Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
/* Builtins' description for AArch64 SIMD architecture.
   Copyright (C) 2011-2020 Free Software Foundation, Inc.
   Contributed by ARM Ltd.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "function.h"
#include "basic-block.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "memmodel.h"
#include "tm_p.h"
#include "expmed.h"
#include "optabs.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "explow.h"
#include "expr.h"
#include "langhooks.h"
#include "gimple-iterator.h"
#include "case-cfn-macros.h"
#include "emit-rtl.h"
#include "stringpool.h"
#include "attribs.h"

#define v8qi_UP  E_V8QImode
#define v4hi_UP  E_V4HImode
#define v4hf_UP  E_V4HFmode
#define v2si_UP  E_V2SImode
#define v2sf_UP  E_V2SFmode
#define v1df_UP  E_V1DFmode
#define di_UP    E_DImode
#define df_UP    E_DFmode
#define v16qi_UP E_V16QImode
#define v8hi_UP  E_V8HImode
#define v8hf_UP  E_V8HFmode
#define v4si_UP  E_V4SImode
#define v4sf_UP  E_V4SFmode
#define v2di_UP  E_V2DImode
#define v2df_UP  E_V2DFmode
#define ti_UP	 E_TImode
#define oi_UP	 E_OImode
#define ci_UP	 E_CImode
#define xi_UP	 E_XImode
#define si_UP    E_SImode
#define sf_UP    E_SFmode
#define hi_UP    E_HImode
#define hf_UP    E_HFmode
#define qi_UP    E_QImode
#define bf_UP    E_BFmode
#define v4bf_UP  E_V4BFmode
#define v8bf_UP  E_V8BFmode
#define UP(X) X##_UP

#define SIMD_MAX_BUILTIN_ARGS 5

enum aarch64_type_qualifiers
{
  /* T foo.  */
  qualifier_none = 0x0,
  /* unsigned T foo.  */
  qualifier_unsigned = 0x1, /* 1 << 0  */
  /* const T foo.  */
  qualifier_const = 0x2, /* 1 << 1  */
  /* T *foo.  */
  qualifier_pointer = 0x4, /* 1 << 2  */
  /* Used when expanding arguments if an operand could
     be an immediate.  */
  qualifier_immediate = 0x8, /* 1 << 3  */
  qualifier_maybe_immediate = 0x10, /* 1 << 4  */
  /* void foo (...).  */
  qualifier_void = 0x20, /* 1 << 5  */
  /* Some patterns may have internal operands, this qualifier is an
     instruction to the initialisation code to skip this operand.  */
  qualifier_internal = 0x40, /* 1 << 6  */
  /* Some builtins should use the T_*mode* encoded in a simd_builtin_datum
     rather than using the type of the operand.  */
  qualifier_map_mode = 0x80, /* 1 << 7  */
  /* qualifier_pointer | qualifier_map_mode  */
  qualifier_pointer_map_mode = 0x84,
  /* qualifier_const | qualifier_pointer | qualifier_map_mode  */
  qualifier_const_pointer_map_mode = 0x86,
  /* Polynomial types.  */
  qualifier_poly = 0x100,
  /* Lane indices - must be in range, and flipped for bigendian.  */
  qualifier_lane_index = 0x200,
  /* Lane indices for single lane structure loads and stores.  */
  qualifier_struct_load_store_lane_index = 0x400,
  /* Lane indices selected in pairs. - must be in range, and flipped for
     bigendian.  */
  qualifier_lane_pair_index = 0x800,
  /* Lane indices selected in quadtuplets. - must be in range, and flipped for
     bigendian.  */
  qualifier_lane_quadtup_index = 0x1000,
};

typedef struct
{
  const char *name;
  machine_mode mode;
  const enum insn_code code;
  unsigned int fcode;
  enum aarch64_type_qualifiers *qualifiers;
} aarch64_simd_builtin_datum;

static enum aarch64_type_qualifiers
aarch64_types_unop_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none };
#define TYPES_UNOP (aarch64_types_unop_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_unopu_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned };
#define TYPES_UNOPU (aarch64_types_unopu_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_unopus_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_none };
#define TYPES_UNOPUS (aarch64_types_unopus_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_binop_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_maybe_immediate };
#define TYPES_BINOP (aarch64_types_binop_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_binopu_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned, qualifier_unsigned };
#define TYPES_BINOPU (aarch64_types_binopu_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_binop_uus_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned, qualifier_none };
#define TYPES_BINOP_UUS (aarch64_types_binop_uus_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_binop_ssu_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_unsigned };
#define TYPES_BINOP_SSU (aarch64_types_binop_ssu_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_binop_uss_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_none, qualifier_none };
#define TYPES_BINOP_USS (aarch64_types_binop_uss_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_binopp_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_poly, qualifier_poly, qualifier_poly };
#define TYPES_BINOPP (aarch64_types_binopp_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_ternop_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_none, qualifier_none };
#define TYPES_TERNOP (aarch64_types_ternop_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_ternop_lane_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_none, qualifier_lane_index };
#define TYPES_TERNOP_LANE (aarch64_types_ternop_lane_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_ternopu_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned,
      qualifier_unsigned, qualifier_unsigned };
#define TYPES_TERNOPU (aarch64_types_ternopu_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_ternopu_lane_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned,
      qualifier_unsigned, qualifier_lane_index };
#define TYPES_TERNOPU_LANE (aarch64_types_ternopu_lane_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_ternopu_imm_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned,
      qualifier_unsigned, qualifier_immediate };
#define TYPES_TERNOPUI (aarch64_types_ternopu_imm_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_ternop_ssus_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_unsigned, qualifier_none };
#define TYPES_TERNOP_SSUS (aarch64_types_ternop_ssus_qualifiers)


static enum aarch64_type_qualifiers
aarch64_types_quadop_lane_pair_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_none,
      qualifier_none, qualifier_lane_pair_index };
#define TYPES_QUADOP_LANE_PAIR (aarch64_types_quadop_lane_pair_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_quadop_lane_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_none,
      qualifier_none, qualifier_lane_index };
#define TYPES_QUADOP_LANE (aarch64_types_quadop_lane_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_quadopu_lane_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned, qualifier_unsigned,
      qualifier_unsigned, qualifier_lane_index };
#define TYPES_QUADOPU_LANE (aarch64_types_quadopu_lane_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_quadopssus_lane_quadtup_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_unsigned,
      qualifier_none, qualifier_lane_quadtup_index };
#define TYPES_QUADOPSSUS_LANE_QUADTUP \
	(aarch64_types_quadopssus_lane_quadtup_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_quadopsssu_lane_quadtup_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_none,
      qualifier_unsigned, qualifier_lane_quadtup_index };
#define TYPES_QUADOPSSSU_LANE_QUADTUP \
	(aarch64_types_quadopsssu_lane_quadtup_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_quadopu_imm_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned, qualifier_unsigned,
      qualifier_unsigned, qualifier_immediate };
#define TYPES_QUADOPUI (aarch64_types_quadopu_imm_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_binop_imm_p_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_poly, qualifier_none, qualifier_immediate };
#define TYPES_GETREGP (aarch64_types_binop_imm_p_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_binop_imm_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_immediate };
#define TYPES_GETREG (aarch64_types_binop_imm_qualifiers)
#define TYPES_SHIFTIMM (aarch64_types_binop_imm_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_shift_to_unsigned_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_none, qualifier_immediate };
#define TYPES_SHIFTIMM_USS (aarch64_types_shift_to_unsigned_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_fcvt_from_unsigned_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_unsigned, qualifier_immediate };
#define TYPES_FCVTIMM_SUS (aarch64_types_fcvt_from_unsigned_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_unsigned_shift_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned, qualifier_immediate };
#define TYPES_USHIFTIMM (aarch64_types_unsigned_shift_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_ternop_s_imm_p_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_poly, qualifier_immediate};
#define TYPES_SETREGP (aarch64_types_ternop_s_imm_p_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_ternop_s_imm_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_none, qualifier_immediate};
#define TYPES_SETREG (aarch64_types_ternop_s_imm_qualifiers)
#define TYPES_SHIFTINSERT (aarch64_types_ternop_s_imm_qualifiers)
#define TYPES_SHIFTACC (aarch64_types_ternop_s_imm_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_ternop_p_imm_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_poly, qualifier_poly, qualifier_poly, qualifier_immediate};
#define TYPES_SHIFTINSERTP (aarch64_types_ternop_p_imm_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_unsigned_shiftacc_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned, qualifier_unsigned,
      qualifier_immediate };
#define TYPES_USHIFTACC (aarch64_types_unsigned_shiftacc_qualifiers)


static enum aarch64_type_qualifiers
aarch64_types_combine_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_none, qualifier_none };
#define TYPES_COMBINE (aarch64_types_combine_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_combine_p_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_poly, qualifier_poly, qualifier_poly };
#define TYPES_COMBINEP (aarch64_types_combine_p_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_load1_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_const_pointer_map_mode };
#define TYPES_LOAD1 (aarch64_types_load1_qualifiers)
#define TYPES_LOADSTRUCT (aarch64_types_load1_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_loadstruct_lane_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_const_pointer_map_mode,
      qualifier_none, qualifier_struct_load_store_lane_index };
#define TYPES_LOADSTRUCT_LANE (aarch64_types_loadstruct_lane_qualifiers)

static enum aarch64_type_qualifiers
aarch64_types_bsl_p_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_poly, qualifier_unsigned,
      qualifier_poly, qualifier_poly };
#define TYPES_BSL_P (aarch64_types_bsl_p_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_bsl_s_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_none, qualifier_unsigned,
      qualifier_none, qualifier_none };
#define TYPES_BSL_S (aarch64_types_bsl_s_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_bsl_u_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_unsigned, qualifier_unsigned,
      qualifier_unsigned, qualifier_unsigned };
#define TYPES_BSL_U (aarch64_types_bsl_u_qualifiers)

/* The first argument (return type) of a store should be void type,
   which we represent with qualifier_void.  Their first operand will be
   a DImode pointer to the location to store to, so we must use
   qualifier_map_mode | qualifier_pointer to build a pointer to the
   element type of the vector.  */
static enum aarch64_type_qualifiers
aarch64_types_store1_p_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_void, qualifier_pointer_map_mode, qualifier_poly };
#define TYPES_STORE1P (aarch64_types_store1_p_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_store1_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_void, qualifier_pointer_map_mode, qualifier_none };
#define TYPES_STORE1 (aarch64_types_store1_qualifiers)
#define TYPES_STORESTRUCT (aarch64_types_store1_qualifiers)
static enum aarch64_type_qualifiers
aarch64_types_storestruct_lane_qualifiers[SIMD_MAX_BUILTIN_ARGS]
  = { qualifier_void, qualifier_pointer_map_mode,
      qualifier_none, qualifier_struct_load_store_lane_index };
#define TYPES_STORESTRUCT_LANE (aarch64_types_storestruct_lane_qualifiers)

#define CF0(N, X) CODE_FOR_aarch64_##N##X
#define CF1(N, X) CODE_FOR_##N##X##1
#define CF2(N, X) CODE_FOR_##N##X##2
#define CF3(N, X) CODE_FOR_##N##X##3
#define CF4(N, X) CODE_FOR_##N##X##4
#define CF10(N, X) CODE_FOR_##N##X

#define VAR1(T, N, MAP, A) \
  {#N #A, UP (A), CF##MAP (N, A), 0, TYPES_##T},
#define VAR2(T, N, MAP, A, B) \
  VAR1 (T, N, MAP, A) \
  VAR1 (T, N, MAP, B)
#define VAR3(T, N, MAP, A, B, C) \
  VAR2 (T, N, MAP, A, B) \
  VAR1 (T, N, MAP, C)
#define VAR4(T, N, MAP, A, B, C, D) \
  VAR3 (T, N, MAP, A, B, C) \
  VAR1 (T, N, MAP, D)
#define VAR5(T, N, MAP, A, B, C, D, E) \
  VAR4 (T, N, MAP, A, B, C, D) \
  VAR1 (T, N, MAP, E)
#define VAR6(T, N, MAP, A, B, C, D, E, F) \
  VAR5 (T, N, MAP, A, B, C, D, E) \
  VAR1 (T, N, MAP, F)
#define VAR7(T, N, MAP, A, B, C, D, E, F, G) \
  VAR6 (T, N, MAP, A, B, C, D, E, F) \
  VAR1 (T, N, MAP, G)
#define VAR8(T, N, MAP, A, B, C, D, E, F, G, H) \
  VAR7 (T, N, MAP, A, B, C, D, E, F, G) \
  VAR1 (T, N, MAP, H)
#define VAR9(T, N, MAP, A, B, C, D, E, F, G, H, I) \
  VAR8 (T, N, MAP, A, B, C, D, E, F, G, H) \
  VAR1 (T, N, MAP, I)
#define VAR10(T, N, MAP, A, B, C, D, E, F, G, H, I, J) \
  VAR9 (T, N, MAP, A, B, C, D, E, F, G, H, I) \
  VAR1 (T, N, MAP, J)
#define VAR11(T, N, MAP, A, B, C, D, E, F, G, H, I, J, K) \
  VAR10 (T, N, MAP, A, B, C, D, E, F, G, H, I, J) \
  VAR1 (T, N, MAP, K)
#define VAR12(T, N, MAP, A, B, C, D, E, F, G, H, I, J, K, L) \
  VAR11 (T, N, MAP, A, B, C, D, E, F, G, H, I, J, K) \
  VAR1 (T, N, MAP, L)
#define VAR13(T, N, MAP, A, B, C, D, E, F, G, H, I, J, K, L, M) \
  VAR12 (T, N, MAP, A, B, C, D, E, F, G, H, I, J, K, L) \
  VAR1 (T, N, MAP, M)
#define VAR14(T, X, MAP, A, B, C, D, E, F, G, H, I, J, K, L, M, N) \
  VAR13 (T, X, MAP, A, B, C, D, E, F, G, H, I, J, K, L, M) \
  VAR1 (T, X, MAP, N)
#define VAR15(T, X, MAP, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O) \
  VAR14 (T, X, MAP, A, B, C, D, E, F, G, H, I, J, K, L, M, N) \
  VAR1 (T, X, MAP, O)
#define VAR16(T, X, MAP, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P) \
  VAR15 (T, X, MAP, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O) \
  VAR1 (T, X, MAP, P)

