0 },	/* mov.w @(r0,rm),rn */
  { 0x000e, LOAD | SETS1 | USES2 | USESR0 },	/* mov.l @(r0,rm),rn */
  { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
};

static const struct sh_minor_opcode sh_opcode0[] =
{
  { MAP (sh_opcode00), 0xffff },
  { MAP (sh_opcode01), 0xf0ff },
  { MAP (sh_opcode02), 0xf00f }
};

static const struct sh_opcode sh_opcode10[] =
{
  { 0x1000, STORE | USES1 | USES2 }	/* mov.l rm,@(disp,rn) */
};

static const struct sh_minor_opcode sh_opcode1[] =
{
  { MAP (sh_opcode10), 0xf000 }
};

static const struct sh_opcode sh_opcode20[] =
{
  { 0x2000, STORE | USES1 | USES2 },		/* mov.b rm,@rn */
  { 0x2001, STORE | USES1 | USES2 },		/* mov.w rm,@rn */
  { 0x2002, STORE | USES1 | USES2 },		/* mov.l rm,@rn */
  { 0x2004, STORE | SETS1 | USES1 | USES2 },	/* mov.b rm,@-rn */
  { 0x2005, STORE | SETS1 | USES1 | USES2 },	/* mov.w rm,@-rn */
  { 0x2006, STORE | SETS1 | USES1 | USES2 },	/* mov.l rm,@-rn */
  { 0x2007, SETSSP | USES1 | USES2 | USESSP },	/* div0s */
  { 0x2008, SETSSP | USES1 | USES2 },		/* tst rm,rn */
  { 0x2009, SETS1 | USES1 | USES2 },		/* and rm,rn */
  { 0x200a, SETS1 | USES1 | USES2 },		/* xor rm,rn */
  { 0x200b, SETS1 | USES1 | USES2 },		/* or rm,rn */
  { 0x200c, SETSSP | USES1 | USES2 },		/* cmp/str rm,rn */
  { 0x200d, SETS1 | USES1 | USES2 },		/* xtrct rm,rn */
  { 0x200e, SETSSP | USES1 | USES2 },		/* mulu.w rm,rn */
  { 0x200f, SETSSP | USES1 | USES2 }		/* muls.w rm,rn */
};

static const struct sh_minor_opcode sh_opcode2[] =
{
  { MAP (sh_opcode20), 0xf00f }
};

static const struct sh_opcode sh_opcode30[] =
{
  { 0x3000, SETSSP | USES1 | USES2 },		/* cmp/eq rm,rn */
  { 0x3002, SETSSP | USES1 | USES2 },		/* cmp/hs rm,rn */
  { 0x3003, SETSSP | USES1 | USES2 },		/* cmp/ge rm,rn */
  { 0x3004, SETSSP | USESSP | USES1 | USES2 },	/* div1 rm,rn */
  { 0x3005, SETSSP | USES1 | USES2 },		/* dmulu.l rm,rn */
  { 0x3006, SETSSP | USES1 | USES2 },		/* cmp/hi rm,rn */
  { 0x3007, SETSSP | USES1 | USES2 },		/* cmp/gt rm,rn */
  { 0x3008, SETS1 | USES1 | USES2 },		/* sub rm,rn */
  { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
  { 0x300b, SETS1 | SETSSP | USES1 | USES2 },	/* subv rm,rn */
  { 0x300c, SETS1 | USES1 | USES2 },		/* add rm,rn */
  { 0x300d, SETSSP | USES1 | USES2 },		/* dmuls.l rm,rn */
  { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
  { 0x300f, SETS1 | SETSSP | USES1 | USES2 }	/* addv rm,rn */
};

static const struct sh_minor_opcode sh_opcode3[] =
{
  { MAP (sh_opcode30), 0xf00f }
};

static const struct sh_opcode sh_opcode40[] =
{
  { 0x4000, SETS1 | SETSSP | USES1 },		/* shll rn */
  { 0x4001, SETS1 | SETSSP | USES1 },		/* shlr rn */
  { 0x4002, STORE | SETS1 | USES1 | USESSP },	/* sts.l mach,@-rn */
  { 0x4004, SETS1 | SETSSP | USES1 },		/* rotl rn */
  { 0x4005, SETS1 | SETSSP | USES1 },		/* rotr rn */
  { 0x4006, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,mach */
  { 0x4008, SETS1 | USES1 },			/* shll2 rn */
  { 0x4009, SETS1 | USES1 },			/* shlr2 rn */
  { 0x400a, SETSSP | USES1 },			/* lds rm,mach */
  { 0x400b, BRANCH | DELAY | USES1 },		/* jsr @rn */
  { 0x4010, SETS1 | SETSSP | USES1 },		/* dt rn */
  { 0x4011, SETSSP | USES1 },			/* cmp/pz rn */
  { 0x4012, STORE | SETS1 | USES1 | USESSP },	/* sts.l macl,@-rn */
  { 0x4014, SETSSP | USES1 },			/* setrc rm */
  { 0x4015, SETSSP | USES1 },			/* cmp/pl rn */
  { 0x4016, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,macl */
  { 0x4018, SETS1 | USES1 },			/* shll8 rn */
  { 0x4019, SETS1 | USES1 },			/* shlr8 rn */
  { 0x401a, SETSSP | USES1 },			/* lds rm,macl */
  { 0x401b, LOAD | SETSSP | USES1 },		/* tas.b @rn */
  { 0x4020, SETS1 | SETSSP | USES1 },		/* shal rn */
  { 0x4021, SETS1 | SETSSP | USES1 },		/* shar rn */
  { 0x4022, STORE | SETS1 | USES1 | USESSP },	/* sts.l pr,@-rn */
  { 0x4024, SETS1 | SETSSP | USES1 | USESSP },	/* rotcl rn */
  { 0x4025, SETS1 | SETSSP | USES1 | USESSP },	/* rotcr rn */
  { 0x4026, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,pr */
  { 0x4028, SETS1 | USES1 },			/* shll16 rn */
  { 0x4029, SETS1 | USES1 },			/* shlr16 rn */
  { 0x402a, SETSSP | USES1 },			/* lds rm,pr */
  { 0x402b, BRANCH | DELAY | USES1 },		/* jmp @rn */
  { 0x4052, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpul,@-rn */
  { 0x4056, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpul */
  { 0x405a, SETSSP | USES1 },			/* lds.l rm,fpul */
  { 0x4062, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpscr / dsr,@-rn */
  { 0x4066, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpscr / dsr */
  { 0x406a, SETSSP | USES1 },			/* lds rm,fpscr / lds rm,dsr */
  { 0x4072, STORE | SETS1 | USES1 | USESSP },	/* sts.l a0,@-rn */
  { 0x4076, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,a0 */
  { 0x407a, SETSSP | USES1 },			/* lds.l rm,a0 */
  { 0x4082, STORE | SETS1 | USES1 | USESSP },	/* sts.l x0,@-rn */
  { 0x4086, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x0 */
  { 0x408a, SETSSP | USES1 },			/* lds.l rm,x0 */
  { 0x4092, STORE | SETS1 | USES1 | USESSP },	/* sts.l x1,@-rn */
  { 0x4096, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x1 */
  { 0x409a, SETSSP | USES1 },			/* lds.l rm,x1 */
  { 0x40a2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y0,@-rn */
  { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y0 */
  { 0x40aa, SETSSP | USES1 },			/* lds.l rm,y0 */
  { 0x40b2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y1,@-rn */
  { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y1 */
  { 0x40ba, SETSSP | USES1 }			/* lds.l rm,y1 */
};

