Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
This is gfortran.info, produced by makeinfo version 6.8 from
gfortran.texi.

Copyright (C) 1999-2020 Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover Texts
being (a) (see below), and with the Back-Cover Texts being (b) (see
below).  A copy of the license is included in the section entitled "GNU
Free Documentation License".

   (a) The FSF's Front-Cover Text is:

   A GNU Manual

   (b) The FSF's Back-Cover Text is:

   You have freedom to copy and modify this GNU Manual, like GNU
software.  Copies published by the Free Software Foundation raise funds
for GNU development.
INFO-DIR-SECTION Software development
START-INFO-DIR-ENTRY
* gfortran: (gfortran).                  The GNU Fortran Compiler.
END-INFO-DIR-ENTRY

   This file documents the use and the internals of the GNU Fortran
compiler, ('gfortran').

   Published by the Free Software Foundation 51 Franklin Street, Fifth
Floor Boston, MA 02110-1301 USA

   Copyright (C) 1999-2020 Free Software Foundation, Inc.

   Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Funding Free Software", the Front-Cover Texts
being (a) (see below), and with the Back-Cover Texts being (b) (see
below).  A copy of the license is included in the section entitled "GNU
Free Documentation License".

   (a) The FSF's Front-Cover Text is:

   A GNU Manual

   (b) The FSF's Back-Cover Text is:

   You have freedom to copy and modify this GNU Manual, like GNU
software.  Copies published by the Free Software Foundation raise funds
for GNU development.


File: gfortran.info,  Node: Top,  Next: Introduction,  Up: (dir)

Introduction
************

This manual documents the use of 'gfortran', the GNU Fortran compiler.
You can find in this manual how to invoke 'gfortran', as well as its
features and incompatibilities.

* Menu:

* Introduction::

Part I: Invoking GNU Fortran
* Invoking GNU Fortran:: Command options supported by 'gfortran'.
* Runtime::              Influencing runtime behavior with environment variables.

Part II: Language Reference
* Fortran standards status::      Fortran 2003, 2008 and 2018 features supported by GNU Fortran.
* Compiler Characteristics::      User-visible implementation details.
* Extensions::                    Language extensions implemented by GNU Fortran.
* Mixed-Language Programming::    Interoperability with C
* Coarray Programming::
* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
* Intrinsic Modules::    Intrinsic modules supported by GNU Fortran.

* Contributing::         How you can help.
* Copying::              GNU General Public License says
                         how you can copy and share GNU Fortran.
* GNU Free Documentation License::
                         How you can copy and share this manual.
* Funding::              How to help assure continued work for free software.
* Option Index::         Index of command line options
* Keyword Index::        Index of concepts


File: gfortran.info,  Node: Introduction,  Next: Invoking GNU Fortran,  Prev: Top,  Up: Top

1 Introduction
**************

The GNU Fortran compiler front end was designed initially as a free
replacement for, or alternative to, the Unix 'f95' command; 'gfortran'
is the command you will use to invoke the compiler.

* Menu:

* About GNU Fortran::    What you should know about the GNU Fortran compiler.
* GNU Fortran and GCC::  You can compile Fortran, C, or other programs.
* Preprocessing and conditional compilation:: The Fortran preprocessor
* GNU Fortran and G77::  Why we chose to start from scratch.
* Project Status::       Status of GNU Fortran, roadmap, proposed extensions.
* Standards::            Standards supported by GNU Fortran.


File: gfortran.info,  Node: About GNU Fortran,  Next: GNU Fortran and GCC,  Up: Introduction

1.1 About GNU Fortran
=====================

The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
completely, parts of the Fortran 2003, 2008 and 2018 standards, and
several vendor extensions.  The development goal is to provide the
following features:

   * Read a user's program, stored in a file and containing instructions
     written in Fortran 77, Fortran 90, Fortran 95, Fortran 2003,
     Fortran 2008 or Fortran 2018.  This file contains "source code".

   * Translate the user's program into instructions a computer can carry
     out more quickly than it takes to translate the instructions in the
     first place.  The result after compilation of a program is "machine
     code", code designed to be efficiently translated and processed by
     a machine such as your computer.  Humans usually are not as good
     writing machine code as they are at writing Fortran (or C++, Ada,
     or Java), because it is easy to make tiny mistakes writing machine
     code.

   * Provide the user with information about the reasons why the
     compiler is unable to create a binary from the source code.
     Usually this will be the case if the source code is flawed.  The
     Fortran 90 standard requires that the compiler can point out
     mistakes to the user.  An incorrect usage of the language causes an
     "error message".

     The compiler will also attempt to diagnose cases where the user's
     program contains a correct usage of the language, but instructs the
     computer to do something questionable.  This kind of diagnostics
     message is called a "warning message".

   * Provide optional information about the translation passes from the
     source code to machine code.  This can help a user of the compiler
     to find the cause of certain bugs which may not be obvious in the
     source code, but may be more easily found at a lower level compiler
     output.  It also helps developers to find bugs in the compiler
     itself.

   * Provide information in the generated machine code that can make it
     easier to find bugs in the program (using a debugging tool, called
     a "debugger", such as the GNU Debugger 'gdb').

   * Locate and gather machine code already generated to perform actions
     requested by statements in the user's program.  This machine code
     is organized into "modules" and is located and "linked" to the user
     program.

   The GNU Fortran compiler consists of several components:

   * A version of the 'gcc' command (which also might be installed as
     the system's 'cc' command) that also understands and accepts
     Fortran source code.  The 'gcc' command is the "driver" program for
     all the languages in the GNU Compiler Collection (GCC); With 'gcc',
     you can compile the source code of any language for which a front
     end is available in GCC.

   * The 'gfortran' command itself, which also might be installed as the
     system's 'f95' command.  'gfortran' is just another driver program,
     but specifically for the Fortran compiler only.  The difference
     with 'gcc' is that 'gfortran' will automatically link the correct
     libraries to your program.

   * A collection of run-time libraries.  These libraries contain the
     machine code needed to support capabilities of the Fortran language
     that are not directly provided by the machine code generated by the
     'gfortran' compilation phase, such as intrinsic functions and
     subroutines, and routines for interaction with files and the
     operating system.

   * The Fortran compiler itself, ('f951').  This is the GNU Fortran
     parser and code generator, linked to and interfaced with the GCC
     backend library.  'f951' "translates" the source code to assembler
     code.  You would typically not use this program directly; instead,
     the 'gcc' or 'gfortran' driver programs will call it for you.


File: gfortran.info,  Node: GNU Fortran and GCC,  Next: Preprocessing and conditional compilation,  Prev: About GNU Fortran,  Up: Introduction

1.2 GNU Fortran and GCC
=======================

GNU Fortran is a part of GCC, the "GNU Compiler Collection".  GCC
consists of a collection of front ends for various languages, which
translate the source code into a language-independent form called
"GENERIC". This is then processed by a common middle end which provides
optimization, and then passed to one of a collection of back ends which
generate code for different computer architectures and operating
systems.

   Functionally, this is implemented with a driver program ('gcc') which
provides the command-line interface for the compiler.  It calls the
relevant compiler front-end program (e.g., 'f951' for Fortran) for each
file in the source code, and then calls the assembler and linker as
appropriate to produce the compiled output.  In a copy of GCC which has
been compiled with Fortran language support enabled, 'gcc' will
recognize files with '.f', '.for', '.ftn', '.f90', '.f95', '.f03' and
'.f08' extensions as Fortran source code, and compile it accordingly.  A
'gfortran' driver program is also provided, which is identical to 'gcc'
except that it automatically links the Fortran runtime libraries into
the compiled program.

   Source files with '.f', '.for', '.fpp', '.ftn', '.F', '.FOR', '.FPP',
and '.FTN' extensions are treated as fixed form.  Source files with
'.f90', '.f95', '.f03', '.f08', '.F90', '.F95', '.F03' and '.F08'
extensions are treated as free form.  The capitalized versions of either
form are run through preprocessing.  Source files with the lower case
'.fpp' extension are also run through preprocessing.

   This manual specifically documents the Fortran front end, which
handles the programming language's syntax and semantics.  The aspects of
GCC which relate to the optimization passes and the back-end code
generation are documented in the GCC manual; see *note Introduction:
(gcc)Top.  The two manuals together provide a complete reference for the
GNU Fortran compiler.


File: gfortran.info,  Node: Preprocessing and conditional compilation,  Next: GNU Fortran and G77,  Prev: GNU Fortran and GCC,  Up: Introduction

1.3 Preprocessing and conditional compilation
=============================================

Many Fortran compilers including GNU Fortran allow passing the source
code through a C preprocessor (CPP; sometimes also called the Fortran
preprocessor, FPP) to allow for conditional compilation.  In the case of
GNU Fortran, this is the GNU C Preprocessor in the traditional mode.  On
systems with case-preserving file names, the preprocessor is
automatically invoked if the filename extension is '.F', '.FOR', '.FTN',
'.fpp', '.FPP', '.F90', '.F95', '.F03' or '.F08'.  To manually invoke
the preprocessor on any file, use '-cpp', to disable preprocessing on
files where the preprocessor is run automatically, use '-nocpp'.

   If a preprocessed file includes another file with the Fortran
'INCLUDE' statement, the included file is not preprocessed.  To
preprocess included files, use the equivalent preprocessor statement
'#include'.