#include "aarch64-builtin-iterators.h"

static aarch64_simd_builtin_datum aarch64_simd_builtin_data[] = {
#include "aarch64-simd-builtins.def"
};

/* There's only 8 CRC32 builtins.  Probably not worth their own .def file.  */
#define AARCH64_CRC32_BUILTINS \
  CRC32_BUILTIN (crc32b, QI) \
  CRC32_BUILTIN (crc32h, HI) \
  CRC32_BUILTIN (crc32w, SI) \
  CRC32_BUILTIN (crc32x, DI) \
  CRC32_BUILTIN (crc32cb, QI) \
  CRC32_BUILTIN (crc32ch, HI) \
  CRC32_BUILTIN (crc32cw, SI) \
  CRC32_BUILTIN (crc32cx, DI)

/* The next 8 FCMLA instrinsics require some special handling compared the
   normal simd intrinsics.  */
#define AARCH64_SIMD_FCMLA_LANEQ_BUILTINS \
  FCMLA_LANEQ_BUILTIN (0, v2sf, fcmla, V2SF, false) \
  FCMLA_LANEQ_BUILTIN (90, v2sf, fcmla, V2SF, false) \
  FCMLA_LANEQ_BUILTIN (180, v2sf, fcmla, V2SF, false) \
  FCMLA_LANEQ_BUILTIN (270, v2sf, fcmla, V2SF, false) \
  FCMLA_LANEQ_BUILTIN (0, v4hf, fcmla_laneq, V4HF, true) \
  FCMLA_LANEQ_BUILTIN (90, v4hf, fcmla_laneq, V4HF, true) \
  FCMLA_LANEQ_BUILTIN (180, v4hf, fcmla_laneq, V4HF, true) \
  FCMLA_LANEQ_BUILTIN (270, v4hf, fcmla_laneq, V4HF, true) \

typedef struct
{
  const char *name;
  machine_mode mode;
  const enum insn_code icode;
  unsigned int fcode;
} aarch64_crc_builtin_datum;

/* Hold information about how to expand the FCMLA_LANEQ builtins.  */
typedef struct
{
  const char *name;
  machine_mode mode;
  const enum insn_code icode;
  unsigned int fcode;
  bool lane;
} aarch64_fcmla_laneq_builtin_datum;

#define CRC32_BUILTIN(N, M) \
  AARCH64_BUILTIN_##N,

#define FCMLA_LANEQ_BUILTIN(I, N, X, M, T) \
  AARCH64_SIMD_BUILTIN_FCMLA_LANEQ##I##_##M,

#undef VAR1
#define VAR1(T, N, MAP, A) \
  AARCH64_SIMD_BUILTIN_##T##_##N##A,

enum aarch64_builtins
{
  AARCH64_BUILTIN_MIN,

  AARCH64_BUILTIN_GET_FPCR,
  AARCH64_BUILTIN_SET_FPCR,
  AARCH64_BUILTIN_GET_FPSR,
  AARCH64_BUILTIN_SET_FPSR,

  AARCH64_BUILTIN_RSQRT_DF,
  AARCH64_BUILTIN_RSQRT_SF,
  AARCH64_BUILTIN_RSQRT_V2DF,
  AARCH64_BUILTIN_RSQRT_V2SF,
  AARCH64_BUILTIN_RSQRT_V4SF,
  AARCH64_SIMD_BUILTIN_BASE,
  AARCH64_SIMD_BUILTIN_LANE_CHECK,
#include "aarch64-simd-builtins.def"
  /* The first enum element which is based on an insn_data pattern.  */
  AARCH64_SIMD_PATTERN_START = AARCH64_SIMD_BUILTIN_LANE_CHECK + 1,
  AARCH64_SIMD_BUILTIN_MAX = AARCH64_SIMD_PATTERN_START
			      + ARRAY_SIZE (aarch64_simd_builtin_data) - 1,
  AARCH64_CRC32_BUILTIN_BASE,
  AARCH64_CRC32_BUILTINS
  AARCH64_CRC32_BUILTIN_MAX,
  /* ARMv8.3-A Pointer Authentication Builtins.  */
  AARCH64_PAUTH_BUILTIN_AUTIA1716,
  AARCH64_PAUTH_BUILTIN_PACIA1716,
  AARCH64_PAUTH_BUILTIN_AUTIB1716,
  AARCH64_PAUTH_BUILTIN_PACIB1716,
  AARCH64_PAUTH_BUILTIN_XPACLRI,
  /* Special cased Armv8.3-A Complex FMA by Lane quad Builtins.  */
  AARCH64_SIMD_FCMLA_LANEQ_BUILTIN_BASE,
  AARCH64_SIMD_FCMLA_LANEQ_BUILTINS
  /* Builtin for Arm8.3-a Javascript conversion instruction.  */
  AARCH64_JSCVT,
  /* TME builtins.  */
  AARCH64_TME_BUILTIN_TSTART,
  AARCH64_TME_BUILTIN_TCOMMIT,
  AARCH64_TME_BUILTIN_TTEST,
  AARCH64_TME_BUILTIN_TCANCEL,
  /* Armv8.5-a RNG instruction builtins.  */
  AARCH64_BUILTIN_RNG_RNDR,
  AARCH64_BUILTIN_RNG_RNDRRS,
  /* MEMTAG builtins.  */
  AARCH64_MEMTAG_BUILTIN_START,
  AARCH64_MEMTAG_BUILTIN_IRG,
  AARCH64_MEMTAG_BUILTIN_GMI,
  AARCH64_MEMTAG_BUILTIN_SUBP,
  AARCH64_MEMTAG_BUILTIN_INC_TAG,
  AARCH64_MEMTAG_BUILTIN_SET_TAG,
  AARCH64_MEMTAG_BUILTIN_GET_TAG,
  AARCH64_MEMTAG_BUILTIN_END,
  AARCH64_BUILTIN_MAX
};

#undef CRC32_BUILTIN
#define CRC32_BUILTIN(N, M) \
  {"__builtin_aarch64_"#N, E_##M##mode, CODE_FOR_aarch64_##N, AARCH64_BUILTIN_##N},

static aarch64_crc_builtin_datum aarch64_crc_builtin_data[] = {
  AARCH64_CRC32_BUILTINS
};


#undef FCMLA_LANEQ_BUILTIN
#define FCMLA_LANEQ_BUILTIN(I, N, X, M, T) \
  {"__builtin_aarch64_fcmla_laneq"#I#N, E_##M##mode, CODE_FOR_aarch64_##X##I##N, \
   AARCH64_SIMD_BUILTIN_FCMLA_LANEQ##I##_##M, T},

/* This structure contains how to manage the mapping form the builtin to the
   instruction to generate in the backend and how to invoke the instruction.  */
static aarch64_fcmla_laneq_builtin_datum aarch64_fcmla_lane_builtin_data[] = {
  AARCH64_SIMD_FCMLA_LANEQ_BUILTINS
};

#undef CRC32_BUILTIN

static GTY(()) tree aarch64_builtin_decls[AARCH64_BUILTIN_MAX];

#define NUM_DREG_TYPES 6
#define NUM_QREG_TYPES 6

/* Internal scalar builtin types.  These types are used to support
   neon intrinsic builtins.  They are _not_ user-visible types.  Therefore
   the mangling for these types are implementation defined.  */
const char *aarch64_scalar_builtin_types[] = {
  "__builtin_aarch64_simd_qi",
  "__builtin_aarch64_simd_hi",
  "__builtin_aarch64_simd_si",
  "__builtin_aarch64_simd_hf",
  "__builtin_aarch64_simd_sf",
  "__builtin_aarch64_simd_di",
  "__builtin_aarch64_simd_df",
  "__builtin_aarch64_simd_poly8",
  "__builtin_aarch64_simd_poly16",
  "__builtin_aarch64_simd_poly64",
  "__builtin_aarch64_simd_poly128",
  "__builtin_aarch64_simd_ti",
  "__builtin_aarch64_simd_uqi",
  "__builtin_aarch64_simd_uhi",
  "__builtin_aarch64_simd_usi",
  "__builtin_aarch64_simd_udi",
  "__builtin_aarch64_simd_ei",
  "__builtin_aarch64_simd_oi",
  "__builtin_aarch64_simd_ci",
  "__builtin_aarch64_simd_xi",
  "__builtin_aarch64_simd_bf",
  NULL
};

#define ENTRY(E, M, Q, G) E,
enum aarch64_simd_type
{
#include "aarch64-simd-builtin-types.def"
  ARM_NEON_H_TYPES_LAST
};
#undef ENTRY

struct aarch64_simd_type_info
{
  enum aarch64_simd_type type;

  /* Internal type name.  */
  const char *name;

  /* Internal type name(mangled).  The mangled names conform to the
     AAPCS64 (see "Procedure Call Standard for the ARM 64-bit Architecture",
     Appendix A).  To qualify for emission with the mangled names defined in
     that document, a vector type must not only be of the correct mode but also
     be of the correct internal AdvSIMD vector type (e.g. __Int8x8_t); these
     types are registered by aarch64_init_simd_builtin_types ().  In other
     words, vector types defined in other ways e.g. via vector_size attribute
     will get default mangled names.  */
  const char *mangle;

  /* Internal type.  */
  tree itype;

  /* Element type.  */
  tree eltype;

  /* Machine mode the internal type maps to.  */
  enum machine_mode mode;

  /* Qualifiers.  */
  enum aarch64_type_qualifiers q;
};

#define ENTRY(E, M, Q, G)  \
  {E, "__" #E, #G "__" #E, NULL_TREE, NULL_TREE, E_##M##mode, qualifier_##Q},
static struct aarch64_simd_type_info aarch64_simd_types [] = {
#include "aarch64-simd-builtin-types.def"
};
#undef ENTRY

static tree aarch64_simd_intOI_type_node = NULL_TREE;
static tree aarch64_simd_intCI_type_node = NULL_TREE;
static tree aarch64_simd_intXI_type_node = NULL_TREE;

/* The user-visible __fp16 type, and a pointer to that type.  Used
   across the back-end.  */
tree aarch64_fp16_type_node = NULL_TREE;
tree aarch64_fp16_ptr_type_node = NULL_TREE;

/* Back-end node type for brain float (bfloat) types.  */
tree aarch64_bf16_type_node = NULL_TREE;
tree aarch64_bf16_ptr_type_node = NULL_TREE;