static const struct sh_opcode sh_opcode41[] =
{
  { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l <special_reg>,@-rn */
  { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,<special_reg> */
  { 0x400c, SETS1 | USES1 | USES2 },		/* shad rm,rn */
  { 0x400d, SETS1 | USES1 | USES2 },		/* shld rm,rn */
  { 0x400e, SETSSP | USES1 },			/* ldc rm,<special_reg> */
  { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
};

static const struct sh_minor_opcode sh_opcode4[] =
{
  { MAP (sh_opcode40), 0xf0ff },
  { MAP (sh_opcode41), 0xf00f }
};

static const struct sh_opcode sh_opcode50[] =
{
  { 0x5000, LOAD | SETS1 | USES2 }	/* mov.l @(disp,rm),rn */
};

static const struct sh_minor_opcode sh_opcode5[] =
{
  { MAP (sh_opcode50), 0xf000 }
};

static const struct sh_opcode sh_opcode60[] =
{
  { 0x6000, LOAD | SETS1 | USES2 },		/* mov.b @rm,rn */
  { 0x6001, LOAD | SETS1 | USES2 },		/* mov.w @rm,rn */
  { 0x6002, LOAD | SETS1 | USES2 },		/* mov.l @rm,rn */
  { 0x6003, SETS1 | USES2 },			/* mov rm,rn */
  { 0x6004, LOAD | SETS1 | SETS2 | USES2 },	/* mov.b @rm+,rn */
  { 0x6005, LOAD | SETS1 | SETS2 | USES2 },	/* mov.w @rm+,rn */
  { 0x6006, LOAD | SETS1 | SETS2 | USES2 },	/* mov.l @rm+,rn */
  { 0x6007, SETS1 | USES2 },			/* not rm,rn */
  { 0x6008, SETS1 | USES2 },			/* swap.b rm,rn */
  { 0x6009, SETS1 | USES2 },			/* swap.w rm,rn */
  { 0x600a, SETS1 | SETSSP | USES2 | USESSP },	/* negc rm,rn */
  { 0x600b, SETS1 | USES2 },			/* neg rm,rn */
  { 0x600c, SETS1 | USES2 },			/* extu.b rm,rn */
  { 0x600d, SETS1 | USES2 },			/* extu.w rm,rn */
  { 0x600e, SETS1 | USES2 },			/* exts.b rm,rn */
  { 0x600f, SETS1 | USES2 }			/* exts.w rm,rn */
};

static const struct sh_minor_opcode sh_opcode6[] =
{
  { MAP (sh_opcode60), 0xf00f }
};

static const struct sh_opcode sh_opcode70[] =
{
  { 0x7000, SETS1 | USES1 }		/* add #imm,rn */
};

static const struct sh_minor_opcode sh_opcode7[] =
{
  { MAP (sh_opcode70), 0xf000 }
};

static const struct sh_opcode sh_opcode80[] =
{
  { 0x8000, STORE | USES2 | USESR0 },	/* mov.b r0,@(disp,rn) */
  { 0x8100, STORE | USES2 | USESR0 },	/* mov.w r0,@(disp,rn) */
  { 0x8200, SETSSP },			/* setrc #imm */
  { 0x8400, LOAD | SETSR0 | USES2 },	/* mov.b @(disp,rm),r0 */
  { 0x8500, LOAD | SETSR0 | USES2 },	/* mov.w @(disp,rn),r0 */
  { 0x8800, SETSSP | USESR0 },		/* cmp/eq #imm,r0 */
  { 0x8900, BRANCH | USESSP },		/* bt label */
  { 0x8b00, BRANCH | USESSP },		/* bf label */
  { 0x8c00, SETSSP },			/* ldrs @(disp,pc) */
  { 0x8d00, BRANCH | DELAY | USESSP },	/* bt/s label */
  { 0x8e00, SETSSP },			/* ldre @(disp,pc) */
  { 0x8f00, BRANCH | DELAY | USESSP }	/* bf/s label */
};

static const struct sh_minor_opcode sh_opcode8[] =
{
  { MAP (sh_opcode80), 0xff00 }
};

static const struct sh_opcode sh_opcode90[] =
{
  { 0x9000, LOAD | SETS1 }	/* mov.w @(disp,pc),rn */
};

static const struct sh_minor_opcode sh_opcode9[] =
{
  { MAP (sh_opcode90), 0xf000 }
};

static const struct sh_opcode sh_opcodea0[] =
{
  { 0xa000, BRANCH | DELAY }	/* bra label */
};

static const struct sh_minor_opcode sh_opcodea[] =
{
  { MAP (sh_opcodea0), 0xf000 }
};

static const struct sh_opcode sh_opcodeb0[] =
{
  { 0xb000, BRANCH | DELAY }	/* bsr label */
};

static const struct sh_minor_opcode sh_opcodeb[] =
{
  { MAP (sh_opcodeb0), 0xf000 }
};