   If GNU Fortran invokes the preprocessor, '__GFORTRAN__' is defined.
The macros '__GNUC__', '__GNUC_MINOR__' and '__GNUC_PATCHLEVEL__' can be
used to determine the version of the compiler.  See *note Overview:
(cpp)Top. for details.

   GNU Fortran supports a number of 'INTEGER' and 'REAL' kind types in
additional to the kind types required by the Fortran standard.  The
availability of any given kind type is architecture dependent.  The
following pre-defined preprocessor macros can be used to conditionally
include code for these additional kind types: '__GFC_INT_1__',
'__GFC_INT_2__', '__GFC_INT_8__', '__GFC_INT_16__', '__GFC_REAL_10__',
and '__GFC_REAL_16__'.

   While CPP is the de-facto standard for preprocessing Fortran code,
Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
Conditional Compilation, which is not widely used and not directly
supported by the GNU Fortran compiler.  You can use the program coco to
preprocess such files (<http://www.daniellnagle.com/coco.html>).


File: gfortran.info,  Node: GNU Fortran and G77,  Next: Project Status,  Prev: Preprocessing and conditional compilation,  Up: Introduction

1.4 GNU Fortran and G77
=======================

The GNU Fortran compiler is the successor to 'g77', the Fortran 77 front
end included in GCC prior to version 4.  It is an entirely new program
that has been designed to provide Fortran 95 support and extensibility
for future Fortran language standards, as well as providing backwards
compatibility for Fortran 77 and nearly all of the GNU language
extensions supported by 'g77'.


File: gfortran.info,  Node: Project Status,  Next: Standards,  Prev: GNU Fortran and G77,  Up: Introduction

1.5 Project Status
==================

     As soon as 'gfortran' can parse all of the statements correctly, it
     will be in the "larva" state.  When we generate code, the "puppa"
     state.  When 'gfortran' is done, we'll see if it will be a
     beautiful butterfly, or just a big bug....

     -Andy Vaught, April 2000

   The start of the GNU Fortran 95 project was announced on the GCC
homepage in March 18, 2000 (even though Andy had already been working on
it for a while, of course).

   The GNU Fortran compiler is able to compile nearly all
standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
including a number of standard and non-standard extensions, and can be
used on real-world programs.  In particular, the supported extensions
include OpenMP, Cray-style pointers, some old vendor extensions, and
several Fortran 2003 and Fortran 2008 features, including TR 15581.
However, it is still under development and has a few remaining rough
edges.  There also is initial support for OpenACC.

   At present, the GNU Fortran compiler passes the NIST Fortran 77 Test
Suite (http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html), and
produces acceptable results on the LAPACK Test Suite
(http://www.netlib.org/lapack/faq.html#1.21).  It also provides
respectable performance on the Polyhedron Fortran compiler benchmarks
(http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite)
and the Livermore Fortran Kernels test
(http://www.netlib.org/benchmark/livermore).  It has been used to
compile a number of large real-world programs, including the HARMONIE
and HIRLAM weather forecasting code (http://hirlam.org/) and the Tonto
quantum chemistry package
(http://physical-chemistry.scb.uwa.edu.au/tonto/wiki/index.php/Main_Page);
see <https://gcc.gnu.org/wiki/GfortranApps> for an extended list.

   Among other things, the GNU Fortran compiler is intended as a
replacement for G77.  At this point, nearly all programs that could be
compiled with G77 can be compiled with GNU Fortran, although there are a
few minor known regressions.

   The primary work remaining to be done on GNU Fortran falls into three
categories: bug fixing (primarily regarding the treatment of invalid
code and providing useful error messages), improving the compiler
optimizations and the performance of compiled code, and extending the
compiler to support future standards--in particular, Fortran 2003,
Fortran 2008 and Fortran 2018.


File: gfortran.info,  Node: Standards,  Prev: Project Status,  Up: Introduction

1.6 Standards
=============

* Menu:

* Varying Length Character Strings::

The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95).  As
such, it can also compile essentially all standard-compliant Fortran 90
and Fortran 77 programs.  It also supports the ISO/IEC TR-15581
enhancements to allocatable arrays.

   GNU Fortran also have a partial support for ISO/IEC 1539-1:2004
(Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical
Specification 'Further Interoperability of Fortran with C' (ISO/IEC TS
29113:2012).  Full support of those standards and future Fortran
standards is planned.  The current status of the support is can be found
in the *note Fortran 2003 status::, *note Fortran 2008 status:: and
*note Fortran 2018 status:: sections of the documentation.

   Additionally, the GNU Fortran compilers supports the OpenMP
specification (version 4.0 and most of the features of the 4.5 version,
<http://openmp.org/wp/openmp-specifications/>).  There also is support
for the OpenACC specification (targeting version 2.6,
<http://www.openacc.org/>).  See <https://gcc.gnu.org/wiki/OpenACC> for
more information.


File: gfortran.info,  Node: Varying Length Character Strings,  Up: Standards

1.6.1 Varying Length Character Strings
--------------------------------------

The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
varying length character strings.  While GNU Fortran currently does not
support such strings directly, there exist two Fortran implementations
for them, which work with GNU Fortran.  They can be found at
<http://www.fortran.com/iso_varying_string.f95> and at
<ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/>.

   Deferred-length character strings of Fortran 2003 supports part of
the features of 'ISO_VARYING_STRING' and should be considered as
replacement.  (Namely, allocatable or pointers of the type
'character(len=:)'.)


File: gfortran.info,  Node: Invoking GNU Fortran,  Next: Runtime,  Prev: Introduction,  Up: Top

2 GNU Fortran Command Options
*****************************

The 'gfortran' command supports all the options supported by the 'gcc'
command.  Only options specific to GNU Fortran are documented here.

   *Note GCC Command Options: (gcc)Invoking GCC, for information on the
non-Fortran-specific aspects of the 'gcc' command (and, therefore, the
'gfortran' command).

   All GCC and GNU Fortran options are accepted both by 'gfortran' and
by 'gcc' (as well as any other drivers built at the same time, such as
'g++'), since adding GNU Fortran to the GCC distribution enables
acceptance of GNU Fortran options by all of the relevant drivers.

   In some cases, options have positive and negative forms; the negative
form of '-ffoo' would be '-fno-foo'.  This manual documents only one of
these two forms, whichever one is not the default.

* Menu:

* Option Summary::      Brief list of all 'gfortran' options,
                        without explanations.
* Fortran Dialect Options::  Controlling the variant of Fortran language
                             compiled.
* Preprocessing Options::  Enable and customize preprocessing.
* Error and Warning Options::     How picky should the compiler be?
* Debugging Options::   Symbol tables, measurements, and debugging dumps.
* Directory Options::   Where to find module files
* Link Options ::       Influencing the linking step
* Runtime Options::     Influencing runtime behavior
* Code Gen Options::    Specifying conventions for function calls, data layout
                        and register usage.
* Interoperability Options::  Options for interoperability with other
                              languages.
* Environment Variables:: Environment variables that affect 'gfortran'.


File: gfortran.info,  Node: Option Summary,  Next: Fortran Dialect Options,  Up: Invoking GNU Fortran

2.1 Option summary
==================

Here is a summary of all the options specific to GNU Fortran, grouped by
type.  Explanations are in the following sections.

_Fortran Language Options_
     *Note Options controlling Fortran dialect: Fortran Dialect Options.
          -fall-intrinsics -fallow-argument-mismatch -fallow-invalid-boz
          -fbackslash -fcray-pointer -fd-lines-as-code -fd-lines-as-comments
          -fdec -fdec-char-conversions -fdec-structure -fdec-intrinsic-ints
          -fdec-static -fdec-math -fdec-include -fdec-format-defaults
          -fdec-blank-format-item -fdefault-double-8 -fdefault-integer-8
          -fdefault-real-8 -fdefault-real-10 -fdefault-real-16 -fdollar-ok
          -ffixed-line-length-N -ffixed-line-length-none -fpad-source
          -ffree-form -ffree-line-length-N -ffree-line-length-none
          -fimplicit-none -finteger-4-integer-8 -fmax-identifier-length
          -fmodule-private -ffixed-form -fno-range-check -fopenacc -fopenmp
          -freal-4-real-10 -freal-4-real-16 -freal-4-real-8 -freal-8-real-10
          -freal-8-real-16 -freal-8-real-4 -std=STD -ftest-forall-temp


_Preprocessing Options_
     *Note Enable and customize preprocessing: Preprocessing Options.
          -A-QUESTION[=ANSWER]
          -AQUESTION=ANSWER -C -CC -DMACRO[=DEFN]
          -H -P
          -UMACRO -cpp -dD -dI -dM -dN -dU -fworking-directory
          -imultilib DIR
          -iprefix FILE -iquote -isysroot DIR -isystem DIR -nocpp
          -nostdinc
          -undef


_Error and Warning Options_
     *Note Options to request or suppress errors and warnings: Error and
     Warning Options.
          -Waliasing -Wall -Wampersand -Warray-bounds
          -Wc-binding-type -Wcharacter-truncation -Wconversion
          -Wdo-subscript -Wfunction-elimination -Wimplicit-interface
          -Wimplicit-procedure -Wintrinsic-shadow -Wuse-without-only
          -Wintrinsics-std -Wline-truncation -Wno-align-commons
          -Wno-overwrite-recursive -Wno-tabs -Wreal-q-constant -Wsurprising
          -Wunderflow -Wunused-parameter -Wrealloc-lhs -Wrealloc-lhs-all
          -Wfrontend-loop-interchange -Wtarget-lifetime -fmax-errors=N
          -fsyntax-only -pedantic
          -pedantic-errors