/* Wrapper around add_builtin_function.  NAME is the name of the built-in
   function, TYPE is the function type, and CODE is the function subcode
   (relative to AARCH64_BUILTIN_GENERAL).  */
static tree
aarch64_general_add_builtin (const char *name, tree type, unsigned int code)
{
  code = (code << AARCH64_BUILTIN_SHIFT) | AARCH64_BUILTIN_GENERAL;
  return add_builtin_function (name, type, code, BUILT_IN_MD,
			       NULL, NULL_TREE);
}

static const char *
aarch64_mangle_builtin_scalar_type (const_tree type)
{
  int i = 0;

  while (aarch64_scalar_builtin_types[i] != NULL)
    {
      const char *name = aarch64_scalar_builtin_types[i];

      if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	  && DECL_NAME (TYPE_NAME (type))
	  && !strcmp (IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))), name))
	return aarch64_scalar_builtin_types[i];
      i++;
    }
  return NULL;
}

static const char *
aarch64_mangle_builtin_vector_type (const_tree type)
{
  int i;
  int nelts = sizeof (aarch64_simd_types) / sizeof (aarch64_simd_types[0]);

  for (i = 0; i < nelts; i++)
    if (aarch64_simd_types[i].mode ==  TYPE_MODE (type)
	&& TYPE_NAME (type)
	&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	&& DECL_NAME (TYPE_NAME (type))
	&& !strcmp
	     (IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))),
	      aarch64_simd_types[i].name))
      return aarch64_simd_types[i].mangle;

  return NULL;
}

const char *
aarch64_general_mangle_builtin_type (const_tree type)
{
  const char *mangle;
  /* Walk through all the AArch64 builtins types tables to filter out the
     incoming type.  */
  if ((mangle = aarch64_mangle_builtin_vector_type (type))
      || (mangle = aarch64_mangle_builtin_scalar_type (type)))
    return mangle;

  return NULL;
}

static tree
aarch64_simd_builtin_std_type (machine_mode mode,
			       enum aarch64_type_qualifiers q)
{
#define QUAL_TYPE(M)  \
  ((q == qualifier_none) ? int##M##_type_node : unsigned_int##M##_type_node);
  switch (mode)
    {
    case E_QImode:
      return QUAL_TYPE (QI);
    case E_HImode:
      return QUAL_TYPE (HI);
    case E_SImode:
      return QUAL_TYPE (SI);
    case E_DImode:
      return QUAL_TYPE (DI);
    case E_TImode:
      return QUAL_TYPE (TI);
    case E_OImode:
      return aarch64_simd_intOI_type_node;
    case E_CImode:
      return aarch64_simd_intCI_type_node;
    case E_XImode:
      return aarch64_simd_intXI_type_node;
    case E_HFmode:
      return aarch64_fp16_type_node;
    case E_SFmode:
      return float_type_node;
    case E_DFmode:
      return double_type_node;
    case E_BFmode:
      return aarch64_bf16_type_node;
    default:
      gcc_unreachable ();
    }
#undef QUAL_TYPE
}

static tree
aarch64_lookup_simd_builtin_type (machine_mode mode,
				  enum aarch64_type_qualifiers q)
{
  int i;
  int nelts = sizeof (aarch64_simd_types) / sizeof (aarch64_simd_types[0]);

  /* Non-poly scalar modes map to standard types not in the table.  */
  if (q != qualifier_poly && !VECTOR_MODE_P (mode))
    return aarch64_simd_builtin_std_type (mode, q);

  for (i = 0; i < nelts; i++)
    if (aarch64_simd_types[i].mode == mode
	&& aarch64_simd_types[i].q == q)
      return aarch64_simd_types[i].itype;

  return NULL_TREE;
}

static tree
aarch64_simd_builtin_type (machine_mode mode,
			   bool unsigned_p, bool poly_p)
{
  if (poly_p)
    return aarch64_lookup_simd_builtin_type (mode, qualifier_poly);
  else if (unsigned_p)
    return aarch64_lookup_simd_builtin_type (mode, qualifier_unsigned);
  else
    return aarch64_lookup_simd_builtin_type (mode, qualifier_none);
}
 
static void
aarch64_init_simd_builtin_types (void)
{
  int i;
  int nelts = sizeof (aarch64_simd_types) / sizeof (aarch64_simd_types[0]);
  tree tdecl;

  /* Init all the element types built by the front-end.  */
  aarch64_simd_types[Int8x8_t].eltype = intQI_type_node;
  aarch64_simd_types[Int8x16_t].eltype = intQI_type_node;
  aarch64_simd_types[Int16x4_t].eltype = intHI_type_node;
  aarch64_simd_types[Int16x8_t].eltype = intHI_type_node;
  aarch64_simd_types[Int32x2_t].eltype = intSI_type_node;
  aarch64_simd_types[Int32x4_t].eltype = intSI_type_node;
  aarch64_simd_types[Int64x1_t].eltype = intDI_type_node;
  aarch64_simd_types[Int64x2_t].eltype = intDI_type_node;
  aarch64_simd_types[Uint8x8_t].eltype = unsigned_intQI_type_node;
  aarch64_simd_types[Uint8x16_t].eltype = unsigned_intQI_type_node;
  aarch64_simd_types[Uint16x4_t].eltype = unsigned_intHI_type_node;
  aarch64_simd_types[Uint16x8_t].eltype = unsigned_intHI_type_node;
  aarch64_simd_types[Uint32x2_t].eltype = unsigned_intSI_type_node;
  aarch64_simd_types[Uint32x4_t].eltype = unsigned_intSI_type_node;
  aarch64_simd_types[Uint64x1_t].eltype = unsigned_intDI_type_node;
  aarch64_simd_types[Uint64x2_t].eltype = unsigned_intDI_type_node;

  /* Poly types are a world of their own.  */
  aarch64_simd_types[Poly8_t].eltype = aarch64_simd_types[Poly8_t].itype =
    build_distinct_type_copy (unsigned_intQI_type_node);
  /* Prevent front-ends from transforming Poly8_t arrays into string
     literals.  */
  TYPE_STRING_FLAG (aarch64_simd_types[Poly8_t].eltype) = false;

  aarch64_simd_types[Poly16_t].eltype = aarch64_simd_types[Poly16_t].itype =
    build_distinct_type_copy (unsigned_intHI_type_node);
  aarch64_simd_types[Poly64_t].eltype = aarch64_simd_types[Poly64_t].itype =
    build_distinct_type_copy (unsigned_intDI_type_node);
  aarch64_simd_types[Poly128_t].eltype = aarch64_simd_types[Poly128_t].itype =
    build_distinct_type_copy (unsigned_intTI_type_node);
  /* Init poly vector element types with scalar poly types.  */
  aarch64_simd_types[Poly8x8_t].eltype = aarch64_simd_types[Poly8_t].itype;
  aarch64_simd_types[Poly8x16_t].eltype = aarch64_simd_types[Poly8_t].itype;
  aarch64_simd_types[Poly16x4_t].eltype = aarch64_simd_types[Poly16_t].itype;
  aarch64_simd_types[Poly16x8_t].eltype = aarch64_simd_types[Poly16_t].itype;
  aarch64_simd_types[Poly64x1_t].eltype = aarch64_simd_types[Poly64_t].itype;
  aarch64_simd_types[Poly64x2_t].eltype = aarch64_simd_types[Poly64_t].itype;

  /* Continue with standard types.  */
  aarch64_simd_types[Float16x4_t].eltype = aarch64_fp16_type_node;
  aarch64_simd_types[Float16x8_t].eltype = aarch64_fp16_type_node;
  aarch64_simd_types[Float32x2_t].eltype = float_type_node;
  aarch64_simd_types[Float32x4_t].eltype = float_type_node;
  aarch64_simd_types[Float64x1_t].eltype = double_type_node;
  aarch64_simd_types[Float64x2_t].eltype = double_type_node;

  /* Init Bfloat vector types with underlying __bf16 type.  */
  aarch64_simd_types[Bfloat16x4_t].eltype = aarch64_bf16_type_node;
  aarch64_simd_types[Bfloat16x8_t].eltype = aarch64_bf16_type_node;

  for (i = 0; i < nelts; i++)
    {
      tree eltype = aarch64_simd_types[i].eltype;
      machine_mode mode = aarch64_simd_types[i].mode;

      if (aarch64_simd_types[i].itype == NULL)
	{
	  tree type = build_vector_type (eltype, GET_MODE_NUNITS (mode));
	  type = build_distinct_type_copy (type);
	  SET_TYPE_STRUCTURAL_EQUALITY (type);

	  TYPE_ATTRIBUTES (type)
	    = tree_cons (get_identifier ("Advanced SIMD type"),
			 NULL_TREE, TYPE_ATTRIBUTES (type));
	  aarch64_simd_types[i].itype = type;
	}

      tdecl = add_builtin_type (aarch64_simd_types[i].name,
				aarch64_simd_types[i].itype);
      TYPE_NAME (aarch64_simd_types[i].itype) = tdecl;
    }

#define AARCH64_BUILD_SIGNED_TYPE(mode)  \
  make_signed_type (GET_MODE_PRECISION (mode));
  aarch64_simd_intOI_type_node = AARCH64_BUILD_SIGNED_TYPE (OImode);
  aarch64_simd_intCI_type_node = AARCH64_BUILD_SIGNED_TYPE (CImode);
  aarch64_simd_intXI_type_node = AARCH64_BUILD_SIGNED_TYPE (XImode);
#undef AARCH64_BUILD_SIGNED_TYPE

  tdecl = add_builtin_type
	    ("__builtin_aarch64_simd_oi" , aarch64_simd_intOI_type_node);
  TYPE_NAME (aarch64_simd_intOI_type_node) = tdecl;
  tdecl = add_builtin_type
	    ("__builtin_aarch64_simd_ci" , aarch64_simd_intCI_type_node);
  TYPE_NAME (aarch64_simd_intCI_type_node) = tdecl;
  tdecl = add_builtin_type
	    ("__builtin_aarch64_simd_xi" , aarch64_simd_intXI_type_node);
  TYPE_NAME (aarch64_simd_intXI_type_node) = tdecl;
}

static void
aarch64_init_simd_builtin_scalar_types (void)
{
  /* Define typedefs for all the standard scalar types.  */
  (*lang_hooks.types.register_builtin_type) (intQI_type_node,
					     "__builtin_aarch64_simd_qi");
  (*lang_hooks.types.register_builtin_type) (intHI_type_node,
					     "__builtin_aarch64_simd_hi");
  (*lang_hooks.types.register_builtin_type) (aarch64_fp16_type_node,
					     "__builtin_aarch64_simd_hf");
  (*lang_hooks.types.register_builtin_type) (intSI_type_node,
					     "__builtin_aarch64_simd_si");
  (*lang_hooks.types.register_builtin_type) (float_type_node,
					     "__builtin_aarch64_simd_sf");
  (*lang_hooks.types.register_builtin_type) (intDI_type_node,
					     "__builtin_aarch64_simd_di");
  (*lang_hooks.types.register_builtin_type) (double_type_node,
					     "__builtin_aarch64_simd_df");
  (*lang_hooks.types.register_builtin_type) (unsigned_intQI_type_node,
					     "__builtin_aarch64_simd_poly8");
  (*lang_hooks.types.register_builtin_type) (unsigned_intHI_type_node,
					     "__builtin_aarch64_simd_poly16");
  (*lang_hooks.types.register_builtin_type) (unsigned_intDI_type_node,
					     "__builtin_aarch64_simd_poly64");
  (*lang_hooks.types.register_builtin_type) (unsigned_intTI_type_node,
					     "__builtin_aarch64_simd_poly128");
  (*lang_hooks.types.register_builtin_type) (intTI_type_node,
					     "__builtin_aarch64_simd_ti");
  (*lang_hooks.types.register_builtin_type) (aarch64_bf16_type_node,
					     "__builtin_aarch64_simd_bf");
  /* Unsigned integer types for various mode sizes.  */
  (*lang_hooks.types.register_builtin_type) (unsigned_intQI_type_node,
					     "__builtin_aarch64_simd_uqi");
  (*lang_hooks.types.register_builtin_type) (unsigned_intHI_type_node,
					     "__builtin_aarch64_simd_uhi");
  (*lang_hooks.types.register_builtin_type) (unsigned_intSI_type_node,
					     "__builtin_aarch64_simd_usi");
  (*lang_hooks.types.register_builtin_type) (unsigned_intDI_type_node,
					     "__builtin_aarch64_simd_udi");
}

static bool aarch64_simd_builtins_initialized_p = false;

/* Due to the architecture not providing lane variant of the lane instructions
   for fcmla we can't use the standard simd builtin expansion code, but we
   still want the majority of the validation that would normally be done.  */

void
aarch64_init_fcmla_laneq_builtins (void)
{
  unsigned int i = 0;

  for (i = 0; i < ARRAY_SIZE (aarch64_fcmla_lane_builtin_data); ++i)
    {
      aarch64_fcmla_laneq_builtin_datum* d
	= &aarch64_fcmla_lane_builtin_data[i];
      tree argtype = aarch64_lookup_simd_builtin_type (d->mode, qualifier_none);
      machine_mode quadmode = GET_MODE_2XWIDER_MODE (d->mode).require ();
      tree quadtype
	= aarch64_lookup_simd_builtin_type (quadmode, qualifier_none);
      tree lanetype
	= aarch64_simd_builtin_std_type (SImode, qualifier_lane_pair_index);
      tree ftype = build_function_type_list (argtype, argtype, argtype,
					     quadtype, lanetype, NULL_TREE);
      tree fndecl = aarch64_general_add_builtin (d->name, ftype, d->fcode);

      aarch64_builtin_decls[d->fcode] = fndecl;
    }
}

void
aarch64_init_simd_builtins (void)
{
  unsigned int i, fcode = AARCH64_SIMD_PATTERN_START;

  if (aarch64_simd_builtins_initialized_p)
    return;

  aarch64_simd_builtins_initialized_p = true;

  aarch64_init_simd_builtin_types ();