static const struct sh_opcode sh_opcodec0[] =
{
  { 0xc000, STORE | USESR0 | USESSP },		/* mov.b r0,@(disp,gbr) */
  { 0xc100, STORE | USESR0 | USESSP },		/* mov.w r0,@(disp,gbr) */
  { 0xc200, STORE | USESR0 | USESSP },		/* mov.l r0,@(disp,gbr) */
  { 0xc300, BRANCH | USESSP },			/* trapa #imm */
  { 0xc400, LOAD | SETSR0 | USESSP },		/* mov.b @(disp,gbr),r0 */
  { 0xc500, LOAD | SETSR0 | USESSP },		/* mov.w @(disp,gbr),r0 */
  { 0xc600, LOAD | SETSR0 | USESSP },		/* mov.l @(disp,gbr),r0 */
  { 0xc700, SETSR0 },				/* mova @(disp,pc),r0 */
  { 0xc800, SETSSP | USESR0 },			/* tst #imm,r0 */
  { 0xc900, SETSR0 | USESR0 },			/* and #imm,r0 */
  { 0xca00, SETSR0 | USESR0 },			/* xor #imm,r0 */
  { 0xcb00, SETSR0 | USESR0 },			/* or #imm,r0 */
  { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },	/* tst.b #imm,@(r0,gbr) */
  { 0xcd00, LOAD | STORE | USESR0 | USESSP },	/* and.b #imm,@(r0,gbr) */
  { 0xce00, LOAD | STORE | USESR0 | USESSP },	/* xor.b #imm,@(r0,gbr) */
  { 0xcf00, LOAD | STORE | USESR0 | USESSP }	/* or.b #imm,@(r0,gbr) */
};

static const struct sh_minor_opcode sh_opcodec[] =
{
  { MAP (sh_opcodec0), 0xff00 }
};

static const struct sh_opcode sh_opcoded0[] =
{
  { 0xd000, LOAD | SETS1 }		/* mov.l @(disp,pc),rn */
};

static const struct sh_minor_opcode sh_opcoded[] =
{
  { MAP (sh_opcoded0), 0xf000 }
};

static const struct sh_opcode sh_opcodee0[] =
{
  { 0xe000, SETS1 }		/* mov #imm,rn */
};

static const struct sh_minor_opcode sh_opcodee[] =
{
  { MAP (sh_opcodee0), 0xf000 }
};

static const struct sh_opcode sh_opcodef0[] =
{
  { 0xf000, SETSF1 | USESF1 | USESF2 },		/* fadd fm,fn */
  { 0xf001, SETSF1 | USESF1 | USESF2 },		/* fsub fm,fn */
  { 0xf002, SETSF1 | USESF1 | USESF2 },		/* fmul fm,fn */
  { 0xf003, SETSF1 | USESF1 | USESF2 },		/* fdiv fm,fn */
  { 0xf004, SETSSP | USESF1 | USESF2 },		/* fcmp/eq fm,fn */
  { 0xf005, SETSSP | USESF1 | USESF2 },		/* fcmp/gt fm,fn */
  { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },	/* fmov.s @(r0,rm),fn */
  { 0xf007, STORE | USES1 | USESF2 | USESR0 },	/* fmov.s fm,@(r0,rn) */
  { 0xf008, LOAD | SETSF1 | USES2 },		/* fmov.s @rm,fn */
  { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },	/* fmov.s @rm+,fn */
  { 0xf00a, STORE | USES1 | USESF2 },		/* fmov.s fm,@rn */
  { 0xf00b, STORE | SETS1 | USES1 | USESF2 },	/* fmov.s fm,@-rn */
  { 0xf00c, SETSF1 | USESF2 },			/* fmov fm,fn */
  { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 }	/* fmac f0,fm,fn */
};

static const struct sh_opcode sh_opcodef1[] =
{
  { 0xf00d, SETSF1 | USESSP },	/* fsts fpul,fn */
  { 0xf01d, SETSSP | USESF1 },	/* flds fn,fpul */
  { 0xf02d, SETSF1 | USESSP },	/* float fpul,fn */
  { 0xf03d, SETSSP | USESF1 },	/* ftrc fn,fpul */
  { 0xf04d, SETSF1 | USESF1 },	/* fneg fn */
  { 0xf05d, SETSF1 | USESF1 },	/* fabs fn */
  { 0xf06d, SETSF1 | USESF1 },	/* fsqrt fn */
  { 0xf07d, SETSSP | USESF1 },	/* ftst/nan fn */
  { 0xf08d, SETSF1 },		/* fldi0 fn */
  { 0xf09d, SETSF1 }		/* fldi1 fn */
};

static const struct sh_minor_opcode sh_opcodef[] =
{
  { MAP (sh_opcodef0), 0xf00f },
  { MAP (sh_opcodef1), 0xf0ff }
};

static struct sh_major_opcode sh_opcodes[] =
{
  { MAP (sh_opcode0) },
  { MAP (sh_opcode1) },
  { MAP (sh_opcode2) },
  { MAP (sh_opcode3) },
  { MAP (sh_opcode4) },
  { MAP (sh_opcode5) },
  { MAP (sh_opcode6) },
  { MAP (sh_opcode7) },
  { MAP (sh_opcode8) },
  { MAP (sh_opcode9) },
  { MAP (sh_opcodea) },
  { MAP (sh_opcodeb) },
  { MAP (sh_opcodec) },
  { MAP (sh_opcoded) },
  { MAP (sh_opcodee) },
  { MAP (sh_opcodef) }
};

/* The double data transfer / parallel processing insns are not
   described here.  This will cause sh_align_load_span to leave them alone.  */

static const struct sh_opcode sh_dsp_opcodef0[] =
{
  { 0xf400, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @-as,ds */
  { 0xf401, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@-as */
  { 0xf404, USESAS | LOAD | SETSSP },		/* movs.x @as,ds */
  { 0xf405, USESAS | STORE | USESSP },		/* movs.x ds,@as */
  { 0xf408, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @as+,ds */
  { 0xf409, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@as+ */
  { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 },	/* movs.x @as+r8,ds */
  { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 }	/* movs.x ds,@as+r8 */
};

static const struct sh_minor_opcode sh_dsp_opcodef[] =
{
  { MAP (sh_dsp_opcodef0), 0xfc0d }
};

/* Given an instruction, return a pointer to the corresponding
   sh_opcode structure.  Return NULL if the instruction is not
   recognized.  */

static const struct sh_opcode *
sh_insn_info (unsigned int insn)
{
  const struct sh_major_opcode *maj;
  const struct sh_minor_opcode *min, *minend;

  maj = &sh_opcodes[(insn & 0xf000) >> 12];
  min = maj->minor_opcodes;
  minend = min + maj->count;
  for (; min < minend; min++)
    {
      unsigned int l;
      const struct sh_opcode *op, *opend;

      l = insn & min->mask;
      op = min->opcodes;
      opend = op + min->count;

