Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
;; Machine description for eBPF.
;; Copyright (C) 2019-2020 Free Software Foundation, Inc.

;; This file is part of GCC.

;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.

;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3.  If not see
;; <http://www.gnu.org/licenses/>.

(include "predicates.md")
(include "constraints.md")

;;;; Unspecs

(define_c_enum "unspec" [
  UNSPEC_LDINDABS
  UNSPEC_XADD
])

;;;; Constants

(define_constants
  [(R0_REGNUM		0)
   (R1_REGNUM		1)
   (R2_REGNUM		2)
   (R3_REGNUM		3)
   (R4_REGNUM		4)
   (R5_REGNUM		5)
   (R6_REGNUM		6)
   (R7_REGNUM		7)
   (R8_REGNUM		8)
   (R9_REGNUM		9)
   (R10_REGNUM		10)
   (R11_REGNUM		11)
])

;;;; Attributes

;; Instruction classes.
;; alu		64-bit arithmetic.
;; alu32	32-bit arithmetic.
;; end		endianness conversion instructions.
;; ld		load instructions.
;; lddx		load 64-bit immediate instruction.
;; ldx		generic load instructions.
;; st		generic store instructions for immediates.
;; stx		generic store instructions.
;; jmp		jump instructions.
;; xadd		atomic exchange-and-add instructions.
;; multi	multiword sequence (or user asm statements).

(define_attr "type"
  "unknown,alu,alu32,end,ld,lddw,ldx,st,stx,jmp,xadd,multi"
  (const_string "unknown"))

;; Length of instruction in bytes.
(define_attr "length" ""
  (cond [
         (eq_attr "type" "lddw") (const_int 16)
         ] (const_int 8)))

;; Describe a user's asm statement.
(define_asm_attributes
  [(set_attr "type" "multi")])

;;;; Mode attributes and iterators

(define_mode_attr mop [(QI "b") (HI "h") (SI "w") (DI "dw")
                       (SF "w") (DF "dw")])
(define_mode_attr mtype [(SI "alu32") (DI "alu")])
(define_mode_attr msuffix [(SI "32") (DI "")])

;;;; NOPs

;; The Linux kernel verifier performs some optimizations that rely on
;; nop instructions to be encoded as `ja 0', i.e. a jump to offset 0,
;; which actually means to jump to the next instruction, since in BPF
;; offsets are expressed in 64-bit words _minus one_.

(define_insn "nop"
  [(const_int 0)]
  ""
  "ja\t0"
  [(set_attr "type" "alu")])

;;;; Arithmetic/Logical

;; The arithmetic and logic operations below are defined for SI and DI
;; modes.  The mode iterator AM is used in order to expand to two
;; insns, with the proper modes.
;;
;; 32-bit arithmetic (for SI modes) is implemented using the alu32
;; instructions.

(define_mode_iterator AM [SI DI])

;;; Addition
(define_insn "add<AM:mode>3"
  [(set (match_operand:AM          0 "register_operand"   "=r,r")
        (plus:AM (match_operand:AM 1 "register_operand"   " 0,0")
                 (match_operand:AM 2 "reg_or_imm_operand" " r,I")))]
  "1"
  "add<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;; Subtraction

;; Note that subtractions of constants become additions, so there is
;; no need to handle immediate operands in the subMODE3 insns.

(define_insn "sub<AM:mode>3"
  [(set (match_operand:AM          0 "register_operand" "=r")
        (minus:AM (match_operand:AM 1 "register_operand" " 0")
                  (match_operand:AM 2 "register_operand" " r")))]
  ""
  "sub<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;; Negation
(define_insn "neg<AM:mode>2"
  [(set (match_operand:AM 0 "register_operand" "=r")
        (neg:AM (match_operand:AM 1 "register_operand" " 0")))]
  ""
  "neg<msuffix>\t%0"
  [(set_attr "type" "<mtype>")])

;;; Multiplication
(define_insn "mul<AM:mode>3"
  [(set (match_operand:AM          0 "register_operand"   "=r,r")
        (mult:AM (match_operand:AM 1 "register_operand"   " 0,0")
                 (match_operand:AM 2 "reg_or_imm_operand" " r,I")))]
  ""
  "mul<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

(define_insn "*mulsidi3_zeroextend"
  [(set (match_operand:DI	   0 "register_operand" "=r,r")
        (zero_extend:DI
         (mult:SI (match_operand:SI 1 "register_operand" "0,0")
                  (match_operand:SI 2 "reg_or_imm_operand" "r,I"))))]
  ""
  "mul32\t%0,%2"
  [(set_attr "type" "alu32")])

;;; Division

;; Note that eBPF doesn't provide instructions for signed integer
;; division.