_Debugging Options_
     *Note Options for debugging your program or GNU Fortran: Debugging
     Options.
          -fbacktrace -fdump-fortran-optimized -fdump-fortran-original
          -fdump-fortran-global -fdump-parse-tree -ffpe-trap=LIST
          -ffpe-summary=LIST


_Directory Options_
     *Note Options for directory search: Directory Options.
          -IDIR  -JDIR -fintrinsic-modules-path DIR

_Link Options_
     *Note Options for influencing the linking step: Link Options.
          -static-libgfortran

_Runtime Options_
     *Note Options for influencing runtime behavior: Runtime Options.
          -fconvert=CONVERSION -fmax-subrecord-length=LENGTH
          -frecord-marker=LENGTH -fsign-zero


_Interoperability Options_
     *Note Options for interoperability: Interoperability Options.
          -fc-prototypes -fc-prototypes-external

_Code Generation Options_
     *Note Options for code generation conventions: Code Gen Options.
          -faggressive-function-elimination -fblas-matmul-limit=N
          -fbounds-check -ftail-call-workaround -ftail-call-workaround=N
          -fcheck-array-temporaries
          -fcheck=<ALL|ARRAY-TEMPS|BITS|BOUNDS|DO|MEM|POINTER|RECURSION>
          -fcoarray=<NONE|SINGLE|LIB> -fexternal-blas -ff2c
          -ffrontend-loop-interchange -ffrontend-optimize
          -finit-character=N -finit-integer=N -finit-local-zero
          -finit-derived -finit-logical=<TRUE|FALSE>
          -finit-real=<ZERO|INF|-INF|NAN|SNAN>
          -finline-matmul-limit=N
          -finline-arg-packing -fmax-array-constructor=N
          -fmax-stack-var-size=N -fno-align-commons -fno-automatic
          -fno-protect-parens -fno-underscoring -fsecond-underscore
          -fpack-derived -frealloc-lhs -frecursive -frepack-arrays
          -fshort-enums -fstack-arrays



File: gfortran.info,  Node: Fortran Dialect Options,  Next: Preprocessing Options,  Prev: Option Summary,  Up: Invoking GNU Fortran

2.2 Options controlling Fortran dialect
=======================================

The following options control the details of the Fortran dialect
accepted by the compiler:

'-ffree-form'
'-ffixed-form'
     Specify the layout used by the source file.  The free form layout
     was introduced in Fortran 90.  Fixed form was traditionally used in
     older Fortran programs.  When neither option is specified, the
     source form is determined by the file extension.

'-fall-intrinsics'
     This option causes all intrinsic procedures (including the
     GNU-specific extensions) to be accepted.  This can be useful with
     '-std=f95' to force standard-compliance but get access to the full
     range of intrinsics available with 'gfortran'.  As a consequence,
     '-Wintrinsics-std' will be ignored and no user-defined procedure
     with the same name as any intrinsic will be called except when it
     is explicitly declared 'EXTERNAL'.

'-fallow-argument-mismatch'
     Some code contains calls to external procedures whith mismatches
     between the calls and the procedure definition, or with mismatches
     between different calls.  Such code is non-conforming, and will
     usually be flagged wi1th an error.  This options degrades the error
     to a warning, which can only be disabled by disabling all warnings
     vial '-w'.  Only a single occurrence per argument is flagged by
     this warning.  '-fallow-argument-mismatch' is implied by
     '-std=legacy'.

     Using this option is _strongly_ discouraged.  It is possible to
     provide standard-conforming code which allows different types of
     arguments by using an explicit interface and 'TYPE(*)'.

'-fallow-invalid-boz'
     A BOZ literal constant can occur in a limited number of contexts in
     standard conforming Fortran.  This option degrades an error
     condition to a warning, and allows a BOZ literal constant to appear
     where the Fortran standard would otherwise prohibit its use.

'-fd-lines-as-code'
'-fd-lines-as-comments'
     Enable special treatment for lines beginning with 'd' or 'D' in
     fixed form sources.  If the '-fd-lines-as-code' option is given
     they are treated as if the first column contained a blank.  If the
     '-fd-lines-as-comments' option is given, they are treated as
     comment lines.

'-fdec'
     DEC compatibility mode.  Enables extensions and other features that
     mimic the default behavior of older compilers (such as DEC). These
     features are non-standard and should be avoided at all costs.  For
     details on GNU Fortran's implementation of these extensions see the
     full documentation.

     Other flags enabled by this switch are: '-fdollar-ok'
     '-fcray-pointer' '-fdec-char-conversions' '-fdec-structure'
     '-fdec-intrinsic-ints' '-fdec-static' '-fdec-math' '-fdec-include'
     '-fdec-blank-format-item' '-fdec-format-defaults'

     If '-fd-lines-as-code'/'-fd-lines-as-comments' are unset, then
     '-fdec' also sets '-fd-lines-as-comments'.

'-fdec-char-conversions'
     Enable the use of character literals in assignments and 'DATA'
     statements for non-character variables.

'-fdec-structure'
     Enable DEC 'STRUCTURE' and 'RECORD' as well as 'UNION', 'MAP', and
     dot ('.')  as a member separator (in addition to '%').  This is
     provided for compatibility only; Fortran 90 derived types should be
     used instead where possible.

'-fdec-intrinsic-ints'
     Enable B/I/J/K kind variants of existing integer functions (e.g.
     BIAND, IIAND, JIAND, etc...).  For a complete list of intrinsics
     see the full documentation.

'-fdec-math'
     Enable legacy math intrinsics such as COTAN and degree-valued
     trigonometric functions (e.g.  TAND, ATAND, etc...)  for
     compatability with older code.

'-fdec-static'
     Enable DEC-style STATIC and AUTOMATIC attributes to explicitly
     specify the storage of variables and other objects.

'-fdec-include'
     Enable parsing of INCLUDE as a statement in addition to parsing it
     as INCLUDE line.  When parsed as INCLUDE statement, INCLUDE does
     not have to be on a single line and can use line continuations.

'-fdec-format-defaults'
     Enable format specifiers F, G and I to be used without width
     specifiers, default widths will be used instead.

'-fdec-blank-format-item'
     Enable a blank format item at the end of a format specification
     i.e.  nothing following the final comma.

'-fdollar-ok'
     Allow '$' as a valid non-first character in a symbol name.  Symbols
     that start with '$' are rejected since it is unclear which rules to
     apply to implicit typing as different vendors implement different
     rules.  Using '$' in 'IMPLICIT' statements is also rejected.

'-fbackslash'
     Change the interpretation of backslashes in string literals from a
     single backslash character to "C-style" escape characters.  The
     following combinations are expanded '\a', '\b', '\f', '\n', '\r',
     '\t', '\v', '\\', and '\0' to the ASCII characters alert,
     backspace, form feed, newline, carriage return, horizontal tab,
     vertical tab, backslash, and NUL, respectively.  Additionally,
     '\x'NN, '\u'NNNN and '\U'NNNNNNNN (where each N is a hexadecimal
     digit) are translated into the Unicode characters corresponding to
     the specified code points.  All other combinations of a character
     preceded by \ are unexpanded.

'-fmodule-private'
     Set the default accessibility of module entities to 'PRIVATE'.
     Use-associated entities will not be accessible unless they are
     explicitly declared as 'PUBLIC'.

'-ffixed-line-length-N'
     Set column after which characters are ignored in typical fixed-form
     lines in the source file, and, unless '-fno-pad-source', through
     which spaces are assumed (as if padded to that length) after the
     ends of short fixed-form lines.

     Popular values for N include 72 (the standard and the default), 80
     (card image), and 132 (corresponding to "extended-source" options
     in some popular compilers).  N may also be 'none', meaning that the
     entire line is meaningful and that continued character constants
     never have implicit spaces appended to them to fill out the line.
     '-ffixed-line-length-0' means the same thing as
     '-ffixed-line-length-none'.

'-fno-pad-source'
     By default fixed-form lines have spaces assumed (as if padded to
     that length) after the ends of short fixed-form lines.  This is not
     done either if '-ffixed-line-length-0', '-ffixed-line-length-none'
     or if '-fno-pad-source' option is used.  With any of those options
     continued character constants never have implicit spaces appended
     to them to fill out the line.

'-ffree-line-length-N'
     Set column after which characters are ignored in typical free-form
     lines in the source file.  The default value is 132.  N may be
     'none', meaning that the entire line is meaningful.
     '-ffree-line-length-0' means the same thing as
     '-ffree-line-length-none'.

'-fmax-identifier-length=N'
     Specify the maximum allowed identifier length.  Typical values are
     31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008).

'-fimplicit-none'
     Specify that no implicit typing is allowed, unless overridden by
     explicit 'IMPLICIT' statements.  This is the equivalent of adding
     'implicit none' to the start of every procedure.

'-fcray-pointer'
     Enable the Cray pointer extension, which provides C-like pointer
     functionality.

'-fopenacc'
     Enable the OpenACC extensions.  This includes OpenACC '!$acc'
     directives in free form and 'c$acc', '*$acc' and '!$acc' directives
     in fixed form, '!$' conditional compilation sentinels in free form
     and 'c$', '*$' and '!$' sentinels in fixed form, and when linking
     arranges for the OpenACC runtime library to be linked in.