      /* Since the opcodes tables are sorted, we could use a binary
	 search here if the count were above some cutoff value.  */
      for (; op < opend; op++)
	if (op->opcode == l)
	  return op;
    }

  return NULL;
}

/* See whether an instruction uses a general purpose register.  */

static bool
sh_insn_uses_reg (unsigned int insn,
		  const struct sh_opcode *op,
		  unsigned int reg)
{
  unsigned int f;

  f = op->flags;

  if ((f & USES1) != 0
      && USES1_REG (insn) == reg)
    return true;
  if ((f & USES2) != 0
      && USES2_REG (insn) == reg)
    return true;
  if ((f & USESR0) != 0
      && reg == 0)
    return true;
  if ((f & USESAS) && reg == USESAS_REG (insn))
    return true;
  if ((f & USESR8) && reg == 8)
    return true;

  return false;
}

/* See whether an instruction sets a general purpose register.  */

static bool
sh_insn_sets_reg (unsigned int insn,
		  const struct sh_opcode *op,
		  unsigned int reg)
{
  unsigned int f;

  f = op->flags;

  if ((f & SETS1) != 0
      && SETS1_REG (insn) == reg)
    return true;
  if ((f & SETS2) != 0
      && SETS2_REG (insn) == reg)
    return true;
  if ((f & SETSR0) != 0
      && reg == 0)
    return true;
  if ((f & SETSAS) && reg == SETSAS_REG (insn))
    return true;

  return false;
}

/* See whether an instruction uses or sets a general purpose register */

static bool
sh_insn_uses_or_sets_reg (unsigned int insn,
			  const struct sh_opcode *op,
			  unsigned int reg)
{
  if (sh_insn_uses_reg (insn, op, reg))
    return true;

  return sh_insn_sets_reg (insn, op, reg);
}

/* See whether an instruction uses a floating point register.  */

static bool
sh_insn_uses_freg (unsigned int insn,
		   const struct sh_opcode *op,
		   unsigned int freg)
{
  unsigned int f;

  f = op->flags;

  /* We can't tell if this is a double-precision insn, so just play safe
     and assume that it might be.  So not only have we test FREG against
     itself, but also even FREG against FREG+1 - if the using insn uses
     just the low part of a double precision value - but also an odd
     FREG against FREG-1 -  if the setting insn sets just the low part
     of a double precision value.
     So what this all boils down to is that we have to ignore the lowest
     bit of the register number.  */

  if ((f & USESF1) != 0
      && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
    return true;
  if ((f & USESF2) != 0
      && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
    return true;
  if ((f & USESF0) != 0
      && freg == 0)
    return true;

  return false;
}

/* See whether an instruction sets a floating point register.  */

static bool
sh_insn_sets_freg (unsigned int insn,
		   const struct sh_opcode *op,
		   unsigned int freg)
{
  unsigned int f;

  f = op->flags;

  /* We can't tell if this is a double-precision insn, so just play safe
     and assume that it might be.  So not only have we test FREG against
     itself, but also even FREG against FREG+1 - if the using insn uses
     just the low part of a double precision value - but also an odd
     FREG against FREG-1 -  if the setting insn sets just the low part
     of a double precision value.
     So what this all boils down to is that we have to ignore the lowest
     bit of the register number.  */

  if ((f & SETSF1) != 0
      && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
    return true;

  return false;
}

/* See whether an instruction uses or sets a floating point register */

static bool
sh_insn_uses_or_sets_freg (unsigned int insn,
			   const struct sh_opcode *op,
			   unsigned int reg)
{
  if (sh_insn_uses_freg (insn, op, reg))
    return true;

  return sh_insn_sets_freg (insn, op, reg);
}

/* See whether instructions I1 and I2 conflict, assuming I1 comes
   before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
   This should return TRUE if there is a conflict, or FALSE if the
   instructions can be swapped safely.  */

static bool
sh_insns_conflict (unsigned int i1,
		   const struct sh_opcode *op1,
		   unsigned int i2,
		   const struct sh_opcode *op2)
{
  unsigned int f1, f2;

  f1 = op1->flags;
  f2 = op2->flags;

  /* Load of fpscr conflicts with floating point operations.
     FIXME: shouldn't test raw opcodes here.  */
  if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
      || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
    return true;

  if ((f1 & (BRANCH | DELAY)) != 0
      || (f2 & (BRANCH | DELAY)) != 0)
    return true;

  if (((f1 | f2) & SETSSP)
      && (f1 & (SETSSP | USESSP))
      && (f2 & (SETSSP | USESSP)))
    return true;

  if ((f1 & SETS1) != 0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
    return true;
  if ((f1 & SETS2) != 0
      && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
    return true;
  if ((f1 & SETSR0) != 0
      && sh_insn_uses_or_sets_reg (i2, op2, 0))
    return true;
  if ((f1 & SETSAS)
      && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
    return true;
  if ((f1 & SETSF1) != 0
      && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
    return true;

  if ((f2 & SETS1) != 0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
    return true;
  if ((f2 & SETS2) != 0
      && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
    return true;
  if ((f2 & SETSR0) != 0
      && sh_insn_uses_or_sets_reg (i1, op1, 0))
    return true;
  if ((f2 & SETSAS)
      && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
    return true;
  if ((f2 & SETSF1) != 0
      && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
    return true;

  /* The instructions do not conflict.  */
  return false;
}

/* I1 is a load instruction, and I2 is some other instruction.  Return
   TRUE if I1 loads a register which I2 uses.  */

static bool
sh_load_use (unsigned int i1,
	     const struct sh_opcode *op1,
	     unsigned int i2,
	     const struct sh_opcode *op2)
{
  unsigned int f1;

  f1 = op1->flags;

  if ((f1 & LOAD) == 0)
    return false;

  /* If both SETS1 and SETSSP are set, that means a load to a special
     register using postincrement addressing mode, which we don't care
     about here.  */
  if ((f1 & SETS1) != 0
      && (f1 & SETSSP) == 0
      && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
    return true;

  if ((f1 & SETSR0) != 0
      && sh_insn_uses_reg (i2, op2, 0))
    return true;

  if ((f1 & SETSF1) != 0
      && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
    return true;

  return false;
}

/* Try to align loads and stores within a span of memory.  This is
   called by both the ELF and the COFF sh targets.  ABFD and SEC are
   the BFD and section we are examining.  CONTENTS is the contents of
   the section.  SWAP is the routine to call to swap two instructions.
   RELOCS is a pointer to the internal relocation information, to be
   passed to SWAP.  PLABEL is a pointer to the current label in a
   sorted list of labels; LABEL_END is the end of the list.  START and
   STOP are the range of memory to examine.  If a swap is made,
   *PSWAPPED is set to TRUE.  */