  /* Strong-typing hasn't been implemented for all AdvSIMD builtin intrinsics.
     Therefore we need to preserve the old __builtin scalar types.  It can be
     removed once all the intrinsics become strongly typed using the qualifier
     system.  */
  aarch64_init_simd_builtin_scalar_types ();
 
  tree lane_check_fpr = build_function_type_list (void_type_node,
						  size_type_node,
						  size_type_node,
						  intSI_type_node,
						  NULL);
  aarch64_builtin_decls[AARCH64_SIMD_BUILTIN_LANE_CHECK]
    = aarch64_general_add_builtin ("__builtin_aarch64_im_lane_boundsi",
				   lane_check_fpr,
				   AARCH64_SIMD_BUILTIN_LANE_CHECK);

  for (i = 0; i < ARRAY_SIZE (aarch64_simd_builtin_data); i++, fcode++)
    {
      bool print_type_signature_p = false;
      char type_signature[SIMD_MAX_BUILTIN_ARGS + 1] = { 0 };
      aarch64_simd_builtin_datum *d = &aarch64_simd_builtin_data[i];
      char namebuf[60];
      tree ftype = NULL;
      tree fndecl = NULL;

      d->fcode = fcode;

      /* We must track two variables here.  op_num is
	 the operand number as in the RTL pattern.  This is
	 required to access the mode (e.g. V4SF mode) of the
	 argument, from which the base type can be derived.
	 arg_num is an index in to the qualifiers data, which
	 gives qualifiers to the type (e.g. const unsigned).
	 The reason these two variables may differ by one is the
	 void return type.  While all return types take the 0th entry
	 in the qualifiers array, there is no operand for them in the
	 RTL pattern.  */
      int op_num = insn_data[d->code].n_operands - 1;
      int arg_num = d->qualifiers[0] & qualifier_void
		      ? op_num + 1
		      : op_num;
      tree return_type = void_type_node, args = void_list_node;
      tree eltype;

      /* Build a function type directly from the insn_data for this
	 builtin.  The build_function_type () function takes care of
	 removing duplicates for us.  */
      for (; op_num >= 0; arg_num--, op_num--)
	{
	  machine_mode op_mode = insn_data[d->code].operand[op_num].mode;
	  enum aarch64_type_qualifiers qualifiers = d->qualifiers[arg_num];

	  if (qualifiers & qualifier_unsigned)
	    {
	      type_signature[op_num] = 'u';
	      print_type_signature_p = true;
	    }
	  else if (qualifiers & qualifier_poly)
	    {
	      type_signature[op_num] = 'p';
	      print_type_signature_p = true;
	    }
	  else
	    type_signature[op_num] = 's';

	  /* Skip an internal operand for vget_{low, high}.  */
	  if (qualifiers & qualifier_internal)
	    continue;

	  /* Some builtins have different user-facing types
	     for certain arguments, encoded in d->mode.  */
	  if (qualifiers & qualifier_map_mode)
	      op_mode = d->mode;

	  /* For pointers, we want a pointer to the basic type
	     of the vector.  */
	  if (qualifiers & qualifier_pointer && VECTOR_MODE_P (op_mode))
	    op_mode = GET_MODE_INNER (op_mode);

	  eltype = aarch64_simd_builtin_type
		     (op_mode,
		      (qualifiers & qualifier_unsigned) != 0,
		      (qualifiers & qualifier_poly) != 0);
	  gcc_assert (eltype != NULL);

	  /* Add qualifiers.  */
	  if (qualifiers & qualifier_const)
	    eltype = build_qualified_type (eltype, TYPE_QUAL_CONST);

	  if (qualifiers & qualifier_pointer)
	      eltype = build_pointer_type (eltype);

	  /* If we have reached arg_num == 0, we are at a non-void
	     return type.  Otherwise, we are still processing
	     arguments.  */
	  if (arg_num == 0)
	    return_type = eltype;
	  else
	    args = tree_cons (NULL_TREE, eltype, args);
	}

      ftype = build_function_type (return_type, args);

      gcc_assert (ftype != NULL);

      if (print_type_signature_p)
	snprintf (namebuf, sizeof (namebuf), "__builtin_aarch64_%s_%s",
		  d->name, type_signature);
      else
	snprintf (namebuf, sizeof (namebuf), "__builtin_aarch64_%s",
		  d->name);

      fndecl = aarch64_general_add_builtin (namebuf, ftype, fcode);
      aarch64_builtin_decls[fcode] = fndecl;
    }

   /* Initialize the remaining fcmla_laneq intrinsics.  */
   aarch64_init_fcmla_laneq_builtins ();
}

static void
aarch64_init_crc32_builtins ()
{
  tree usi_type = aarch64_simd_builtin_std_type (SImode, qualifier_unsigned);
  unsigned int i = 0;

  for (i = 0; i < ARRAY_SIZE (aarch64_crc_builtin_data); ++i)
    {
      aarch64_crc_builtin_datum* d = &aarch64_crc_builtin_data[i];
      tree argtype = aarch64_simd_builtin_std_type (d->mode,
						    qualifier_unsigned);
      tree ftype = build_function_type_list (usi_type, usi_type, argtype, NULL_TREE);
      tree fndecl = aarch64_general_add_builtin (d->name, ftype, d->fcode);

      aarch64_builtin_decls[d->fcode] = fndecl;
    }
}

/* Add builtins for reciprocal square root.  */

void
aarch64_init_builtin_rsqrt (void)
{
  tree fndecl = NULL;
  tree ftype = NULL;

  tree V2SF_type_node = build_vector_type (float_type_node, 2);
  tree V2DF_type_node = build_vector_type (double_type_node, 2);
  tree V4SF_type_node = build_vector_type (float_type_node, 4);

  struct builtin_decls_data
  {
    tree type_node;
    const char *builtin_name;
    int function_code;
  };

  builtin_decls_data bdda[] =
  {
    { double_type_node, "__builtin_aarch64_rsqrt_df", AARCH64_BUILTIN_RSQRT_DF },
    { float_type_node, "__builtin_aarch64_rsqrt_sf", AARCH64_BUILTIN_RSQRT_SF },
    { V2DF_type_node, "__builtin_aarch64_rsqrt_v2df", AARCH64_BUILTIN_RSQRT_V2DF },
    { V2SF_type_node, "__builtin_aarch64_rsqrt_v2sf", AARCH64_BUILTIN_RSQRT_V2SF },
    { V4SF_type_node, "__builtin_aarch64_rsqrt_v4sf", AARCH64_BUILTIN_RSQRT_V4SF }
  };

  builtin_decls_data *bdd = bdda;
  builtin_decls_data *bdd_end = bdd + (sizeof (bdda) / sizeof (builtin_decls_data));

  for (; bdd < bdd_end; bdd++)
  {
    ftype = build_function_type_list (bdd->type_node, bdd->type_node, NULL_TREE);
    fndecl = aarch64_general_add_builtin (bdd->builtin_name,
					  ftype, bdd->function_code);
    aarch64_builtin_decls[bdd->function_code] = fndecl;
  }
}

/* Initialize the backend types that support the user-visible __fp16
   type, also initialize a pointer to that type, to be used when
   forming HFAs.  */

static void
aarch64_init_fp16_types (void)
{
  aarch64_fp16_type_node = make_node (REAL_TYPE);
  TYPE_PRECISION (aarch64_fp16_type_node) = 16;
  layout_type (aarch64_fp16_type_node);

  (*lang_hooks.types.register_builtin_type) (aarch64_fp16_type_node, "__fp16");
  aarch64_fp16_ptr_type_node = build_pointer_type (aarch64_fp16_type_node);
}

/* Initialize the backend REAL_TYPE type supporting bfloat types.  */
static void
aarch64_init_bf16_types (void)
{
  aarch64_bf16_type_node = make_node (REAL_TYPE);
  TYPE_PRECISION (aarch64_bf16_type_node) = 16;
  SET_TYPE_MODE (aarch64_bf16_type_node, BFmode);
  layout_type (aarch64_bf16_type_node);

  lang_hooks.types.register_builtin_type (aarch64_bf16_type_node, "__bf16");
  aarch64_bf16_ptr_type_node = build_pointer_type (aarch64_bf16_type_node);
}

/* Pointer authentication builtins that will become NOP on legacy platform.
   Currently, these builtins are for internal use only (libgcc EH unwinder).  */

void
aarch64_init_pauth_hint_builtins (void)
{
  /* Pointer Authentication builtins.  */
  tree ftype_pointer_auth
    = build_function_type_list (ptr_type_node, ptr_type_node,
				unsigned_intDI_type_node, NULL_TREE);
  tree ftype_pointer_strip
    = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);

  aarch64_builtin_decls[AARCH64_PAUTH_BUILTIN_AUTIA1716]
    = aarch64_general_add_builtin ("__builtin_aarch64_autia1716",
				   ftype_pointer_auth,
				   AARCH64_PAUTH_BUILTIN_AUTIA1716);
  aarch64_builtin_decls[AARCH64_PAUTH_BUILTIN_PACIA1716]
    = aarch64_general_add_builtin ("__builtin_aarch64_pacia1716",
				   ftype_pointer_auth,
				   AARCH64_PAUTH_BUILTIN_PACIA1716);
  aarch64_builtin_decls[AARCH64_PAUTH_BUILTIN_AUTIB1716]
    = aarch64_general_add_builtin ("__builtin_aarch64_autib1716",
				   ftype_pointer_auth,
				   AARCH64_PAUTH_BUILTIN_AUTIB1716);
  aarch64_builtin_decls[AARCH64_PAUTH_BUILTIN_PACIB1716]
    = aarch64_general_add_builtin ("__builtin_aarch64_pacib1716",
				   ftype_pointer_auth,
				   AARCH64_PAUTH_BUILTIN_PACIB1716);
  aarch64_builtin_decls[AARCH64_PAUTH_BUILTIN_XPACLRI]
    = aarch64_general_add_builtin ("__builtin_aarch64_xpaclri",
				   ftype_pointer_strip,
				   AARCH64_PAUTH_BUILTIN_XPACLRI);
}

/* Initialize the transactional memory extension (TME) builtins.  */
static void
aarch64_init_tme_builtins (void)
{
  tree ftype_uint64_void
    = build_function_type_list (uint64_type_node, NULL);
  tree ftype_void_void
    = build_function_type_list (void_type_node, NULL);
  tree ftype_void_uint64
    = build_function_type_list (void_type_node, uint64_type_node, NULL);

  aarch64_builtin_decls[AARCH64_TME_BUILTIN_TSTART]
    = aarch64_general_add_builtin ("__builtin_aarch64_tstart",
				   ftype_uint64_void,
				   AARCH64_TME_BUILTIN_TSTART);
  aarch64_builtin_decls[AARCH64_TME_BUILTIN_TTEST]
    = aarch64_general_add_builtin ("__builtin_aarch64_ttest",
				   ftype_uint64_void,
				   AARCH64_TME_BUILTIN_TTEST);
  aarch64_builtin_decls[AARCH64_TME_BUILTIN_TCOMMIT]
    = aarch64_general_add_builtin ("__builtin_aarch64_tcommit",
				   ftype_void_void,
				   AARCH64_TME_BUILTIN_TCOMMIT);
  aarch64_builtin_decls[AARCH64_TME_BUILTIN_TCANCEL]
    = aarch64_general_add_builtin ("__builtin_aarch64_tcancel",
				   ftype_void_uint64,
				   AARCH64_TME_BUILTIN_TCANCEL);
}

/* Add builtins for Random Number instructions.  */

static void
aarch64_init_rng_builtins (void)
{
  tree unsigned_ptr_type = build_pointer_type (unsigned_intDI_type_node);
  tree ftype
    = build_function_type_list (integer_type_node, unsigned_ptr_type, NULL);
  aarch64_builtin_decls[AARCH64_BUILTIN_RNG_RNDR]
    = aarch64_general_add_builtin ("__builtin_aarch64_rndr", ftype,
				   AARCH64_BUILTIN_RNG_RNDR);
  aarch64_builtin_decls[AARCH64_BUILTIN_RNG_RNDRRS]
    = aarch64_general_add_builtin ("__builtin_aarch64_rndrrs", ftype,
				   AARCH64_BUILTIN_RNG_RNDRRS);
}

/* Initialize the memory tagging extension (MTE) builtins.  */
struct aarch64_mte
{
  tree ftype;
  enum insn_code icode;
} aarch64_memtag_builtin_data[AARCH64_MEMTAG_BUILTIN_END -
			      AARCH64_MEMTAG_BUILTIN_START - 1];

static void
aarch64_init_memtag_builtins (void)
{
  tree fntype = NULL;