'-fopenmp'
     Enable the OpenMP extensions.  This includes OpenMP '!$omp'
     directives in free form and 'c$omp', '*$omp' and '!$omp' directives
     in fixed form, '!$' conditional compilation sentinels in free form
     and 'c$', '*$' and '!$' sentinels in fixed form, and when linking
     arranges for the OpenMP runtime library to be linked in.  The
     option '-fopenmp' implies '-frecursive'.

'-fno-range-check'
     Disable range checking on results of simplification of constant
     expressions during compilation.  For example, GNU Fortran will give
     an error at compile time when simplifying 'a = 1. / 0'.  With this
     option, no error will be given and 'a' will be assigned the value
     '+Infinity'.  If an expression evaluates to a value outside of the
     relevant range of ['-HUGE()':'HUGE()'], then the expression will be
     replaced by '-Inf' or '+Inf' as appropriate.  Similarly, 'DATA
     i/Z'FFFFFFFF'/' will result in an integer overflow on most systems,
     but with '-fno-range-check' the value will "wrap around" and 'i'
     will be initialized to -1 instead.

'-fdefault-integer-8'
     Set the default integer and logical types to an 8 byte wide type.
     This option also affects the kind of integer constants like '42'.
     Unlike '-finteger-4-integer-8', it does not promote variables with
     explicit kind declaration.

'-fdefault-real-8'
     Set the default real type to an 8 byte wide type.  This option also
     affects the kind of non-double real constants like '1.0'.  This
     option promotes the default width of 'DOUBLE PRECISION' and double
     real constants like '1.d0' to 16 bytes if possible.  If
     '-fdefault-double-8' is given along with 'fdefault-real-8', 'DOUBLE
     PRECISION' and double real constants are not promoted.  Unlike
     '-freal-4-real-8', 'fdefault-real-8' does not promote variables
     with explicit kind declarations.

'-fdefault-real-10'
     Set the default real type to an 10 byte wide type.  This option
     also affects the kind of non-double real constants like '1.0'.
     This option promotes the default width of 'DOUBLE PRECISION' and
     double real constants like '1.d0' to 16 bytes if possible.  If
     '-fdefault-double-8' is given along with 'fdefault-real-10',
     'DOUBLE PRECISION' and double real constants are not promoted.
     Unlike '-freal-4-real-10', 'fdefault-real-10' does not promote
     variables with explicit kind declarations.

'-fdefault-real-16'
     Set the default real type to an 16 byte wide type.  This option
     also affects the kind of non-double real constants like '1.0'.
     This option promotes the default width of 'DOUBLE PRECISION' and
     double real constants like '1.d0' to 16 bytes if possible.  If
     '-fdefault-double-8' is given along with 'fdefault-real-16',
     'DOUBLE PRECISION' and double real constants are not promoted.
     Unlike '-freal-4-real-16', 'fdefault-real-16' does not promote
     variables with explicit kind declarations.

'-fdefault-double-8'
     Set the 'DOUBLE PRECISION' type and double real constants like
     '1.d0' to an 8 byte wide type.  Do nothing if this is already the
     default.  This option prevents '-fdefault-real-8',
     '-fdefault-real-10', and '-fdefault-real-16', from promoting
     'DOUBLE PRECISION' and double real constants like '1.d0' to 16
     bytes.

'-finteger-4-integer-8'
     Promote all 'INTEGER(KIND=4)' entities to an 'INTEGER(KIND=8)'
     entities.  If 'KIND=8' is unavailable, then an error will be
     issued.  This option should be used with care and may not be
     suitable for your codes.  Areas of possible concern include calls
     to external procedures, alignment in 'EQUIVALENCE' and/or 'COMMON',
     generic interfaces, BOZ literal constant conversion, and I/O.
     Inspection of the intermediate representation of the translated
     Fortran code, produced by '-fdump-tree-original', is suggested.

'-freal-4-real-8'
'-freal-4-real-10'
'-freal-4-real-16'
'-freal-8-real-4'
'-freal-8-real-10'
'-freal-8-real-16'
     Promote all 'REAL(KIND=M)' entities to 'REAL(KIND=N)' entities.  If
     'REAL(KIND=N)' is unavailable, then an error will be issued.  All
     other real kind types are unaffected by this option.  These options
     should be used with care and may not be suitable for your codes.
     Areas of possible concern include calls to external procedures,
     alignment in 'EQUIVALENCE' and/or 'COMMON', generic interfaces, BOZ
     literal constant conversion, and I/O. Inspection of the
     intermediate representation of the translated Fortran code,
     produced by '-fdump-tree-original', is suggested.

'-std=STD'
     Specify the standard to which the program is expected to conform,
     which may be one of 'f95', 'f2003', 'f2008', 'f2018', 'gnu', or
     'legacy'.  The default value for STD is 'gnu', which specifies a
     superset of the latest Fortran standard that includes all of the
     extensions supported by GNU Fortran, although warnings will be
     given for obsolete extensions not recommended for use in new code.
     The 'legacy' value is equivalent but without the warnings for
     obsolete extensions, and may be useful for old non-standard
     programs.  The 'f95', 'f2003', 'f2008', and 'f2018' values specify
     strict conformance to the Fortran 95, Fortran 2003, Fortran 2008
     and Fortran 2018 standards, respectively; errors are given for all
     extensions beyond the relevant language standard, and warnings are
     given for the Fortran 77 features that are permitted but
     obsolescent in later standards.  The deprecated option
     '-std=f2008ts' acts as an alias for '-std=f2018'.  It is only
     present for backwards compatibility with earlier gfortran versions
     and should not be used any more.

'-ftest-forall-temp'
     Enhance test coverage by forcing most forall assignments to use
     temporary.


File: gfortran.info,  Node: Preprocessing Options,  Next: Error and Warning Options,  Prev: Fortran Dialect Options,  Up: Invoking GNU Fortran

2.3 Enable and customize preprocessing
======================================

Preprocessor related options.  See section *note Preprocessing and
conditional compilation:: for more detailed information on preprocessing
in 'gfortran'.

'-cpp'
'-nocpp'
     Enable preprocessing.  The preprocessor is automatically invoked if
     the file extension is '.fpp', '.FPP', '.F', '.FOR', '.FTN', '.F90',
     '.F95', '.F03' or '.F08'.  Use this option to manually enable
     preprocessing of any kind of Fortran file.

     To disable preprocessing of files with any of the above listed
     extensions, use the negative form: '-nocpp'.

     The preprocessor is run in traditional mode.  Any restrictions of
     the file-format, especially the limits on line length, apply for
     preprocessed output as well, so it might be advisable to use the
     '-ffree-line-length-none' or '-ffixed-line-length-none' options.

'-dM'
     Instead of the normal output, generate a list of ''#define''
     directives for all the macros defined during the execution of the
     preprocessor, including predefined macros.  This gives you a way of
     finding out what is predefined in your version of the preprocessor.
     Assuming you have no file 'foo.f90', the command
            touch foo.f90; gfortran -cpp -E -dM foo.f90
     will show all the predefined macros.

'-dD'
     Like '-dM' except in two respects: it does not include the
     predefined macros, and it outputs both the '#define' directives and
     the result of preprocessing.  Both kinds of output go to the
     standard output file.

'-dN'
     Like '-dD', but emit only the macro names, not their expansions.

'-dU'
     Like 'dD' except that only macros that are expanded, or whose
     definedness is tested in preprocessor directives, are output; the
     output is delayed until the use or test of the macro; and
     ''#undef'' directives are also output for macros tested but
     undefined at the time.

'-dI'
     Output ''#include'' directives in addition to the result of
     preprocessing.

'-fworking-directory'
     Enable generation of linemarkers in the preprocessor output that
     will let the compiler know the current working directory at the
     time of preprocessing.  When this option is enabled, the
     preprocessor will emit, after the initial linemarker, a second
     linemarker with the current working directory followed by two
     slashes.  GCC will use this directory, when it is present in the
     preprocessed input, as the directory emitted as the current working
     directory in some debugging information formats.  This option is
     implicitly enabled if debugging information is enabled, but this
     can be inhibited with the negated form '-fno-working-directory'.
     If the '-P' flag is present in the command line, this option has no
     effect, since no '#line' directives are emitted whatsoever.

'-idirafter DIR'
     Search DIR for include files, but do it after all directories
     specified with '-I' and the standard system directories have been
     exhausted.  DIR is treated as a system include directory.  If dir
     begins with '=', then the '=' will be replaced by the sysroot
     prefix; see '--sysroot' and '-isysroot'.

'-imultilib DIR'
     Use DIR as a subdirectory of the directory containing
     target-specific C++ headers.

'-iprefix PREFIX'
     Specify PREFIX as the prefix for subsequent '-iwithprefix' options.
     If the PREFIX represents a directory, you should include the final
     ''/''.

'-isysroot DIR'
     This option is like the '--sysroot' option, but applies only to
     header files.  See the '--sysroot' option for more information.

'-iquote DIR'
     Search DIR only for header files requested with '#include "file"';
     they are not searched for '#include <file>', before all directories
     specified by '-I' and before the standard system directories.  If
     DIR begins with '=', then the '=' will be replaced by the sysroot
     prefix; see '--sysroot' and '-isysroot'.