#ifdef COFF_WITH_PE
static
#endif
bool
_bfd_sh_align_load_span (bfd *abfd,
			 asection *sec,
			 bfd_byte *contents,
			 bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
			 void * relocs,
			 bfd_vma **plabel,
			 bfd_vma *label_end,
			 bfd_vma start,
			 bfd_vma stop,
			 bool *pswapped)
{
  int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
	     || abfd->arch_info->mach == bfd_mach_sh3_dsp);
  bfd_vma i;

  /* The SH4 has a Harvard architecture, hence aligning loads is not
     desirable.  In fact, it is counter-productive, since it interferes
     with the schedules generated by the compiler.  */
  if (abfd->arch_info->mach == bfd_mach_sh4)
    return true;

  /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
     instructions.  */
  if (dsp)
    {
      sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
      sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0];
    }

  /* Instructions should be aligned on 2 byte boundaries.  */
  if ((start & 1) == 1)
    ++start;

  /* Now look through the unaligned addresses.  */
  i = start;
  if ((i & 2) == 0)
    i += 2;
  for (; i < stop; i += 4)
    {
      unsigned int insn;
      const struct sh_opcode *op;
      unsigned int prev_insn = 0;
      const struct sh_opcode *prev_op = NULL;

      insn = bfd_get_16 (abfd, contents + i);
      op = sh_insn_info (insn);
      if (op == NULL
	  || (op->flags & (LOAD | STORE)) == 0)
	continue;

      /* This is a load or store which is not on a four byte boundary.  */

      while (*plabel < label_end && **plabel < i)
	++*plabel;

      if (i > start)
	{
	  prev_insn = bfd_get_16 (abfd, contents + i - 2);
	  /* If INSN is the field b of a parallel processing insn, it is not
	     a load / store after all.  Note that the test here might mistake
	     the field_b of a pcopy insn for the starting code of a parallel
	     processing insn; this might miss a swapping opportunity, but at
	     least we're on the safe side.  */
	  if (dsp && (prev_insn & 0xfc00) == 0xf800)
	    continue;

	  /* Check if prev_insn is actually the field b of a parallel
	     processing insn.  Again, this can give a spurious match
	     after a pcopy.  */
	  if (dsp && i - 2 > start)
	    {
	      unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);

	      if ((pprev_insn & 0xfc00) == 0xf800)
		prev_op = NULL;
	      else
		prev_op = sh_insn_info (prev_insn);
	    }
	  else
	    prev_op = sh_insn_info (prev_insn);

	  /* If the load/store instruction is in a delay slot, we
	     can't swap.  */
	  if (prev_op == NULL
	      || (prev_op->flags & DELAY) != 0)
	    continue;
	}
      if (i > start
	  && (*plabel >= label_end || **plabel != i)
	  && prev_op != NULL
	  && (prev_op->flags & (LOAD | STORE)) == 0
	  && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
	{
	  bool ok;

	  /* The load/store instruction does not have a label, and
	     there is a previous instruction; PREV_INSN is not
	     itself a load/store instruction, and PREV_INSN and
	     INSN do not conflict.  */

	  ok = true;

	  if (i >= start + 4)
	    {
	      unsigned int prev2_insn;
	      const struct sh_opcode *prev2_op;

	      prev2_insn = bfd_get_16 (abfd, contents + i - 4);
	      prev2_op = sh_insn_info (prev2_insn);

	      /* If the instruction before PREV_INSN has a delay
		 slot--that is, PREV_INSN is in a delay slot--we
		 can not swap.  */
	      if (prev2_op == NULL
		  || (prev2_op->flags & DELAY) != 0)
		ok = false;

	      /* If the instruction before PREV_INSN is a load,
		 and it sets a register which INSN uses, then
		 putting INSN immediately after PREV_INSN will
		 cause a pipeline bubble, so there is no point to
		 making the swap.  */
	      if (ok
		  && (prev2_op->flags & LOAD) != 0
		  && sh_load_use (prev2_insn, prev2_op, insn, op))
		ok = false;
	    }

	  if (ok)
	    {
	      if (! (*swap) (abfd, sec, relocs, contents, i - 2))
		return false;
	      *pswapped = true;
	      continue;
	    }
	}

      while (*plabel < label_end && **plabel < i + 2)
	++*plabel;

      if (i + 2 < stop
	  && (*plabel >= label_end || **plabel != i + 2))
	{
	  unsigned int next_insn;
	  const struct sh_opcode *next_op;

	  /* There is an instruction after the load/store
	     instruction, and it does not have a label.  */
	  next_insn = bfd_get_16 (abfd, contents + i + 2);
	  next_op = sh_insn_info (next_insn);
	  if (next_op != NULL
	      && (next_op->flags & (LOAD | STORE)) == 0
	      && ! sh_insns_conflict (insn, op, next_insn, next_op))
	    {
	      bool ok;

	      /* NEXT_INSN is not itself a load/store instruction,
		 and it does not conflict with INSN.  */

	      ok = true;

	      /* If PREV_INSN is a load, and it sets a register
		 which NEXT_INSN uses, then putting NEXT_INSN
		 immediately after PREV_INSN will cause a pipeline
		 bubble, so there is no reason to make this swap.  */
	      if (prev_op != NULL
		  && (prev_op->flags & LOAD) != 0
		  && sh_load_use (prev_insn, prev_op, next_insn, next_op))
		ok = false;

	      /* If INSN is a load, and it sets a register which
		 the insn after NEXT_INSN uses, then doing the
		 swap will cause a pipeline bubble, so there is no
		 reason to make the swap.  However, if the insn
		 after NEXT_INSN is itself a load or store
		 instruction, then it is misaligned, so
		 optimistically hope that it will be swapped
		 itself, and just live with the pipeline bubble if
		 it isn't.  */
	      if (ok
		  && i + 4 < stop
		  && (op->flags & LOAD) != 0)
		{
		  unsigned int next2_insn;
		  const struct sh_opcode *next2_op;

		  next2_insn = bfd_get_16 (abfd, contents + i + 4);
		  next2_op = sh_insn_info (next2_insn);
		  if (next2_op == NULL
		      || ((next2_op->flags & (LOAD | STORE)) == 0
			  && sh_load_use (insn, op, next2_insn, next2_op)))
		    ok = false;
		}

	      if (ok)
		{
		  if (! (*swap) (abfd, sec, relocs, contents, i))
		    return false;
		  *pswapped = true;
		  continue;
		}
	    }
	}
    }

  return true;
}
#endif /* not COFF_IMAGE_WITH_PE */

/* Swap two SH instructions.  */

static bool
sh_swap_insns (bfd *      abfd,
	       asection * sec,
	       void *     relocs,
	       bfd_byte * contents,
	       bfd_vma    addr)
{
  struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
  unsigned short i1, i2;
  struct internal_reloc *irel, *irelend;