#define AARCH64_INIT_MEMTAG_BUILTINS_DECL(F, N, I, T) \
  aarch64_builtin_decls[AARCH64_MEMTAG_BUILTIN_##F] \
    = aarch64_general_add_builtin ("__builtin_aarch64_memtag_"#N, \
				   T, AARCH64_MEMTAG_BUILTIN_##F); \
  aarch64_memtag_builtin_data[AARCH64_MEMTAG_BUILTIN_##F - \
			      AARCH64_MEMTAG_BUILTIN_START - 1].ftype = T; \
  aarch64_memtag_builtin_data[AARCH64_MEMTAG_BUILTIN_##F - \
			      AARCH64_MEMTAG_BUILTIN_START - 1].icode = CODE_FOR_##I;

  fntype = build_function_type_list (ptr_type_node, ptr_type_node,
				     uint64_type_node, NULL);
  AARCH64_INIT_MEMTAG_BUILTINS_DECL (IRG, irg, irg, fntype);

  fntype = build_function_type_list (uint64_type_node, ptr_type_node,
				     uint64_type_node, NULL);
  AARCH64_INIT_MEMTAG_BUILTINS_DECL (GMI, gmi, gmi, fntype);

  fntype = build_function_type_list (ptrdiff_type_node, ptr_type_node,
				     ptr_type_node, NULL);
  AARCH64_INIT_MEMTAG_BUILTINS_DECL (SUBP, subp, subp, fntype);

  fntype = build_function_type_list (ptr_type_node, ptr_type_node,
				     unsigned_type_node, NULL);
  AARCH64_INIT_MEMTAG_BUILTINS_DECL (INC_TAG, inc_tag, addg, fntype);

  fntype = build_function_type_list (void_type_node, ptr_type_node, NULL);
  AARCH64_INIT_MEMTAG_BUILTINS_DECL (SET_TAG, set_tag, stg, fntype);

  fntype = build_function_type_list (ptr_type_node, ptr_type_node, NULL);
  AARCH64_INIT_MEMTAG_BUILTINS_DECL (GET_TAG, get_tag, ldg, fntype);

#undef AARCH64_INIT_MEMTAG_BUILTINS_DECL
}

/* Initialize all builtins in the AARCH64_BUILTIN_GENERAL group.  */

void
aarch64_general_init_builtins (void)
{
  tree ftype_set_fpr
    = build_function_type_list (void_type_node, unsigned_type_node, NULL);
  tree ftype_get_fpr
    = build_function_type_list (unsigned_type_node, NULL);

  aarch64_builtin_decls[AARCH64_BUILTIN_GET_FPCR]
    = aarch64_general_add_builtin ("__builtin_aarch64_get_fpcr",
				   ftype_get_fpr,
				   AARCH64_BUILTIN_GET_FPCR);
  aarch64_builtin_decls[AARCH64_BUILTIN_SET_FPCR]
    = aarch64_general_add_builtin ("__builtin_aarch64_set_fpcr",
				   ftype_set_fpr,
				   AARCH64_BUILTIN_SET_FPCR);
  aarch64_builtin_decls[AARCH64_BUILTIN_GET_FPSR]
    = aarch64_general_add_builtin ("__builtin_aarch64_get_fpsr",
				   ftype_get_fpr,
				   AARCH64_BUILTIN_GET_FPSR);
  aarch64_builtin_decls[AARCH64_BUILTIN_SET_FPSR]
    = aarch64_general_add_builtin ("__builtin_aarch64_set_fpsr",
				   ftype_set_fpr,
				   AARCH64_BUILTIN_SET_FPSR);

  aarch64_init_fp16_types ();

  aarch64_init_bf16_types ();

  if (TARGET_SIMD)
    aarch64_init_simd_builtins ();

  aarch64_init_crc32_builtins ();
  aarch64_init_builtin_rsqrt ();
  aarch64_init_rng_builtins ();

  tree ftype_jcvt
    = build_function_type_list (intSI_type_node, double_type_node, NULL);
  aarch64_builtin_decls[AARCH64_JSCVT]
    = aarch64_general_add_builtin ("__builtin_aarch64_jcvtzs", ftype_jcvt,
				   AARCH64_JSCVT);

  /* Initialize pointer authentication builtins which are backed by instructions
     in NOP encoding space.

     NOTE: these builtins are supposed to be used by libgcc unwinder only, as
     there is no support on return address signing under ILP32, we don't
     register them.  */
  if (!TARGET_ILP32)
    aarch64_init_pauth_hint_builtins ();

  if (TARGET_TME)
    aarch64_init_tme_builtins ();

  if (TARGET_MEMTAG)
    aarch64_init_memtag_builtins ();
}

/* Implement TARGET_BUILTIN_DECL for the AARCH64_BUILTIN_GENERAL group.  */
tree
aarch64_general_builtin_decl (unsigned code, bool)
{
  if (code >= AARCH64_BUILTIN_MAX)
    return error_mark_node;

  return aarch64_builtin_decls[code];
}

typedef enum
{
  SIMD_ARG_COPY_TO_REG,
  SIMD_ARG_CONSTANT,
  SIMD_ARG_LANE_INDEX,
  SIMD_ARG_STRUCT_LOAD_STORE_LANE_INDEX,
  SIMD_ARG_LANE_PAIR_INDEX,
  SIMD_ARG_LANE_QUADTUP_INDEX,
  SIMD_ARG_STOP
} builtin_simd_arg;


static rtx
aarch64_simd_expand_args (rtx target, int icode, int have_retval,
			  tree exp, builtin_simd_arg *args,
			  machine_mode builtin_mode)
{
  rtx pat;
  rtx op[SIMD_MAX_BUILTIN_ARGS + 1]; /* First element for result operand.  */
  int opc = 0;

  if (have_retval)
    {
      machine_mode tmode = insn_data[icode].operand[0].mode;
      if (!target
	  || GET_MODE (target) != tmode
	  || !(*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);
      op[opc++] = target;
    }

  for (;;)
    {
      builtin_simd_arg thisarg = args[opc - have_retval];

      if (thisarg == SIMD_ARG_STOP)
	break;
      else
	{
	  tree arg = CALL_EXPR_ARG (exp, opc - have_retval);
	  machine_mode mode = insn_data[icode].operand[opc].mode;
	  op[opc] = expand_normal (arg);

	  switch (thisarg)
	    {
	    case SIMD_ARG_COPY_TO_REG:
	      if (POINTER_TYPE_P (TREE_TYPE (arg)))
		op[opc] = convert_memory_address (Pmode, op[opc]);
	      /*gcc_assert (GET_MODE (op[opc]) == mode); */
	      if (!(*insn_data[icode].operand[opc].predicate)
		  (op[opc], mode))
		op[opc] = copy_to_mode_reg (mode, op[opc]);
	      break;

	    case SIMD_ARG_STRUCT_LOAD_STORE_LANE_INDEX:
	      gcc_assert (opc > 1);
	      if (CONST_INT_P (op[opc]))
		{
		  unsigned int nunits
		    = GET_MODE_NUNITS (builtin_mode).to_constant ();
		  aarch64_simd_lane_bounds (op[opc], 0, nunits, exp);
		  /* Keep to GCC-vector-extension lane indices in the RTL.  */
		  op[opc] = aarch64_endian_lane_rtx (builtin_mode,
						     INTVAL (op[opc]));
		}
	      goto constant_arg;

	    case SIMD_ARG_LANE_INDEX:
	      /* Must be a previous operand into which this is an index.  */
	      gcc_assert (opc > 0);
	      if (CONST_INT_P (op[opc]))
		{
		  machine_mode vmode = insn_data[icode].operand[opc - 1].mode;
		  unsigned int nunits
		    = GET_MODE_NUNITS (vmode).to_constant ();
		  aarch64_simd_lane_bounds (op[opc], 0, nunits, exp);
		  /* Keep to GCC-vector-extension lane indices in the RTL.  */
		  op[opc] = aarch64_endian_lane_rtx (vmode, INTVAL (op[opc]));
		}
	      /* If the lane index isn't a constant then error out.  */
	      goto constant_arg;

	    case SIMD_ARG_LANE_PAIR_INDEX:
	      /* Must be a previous operand into which this is an index and
		 index is restricted to nunits / 2.  */
	      gcc_assert (opc > 0);
	      if (CONST_INT_P (op[opc]))
		{
		  machine_mode vmode = insn_data[icode].operand[opc - 1].mode;
		  unsigned int nunits
		    = GET_MODE_NUNITS (vmode).to_constant ();
		  aarch64_simd_lane_bounds (op[opc], 0, nunits / 2, exp);
		  /* Keep to GCC-vector-extension lane indices in the RTL.  */
		  int lane = INTVAL (op[opc]);
		  op[opc] = gen_int_mode (ENDIAN_LANE_N (nunits / 2, lane),
					  SImode);
		}
	      /* If the lane index isn't a constant then error out.  */
	      goto constant_arg;
	    case SIMD_ARG_LANE_QUADTUP_INDEX:
	      /* Must be a previous operand into which this is an index and
		 index is restricted to nunits / 4.  */
	      gcc_assert (opc > 0);
	      if (CONST_INT_P (op[opc]))
		{
		  machine_mode vmode = insn_data[icode].operand[opc - 1].mode;
		  unsigned int nunits
		    = GET_MODE_NUNITS (vmode).to_constant ();
		  aarch64_simd_lane_bounds (op[opc], 0, nunits / 4, exp);
		  /* Keep to GCC-vector-extension lane indices in the RTL.  */
		  int lane = INTVAL (op[opc]);
		  op[opc] = gen_int_mode (ENDIAN_LANE_N (nunits / 4, lane),
					  SImode);
		}
	      /* If the lane index isn't a constant then error out.  */
	      goto constant_arg;
	    case SIMD_ARG_CONSTANT:
constant_arg:
	      if (!(*insn_data[icode].operand[opc].predicate)
		  (op[opc], mode))
	      {
		error ("%Kargument %d must be a constant immediate",
		       exp, opc + 1 - have_retval);
		return const0_rtx;
	      }
	      break;

	    case SIMD_ARG_STOP:
	      gcc_unreachable ();
	    }

	  opc++;
	}
    }

  switch (opc)
    {
    case 1:
      pat = GEN_FCN (icode) (op[0]);
      break;

    case 2:
      pat = GEN_FCN (icode) (op[0], op[1]);
      break;

    case 3:
      pat = GEN_FCN (icode) (op[0], op[1], op[2]);
      break;

    case 4:
      pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
      break;

    case 5:
      pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3], op[4]);
      break;

    case 6:
      pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3], op[4], op[5]);
      break;

    default:
      gcc_unreachable ();
    }

  if (!pat)
    return NULL_RTX;

  emit_insn (pat);

  return target;
}

/* Expand an AArch64 AdvSIMD builtin(intrinsic).  */
rtx
aarch64_simd_expand_builtin (int fcode, tree exp, rtx target)
{
  if (fcode == AARCH64_SIMD_BUILTIN_LANE_CHECK)
    {
      rtx totalsize = expand_normal (CALL_EXPR_ARG (exp, 0));
      rtx elementsize = expand_normal (CALL_EXPR_ARG (exp, 1));
      if (CONST_INT_P (totalsize) && CONST_INT_P (elementsize)
	  && UINTVAL (elementsize) != 0
	  && UINTVAL (totalsize) != 0)
	{
	  rtx lane_idx = expand_normal (CALL_EXPR_ARG (exp, 2));
          if (CONST_INT_P (lane_idx))
	    aarch64_simd_lane_bounds (lane_idx, 0,
				      UINTVAL (totalsize)
				       / UINTVAL (elementsize),
				      exp);
          else
	    error ("%Klane index must be a constant immediate", exp);
	}
      else
	error ("%Ktotal size and element size must be a non-zero constant immediate", exp);
      /* Don't generate any RTL.  */
      return const0_rtx;
    }
  aarch64_simd_builtin_datum *d =
		&aarch64_simd_builtin_data[fcode - AARCH64_SIMD_PATTERN_START];
  enum insn_code icode = d->code;
  builtin_simd_arg args[SIMD_MAX_BUILTIN_ARGS + 1];
  int num_args = insn_data[d->code].n_operands;
  int is_void = 0;
  int k;

  is_void = !!(d->qualifiers[0] & qualifier_void);

  num_args += is_void;

  for (k = 1; k < num_args; k++)
    {
      /* We have four arrays of data, each indexed in a different fashion.
	 qualifiers - element 0 always describes the function return type.
	 operands - element 0 is either the operand for return value (if
	   the function has a non-void return type) or the operand for the
	   first argument.
	 expr_args - element 0 always holds the first argument.
	 args - element 0 is always used for the return type.  */
      int qualifiers_k = k;
      int operands_k = k - is_void;
      int expr_args_k = k - 1;

      if (d->qualifiers[qualifiers_k] & qualifier_lane_index)
	args[k] = SIMD_ARG_LANE_INDEX;
      else if (d->qualifiers[qualifiers_k] & qualifier_lane_pair_index)
	args[k] = SIMD_ARG_LANE_PAIR_INDEX;
      else if (d->qualifiers[qualifiers_k] & qualifier_lane_quadtup_index)
	args[k] = SIMD_ARG_LANE_QUADTUP_INDEX;
      else if (d->qualifiers[qualifiers_k] & qualifier_struct_load_store_lane_index)
	args[k] = SIMD_ARG_STRUCT_LOAD_STORE_LANE_INDEX;
      else if (d->qualifiers[qualifiers_k] & qualifier_immediate)
	args[k] = SIMD_ARG_CONSTANT;
      else if (d->qualifiers[qualifiers_k] & qualifier_maybe_immediate)
	{
	  rtx arg
	    = expand_normal (CALL_EXPR_ARG (exp,
					    (expr_args_k)));
	  /* Handle constants only if the predicate allows it.  */
	  bool op_const_int_p =
	    (CONST_INT_P (arg)
	     && (*insn_data[icode].operand[operands_k].predicate)
		(arg, insn_data[icode].operand[operands_k].mode));
	  args[k] = op_const_int_p ? SIMD_ARG_CONSTANT : SIMD_ARG_COPY_TO_REG;
	}
      else
	args[k] = SIMD_ARG_COPY_TO_REG;