'-isystem DIR'
     Search DIR for header files, after all directories specified by
     '-I' but before the standard system directories.  Mark it as a
     system directory, so that it gets the same special treatment as is
     applied to the standard system directories.  If DIR begins with
     '=', then the '=' will be replaced by the sysroot prefix; see
     '--sysroot' and '-isysroot'.

'-nostdinc'
     Do not search the standard system directories for header files.
     Only the directories you have specified with '-I' options (and the
     directory of the current file, if appropriate) are searched.

'-undef'
     Do not predefine any system-specific or GCC-specific macros.  The
     standard predefined macros remain defined.

'-APREDICATE=ANSWER'
     Make an assertion with the predicate PREDICATE and answer ANSWER.
     This form is preferred to the older form -A predicate(answer),
     which is still supported, because it does not use shell special
     characters.

'-A-PREDICATE=ANSWER'
     Cancel an assertion with the predicate PREDICATE and answer ANSWER.

'-C'
     Do not discard comments.  All comments are passed through to the
     output file, except for comments in processed directives, which are
     deleted along with the directive.

     You should be prepared for side effects when using '-C'; it causes
     the preprocessor to treat comments as tokens in their own right.
     For example, comments appearing at the start of what would be a
     directive line have the effect of turning that line into an
     ordinary source line, since the first token on the line is no
     longer a ''#''.

     Warning: this currently handles C-Style comments only.  The
     preprocessor does not yet recognize Fortran-style comments.

'-CC'
     Do not discard comments, including during macro expansion.  This is
     like '-C', except that comments contained within macros are also
     passed through to the output file where the macro is expanded.

     In addition to the side-effects of the '-C' option, the '-CC'
     option causes all C++-style comments inside a macro to be converted
     to C-style comments.  This is to prevent later use of that macro
     from inadvertently commenting out the remainder of the source line.
     The '-CC' option is generally used to support lint comments.

     Warning: this currently handles C- and C++-Style comments only.
     The preprocessor does not yet recognize Fortran-style comments.

'-DNAME'
     Predefine name as a macro, with definition '1'.

'-DNAME=DEFINITION'
     The contents of DEFINITION are tokenized and processed as if they
     appeared during translation phase three in a ''#define'' directive.
     In particular, the definition will be truncated by embedded newline
     characters.

     If you are invoking the preprocessor from a shell or shell-like
     program you may need to use the shell's quoting syntax to protect
     characters such as spaces that have a meaning in the shell syntax.

     If you wish to define a function-like macro on the command line,
     write its argument list with surrounding parentheses before the
     equals sign (if any).  Parentheses are meaningful to most shells,
     so you will need to quote the option.  With sh and csh,
     '-D'name(args...)=definition'' works.

     '-D' and '-U' options are processed in the order they are given on
     the command line.  All -imacros file and -include file options are
     processed after all -D and -U options.

'-H'
     Print the name of each header file used, in addition to other
     normal activities.  Each name is indented to show how deep in the
     ''#include'' stack it is.

'-P'
     Inhibit generation of linemarkers in the output from the
     preprocessor.  This might be useful when running the preprocessor
     on something that is not C code, and will be sent to a program
     which might be confused by the linemarkers.

'-UNAME'
     Cancel any previous definition of NAME, either built in or provided
     with a '-D' option.


File: gfortran.info,  Node: Error and Warning Options,  Next: Debugging Options,  Prev: Preprocessing Options,  Up: Invoking GNU Fortran

2.4 Options to request or suppress errors and warnings
======================================================

Errors are diagnostic messages that report that the GNU Fortran compiler
cannot compile the relevant piece of source code.  The compiler will
continue to process the program in an attempt to report further errors
to aid in debugging, but will not produce any compiled output.

   Warnings are diagnostic messages that report constructions which are
not inherently erroneous but which are risky or suggest there is likely
to be a bug in the program.  Unless '-Werror' is specified, they do not
prevent compilation of the program.

   You can request many specific warnings with options beginning '-W',
for example '-Wimplicit' to request warnings on implicit declarations.
Each of these specific warning options also has a negative form
beginning '-Wno-' to turn off warnings; for example, '-Wno-implicit'.
This manual lists only one of the two forms, whichever is not the
default.

   These options control the amount and kinds of errors and warnings
produced by GNU Fortran:

'-fmax-errors=N'
     Limits the maximum number of error messages to N, at which point
     GNU Fortran bails out rather than attempting to continue processing
     the source code.  If N is 0, there is no limit on the number of
     error messages produced.

'-fsyntax-only'
     Check the code for syntax errors, but do not actually compile it.
     This will generate module files for each module present in the
     code, but no other output file.

'-Wpedantic'
'-pedantic'
     Issue warnings for uses of extensions to Fortran.  '-pedantic' also
     applies to C-language constructs where they occur in GNU Fortran
     source files, such as use of '\e' in a character constant within a
     directive like '#include'.

     Valid Fortran programs should compile properly with or without this
     option.  However, without this option, certain GNU extensions and
     traditional Fortran features are supported as well.  With this
     option, many of them are rejected.

     Some users try to use '-pedantic' to check programs for
     conformance.  They soon find that it does not do quite what they
     want--it finds some nonstandard practices, but not all.  However,
     improvements to GNU Fortran in this area are welcome.

     This should be used in conjunction with '-std=f95', '-std=f2003',
     '-std=f2008' or '-std=f2018'.

'-pedantic-errors'
     Like '-pedantic', except that errors are produced rather than
     warnings.

'-Wall'
     Enables commonly used warning options pertaining to usage that we
     recommend avoiding and that we believe are easy to avoid.  This
     currently includes '-Waliasing', '-Wampersand', '-Wconversion',
     '-Wsurprising', '-Wc-binding-type', '-Wintrinsics-std', '-Wtabs',
     '-Wintrinsic-shadow', '-Wline-truncation', '-Wtarget-lifetime',
     '-Winteger-division', '-Wreal-q-constant', '-Wunused' and
     '-Wundefined-do-loop'.

'-Waliasing'
     Warn about possible aliasing of dummy arguments.  Specifically, it
     warns if the same actual argument is associated with a dummy
     argument with 'INTENT(IN)' and a dummy argument with 'INTENT(OUT)'
     in a call with an explicit interface.

     The following example will trigger the warning.
            interface
              subroutine bar(a,b)
                integer, intent(in) :: a
                integer, intent(out) :: b
              end subroutine
            end interface
            integer :: a

            call bar(a,a)

'-Wampersand'
     Warn about missing ampersand in continued character constants.  The
     warning is given with '-Wampersand', '-pedantic', '-std=f95',
     '-std=f2003', '-std=f2008' and '-std=f2018'.  Note: With no
     ampersand given in a continued character constant, GNU Fortran
     assumes continuation at the first non-comment, non-whitespace
     character after the ampersand that initiated the continuation.

'-Warray-temporaries'
     Warn about array temporaries generated by the compiler.  The
     information generated by this warning is sometimes useful in
     optimization, in order to avoid such temporaries.

'-Wc-binding-type'
     Warn if the a variable might not be C interoperable.  In
     particular, warn if the variable has been declared using an
     intrinsic type with default kind instead of using a kind parameter
     defined for C interoperability in the intrinsic 'ISO_C_Binding'
     module.  This option is implied by '-Wall'.

'-Wcharacter-truncation'
     Warn when a character assignment will truncate the assigned string.

'-Wline-truncation'
     Warn when a source code line will be truncated.  This option is
     implied by '-Wall'.  For free-form source code, the default is
     '-Werror=line-truncation' such that truncations are reported as
     error.

'-Wconversion'
     Warn about implicit conversions that are likely to change the value
     of the expression after conversion.  Implied by '-Wall'.

'-Wconversion-extra'
     Warn about implicit conversions between different types and kinds.
     This option does _not_ imply '-Wconversion'.

'-Wextra'
     Enables some warning options for usages of language features which
     may be problematic.  This currently includes '-Wcompare-reals',
     '-Wunused-parameter' and '-Wdo-subscript'.

'-Wfrontend-loop-interchange'
     Warn when using '-ffrontend-loop-interchange' for performing loop
     interchanges.

'-Wimplicit-interface'
     Warn if a procedure is called without an explicit interface.  Note
     this only checks that an explicit interface is present.  It does
     not check that the declared interfaces are consistent across
     program units.

'-Wimplicit-procedure'
     Warn if a procedure is called that has neither an explicit
     interface nor has been declared as 'EXTERNAL'.

'-Winteger-division'
     Warn if a constant integer division truncates its result.  As an
     example, 3/5 evaluates to 0.

'-Wintrinsics-std'
     Warn if 'gfortran' finds a procedure named like an intrinsic not
     available in the currently selected standard (with '-std') and
     treats it as 'EXTERNAL' procedure because of this.
     '-fall-intrinsics' can be used to never trigger this behavior and
     always link to the intrinsic regardless of the selected standard.

'-Wno-overwrite-recursive'
     Do not warn when '-fno-automatic' is used with '-frecursive'.
     Recursion will be broken if the relevant local variables do not
     have the attribute 'AUTOMATIC' explicitly declared.  This option
     can be used to suppress the warning when it is known that recursion
     is not broken.  Useful for build environments that use '-Werror'.

'-Wreal-q-constant'
     Produce a warning if a real-literal-constant contains a 'q'
     exponent-letter.