(define_insn "udiv<AM:mode>3"
  [(set (match_operand:AM 0 "register_operand" "=r,r")
        (udiv:AM (match_operand:AM 1 "register_operand" " 0,0")
                 (match_operand:AM 2 "reg_or_imm_operand" "r,I")))]
  ""
  "div<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;; However, xBPF does provide a signed division operator, sdiv.

(define_insn "div<AM:mode>3"
  [(set (match_operand:AM 0 "register_operand" "=r,r")
        (div:AM (match_operand:AM 1 "register_operand" " 0,0")
                (match_operand:AM 2 "reg_or_imm_operand" "r,I")))]
  "TARGET_XBPF"
  "sdiv<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;; Modulus

;; Note that eBPF doesn't provide instructions for signed integer
;; remainder.

(define_insn "umod<AM:mode>3"
  [(set (match_operand:AM 0 "register_operand" "=r,r")
        (umod:AM (match_operand:AM 1 "register_operand" " 0,0")
                 (match_operand:AM 2 "reg_or_imm_operand" "r,I")))]
  ""
  "mod<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;; Again, xBPF provides a signed version, smod.

(define_insn "mod<AM:mode>3"
  [(set (match_operand:AM 0 "register_operand" "=r,r")
        (mod:AM (match_operand:AM 1 "register_operand" " 0,0")
                (match_operand:AM 2 "reg_or_imm_operand" "r,I")))]
  "TARGET_XBPF"
  "smod<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;; Logical AND
(define_insn "and<AM:mode>3"
  [(set (match_operand:AM 0 "register_operand" "=r,r")
        (and:AM (match_operand:AM 1 "register_operand" " 0,0")
                (match_operand:AM 2 "reg_or_imm_operand" "r,I")))]
  ""
  "and<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;; Logical inclusive-OR
(define_insn "ior<AM:mode>3"
  [(set (match_operand:AM 0 "register_operand" "=r,r")
        (ior:AM (match_operand:AM 1 "register_operand" " 0,0")
                (match_operand:AM 2 "reg_or_imm_operand" "r,I")))]
  ""
  "or<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;; Logical exclusive-OR
(define_insn "xor<AM:mode>3"
  [(set (match_operand:AM 0 "register_operand" "=r,r")
        (xor:AM (match_operand:AM 1 "register_operand" " 0,0")
                (match_operand:AM 2 "reg_or_imm_operand" "r,I")))]
  ""
  "xor<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;;; Conversions

;;; Zero-extensions

;; For register operands smaller than 32-bit zero-extending is
;; achieved ANDing the value in the source register to a suitable
;; mask.
;;
;; For register operands bigger or equal than 32-bit, we generate a
;; mov32 instruction to zero the high 32-bits of the destination
;; register.
;;
;; For memory operands, of any width, zero-extending is achieved using
;; the ldx{bhwdw} instructions to load the values in registers.

(define_insn "zero_extendhidi2"
  [(set (match_operand:DI 0 "register_operand" "=r,r")
	(zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "r,m")))]
  ""
  "@
   and\t%0,0xffff
   ldxh\t%0,%1"
  [(set_attr "type" "alu,ldx")])

(define_insn "zero_extendqidi2"
  [(set (match_operand:DI 0 "register_operand" "=r,r")
	(zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "r,m")))]
  ""
  "@
   and\t%0,0xff
   ldxb\t%0,%1"
  [(set_attr "type" "alu,ldx")])

(define_insn "zero_extendsidi2"
  [(set (match_operand:DI 0 "register_operand" "=r,r")
	(zero_extend:DI
	  (match_operand:SI 1 "nonimmediate_operand" "r,m")))]
  ""
  "@
   mov32\t%0,%1
   ldxw\t%0,%1"
  [(set_attr "type" "alu,ldx")])

;;; Sign-extension

;; Sign-extending a 32-bit value into a 64-bit value is achieved using
;; shifting, with instructions generated by the expand below.