    }
  args[k] = SIMD_ARG_STOP;

  /* The interface to aarch64_simd_expand_args expects a 0 if
     the function is void, and a 1 if it is not.  */
  return aarch64_simd_expand_args
	  (target, icode, !is_void, exp, &args[1], d->mode);
}

rtx
aarch64_crc32_expand_builtin (int fcode, tree exp, rtx target)
{
  rtx pat;
  aarch64_crc_builtin_datum *d
    = &aarch64_crc_builtin_data[fcode - (AARCH64_CRC32_BUILTIN_BASE + 1)];
  enum insn_code icode = d->icode;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  machine_mode tmode = insn_data[icode].operand[0].mode;
  machine_mode mode0 = insn_data[icode].operand[1].mode;
  machine_mode mode1 = insn_data[icode].operand[2].mode;

  if (! target
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  gcc_assert ((GET_MODE (op0) == mode0 || GET_MODE (op0) == VOIDmode)
	      && (GET_MODE (op1) == mode1 || GET_MODE (op1) == VOIDmode));

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  pat = GEN_FCN (icode) (target, op0, op1);
  if (!pat)
    return NULL_RTX;

  emit_insn (pat);
  return target;
}

/* Function to expand reciprocal square root builtins.  */

static rtx
aarch64_expand_builtin_rsqrt (int fcode, tree exp, rtx target)
{
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  rtx op0 = expand_normal (arg0);

  rtx (*gen) (rtx, rtx);

  switch (fcode)
    {
      case AARCH64_BUILTIN_RSQRT_DF:
	gen = gen_rsqrtdf2;
	break;
      case AARCH64_BUILTIN_RSQRT_SF:
	gen = gen_rsqrtsf2;
	break;
      case AARCH64_BUILTIN_RSQRT_V2DF:
	gen = gen_rsqrtv2df2;
	break;
      case AARCH64_BUILTIN_RSQRT_V2SF:
	gen = gen_rsqrtv2sf2;
	break;
      case AARCH64_BUILTIN_RSQRT_V4SF:
	gen = gen_rsqrtv4sf2;
	break;
      default: gcc_unreachable ();
    }

  if (!target)
    target = gen_reg_rtx (GET_MODE (op0));

  emit_insn (gen (target, op0));

  return target;
}

/* Expand a FCMLA lane expression EXP with code FCODE and
   result going to TARGET if that is convenient.  */

rtx
aarch64_expand_fcmla_builtin (tree exp, rtx target, int fcode)
{
  int bcode = fcode - AARCH64_SIMD_FCMLA_LANEQ_BUILTIN_BASE - 1;
  aarch64_fcmla_laneq_builtin_datum* d
    = &aarch64_fcmla_lane_builtin_data[bcode];
  machine_mode quadmode = GET_MODE_2XWIDER_MODE (d->mode).require ();
  rtx op0 = force_reg (d->mode, expand_normal (CALL_EXPR_ARG (exp, 0)));
  rtx op1 = force_reg (d->mode, expand_normal (CALL_EXPR_ARG (exp, 1)));
  rtx op2 = force_reg (quadmode, expand_normal (CALL_EXPR_ARG (exp, 2)));
  tree tmp = CALL_EXPR_ARG (exp, 3);
  rtx lane_idx = expand_expr (tmp, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);

  /* Validate that the lane index is a constant.  */
  if (!CONST_INT_P (lane_idx))
    {
      error ("%Kargument %d must be a constant immediate", exp, 4);
      return const0_rtx;
    }

  /* Validate that the index is within the expected range.  */
  int nunits = GET_MODE_NUNITS (quadmode).to_constant ();
  aarch64_simd_lane_bounds (lane_idx, 0, nunits / 2, exp);

  /* Generate the correct register and mode.  */
  int lane = INTVAL (lane_idx);

  if (lane < nunits / 4)
    op2 = simplify_gen_subreg (d->mode, op2, quadmode,
			       subreg_lowpart_offset (d->mode, quadmode));
  else
    {
      /* Select the upper 64 bits, either a V2SF or V4HF, this however
	 is quite messy, as the operation required even though simple
	 doesn't have a simple RTL pattern, and seems it's quite hard to
	 define using a single RTL pattern.  The target generic version
	 gen_highpart_mode generates code that isn't optimal.  */
      rtx temp1 = gen_reg_rtx (d->mode);
      rtx temp2 = gen_reg_rtx (DImode);
      temp1 = simplify_gen_subreg (d->mode, op2, quadmode,
				   subreg_lowpart_offset (d->mode, quadmode));
      temp1 = simplify_gen_subreg (V2DImode, temp1, d->mode, 0);
      if (BYTES_BIG_ENDIAN)
	emit_insn (gen_aarch64_get_lanev2di (temp2, temp1, const0_rtx));
      else
	emit_insn (gen_aarch64_get_lanev2di (temp2, temp1, const1_rtx));
      op2 = simplify_gen_subreg (d->mode, temp2, GET_MODE (temp2), 0);

      /* And recalculate the index.  */
      lane -= nunits / 4;
    }

  /* Keep to GCC-vector-extension lane indices in the RTL, only nunits / 4
     (max nunits in range check) are valid.  Which means only 0-1, so we
     only need to know the order in a V2mode.  */
  lane_idx = aarch64_endian_lane_rtx (V2DImode, lane);

  if (!target)
    target = gen_reg_rtx (d->mode);
  else
    target = force_reg (d->mode, target);

  rtx pat = NULL_RTX;

  if (d->lane)
    pat = GEN_FCN (d->icode) (target, op0, op1, op2, lane_idx);
  else
    pat = GEN_FCN (d->icode) (target, op0, op1, op2);

  if (!pat)
    return NULL_RTX;

  emit_insn (pat);
  return target;
}

/* Function to expand an expression EXP which calls one of the Transactional
   Memory Extension (TME) builtins FCODE with the result going to TARGET.  */
static rtx
aarch64_expand_builtin_tme (int fcode, tree exp, rtx target)
{
  switch (fcode)
    {
    case AARCH64_TME_BUILTIN_TSTART:
      target = gen_reg_rtx (DImode);
      emit_insn (GEN_FCN (CODE_FOR_tstart) (target));
      break;

    case AARCH64_TME_BUILTIN_TTEST:
      target = gen_reg_rtx (DImode);
      emit_insn (GEN_FCN (CODE_FOR_ttest) (target));
      break;

    case AARCH64_TME_BUILTIN_TCOMMIT:
      emit_insn (GEN_FCN (CODE_FOR_tcommit) ());
      break;

    case AARCH64_TME_BUILTIN_TCANCEL:
      {
	tree arg0 = CALL_EXPR_ARG (exp, 0);
	rtx op0 = expand_normal (arg0);
	if (CONST_INT_P (op0) && UINTVAL (op0) <= 65536)
	  emit_insn (GEN_FCN (CODE_FOR_tcancel) (op0));
	else
	  {
	    error ("%Kargument must be a 16-bit constant immediate", exp);
	    return const0_rtx;
	  }
      }
      break;

    default :
      gcc_unreachable ();
    }
    return target;
}

/* Expand a random number builtin EXP with code FCODE, putting the result
   int TARGET.  If IGNORE is true the return value is ignored.  */

rtx
aarch64_expand_rng_builtin (tree exp, rtx target, int fcode, int ignore)
{
  rtx pat;
  enum insn_code icode;
  if (fcode == AARCH64_BUILTIN_RNG_RNDR)
    icode = CODE_FOR_aarch64_rndr;
  else if (fcode == AARCH64_BUILTIN_RNG_RNDRRS)
    icode = CODE_FOR_aarch64_rndrrs;
  else
    gcc_unreachable ();

  rtx rand = gen_reg_rtx (DImode);
  pat = GEN_FCN (icode) (rand);
  if (!pat)
    return NULL_RTX;

  tree arg0 = CALL_EXPR_ARG (exp, 0);
  rtx res_addr = expand_normal (arg0);
  res_addr = convert_memory_address (Pmode, res_addr);
  rtx res_mem = gen_rtx_MEM (DImode, res_addr);
  emit_insn (pat);
  emit_move_insn (res_mem, rand);
  /* If the status result is unused don't generate the CSET code.  */
  if (ignore)
    return target;

  rtx cc_reg = gen_rtx_REG (CC_Zmode, CC_REGNUM);
  rtx cmp_rtx = gen_rtx_fmt_ee (EQ, SImode, cc_reg, const0_rtx);
  emit_insn (gen_aarch64_cstoresi (target, cmp_rtx, cc_reg));
  return target;
}

/* Expand an expression EXP that calls a MEMTAG built-in FCODE
   with result going to TARGET.  */
static rtx
aarch64_expand_builtin_memtag (int fcode, tree exp, rtx target)
{
  if (TARGET_ILP32)
    {
      error ("Memory Tagging Extension does not support %<-mabi=ilp32%>");
      return const0_rtx;
    }

  rtx pat = NULL;
  enum insn_code icode = aarch64_memtag_builtin_data[fcode -
			   AARCH64_MEMTAG_BUILTIN_START - 1].icode;

  rtx op0 = expand_normal (CALL_EXPR_ARG (exp, 0));
  machine_mode mode0 = GET_MODE (op0);
  op0 = force_reg (mode0 == VOIDmode ? DImode : mode0, op0);
  op0 = convert_to_mode (DImode, op0, true);

  switch (fcode)
    {
      case AARCH64_MEMTAG_BUILTIN_IRG:
      case AARCH64_MEMTAG_BUILTIN_GMI:
      case AARCH64_MEMTAG_BUILTIN_SUBP:
      case AARCH64_MEMTAG_BUILTIN_INC_TAG:
	{
	  if (! target
	      || GET_MODE (target) != DImode
	      || ! (*insn_data[icode].operand[0].predicate) (target, DImode))
	    target = gen_reg_rtx (DImode);

	  if (fcode == AARCH64_MEMTAG_BUILTIN_INC_TAG)
	    {
	      rtx op1 = expand_normal (CALL_EXPR_ARG (exp, 1));

	      if ((*insn_data[icode].operand[3].predicate) (op1, QImode))
		{
		  pat = GEN_FCN (icode) (target, op0, const0_rtx, op1);
		  break;
		}
	      error ("%Kargument %d must be a constant immediate "
		     "in range [0,15]", exp, 2);
	      return const0_rtx;
	    }
	  else
	    {
	      rtx op1 = expand_normal (CALL_EXPR_ARG (exp, 1));
	      machine_mode mode1 = GET_MODE (op1);
	      op1 = force_reg (mode1 == VOIDmode ? DImode : mode1, op1);
	      op1 = convert_to_mode (DImode, op1, true);
	      pat = GEN_FCN (icode) (target, op0, op1);
	    }
	  break;
	}
      case AARCH64_MEMTAG_BUILTIN_GET_TAG:
	target = op0;
	pat = GEN_FCN (icode) (target, op0, const0_rtx);
	break;
      case AARCH64_MEMTAG_BUILTIN_SET_TAG:
	pat = GEN_FCN (icode) (op0, op0, const0_rtx);
	break;
      default:
	gcc_unreachable();
    }

  if (!pat)
    return NULL_RTX;

  emit_insn (pat);
  return target;
}

/* Expand an expression EXP that calls built-in function FCODE,
   with result going to TARGET if that's convenient.  IGNORE is true
   if the result of the builtin is ignored.  */
rtx
aarch64_general_expand_builtin (unsigned int fcode, tree exp, rtx target,
				int ignore)
{
  int icode;
  rtx pat, op0;
  tree arg0;