  /* Swap the instructions themselves.  */
  i1 = bfd_get_16 (abfd, contents + addr);
  i2 = bfd_get_16 (abfd, contents + addr + 2);
  bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
  bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);

  /* Adjust all reloc addresses.  */
  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      int type, add;

      /* There are a few special types of relocs that we don't want to
	 adjust.  These relocs do not apply to the instruction itself,
	 but are only associated with the address.  */
      type = irel->r_type;
      if (type == R_SH_ALIGN
	  || type == R_SH_CODE
	  || type == R_SH_DATA
	  || type == R_SH_LABEL)
	continue;

      /* If an R_SH_USES reloc points to one of the addresses being
	 swapped, we must adjust it.  It would be incorrect to do this
	 for a jump, though, since we want to execute both
	 instructions after the jump.  (We have avoided swapping
	 around a label, so the jump will not wind up executing an
	 instruction it shouldn't).  */
      if (type == R_SH_USES)
	{
	  bfd_vma off;

	  off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
	  if (off == addr)
	    irel->r_offset += 2;
	  else if (off == addr + 2)
	    irel->r_offset -= 2;
	}

      if (irel->r_vaddr - sec->vma == addr)
	{
	  irel->r_vaddr += 2;
	  add = -2;
	}
      else if (irel->r_vaddr - sec->vma == addr + 2)
	{
	  irel->r_vaddr -= 2;
	  add = 2;
	}
      else
	add = 0;

      if (add != 0)
	{
	  bfd_byte *loc;
	  unsigned short insn, oinsn;
	  bool overflow;

	  loc = contents + irel->r_vaddr - sec->vma;
	  overflow = false;
	  switch (type)
	    {
	    default:
	      break;

	    case R_SH_PCDISP8BY2:
	    case R_SH_PCRELIMM8BY2:
	      insn = bfd_get_16 (abfd, loc);
	      oinsn = insn;
	      insn += add / 2;
	      if ((oinsn & 0xff00) != (insn & 0xff00))
		overflow = true;
	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
	      break;

	    case R_SH_PCDISP:
	      insn = bfd_get_16 (abfd, loc);
	      oinsn = insn;
	      insn += add / 2;
	      if ((oinsn & 0xf000) != (insn & 0xf000))
		overflow = true;
	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
	      break;

	    case R_SH_PCRELIMM8BY4:
	      /* This reloc ignores the least significant 3 bits of
		 the program counter before adding in the offset.
		 This means that if ADDR is at an even address, the
		 swap will not affect the offset.  If ADDR is an at an
		 odd address, then the instruction will be crossing a
		 four byte boundary, and must be adjusted.  */
	      if ((addr & 3) != 0)
		{
		  insn = bfd_get_16 (abfd, loc);
		  oinsn = insn;
		  insn += add / 2;
		  if ((oinsn & 0xff00) != (insn & 0xff00))
		    overflow = true;
		  bfd_put_16 (abfd, (bfd_vma) insn, loc);
		}

	      break;
	    }

	  if (overflow)
	    {
	      _bfd_error_handler
		/* xgettext: c-format */
		(_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"),
		 abfd, (uint64_t) irel->r_vaddr);
	      bfd_set_error (bfd_error_bad_value);
	      return false;
	    }
	}
    }

  return true;
}

/* Look for loads and stores which we can align to four byte
   boundaries.  See the longer comment above sh_relax_section for why
   this is desirable.  This sets *PSWAPPED if some instruction was
   swapped.  */

static bool
sh_align_loads (bfd *abfd,
		asection *sec,
		struct internal_reloc *internal_relocs,
		bfd_byte *contents,
		bool *pswapped)
{
  struct internal_reloc *irel, *irelend;
  bfd_vma *labels = NULL;
  bfd_vma *label, *label_end;
  bfd_size_type amt;

  *pswapped = false;

  irelend = internal_relocs + sec->reloc_count;

  /* Get all the addresses with labels on them.  */
  amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
  labels = (bfd_vma *) bfd_malloc (amt);
  if (labels == NULL)
    goto error_return;
  label_end = labels;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      if (irel->r_type == R_SH_LABEL)
	{
	  *label_end = irel->r_vaddr - sec->vma;
	  ++label_end;
	}
    }

  /* Note that the assembler currently always outputs relocs in
     address order.  If that ever changes, this code will need to sort
     the label values and the relocs.  */

  label = labels;

  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma start, stop;

      if (irel->r_type != R_SH_CODE)
	continue;

      start = irel->r_vaddr - sec->vma;

      for (irel++; irel < irelend; irel++)
	if (irel->r_type == R_SH_DATA)
	  break;
      if (irel < irelend)
	stop = irel->r_vaddr - sec->vma;
      else
	stop = sec->size;

      if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
				     internal_relocs, &label,
				     label_end, start, stop, pswapped))
	goto error_return;
    }

  free (labels);

  return true;

 error_return:
  free (labels);
  return false;
}

/* This is a modification of _bfd_coff_generic_relocate_section, which
   will handle SH relaxing.  */

static bool
sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
		     struct bfd_link_info *info,
		     bfd *input_bfd,
		     asection *input_section,
		     bfd_byte *contents,
		     struct internal_reloc *relocs,
		     struct internal_syment *syms,
		     asection **sections)
{
  struct internal_reloc *rel;
  struct internal_reloc *relend;

  rel = relocs;
  relend = rel + input_section->reloc_count;
  for (; rel < relend; rel++)
    {
      long symndx;
      struct coff_link_hash_entry *h;
      struct internal_syment *sym;
      bfd_vma addend;
      bfd_vma val;
      reloc_howto_type *howto;
      bfd_reloc_status_type rstat;