(define_expand "extendsidi2"
  [(set (match_operand:DI 0 "register_operand")
	(sign_extend:DI (match_operand:SI 1 "register_operand")))]
  ""
{
  operands[1] = gen_lowpart (DImode, operands[1]);
  emit_insn (gen_ashldi3 (operands[0], operands[1], GEN_INT (32)));
  emit_insn (gen_ashrdi3 (operands[0], operands[0], GEN_INT (32)));
  DONE;
})

;;;; Data movement

(define_mode_iterator MM [QI HI SI DI SF DF])

(define_expand "mov<MM:mode>"
  [(set (match_operand:MM 0 "general_operand")
        (match_operand:MM 1 "general_operand"))]
        ""
        "
{
  if (!register_operand(operands[0], <MM:MODE>mode)
      && !register_operand(operands[1], <MM:MODE>mode))
    operands[1] = force_reg (<MM:MODE>mode, operands[1]);
}")

(define_insn "*mov<MM:mode>"
  [(set (match_operand:MM 0 "nonimmediate_operand" "=r, r,r,m,m")
        (match_operand:MM 1 "mov_src_operand"      " m,rI,B,r,I"))]
  ""
  "@
   ldx<mop>\t%0,%1
   mov\t%0,%1
   lddw\t%0,%1
   stx<mop>\t%0,%1
   st<mop>\t%0,%1"
[(set_attr "type" "ldx,alu,alu,stx,st")])

;;;; Shifts

(define_mode_iterator SIM [SI DI])

(define_insn "ashr<SIM:mode>3"
  [(set (match_operand:SIM 0 "register_operand"                 "=r,r")
        (ashiftrt:SIM (match_operand:SIM 1 "register_operand"   " 0,0")
                      (match_operand:SIM 2 "reg_or_imm_operand" " r,I")))]
  ""
  "arsh<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

(define_insn "ashl<SIM:mode>3"
  [(set (match_operand:SIM 0 "register_operand"               "=r,r")
        (ashift:SIM (match_operand:SIM 1 "register_operand"   " 0,0")
                    (match_operand:SIM 2 "reg_or_imm_operand" " r,I")))]
  ""
  "lsh<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

(define_insn "lshr<SIM:mode>3"
  [(set (match_operand:SIM 0 "register_operand"                 "=r,r")
        (lshiftrt:SIM (match_operand:SIM 1 "register_operand"   " 0,0")
                      (match_operand:SIM 2 "reg_or_imm_operand" " r,I")))]
  ""
  "rsh<msuffix>\t%0,%2"
  [(set_attr "type" "<mtype>")])

;;;; Conditional branches

;; The eBPF jump instructions use 64-bit arithmetic when evaluating
;; the jump conditions.  Therefore we use DI modes below.

(define_expand "cbranchdi4"
  [(set (pc)
	(if_then_else (match_operator 0 "comparison_operator"
			[(match_operand:DI 1 "register_operand")
			 (match_operand:DI 2 "reg_or_imm_operand")])
		      (label_ref (match_operand 3 "" ""))
		      (pc)))]
  ""
{
  if (!ordered_comparison_operator (operands[0], VOIDmode))
    FAIL;
})

(define_insn "*branch_on_di"
  [(set (pc)
	(if_then_else (match_operator 3 "ordered_comparison_operator"
			 [(match_operand:DI 0 "register_operand" "r")
			  (match_operand:DI 1 "reg_or_imm_operand" "rI")])
		      (label_ref (match_operand 2 "" ""))
		      (pc)))]
  ""
{
  int code = GET_CODE (operands[3]);

  switch (code)
  {
  case EQ: return "jeq\t%0,%1,%2"; break;
  case NE: return "jne\t%0,%1,%2"; break;
  case LT: return "jslt\t%0,%1,%2"; break;
  case LE: return "jsle\t%0,%1,%2"; break;
  case GT: return "jsgt\t%0,%1,%2"; break;
  case GE: return "jsge\t%0,%1,%2"; break;
  case LTU: return "jlt\t%0,%1,%2"; break;
  case LEU: return "jle\t%0,%1,%2"; break;
  case GTU: return "jgt\t%0,%1,%2"; break;
  case GEU: return "jge\t%0,%1,%2"; break;
  default:
    gcc_unreachable ();
    return "";
  }
}
  [(set_attr "type" "jmp")])

;;;; Unconditional branches

(define_insn "jump"
  [(set (pc)
        (label_ref (match_operand 0 "" "")))]
  ""
  "ja\t%0"
[(set_attr "type" "jmp")])