  switch (fcode)
    {
    case AARCH64_BUILTIN_GET_FPCR:
    case AARCH64_BUILTIN_SET_FPCR:
    case AARCH64_BUILTIN_GET_FPSR:
    case AARCH64_BUILTIN_SET_FPSR:
      if ((fcode == AARCH64_BUILTIN_GET_FPCR)
	  || (fcode == AARCH64_BUILTIN_GET_FPSR))
	{
	  icode = (fcode == AARCH64_BUILTIN_GET_FPSR) ?
	    CODE_FOR_get_fpsr : CODE_FOR_get_fpcr;
	  target = gen_reg_rtx (SImode);
	  pat = GEN_FCN (icode) (target);
	}
      else
	{
	  target = NULL_RTX;
	  icode = (fcode == AARCH64_BUILTIN_SET_FPSR) ?
	    CODE_FOR_set_fpsr : CODE_FOR_set_fpcr;
	  arg0 = CALL_EXPR_ARG (exp, 0);
	  op0 = force_reg (SImode, expand_normal (arg0));
	  pat = GEN_FCN (icode) (op0);
	}
      emit_insn (pat);
      return target;

    case AARCH64_PAUTH_BUILTIN_AUTIA1716:
    case AARCH64_PAUTH_BUILTIN_PACIA1716:
    case AARCH64_PAUTH_BUILTIN_AUTIB1716:
    case AARCH64_PAUTH_BUILTIN_PACIB1716:
    case AARCH64_PAUTH_BUILTIN_XPACLRI:
      arg0 = CALL_EXPR_ARG (exp, 0);
      op0 = force_reg (Pmode, expand_normal (arg0));

      if (!target)
	target = gen_reg_rtx (Pmode);
      else
	target = force_reg (Pmode, target);

      emit_move_insn (target, op0);

      if (fcode == AARCH64_PAUTH_BUILTIN_XPACLRI)
	{
	  rtx lr = gen_rtx_REG (Pmode, R30_REGNUM);
	  icode = CODE_FOR_xpaclri;
	  emit_move_insn (lr, op0);
	  emit_insn (GEN_FCN (icode) ());
	  emit_move_insn (target, lr);
	}
      else
	{
	  tree arg1 = CALL_EXPR_ARG (exp, 1);
	  rtx op1 = force_reg (Pmode, expand_normal (arg1));
	  switch (fcode)
	    {
	    case AARCH64_PAUTH_BUILTIN_AUTIA1716:
	      icode = CODE_FOR_autia1716;
	      break;
	    case AARCH64_PAUTH_BUILTIN_AUTIB1716:
	      icode = CODE_FOR_autib1716;
	      break;
	    case AARCH64_PAUTH_BUILTIN_PACIA1716:
	      icode = CODE_FOR_pacia1716;
	      break;
	    case AARCH64_PAUTH_BUILTIN_PACIB1716:
	      icode = CODE_FOR_pacib1716;
	      break;
	    default:
	      icode = 0;
	      gcc_unreachable ();
	    }

	  rtx x16_reg = gen_rtx_REG (Pmode, R16_REGNUM);
	  rtx x17_reg = gen_rtx_REG (Pmode, R17_REGNUM);
	  emit_move_insn (x17_reg, op0);
	  emit_move_insn (x16_reg, op1);
	  emit_insn (GEN_FCN (icode) ());
	  emit_move_insn (target, x17_reg);
	}

      return target;

    case AARCH64_JSCVT:
      {
	expand_operand ops[2];
	create_output_operand (&ops[0], target, SImode);
	op0 = expand_normal (CALL_EXPR_ARG (exp, 0));
	create_input_operand (&ops[1], op0, DFmode);
	expand_insn (CODE_FOR_aarch64_fjcvtzs, 2, ops);
	return ops[0].value;
      }

    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ0_V2SF:
    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ90_V2SF:
    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ180_V2SF:
    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ270_V2SF:
    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ0_V4HF:
    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ90_V4HF:
    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ180_V4HF:
    case AARCH64_SIMD_BUILTIN_FCMLA_LANEQ270_V4HF:
      return aarch64_expand_fcmla_builtin (exp, target, fcode);
    case AARCH64_BUILTIN_RNG_RNDR:
    case AARCH64_BUILTIN_RNG_RNDRRS:
      return aarch64_expand_rng_builtin (exp, target, fcode, ignore);
    }

  if (fcode >= AARCH64_SIMD_BUILTIN_BASE && fcode <= AARCH64_SIMD_BUILTIN_MAX)
    return aarch64_simd_expand_builtin (fcode, exp, target);
  else if (fcode >= AARCH64_CRC32_BUILTIN_BASE && fcode <= AARCH64_CRC32_BUILTIN_MAX)
    return aarch64_crc32_expand_builtin (fcode, exp, target);

  if (fcode == AARCH64_BUILTIN_RSQRT_DF
      || fcode == AARCH64_BUILTIN_RSQRT_SF
      || fcode == AARCH64_BUILTIN_RSQRT_V2DF
      || fcode == AARCH64_BUILTIN_RSQRT_V2SF
      || fcode == AARCH64_BUILTIN_RSQRT_V4SF)
    return aarch64_expand_builtin_rsqrt (fcode, exp, target);

  if (fcode == AARCH64_TME_BUILTIN_TSTART
      || fcode == AARCH64_TME_BUILTIN_TCOMMIT
      || fcode == AARCH64_TME_BUILTIN_TTEST
      || fcode == AARCH64_TME_BUILTIN_TCANCEL)
    return aarch64_expand_builtin_tme (fcode, exp, target);

  if (fcode >= AARCH64_MEMTAG_BUILTIN_START
      && fcode <= AARCH64_MEMTAG_BUILTIN_END)
    return aarch64_expand_builtin_memtag (fcode, exp, target);

  gcc_unreachable ();
}

tree
aarch64_builtin_vectorized_function (unsigned int fn, tree type_out,
				     tree type_in)
{
  machine_mode in_mode, out_mode;

  if (TREE_CODE (type_out) != VECTOR_TYPE
      || TREE_CODE (type_in) != VECTOR_TYPE)
    return NULL_TREE;

  out_mode = TYPE_MODE (type_out);
  in_mode = TYPE_MODE (type_in);

#undef AARCH64_CHECK_BUILTIN_MODE
#define AARCH64_CHECK_BUILTIN_MODE(C, N) 1
#define AARCH64_FIND_FRINT_VARIANT(N) \
  (AARCH64_CHECK_BUILTIN_MODE (2, D) \
    ? aarch64_builtin_decls[AARCH64_SIMD_BUILTIN_UNOP_##N##v2df] \
    : (AARCH64_CHECK_BUILTIN_MODE (4, S) \
	? aarch64_builtin_decls[AARCH64_SIMD_BUILTIN_UNOP_##N##v4sf] \
	: (AARCH64_CHECK_BUILTIN_MODE (2, S) \
	   ? aarch64_builtin_decls[AARCH64_SIMD_BUILTIN_UNOP_##N##v2sf] \
	   : NULL_TREE)))
  switch (fn)
    {
#undef AARCH64_CHECK_BUILTIN_MODE
#define AARCH64_CHECK_BUILTIN_MODE(C, N) \
  (out_mode == V##C##N##Fmode && in_mode == V##C##N##Fmode)
    CASE_CFN_FLOOR:
      return AARCH64_FIND_FRINT_VARIANT (floor);
    CASE_CFN_CEIL:
      return AARCH64_FIND_FRINT_VARIANT (ceil);
    CASE_CFN_TRUNC:
      return AARCH64_FIND_FRINT_VARIANT (btrunc);
    CASE_CFN_ROUND:
      return AARCH64_FIND_FRINT_VARIANT (round);
    CASE_CFN_NEARBYINT:
      return AARCH64_FIND_FRINT_VARIANT (nearbyint);
    CASE_CFN_SQRT:
      return AARCH64_FIND_FRINT_VARIANT (sqrt);
#undef AARCH64_CHECK_BUILTIN_MODE
#define AARCH64_CHECK_BUILTIN_MODE(C, N) \
  (out_mode == V##C##SImode && in_mode == V##C##N##Imode)
    CASE_CFN_CLZ:
      {
	if (AARCH64_CHECK_BUILTIN_MODE (4, S))
	  return aarch64_builtin_decls[AARCH64_SIMD_BUILTIN_UNOP_clzv4si];
	return NULL_TREE;
      }
    CASE_CFN_CTZ:
      {
	if (AARCH64_CHECK_BUILTIN_MODE (2, S))
	  return aarch64_builtin_decls[AARCH64_SIMD_BUILTIN_UNOP_ctzv2si];
	else if (AARCH64_CHECK_BUILTIN_MODE (4, S))
	  return aarch64_builtin_decls[AARCH64_SIMD_BUILTIN_UNOP_ctzv4si];
	return NULL_TREE;
      }
#undef AARCH64_CHECK_BUILTIN_MODE
#define AARCH64_CHECK_BUILTIN_MODE(C, N) \
  (out_mode == V##C##N##Imode && in_mode == V##C##N##Fmode)
    CASE_CFN_IFLOOR:
    CASE_CFN_LFLOOR:
    CASE_CFN_LLFLOOR:
      {
	enum aarch64_builtins builtin;
	if (AARCH64_CHECK_BUILTIN_MODE (2, D))
	  builtin = AARCH64_SIMD_BUILTIN_UNOP_lfloorv2dfv2di;
	else if (AARCH64_CHECK_BUILTIN_MODE (4, S))
	  builtin = AARCH64_SIMD_BUILTIN_UNOP_lfloorv4sfv4si;
	else if (AARCH64_CHECK_BUILTIN_MODE (2, S))
	  builtin = AARCH64_SIMD_BUILTIN_UNOP_lfloorv2sfv2si;
	else
	  return NULL_TREE;

	return aarch64_builtin_decls[builtin];
      }
    CASE_CFN_ICEIL:
    CASE_CFN_LCEIL:
    CASE_CFN_LLCEIL:
      {
	enum aarch64_builtins builtin;
	if (AARCH64_CHECK_BUILTIN_MODE (2, D))
	  builtin = AARCH64_SIMD_BUILTIN_UNOP_lceilv2dfv2di;
	else if (AARCH64_CHECK_BUILTIN_MODE (4, S))
	  builtin = AARCH64_SIMD_BUILTIN_UNOP_lceilv4sfv4si;
	else if (AARCH64_CHECK_BUILTIN_MODE (2, S))
	  builtin = AARCH64_SIMD_BUILTIN_UNOP_lceilv2sfv2si;
	else
	  return NULL_TREE;

	return aarch64_builtin_decls[builtin];
      }
    CASE_CFN_IROUND:
    CASE_CFN_LROUND:
    CASE_CFN_LLROUND:
      {
	enum aarch64_builtins builtin;
	if (AARCH64_CHECK_BUILTIN_MODE (2, D))
	  builtin =	AARCH64_SIMD_BUILTIN_UNOP_lroundv2dfv2di;
	else if (AARCH64_CHECK_BUILTIN_MODE (4, S))
	  builtin =	AARCH64_SIMD_BUILTIN_UNOP_lroundv4sfv4si;
	else if (AARCH64_CHECK_BUILTIN_MODE (2, S))
	  builtin =	AARCH64_SIMD_BUILTIN_UNOP_lroundv2sfv2si;
	else
	  return NULL_TREE;

	return aarch64_builtin_decls[builtin];
      }
    default:
      return NULL_TREE;
    }

  return NULL_TREE;
}

/* Return builtin for reciprocal square root.  */

tree
aarch64_general_builtin_rsqrt (unsigned int fn)
{
  if (fn == AARCH64_SIMD_BUILTIN_UNOP_sqrtv2df)
    return aarch64_builtin_decls[AARCH64_BUILTIN_RSQRT_V2DF];
  if (fn == AARCH64_SIMD_BUILTIN_UNOP_sqrtv2sf)
    return aarch64_builtin_decls[AARCH64_BUILTIN_RSQRT_V2SF];
  if (fn == AARCH64_SIMD_BUILTIN_UNOP_sqrtv4sf)
    return aarch64_builtin_decls[AARCH64_BUILTIN_RSQRT_V4SF];
  return NULL_TREE;
}

#undef VAR1
#define VAR1(T, N, MAP, A) \
  case AARCH64_SIMD_BUILTIN_##T##_##N##A:

/* Try to fold a call to the built-in function with subcode FCODE.  The
   function is passed the N_ARGS arguments in ARGS and it returns a value
   of type TYPE.  Return the new expression on success and NULL_TREE on
   failure.  */
tree
aarch64_general_fold_builtin (unsigned int fcode, tree type,
			      unsigned int n_args ATTRIBUTE_UNUSED, tree *args)
{
  switch (fcode)
    {
      BUILTIN_VDQF (UNOP, abs, 2)
	return fold_build1 (ABS_EXPR, type, args[0]);
      VAR1 (UNOP, floatv2si, 2, v2sf)
      VAR1 (UNOP, floatv4si, 2, v4sf)
      VAR1 (UNOP, floatv2di, 2, v2df)
	return fold_build1 (FLOAT_EXPR, type, args[0]);
      default:
	break;
    }

  return NULL_TREE;
}

/* Try to fold STMT, given that it's a call to the built-in function with
   subcode FCODE.  Return the new statement on success and null on
   failure.  */
gimple *
aarch64_general_gimple_fold_builtin (unsigned int fcode, gcall *stmt)
{
  gimple *new_stmt = NULL;
  unsigned nargs = gimple_call_num_args (stmt);
  tree *args = (nargs > 0
		? gimple_call_arg_ptr (stmt, 0)
		: &error_mark_node);