      /* Almost all relocs have to do with relaxing.  If any work must
	 be done for them, it has been done in sh_relax_section.  */
      if (rel->r_type != R_SH_IMM32
#ifdef COFF_WITH_PE
	  && rel->r_type != R_SH_IMM32CE
	  && rel->r_type != R_SH_IMAGEBASE
#endif
	  && rel->r_type != R_SH_PCDISP)
	continue;

      symndx = rel->r_symndx;

      if (symndx == -1)
	{
	  h = NULL;
	  sym = NULL;
	}
      else
	{
	  if (symndx < 0
	      || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
	    {
	      _bfd_error_handler
		/* xgettext: c-format */
		(_("%pB: illegal symbol index %ld in relocs"),
		 input_bfd, symndx);
	      bfd_set_error (bfd_error_bad_value);
	      return false;
	    }
	  h = obj_coff_sym_hashes (input_bfd)[symndx];
	  sym = syms + symndx;
	}

      if (sym != NULL && sym->n_scnum != 0)
	addend = - sym->n_value;
      else
	addend = 0;

      if (rel->r_type == R_SH_PCDISP)
	addend -= 4;

      if (rel->r_type >= SH_COFF_HOWTO_COUNT)
	howto = NULL;
      else
	howto = &sh_coff_howtos[rel->r_type];

      if (howto == NULL)
	{
	  bfd_set_error (bfd_error_bad_value);
	  return false;
	}

#ifdef COFF_WITH_PE
      if (rel->r_type == R_SH_IMAGEBASE)
	addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
#endif

      val = 0;

      if (h == NULL)
	{
	  asection *sec;

	  /* There is nothing to do for an internal PCDISP reloc.  */
	  if (rel->r_type == R_SH_PCDISP)
	    continue;

	  if (symndx == -1)
	    {
	      sec = bfd_abs_section_ptr;
	      val = 0;
	    }
	  else
	    {
	      sec = sections[symndx];
	      val = (sec->output_section->vma
		     + sec->output_offset
		     + sym->n_value
		     - sec->vma);
	    }
	}
      else
	{
	  if (h->root.type == bfd_link_hash_defined
	      || h->root.type == bfd_link_hash_defweak)
	    {
	      asection *sec;

	      sec = h->root.u.def.section;
	      val = (h->root.u.def.value
		     + sec->output_section->vma
		     + sec->output_offset);
	    }
	  else if (! bfd_link_relocatable (info))
	    (*info->callbacks->undefined_symbol)
	      (info, h->root.root.string, input_bfd, input_section,
	       rel->r_vaddr - input_section->vma, true);
	}

      rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
					contents,
					rel->r_vaddr - input_section->vma,
					val, addend);

      switch (rstat)
	{
	default:
	  abort ();
	case bfd_reloc_ok:
	  break;
	case bfd_reloc_overflow:
	  {
	    const char *name;
	    char buf[SYMNMLEN + 1];

	    if (symndx == -1)
	      name = "*ABS*";
	    else if (h != NULL)
	      name = NULL;
	    else if (sym->_n._n_n._n_zeroes == 0
		     && sym->_n._n_n._n_offset != 0)
	      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
	    else
	      {
		strncpy (buf, sym->_n._n_name, SYMNMLEN);
		buf[SYMNMLEN] = '\0';
		name = buf;
	      }

	    (*info->callbacks->reloc_overflow)
	      (info, (h ? &h->root : NULL), name, howto->name,
	       (bfd_vma) 0, input_bfd, input_section,
	       rel->r_vaddr - input_section->vma);
	  }
	}
    }

  return true;
}

/* This is a version of bfd_generic_get_relocated_section_contents
   which uses sh_relocate_section.  */

static bfd_byte *
sh_coff_get_relocated_section_contents (bfd *output_bfd,
					struct bfd_link_info *link_info,
					struct bfd_link_order *link_order,
					bfd_byte *data,
					bool relocatable,
					asymbol **symbols)
{
  asection *input_section = link_order->u.indirect.section;
  bfd *input_bfd = input_section->owner;
  asection **sections = NULL;
  struct internal_reloc *internal_relocs = NULL;
  struct internal_syment *internal_syms = NULL;

  /* We only need to handle the case of relaxing, or of having a
     particular set of section contents, specially.  */
  if (relocatable
      || coff_section_data (input_bfd, input_section) == NULL
      || coff_section_data (input_bfd, input_section)->contents == NULL)
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
						       link_order, data,
						       relocatable,
						       symbols);

  memcpy (data, coff_section_data (input_bfd, input_section)->contents,
	  (size_t) input_section->size);

  if ((input_section->flags & SEC_RELOC) != 0
      && input_section->reloc_count > 0)
    {
      bfd_size_type symesz = bfd_coff_symesz (input_bfd);
      bfd_byte *esym, *esymend;
      struct internal_syment *isymp;
      asection **secpp;
      bfd_size_type amt;

      if (! _bfd_coff_get_external_symbols (input_bfd))
	goto error_return;

      internal_relocs = (_bfd_coff_read_internal_relocs
			 (input_bfd, input_section, false, (bfd_byte *) NULL,
			  false, (struct internal_reloc *) NULL));
      if (internal_relocs == NULL)
	goto error_return;

      amt = obj_raw_syment_count (input_bfd);
      amt *= sizeof (struct internal_syment);
      internal_syms = (struct internal_syment *) bfd_malloc (amt);
      if (internal_syms == NULL)
	goto error_return;

      amt = obj_raw_syment_count (input_bfd);
      amt *= sizeof (asection *);
      sections = (asection **) bfd_malloc (amt);
      if (sections == NULL)
	goto error_return;

      isymp = internal_syms;
      secpp = sections;
      esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
      esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
      while (esym < esymend)
	{
	  bfd_coff_swap_sym_in (input_bfd, esym, isymp);

	  if (isymp->n_scnum != 0)
	    *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
	  else
	    {
	      if (isymp->n_value == 0)
		*secpp = bfd_und_section_ptr;
	      else
		*secpp = bfd_com_section_ptr;
	    }

	  esym += (isymp->n_numaux + 1) * symesz;
	  secpp += isymp->n_numaux + 1;
	  isymp += isymp->n_numaux + 1;
	}

      if (! sh_relocate_section (output_bfd, link_info, input_bfd,
				 input_section, data, internal_relocs,
				 internal_syms, sections))
	goto error_return;

      free (sections);
      sections = NULL;
      free (internal_syms);
      internal_syms = NULL;
      free (internal_relocs);
      internal_relocs = NULL;
    }

  return data;

 error_return:
  free (internal_relocs);
  free (internal_syms);
  free (sections);
  return NULL;
}

/* The target vectors.  */

#ifndef TARGET_SHL_SYM
CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
#endif

#ifdef TARGET_SHL_SYM
#define TARGET_SYM TARGET_SHL_SYM
#else
#define TARGET_SYM sh_coff_le_vec
#endif

#ifndef TARGET_SHL_NAME
#define TARGET_SHL_NAME "coff-shl"
#endif

#ifdef COFF_WITH_PE
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
			       SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
#else
CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
			       0, '_', NULL, COFF_SWAP_TABLE)
#endif

#ifndef TARGET_SHL_SYM

/* Some people want versions of the SH COFF target which do not align
   to 16 byte boundaries.  We implement that by adding a couple of new
   target vectors.  These are just like the ones above, but they
   change the default section alignment.  To generate them in the
   assembler, use -small.  To use them in the linker, use -b
   coff-sh{l}-small and -oformat coff-sh{l}-small.