;;;; Function prologue/epilogue

(define_insn "exit"
  [(simple_return)]
  ""
  "exit"
  [(set_attr "type" "jmp")])

(define_expand "prologue"
  [(const_int 0)]
  ""
{
  bpf_expand_prologue ();
  DONE;
})

(define_expand "epilogue"
  [(const_int 0)]
  ""
{
  bpf_expand_epilogue ();
  DONE;
})

;;;; Function calls

(define_expand "call"
  [(parallel [(call (match_operand 0 "")
		    (match_operand 1 ""))
	      (use (match_operand 2 ""))	;; next_arg_reg
	      (use (match_operand 3 ""))])]	;; struct_value_size_rtx
  ""
{
  rtx target = XEXP (operands[0], 0);
  emit_call_insn (gen_call_internal (target, operands[1]));
  DONE;
})

(define_insn "call_internal"
  [(call (mem:DI (match_operand:DI 0 "call_operand" "Sr"))
         (match_operand:SI 1 "general_operand" ""))]
  ;; operands[2] is next_arg_register
  ;; operands[3] is struct_value_size_rtx.
  ""
  { return bpf_output_call (operands[0]); }
  [(set_attr "type" "jmp")])

(define_expand "call_value"
  [(parallel [(set (match_operand 0 "")
		   (call (match_operand 1 "")
			 (match_operand 2 "")))
	      (use (match_operand 3 ""))])]		;; next_arg_reg
  ""
{
  rtx target = XEXP (operands[1], 0);
  emit_call_insn (gen_call_value_internal (operands[0], target,
                                           operands[2]));
  DONE;
})

(define_insn "call_value_internal"
  [(set (match_operand 0 "register_operand" "")
	(call (mem:DI (match_operand:DI 1 "call_operand" "Sr"))
	      (match_operand:SI 2 "general_operand" "")))]
  ;; operands[3] is next_arg_register
  ;; operands[4] is struct_value_size_rtx.
  ""
  { return bpf_output_call (operands[1]); }
  [(set_attr "type" "jmp")])

(define_insn "sibcall"
  [(call (label_ref (match_operand 0 "" ""))
	 (match_operand:SI 1 "general_operand" ""))]
  ;; operands[2] is next_arg_register
  ;; operands[3] is struct_value_size_rtx.
  ""
  "ja\t%0"
  [(set_attr "type" "jmp")])

;;;; Non-generic load instructions

(define_mode_iterator LDM [QI HI SI DI])
(define_mode_attr ldop [(QI "b") (HI "h") (SI "w") (DI "dw")])

(define_insn "ldind<ldop>"
  [(set (reg:LDM R0_REGNUM)
        (unspec:LDM [(match_operand:DI 0 "register_operand" "r")
                    (match_operand:SI 1 "imm32_operand" "I")]
                    UNSPEC_LDINDABS))
   (clobber (reg:DI R1_REGNUM))
   (clobber (reg:DI R2_REGNUM))
   (clobber (reg:DI R3_REGNUM))
   (clobber (reg:DI R4_REGNUM))]
  ""
  "ldind<ldop>\t%0,%1"
  [(set_attr "type" "ld")])

(define_insn "ldabs<ldop>"
  [(set (reg:LDM R0_REGNUM)
        (unspec:LDM [(match_operand:SI 0 "imm32_operand" "I")
                    (match_operand:SI 1 "imm32_operand" "I")]
                    UNSPEC_LDINDABS))
   (clobber (reg:DI R1_REGNUM))
   (clobber (reg:DI R2_REGNUM))
   (clobber (reg:DI R3_REGNUM))
   (clobber (reg:DI R4_REGNUM))]
  ""
  "ldabs<ldop>\t%0"
  [(set_attr "type" "ld")])

;;;; Atomic increments

(define_mode_iterator AMO [SI DI])

(define_insn "atomic_add<AMO:mode>"
  [(set (match_operand:AMO 0 "memory_operand" "+m")
        (unspec_volatile:AMO
         [(plus:AMO (match_dup 0)
                    (match_operand:AMO 1 "register_operand" "r"))
          (match_operand:SI 2 "const_int_operand")] ;; Memory model.
         UNSPEC_XADD))]
  ""
  "xadd<mop>\t%0,%1"
  [(set_attr "type" "xadd")])