  /* We use gimple's IFN_REDUC_(PLUS|MIN|MAX)s for float, signed int
     and unsigned int; it will distinguish according to the types of
     the arguments to the __builtin.  */
  switch (fcode)
    {
      BUILTIN_VALL (UNOP, reduc_plus_scal_, 10)
	new_stmt = gimple_build_call_internal (IFN_REDUC_PLUS,
					       1, args[0]);
	gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
	break;
      BUILTIN_VDQIF (UNOP, reduc_smax_scal_, 10)
      BUILTIN_VDQ_BHSI (UNOPU, reduc_umax_scal_, 10)
	new_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
					       1, args[0]);
	gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
	break;
      BUILTIN_VDQIF (UNOP, reduc_smin_scal_, 10)
      BUILTIN_VDQ_BHSI (UNOPU, reduc_umin_scal_, 10)
	new_stmt = gimple_build_call_internal (IFN_REDUC_MIN,
					       1, args[0]);
	gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
	break;
      BUILTIN_GPF (BINOP, fmulx, 0)
	{
	  gcc_assert (nargs == 2);
	  bool a0_cst_p = TREE_CODE (args[0]) == REAL_CST;
	  bool a1_cst_p = TREE_CODE (args[1]) == REAL_CST;
	  if (a0_cst_p || a1_cst_p)
	    {
	      if (a0_cst_p && a1_cst_p)
		{
		  tree t0 = TREE_TYPE (args[0]);
		  real_value a0 = (TREE_REAL_CST (args[0]));
		  real_value a1 = (TREE_REAL_CST (args[1]));
		  if (real_equal (&a1, &dconst0))
		    std::swap (a0, a1);
		  /* According to real_equal (), +0 equals -0.  */
		  if (real_equal (&a0, &dconst0) && real_isinf (&a1))
		    {
		      real_value res = dconst2;
		      res.sign = a0.sign ^ a1.sign;
		      new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
						      REAL_CST,
						      build_real (t0, res));
		    }
		  else
		    new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
						    MULT_EXPR,
						    args[0], args[1]);
		}
	      else /* a0_cst_p ^ a1_cst_p.  */
		{
		  real_value const_part = a0_cst_p
		    ? TREE_REAL_CST (args[0]) : TREE_REAL_CST (args[1]);
		  if (!real_equal (&const_part, &dconst0)
		      && !real_isinf (&const_part))
		    new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
						    MULT_EXPR, args[0],
						    args[1]);
		}
	    }
	  if (new_stmt)
	    {
	      gimple_set_vuse (new_stmt, gimple_vuse (stmt));
	      gimple_set_vdef (new_stmt, gimple_vdef (stmt));
	    }
	  break;
	}
    default:
      break;
    }
  return new_stmt;
}

void
aarch64_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
{
  const unsigned AARCH64_FE_INVALID = 1;
  const unsigned AARCH64_FE_DIVBYZERO = 2;
  const unsigned AARCH64_FE_OVERFLOW = 4;
  const unsigned AARCH64_FE_UNDERFLOW = 8;
  const unsigned AARCH64_FE_INEXACT = 16;
  const unsigned HOST_WIDE_INT AARCH64_FE_ALL_EXCEPT = (AARCH64_FE_INVALID
							| AARCH64_FE_DIVBYZERO
							| AARCH64_FE_OVERFLOW
							| AARCH64_FE_UNDERFLOW
							| AARCH64_FE_INEXACT);
  const unsigned HOST_WIDE_INT AARCH64_FE_EXCEPT_SHIFT = 8;
  tree fenv_cr, fenv_sr, get_fpcr, set_fpcr, mask_cr, mask_sr;
  tree ld_fenv_cr, ld_fenv_sr, masked_fenv_cr, masked_fenv_sr, hold_fnclex_cr;
  tree hold_fnclex_sr, new_fenv_var, reload_fenv, restore_fnenv, get_fpsr, set_fpsr;
  tree update_call, atomic_feraiseexcept, hold_fnclex, masked_fenv, ld_fenv;

  /* Generate the equivalence of :
       unsigned int fenv_cr;
       fenv_cr = __builtin_aarch64_get_fpcr ();

       unsigned int fenv_sr;
       fenv_sr = __builtin_aarch64_get_fpsr ();

       Now set all exceptions to non-stop
       unsigned int mask_cr
		= ~(AARCH64_FE_ALL_EXCEPT << AARCH64_FE_EXCEPT_SHIFT);
       unsigned int masked_cr;
       masked_cr = fenv_cr & mask_cr;

       And clear all exception flags
       unsigned int maske_sr = ~AARCH64_FE_ALL_EXCEPT;
       unsigned int masked_cr;
       masked_sr = fenv_sr & mask_sr;

       __builtin_aarch64_set_cr (masked_cr);
       __builtin_aarch64_set_sr (masked_sr);  */

  fenv_cr = create_tmp_var_raw (unsigned_type_node);
  fenv_sr = create_tmp_var_raw (unsigned_type_node);

  get_fpcr = aarch64_builtin_decls[AARCH64_BUILTIN_GET_FPCR];
  set_fpcr = aarch64_builtin_decls[AARCH64_BUILTIN_SET_FPCR];
  get_fpsr = aarch64_builtin_decls[AARCH64_BUILTIN_GET_FPSR];
  set_fpsr = aarch64_builtin_decls[AARCH64_BUILTIN_SET_FPSR];

  mask_cr = build_int_cst (unsigned_type_node,
			   ~(AARCH64_FE_ALL_EXCEPT << AARCH64_FE_EXCEPT_SHIFT));
  mask_sr = build_int_cst (unsigned_type_node,
			   ~(AARCH64_FE_ALL_EXCEPT));

  ld_fenv_cr = build4 (TARGET_EXPR, unsigned_type_node,
		       fenv_cr, build_call_expr (get_fpcr, 0),
		       NULL_TREE, NULL_TREE);
  ld_fenv_sr = build4 (TARGET_EXPR, unsigned_type_node,
		       fenv_sr, build_call_expr (get_fpsr, 0),
		       NULL_TREE, NULL_TREE);

  masked_fenv_cr = build2 (BIT_AND_EXPR, unsigned_type_node, fenv_cr, mask_cr);
  masked_fenv_sr = build2 (BIT_AND_EXPR, unsigned_type_node, fenv_sr, mask_sr);

  hold_fnclex_cr = build_call_expr (set_fpcr, 1, masked_fenv_cr);
  hold_fnclex_sr = build_call_expr (set_fpsr, 1, masked_fenv_sr);

  hold_fnclex = build2 (COMPOUND_EXPR, void_type_node, hold_fnclex_cr,
			hold_fnclex_sr);
  masked_fenv = build2 (COMPOUND_EXPR, void_type_node, masked_fenv_cr,
			masked_fenv_sr);
  ld_fenv = build2 (COMPOUND_EXPR, void_type_node, ld_fenv_cr, ld_fenv_sr);

  *hold = build2 (COMPOUND_EXPR, void_type_node,
		  build2 (COMPOUND_EXPR, void_type_node, masked_fenv, ld_fenv),
		  hold_fnclex);

  /* Store the value of masked_fenv to clear the exceptions:
     __builtin_aarch64_set_fpsr (masked_fenv_sr);  */

  *clear = build_call_expr (set_fpsr, 1, masked_fenv_sr);

  /* Generate the equivalent of :
       unsigned int new_fenv_var;
       new_fenv_var = __builtin_aarch64_get_fpsr ();

       __builtin_aarch64_set_fpsr (fenv_sr);

       __atomic_feraiseexcept (new_fenv_var);  */

  new_fenv_var = create_tmp_var_raw (unsigned_type_node);
  reload_fenv = build4 (TARGET_EXPR, unsigned_type_node,
			new_fenv_var, build_call_expr (get_fpsr, 0),
			NULL_TREE, NULL_TREE);
  restore_fnenv = build_call_expr (set_fpsr, 1, fenv_sr);
  atomic_feraiseexcept = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
  update_call = build_call_expr (atomic_feraiseexcept, 1,
				 fold_convert (integer_type_node, new_fenv_var));
  *update = build2 (COMPOUND_EXPR, void_type_node,
		    build2 (COMPOUND_EXPR, void_type_node,
			    reload_fenv, restore_fnenv), update_call);
}

/* Resolve overloaded MEMTAG build-in functions.  */
#define AARCH64_BUILTIN_SUBCODE(F) \
  (DECL_MD_FUNCTION_CODE (F) >> AARCH64_BUILTIN_SHIFT)

static tree
aarch64_resolve_overloaded_memtag (location_t loc,
				   tree fndecl, void *pass_params)
{
  vec<tree, va_gc> *params = static_cast<vec<tree, va_gc> *> (pass_params);
  unsigned param_num = params ? params->length() : 0;
  unsigned int fcode = AARCH64_BUILTIN_SUBCODE (fndecl);
  tree inittype = aarch64_memtag_builtin_data[
		    fcode - AARCH64_MEMTAG_BUILTIN_START - 1].ftype;
  unsigned arg_num = list_length (TYPE_ARG_TYPES (inittype)) - 1;

  if (param_num != arg_num)
    {
      TREE_TYPE (fndecl) = inittype;
      return NULL_TREE;
    }
  tree retype = NULL;

  if (fcode == AARCH64_MEMTAG_BUILTIN_SUBP)
    {
      tree t0 = TREE_TYPE ((*params)[0]);
      tree t1 = TREE_TYPE ((*params)[1]);

      if (t0 == error_mark_node || TREE_CODE (t0) != POINTER_TYPE)
	t0 = ptr_type_node;
      if (t1 == error_mark_node || TREE_CODE (t1) != POINTER_TYPE)
	t1 = ptr_type_node;

      if (TYPE_MODE (t0) != DImode)
	warning_at (loc, 1, "expected 64-bit address but argument 1 is %d-bit",
	    (int)tree_to_shwi (DECL_SIZE ((*params)[0])));

      if (TYPE_MODE (t1) != DImode)
	warning_at (loc, 1, "expected 64-bit address but argument 2 is %d-bit",
	    (int)tree_to_shwi (DECL_SIZE ((*params)[1])));

      retype = build_function_type_list (ptrdiff_type_node, t0, t1, NULL);
    }
  else
    {
      tree t0 = TREE_TYPE ((*params)[0]);

      if (t0 == error_mark_node || TREE_CODE (t0) != POINTER_TYPE)
	{
	  TREE_TYPE (fndecl) = inittype;
	  return NULL_TREE;
	}

      if (TYPE_MODE (t0) != DImode)
	warning_at (loc, 1, "expected 64-bit address but argument 1 is %d-bit",
	    (int)tree_to_shwi (DECL_SIZE ((*params)[0])));

      switch (fcode)
	{
	case AARCH64_MEMTAG_BUILTIN_IRG:
	  retype = build_function_type_list (t0, t0, uint64_type_node, NULL);
	  break;
	case AARCH64_MEMTAG_BUILTIN_GMI:
	  retype = build_function_type_list (uint64_type_node, t0,
	      uint64_type_node, NULL);
	  break;
	case AARCH64_MEMTAG_BUILTIN_INC_TAG:
	  retype = build_function_type_list (t0, t0, unsigned_type_node, NULL);
	  break;
	case AARCH64_MEMTAG_BUILTIN_SET_TAG:
	  retype = build_function_type_list (void_type_node, t0, NULL);
	  break;
	case AARCH64_MEMTAG_BUILTIN_GET_TAG:
	  retype = build_function_type_list (t0, t0, NULL);
	  break;
	default:
	  return NULL_TREE;
	}
    }

  if (!retype || retype == error_mark_node)
    TREE_TYPE (fndecl) = inittype;
  else
    TREE_TYPE (fndecl) = retype;

  return NULL_TREE;
}

/* Called at aarch64_resolve_overloaded_builtin in aarch64-c.c.  */
tree
aarch64_resolve_overloaded_builtin_general (location_t loc, tree function,
					    void *pass_params)
{
  unsigned int fcode = AARCH64_BUILTIN_SUBCODE (function);

  if (fcode >= AARCH64_MEMTAG_BUILTIN_START
      && fcode <= AARCH64_MEMTAG_BUILTIN_END)
    return aarch64_resolve_overloaded_memtag(loc, function, pass_params);

  return NULL_TREE;
}

#undef AARCH64_CHECK_BUILTIN_MODE
#undef AARCH64_FIND_FRINT_VARIANT
#undef CF0
#undef CF1
#undef CF2
#undef CF3
#undef CF4
#undef CF10
#undef VAR1
#undef VAR2
#undef VAR3
#undef VAR4
#undef VAR5
#undef VAR6
#undef VAR7
#undef VAR8
#undef VAR9
#undef VAR10
#undef VAR11

#include "gt-aarch64-builtins.h"