'-Wsurprising'
     Produce a warning when "suspicious" code constructs are
     encountered.  While technically legal these usually indicate that
     an error has been made.

     This currently produces a warning under the following
     circumstances:

        * An INTEGER SELECT construct has a CASE that can never be
          matched as its lower value is greater than its upper value.

        * A LOGICAL SELECT construct has three CASE statements.

        * A TRANSFER specifies a source that is shorter than the
          destination.

        * The type of a function result is declared more than once with
          the same type.  If '-pedantic' or standard-conforming mode is
          enabled, this is an error.

        * A 'CHARACTER' variable is declared with negative length.

'-Wtabs'
     By default, tabs are accepted as whitespace, but tabs are not
     members of the Fortran Character Set.  For continuation lines, a
     tab followed by a digit between 1 and 9 is supported.  '-Wtabs'
     will cause a warning to be issued if a tab is encountered.  Note,
     '-Wtabs' is active for '-pedantic', '-std=f95', '-std=f2003',
     '-std=f2008', '-std=f2018' and '-Wall'.

'-Wundefined-do-loop'
     Warn if a DO loop with step either 1 or -1 yields an underflow or
     an overflow during iteration of an induction variable of the loop.
     This option is implied by '-Wall'.

'-Wunderflow'
     Produce a warning when numerical constant expressions are
     encountered, which yield an UNDERFLOW during compilation.  Enabled
     by default.

'-Wintrinsic-shadow'
     Warn if a user-defined procedure or module procedure has the same
     name as an intrinsic; in this case, an explicit interface or
     'EXTERNAL' or 'INTRINSIC' declaration might be needed to get calls
     later resolved to the desired intrinsic/procedure.  This option is
     implied by '-Wall'.

'-Wuse-without-only'
     Warn if a 'USE' statement has no 'ONLY' qualifier and thus
     implicitly imports all public entities of the used module.

'-Wunused-dummy-argument'
     Warn about unused dummy arguments.  This option is implied by
     '-Wall'.

'-Wunused-parameter'
     Contrary to 'gcc''s meaning of '-Wunused-parameter', 'gfortran''s
     implementation of this option does not warn about unused dummy
     arguments (see '-Wunused-dummy-argument'), but about unused
     'PARAMETER' values.  '-Wunused-parameter' is implied by '-Wextra'
     if also '-Wunused' or '-Wall' is used.

'-Walign-commons'
     By default, 'gfortran' warns about any occasion of variables being
     padded for proper alignment inside a 'COMMON' block.  This warning
     can be turned off via '-Wno-align-commons'.  See also
     '-falign-commons'.

'-Wfunction-elimination'
     Warn if any calls to impure functions are eliminated by the
     optimizations enabled by the '-ffrontend-optimize' option.  This
     option is implied by '-Wextra'.

'-Wrealloc-lhs'
     Warn when the compiler might insert code to for allocation or
     reallocation of an allocatable array variable of intrinsic type in
     intrinsic assignments.  In hot loops, the Fortran 2003 reallocation
     feature may reduce the performance.  If the array is already
     allocated with the correct shape, consider using a whole-array
     array-spec (e.g.  '(:,:,:)') for the variable on the left-hand side
     to prevent the reallocation check.  Note that in some cases the
     warning is shown, even if the compiler will optimize reallocation
     checks away.  For instance, when the right-hand side contains the
     same variable multiplied by a scalar.  See also '-frealloc-lhs'.

'-Wrealloc-lhs-all'
     Warn when the compiler inserts code to for allocation or
     reallocation of an allocatable variable; this includes scalars and
     derived types.

'-Wcompare-reals'
     Warn when comparing real or complex types for equality or
     inequality.  This option is implied by '-Wextra'.

'-Wtarget-lifetime'
     Warn if the pointer in a pointer assignment might be longer than
     the its target.  This option is implied by '-Wall'.

'-Wzerotrip'
     Warn if a 'DO' loop is known to execute zero times at compile time.
     This option is implied by '-Wall'.

'-Wdo-subscript'
     Warn if an array subscript inside a DO loop could lead to an
     out-of-bounds access even if the compiler cannot prove that the
     statement is actually executed, in cases like
            real a(3)
            do i=1,4
              if (condition(i)) then
                a(i) = 1.2
              end if
            end do
     This option is implied by '-Wextra'.

'-Werror'
     Turns all warnings into errors.

   *Note Options to Request or Suppress Errors and Warnings:
(gcc)Warning Options, for information on more options offered by the GBE
shared by 'gfortran', 'gcc' and other GNU compilers.

   Some of these have no effect when compiling programs written in
Fortran.


File: gfortran.info,  Node: Debugging Options,  Next: Directory Options,  Prev: Error and Warning Options,  Up: Invoking GNU Fortran

2.5 Options for debugging your program or GNU Fortran
=====================================================

GNU Fortran has various special options that are used for debugging
either your program or the GNU Fortran compiler.

'-fdump-fortran-original'
     Output the internal parse tree after translating the source program
     into internal representation.  This option is mostly useful for
     debugging the GNU Fortran compiler itself.  The output generated by
     this option might change between releases.  This option may also
     generate internal compiler errors for features which have only
     recently been added.

'-fdump-fortran-optimized'
     Output the parse tree after front-end optimization.  Mostly useful
     for debugging the GNU Fortran compiler itself.  The output
     generated by this option might change between releases.  This
     option may also generate internal compiler errors for features
     which have only recently been added.

'-fdump-parse-tree'
     Output the internal parse tree after translating the source program
     into internal representation.  Mostly useful for debugging the GNU
     Fortran compiler itself.  The output generated by this option might
     change between releases.  This option may also generate internal
     compiler errors for features which have only recently been added.
     This option is deprecated; use '-fdump-fortran-original' instead.

'-fdump-fortran-global'
     Output a list of the global identifiers after translating into
     middle-end representation.  Mostly useful for debugging the GNU
     Fortran compiler itself.  The output generated by this option might
     change between releases.  This option may also generate internal
     compiler errors for features which have only recently been added.

'-ffpe-trap=LIST'
     Specify a list of floating point exception traps to enable.  On
     most systems, if a floating point exception occurs and the trap for
     that exception is enabled, a SIGFPE signal will be sent and the
     program being aborted, producing a core file useful for debugging.
     LIST is a (possibly empty) comma-separated list of the following
     exceptions: 'invalid' (invalid floating point operation, such as
     'SQRT(-1.0)'), 'zero' (division by zero), 'overflow' (overflow in a
     floating point operation), 'underflow' (underflow in a floating
     point operation), 'inexact' (loss of precision during operation),
     and 'denormal' (operation performed on a denormal value).  The
     first five exceptions correspond to the five IEEE 754 exceptions,
     whereas the last one ('denormal') is not part of the IEEE 754
     standard but is available on some common architectures such as x86.

     The first three exceptions ('invalid', 'zero', and 'overflow')
     often indicate serious errors, and unless the program has
     provisions for dealing with these exceptions, enabling traps for
     these three exceptions is probably a good idea.

     If the option is used more than once in the command line, the lists
     will be joined: ''ffpe-trap='LIST1 'ffpe-trap='LIST2' is equivalent
     to 'ffpe-trap='LIST1,LIST2.

     Note that once enabled an exception cannot be disabled (no negative
     form).

     Many, if not most, floating point operations incur loss of
     precision due to rounding, and hence the 'ffpe-trap=inexact' is
     likely to be uninteresting in practice.

     By default no exception traps are enabled.

'-ffpe-summary=LIST'
     Specify a list of floating-point exceptions, whose flag status is
     printed to 'ERROR_UNIT' when invoking 'STOP' and 'ERROR STOP'.
     LIST can be either 'none', 'all' or a comma-separated list of the
     following exceptions: 'invalid', 'zero', 'overflow', 'underflow',
     'inexact' and 'denormal'.  (See '-ffpe-trap' for a description of
     the exceptions.)

     If the option is used more than once in the command line, only the
     last one will be used.

     By default, a summary for all exceptions but 'inexact' is shown.

'-fno-backtrace'
     When a serious runtime error is encountered or a deadly signal is
     emitted (segmentation fault, illegal instruction, bus error,
     floating-point exception, and the other POSIX signals that have the
     action 'core'), the Fortran runtime library tries to output a
     backtrace of the error.  '-fno-backtrace' disables the backtrace
     generation.  This option only has influence for compilation of the
     Fortran main program.

   *Note Options for Debugging Your Program or GCC: (gcc)Debugging
Options, for more information on debugging options.


File: gfortran.info,  Node: Directory Options,  Next: Link Options,  Prev: Debugging Options,  Up: Invoking GNU Fortran

2.6 Options for directory search
================================

These options affect how GNU Fortran searches for files specified by the
'INCLUDE' directive and where it searches for previously compiled
modules.

   It also affects the search paths used by 'cpp' when used to
preprocess Fortran source.

'-IDIR'
     These affect interpretation of the 'INCLUDE' directive (as well as
     of the '#include' directive of the 'cpp' preprocessor).

     Also note that the general behavior of '-I' and 'INCLUDE' is pretty
     much the same as of '-I' with '#include' in the 'cpp' preprocessor,
     with regard to looking for 'header.gcc' files and other such
     things.

     This path is also used to search for '.mod' files when previously
     compiled modules are required by a 'USE' statement.