   Yes, this is a horrible hack.  A general solution for setting
   section alignment in COFF is rather complex.  ELF handles this
   correctly.  */

/* Only recognize the small versions if the target was not defaulted.
   Otherwise we won't recognize the non default endianness.  */

static bfd_cleanup
coff_small_object_p (bfd *abfd)
{
  if (abfd->target_defaulted)
    {
      bfd_set_error (bfd_error_wrong_format);
      return NULL;
    }
  return coff_object_p (abfd);
}

/* Set the section alignment for the small versions.  */

static bool
coff_small_new_section_hook (bfd *abfd, asection *section)
{
  if (! coff_new_section_hook (abfd, section))
    return false;

  /* We must align to at least a four byte boundary, because longword
     accesses must be on a four byte boundary.  */
  if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
    section->alignment_power = 2;

  return true;
}

/* This is copied from bfd_coff_std_swap_table so that we can change
   the default section alignment power.  */

static bfd_coff_backend_data bfd_coff_small_swap_table =
{
  coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
  coff_swap_aux_out, coff_swap_sym_out,
  coff_swap_lineno_out, coff_swap_reloc_out,
  coff_swap_filehdr_out, coff_swap_aouthdr_out,
  coff_swap_scnhdr_out,
  FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
#ifdef COFF_LONG_FILENAMES
  true,
#else
  false,
#endif
  COFF_DEFAULT_LONG_SECTION_NAMES,
  2,
#ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
  true,
#else
  false,
#endif
#ifdef COFF_DEBUG_STRING_WIDE_PREFIX
  4,
#else
  2,
#endif
  32768,
  coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
  coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
  coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
  coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
  coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
  coff_classify_symbol, coff_compute_section_file_positions,
  coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
  coff_adjust_symndx, coff_link_add_one_symbol,
  coff_link_output_has_begun, coff_final_link_postscript,
  bfd_pe_print_pdata
};

#define coff_small_close_and_cleanup \
  coff_close_and_cleanup
#define coff_small_bfd_free_cached_info \
  coff_bfd_free_cached_info
#define coff_small_get_section_contents \
  coff_get_section_contents
#define coff_small_get_section_contents_in_window \
  coff_get_section_contents_in_window

extern const bfd_target sh_coff_small_le_vec;

const bfd_target sh_coff_small_vec =
{
  "coff-sh-small",		/* name */
  bfd_target_coff_flavour,
  BFD_ENDIAN_BIG,		/* data byte order is big */
  BFD_ENDIAN_BIG,		/* header byte order is big */

  (HAS_RELOC | EXEC_P		/* object flags */
   | HAS_LINENO | HAS_DEBUG
   | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),

  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
  '_',				/* leading symbol underscore */
  '/',				/* ar_pad_char */
  15,				/* ar_max_namelen */
  0,				/* match priority.  */
  TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */

  {				/* bfd_check_format */
    _bfd_dummy_target,
    coff_small_object_p,
    bfd_generic_archive_p,
    _bfd_dummy_target
  },
  {				/* bfd_set_format */
    _bfd_bool_bfd_false_error,
    coff_mkobject,
    _bfd_generic_mkarchive,
    _bfd_bool_bfd_false_error
  },
  {				/* bfd_write_contents */
    _bfd_bool_bfd_false_error,
    coff_write_object_contents,
    _bfd_write_archive_contents,
    _bfd_bool_bfd_false_error
  },

  BFD_JUMP_TABLE_GENERIC (coff_small),
  BFD_JUMP_TABLE_COPY (coff),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
  BFD_JUMP_TABLE_SYMBOLS (coff),
  BFD_JUMP_TABLE_RELOCS (coff),
  BFD_JUMP_TABLE_WRITE (coff),
  BFD_JUMP_TABLE_LINK (coff),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),

  &sh_coff_small_le_vec,

  &bfd_coff_small_swap_table
};

const bfd_target sh_coff_small_le_vec =
{
  "coff-shl-small",		/* name */
  bfd_target_coff_flavour,
  BFD_ENDIAN_LITTLE,		/* data byte order is little */
  BFD_ENDIAN_LITTLE,		/* header byte order is little endian too*/

  (HAS_RELOC | EXEC_P		/* object flags */
   | HAS_LINENO | HAS_DEBUG
   | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),

  (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
  '_',				/* leading symbol underscore */
  '/',				/* ar_pad_char */
  15,				/* ar_max_namelen */
  0,				/* match priority.  */
  TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
  bfd_getl64, bfd_getl_signed_64, bfd_putl64,
  bfd_getl32, bfd_getl_signed_32, bfd_putl32,
  bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */

  {				/* bfd_check_format */
    _bfd_dummy_target,
    coff_small_object_p,
    bfd_generic_archive_p,
    _bfd_dummy_target
  },
  {				/* bfd_set_format */
    _bfd_bool_bfd_false_error,
    coff_mkobject,
    _bfd_generic_mkarchive,
    _bfd_bool_bfd_false_error
  },
  {				/* bfd_write_contents */
    _bfd_bool_bfd_false_error,
    coff_write_object_contents,
    _bfd_write_archive_contents,
    _bfd_bool_bfd_false_error
  },

  BFD_JUMP_TABLE_GENERIC (coff_small),
  BFD_JUMP_TABLE_COPY (coff),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
  BFD_JUMP_TABLE_SYMBOLS (coff),
  BFD_JUMP_TABLE_RELOCS (coff),
  BFD_JUMP_TABLE_WRITE (coff),
  BFD_JUMP_TABLE_LINK (coff),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),

  &sh_coff_small_vec,

  &bfd_coff_small_swap_table
};
#endif