     *Note Options for Directory Search: (gcc)Directory Options, for
     information on the '-I' option.

'-JDIR'
     This option specifies where to put '.mod' files for compiled
     modules.  It is also added to the list of directories to searched
     by an 'USE' statement.

     The default is the current directory.

'-fintrinsic-modules-path DIR'
     This option specifies the location of pre-compiled intrinsic
     modules, if they are not in the default location expected by the
     compiler.


File: gfortran.info,  Node: Link Options,  Next: Runtime Options,  Prev: Directory Options,  Up: Invoking GNU Fortran

2.7 Influencing the linking step
================================

These options come into play when the compiler links object files into
an executable output file.  They are meaningless if the compiler is not
doing a link step.

'-static-libgfortran'
     On systems that provide 'libgfortran' as a shared and a static
     library, this option forces the use of the static version.  If no
     shared version of 'libgfortran' was built when the compiler was
     configured, this option has no effect.


File: gfortran.info,  Node: Runtime Options,  Next: Code Gen Options,  Prev: Link Options,  Up: Invoking GNU Fortran

2.8 Influencing runtime behavior
================================

These options affect the runtime behavior of programs compiled with GNU
Fortran.

'-fconvert=CONVERSION'
     Specify the representation of data for unformatted files.  Valid
     values for conversion are: 'native', the default; 'swap', swap
     between big- and little-endian; 'big-endian', use big-endian
     representation for unformatted files; 'little-endian', use
     little-endian representation for unformatted files.

     _This option has an effect only when used in the main program.  The
     'CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment
     variable override the default specified by '-fconvert'._

'-frecord-marker=LENGTH'
     Specify the length of record markers for unformatted files.  Valid
     values for LENGTH are 4 and 8.  Default is 4.  _This is different
     from previous versions of 'gfortran'_, which specified a default
     record marker length of 8 on most systems.  If you want to read or
     write files compatible with earlier versions of 'gfortran', use
     '-frecord-marker=8'.

'-fmax-subrecord-length=LENGTH'
     Specify the maximum length for a subrecord.  The maximum permitted
     value for length is 2147483639, which is also the default.  Only
     really useful for use by the gfortran testsuite.

'-fsign-zero'
     When enabled, floating point numbers of value zero with the sign
     bit set are written as negative number in formatted output and
     treated as negative in the 'SIGN' intrinsic.  '-fno-sign-zero' does
     not print the negative sign of zero values (or values rounded to
     zero for I/O) and regards zero as positive number in the 'SIGN'
     intrinsic for compatibility with Fortran 77.  The default is
     '-fsign-zero'.


File: gfortran.info,  Node: Code Gen Options,  Next: Interoperability Options,  Prev: Runtime Options,  Up: Invoking GNU Fortran

2.9 Options for code generation conventions
===========================================

These machine-independent options control the interface conventions used
in code generation.

   Most of them have both positive and negative forms; the negative form
of '-ffoo' would be '-fno-foo'.  In the table below, only one of the
forms is listed--the one which is not the default.  You can figure out
the other form by either removing 'no-' or adding it.

'-fno-automatic'
     Treat each program unit (except those marked as RECURSIVE) as if
     the 'SAVE' statement were specified for every local variable and
     array referenced in it.  Does not affect common blocks.  (Some
     Fortran compilers provide this option under the name '-static' or
     '-save'.)  The default, which is '-fautomatic', uses the stack for
     local variables smaller than the value given by
     '-fmax-stack-var-size'.  Use the option '-frecursive' to use no
     static memory.

     Local variables or arrays having an explicit 'SAVE' attribute are
     silently ignored unless the '-pedantic' option is added.

'-ff2c'
     Generate code designed to be compatible with code generated by
     'g77' and 'f2c'.

     The calling conventions used by 'g77' (originally implemented in
     'f2c') require functions that return type default 'REAL' to
     actually return the C type 'double', and functions that return type
     'COMPLEX' to return the values via an extra argument in the calling
     sequence that points to where to store the return value.  Under the
     default GNU calling conventions, such functions simply return their
     results as they would in GNU C--default 'REAL' functions return the
     C type 'float', and 'COMPLEX' functions return the GNU C type
     'complex'.  Additionally, this option implies the
     '-fsecond-underscore' option, unless '-fno-second-underscore' is
     explicitly requested.

     This does not affect the generation of code that interfaces with
     the 'libgfortran' library.

     _Caution:_ It is not a good idea to mix Fortran code compiled with
     '-ff2c' with code compiled with the default '-fno-f2c' calling
     conventions as, calling 'COMPLEX' or default 'REAL' functions
     between program parts which were compiled with different calling
     conventions will break at execution time.

     _Caution:_ This will break code which passes intrinsic functions of
     type default 'REAL' or 'COMPLEX' as actual arguments, as the
     library implementations use the '-fno-f2c' calling conventions.

'-fno-underscoring'
     Do not transform names of entities specified in the Fortran source
     file by appending underscores to them.

     With '-funderscoring' in effect, GNU Fortran appends one underscore
     to external names with no underscores.  This is done to ensure
     compatibility with code produced by many UNIX Fortran compilers.

     _Caution_: The default behavior of GNU Fortran is incompatible with
     'f2c' and 'g77', please use the '-ff2c' option if you want object
     files compiled with GNU Fortran to be compatible with object code
     created with these tools.

     Use of '-fno-underscoring' is not recommended unless you are
     experimenting with issues such as integration of GNU Fortran into
     existing system environments (vis-à-vis existing libraries, tools,
     and so on).

     For example, with '-funderscoring', and assuming that 'j()' and
     'max_count()' are external functions while 'my_var' and 'lvar' are
     local variables, a statement like
          I = J() + MAX_COUNT (MY_VAR, LVAR)
     is implemented as something akin to:
          i = j_() + max_count__(&my_var__, &lvar);

     With '-fno-underscoring', the same statement is implemented as:

          i = j() + max_count(&my_var, &lvar);

     Use of '-fno-underscoring' allows direct specification of
     user-defined names while debugging and when interfacing GNU Fortran
     code with other languages.

     Note that just because the names match does _not_ mean that the
     interface implemented by GNU Fortran for an external name matches
     the interface implemented by some other language for that same
     name.  That is, getting code produced by GNU Fortran to link to
     code produced by some other compiler using this or any other method
     can be only a small part of the overall solution--getting the code
     generated by both compilers to agree on issues other than naming
     can require significant effort, and, unlike naming disagreements,
     linkers normally cannot detect disagreements in these other areas.

     Also, note that with '-fno-underscoring', the lack of appended
     underscores introduces the very real possibility that a
     user-defined external name will conflict with a name in a system
     library, which could make finding unresolved-reference bugs quite
     difficult in some cases--they might occur at program run time, and
     show up only as buggy behavior at run time.

     In future versions of GNU Fortran we hope to improve naming and
     linking issues so that debugging always involves using the names as
     they appear in the source, even if the names as seen by the linker
     are mangled to prevent accidental linking between procedures with
     incompatible interfaces.

'-fsecond-underscore'
     By default, GNU Fortran appends an underscore to external names.
     If this option is used GNU Fortran appends two underscores to names
     with underscores and one underscore to external names with no
     underscores.  GNU Fortran also appends two underscores to internal
     names with underscores to avoid naming collisions with external
     names.

     This option has no effect if '-fno-underscoring' is in effect.  It
     is implied by the '-ff2c' option.

     Otherwise, with this option, an external name such as 'MAX_COUNT'
     is implemented as a reference to the link-time external symbol
     'max_count__', instead of 'max_count_'.  This is required for
     compatibility with 'g77' and 'f2c', and is implied by use of the
     '-ff2c' option.

'-fcoarray=<KEYWORD>'

     'none'
          Disable coarray support; using coarray declarations and
          image-control statements will produce a compile-time error.
          (Default)

     'single'
          Single-image mode, i.e.  'num_images()' is always one.

     'lib'
          Library-based coarray parallelization; a suitable GNU Fortran
          coarray library needs to be linked.

'-fcheck=<KEYWORD>'

     Enable the generation of run-time checks; the argument shall be a
     comma-delimited list of the following keywords.  Prefixing a check
     with 'no-' disables it if it was activated by a previous
     specification.

     'all'
          Enable all run-time test of '-fcheck'.

     'array-temps'
          Warns at run time when for passing an actual argument a
          temporary array had to be generated.  The information
          generated by this warning is sometimes useful in optimization,
          in order to avoid such temporaries.

          Note: The warning is only printed once per location.

     'bits'
          Enable generation of run-time checks for invalid arguments to
          the bit manipulation intrinsics.

     'bounds'
          Enable generation of run-time checks for array subscripts and
          against the declared minimum and maximum values.  It also
          checks array indices for assumed and deferred shape arrays
          against the actual allocated bounds and ensures that all
          string lengths are equal for character array constructors
          without an explicit typespec.

          Some checks require that '-fcheck=bounds' is set for the
          compilation of the main program.

          Note: In the future this may also include other forms of
          checking, e.g., checking substring references.

     'do'
          Enable generation of run-time checks for invalid modification
          of loop iteration variables.

     'mem'
          Enable generation of run-time checks for memory allocation.
          Note: This option does not affect explicit allocations using
          the 'ALLOCATE' statement, which will be always checked.

     'pointer'
          Enable generation of run-time checks for pointers and
          allocatables.

     'recursion'
          Enable generation of run-time checks for recursively called
          subroutines and functions which are not marked as recursive.
          See also '-frecursive'.  Note: This check does not work for
          OpenMP programs and is disabled if used together with
          '-frecursive' and '-fopenmp'.

     Example: Assuming you have a file 'foo.f90', the command
            gfortran -fcheck=all,no-array-temps foo.f90
     will compile the file with all checks enabled as specified above
     except warnings for generated array temporaries.

'-fbounds-check'
     Deprecated alias for '-fcheck=bounds'.

'-ftail-call-workaround'
'-ftail-call-workaround=N'
     Some C interfaces to Fortran codes violate the gfortran ABI by
     omitting the hidden character length arguments as described in
     *Note Argument passing conventions::.  This can lead to crashes
     because pushing arguments for tail calls can overflow the stack.

     To provide a workaround for existing binary packages, this option
     disables tail call optimization for gfortran procedures with
     character arguments.  With '-ftail-call-workaround=2' tail call
     optimization is disabled in all gfortran procedures with character
     arguments, with '-ftail-call-workaround=1' or equivalent
     '-ftail-call-workaround' only in gfortran procedures with character
     arguments that call implicitly prototyped procedures.

     Using this option can lead to problems including crashes due to
     insufficient stack space.

     It is _very strongly_ recommended to fix the code in question.  The
     '-fc-prototypes-external' option can be used to generate prototypes
     which conform to gfortran's ABI, for inclusion in the source code.

     Support for this option will likely be withdrawn in a future
     release of gfortran.

     The negative form, '-fno-tail-call-workaround' or equivalent
     '-ftail-call-workaround=0', can be used to disable this option.

     Default is currently '-ftail-call-workaround', this will change in
     future releases.

'-fcheck-array-temporaries'
     Deprecated alias for '-fcheck=array-temps'.

'-fmax-array-constructor=N'
     This option can be used to increase the upper limit permitted in
     array constructors.  The code below requires this option to expand
     the array at compile time.

          program test
          implicit none
          integer j
          integer, parameter :: n = 100000
          integer, parameter :: i(n) = (/ (2*j, j = 1, n) /)
          print '(10(I0,1X))', i
          end program test

     _Caution: This option can lead to long compile times and
     excessively large object files._

     The default value for N is 65535.

'-fmax-stack-var-size=N'
     This option specifies the size in bytes of the largest array that
     will be put on the stack; if the size is exceeded static memory is
     used (except in procedures marked as RECURSIVE). Use the option
     '-frecursive' to allow for recursive procedures which do not have a
     RECURSIVE attribute or for parallel programs.  Use '-fno-automatic'
     to never use the stack.

     This option currently only affects local arrays declared with
     constant bounds, and may not apply to all character variables.
     Future versions of GNU Fortran may improve this behavior.

     The default value for N is 65536.

'-fstack-arrays'
     Adding this option will make the Fortran compiler put all arrays of
     unknown size and array temporaries onto stack memory.  If your
     program uses very large local arrays it is possible that you will
     have to extend your runtime limits for stack memory on some
     operating systems.  This flag is enabled by default at optimization
     level '-Ofast' unless '-fmax-stack-var-size' is specified.

'-fpack-derived'
     This option tells GNU Fortran to pack derived type members as
     closely as possible.  Code compiled with this option is likely to
     be incompatible with code compiled without this option, and may
     execute slower.

'-frepack-arrays'
     In some circumstances GNU Fortran may pass assumed shape array
     sections via a descriptor describing a noncontiguous area of
     memory.  This option adds code to the function prologue to repack
     the data into a contiguous block at runtime.

     This should result in faster accesses to the array.  However it can
     introduce significant overhead to the function call, especially
     when the passed data is noncontiguous.

'-fshort-enums'
     This option is provided for interoperability with C code that was
     compiled with the '-fshort-enums' option.  It will make GNU Fortran
     choose the smallest 'INTEGER' kind a given enumerator set will fit
     in, and give all its enumerators this kind.

'-finline-arg-packing'
     When passing an assumed-shape argument of a procedure as actual
     argument to an assumed-size or explicit size or as argument to a
     procedure that does not have an explicit interface, the argument
     may have to be packed, that is put into contiguous memory.  An
     example is the call to 'foo' in
            subroutine foo(a)
               real, dimension(*) :: a
            end subroutine foo
            subroutine bar(b)
               real, dimension(:) :: b
               call foo(b)
            end subroutine bar

     When '-finline-arg-packing' is in effect, this packing will be
     performed by inline code.  This allows for more optimization while
     increasing code size.

     '-finline-arg-packing' is implied by any of the '-O' options except
     when optimizing for size via '-Os'.  If the code contains a very
     large number of argument that have to be packed, code size and also
     compilation time may become excessive.  If that is the case, it may
     be better to disable this option.  Instances of packing can be
     found by using by using '-Warray-temporaries'.

'-fexternal-blas'
     This option will make 'gfortran' generate calls to BLAS functions
     for some matrix operations like 'MATMUL', instead of using our own
     algorithms, if the size of the matrices involved is larger than a
     given limit (see '-fblas-matmul-limit').  This may be profitable if
     an optimized vendor BLAS library is available.  The BLAS library
     will have to be specified at link time.

'-fblas-matmul-limit=N'
     Only significant when '-fexternal-blas' is in effect.  Matrix
     multiplication of matrices with size larger than (or equal to) N
     will be performed by calls to BLAS functions, while others will be
     handled by 'gfortran' internal algorithms.  If the matrices
     involved are not square, the size comparison is performed using the
     geometric mean of the dimensions of the argument and result
     matrices.

     The default value for N is 30.

'-finline-matmul-limit=N'
     When front-end optimiztion is active, some calls to the 'MATMUL'
     intrinsic function will be inlined.  This may result in code size
     increase if the size of the matrix cannot be determined at compile
     time, as code for both cases is generated.  Setting
     '-finline-matmul-limit=0' will disable inlining in all cases.
     Setting this option with a value of N will produce inline code for
     matrices with size up to N.  If the matrices involved are not
     square, the size comparison is performed using the geometric mean
     of the dimensions of the argument and result matrices.

     The default value for N is 30.  The '-fblas-matmul-limit' can be
     used to change this value.

'-frecursive'
     Allow indirect recursion by forcing all local arrays to be
     allocated on the stack.  This flag cannot be used together with
     '-fmax-stack-var-size=' or '-fno-automatic'.

'-finit-local-zero'
'-finit-derived'
'-finit-integer=N'
'-finit-real=<ZERO|INF|-INF|NAN|SNAN>'
'-finit-logical=<TRUE|FALSE>'
'-finit-character=N'
     The '-finit-local-zero' option instructs the compiler to initialize
     local 'INTEGER', 'REAL', and 'COMPLEX' variables to zero, 'LOGICAL'
     variables to false, and 'CHARACTER' variables to a string of null
     bytes.  Finer-grained initialization options are provided by the
     '-finit-integer=N', '-finit-real=<ZERO|INF|-INF|NAN|SNAN>' (which
     also initializes the real and imaginary parts of local 'COMPLEX'
     variables), '-finit-logical=<TRUE|FALSE>', and '-finit-character=N'
     (where N is an ASCII character value) options.

     With '-finit-derived', components of derived type variables will be
     initialized according to these flags.  Components whose type is not
     covered by an explicit '-finit-*' flag will be treated as described
     above with '-finit-local-zero'.

     These options do not initialize
        * objects with the POINTER attribute
        * allocatable arrays
        * variables that appear in an 'EQUIVALENCE' statement.
     (These limitations may be removed in future releases).

     Note that the '-finit-real=nan' option initializes 'REAL' and
     'COMPLEX' variables with a quiet NaN. For a signalling NaN use
     '-finit-real=snan'; note, however, that compile-time optimizations
     may convert them into quiet NaN and that trapping needs to be
     enabled (e.g.  via '-ffpe-trap').

     The '-finit-integer' option will parse the value into an integer of
     type 'INTEGER(kind=C_LONG)' on the host.  Said value is then
     assigned to the integer variables in the Fortran code, which might
     result in wraparound if the value is too large for the kind.

     Finally, note that enabling any of the '-finit-*' options will
     silence warnings that would have been emitted by '-Wuninitialized'
     for the affected local variables.

'-falign-commons'
     By default, 'gfortran' enforces proper alignment of all variables
     in a 'COMMON' block by padding them as needed.  On certain
     platforms this is mandatory, on others it increases performance.
     If a 'COMMON' block is not declared with consistent data types
     everywhere, this padding can cause trouble, and
     '-fno-align-commons' can be used to disable automatic alignment.
     The same form of this option should be used for all files that
     share a 'COMMON' block.  To avoid potential alignment issues in
     'COMMON' blocks, it is recommended to order objects from largest to
     smallest.

'-fno-protect-parens'
     By default the parentheses in expression are honored for all
     optimization levels such that the compiler does not do any
     re-association.  Using '-fno-protect-parens' allows the compiler to
     reorder 'REAL' and 'COMPLEX' expressions to produce faster code.
     Note that for the re-association optimization '-fno-signed-zeros'
     and '-fno-trapping-math' need to be in effect.  The parentheses
     protection is enabled by default, unless '-Ofast' is given.

'-frealloc-lhs'
     An allocatable left-hand side of an intrinsic assignment is
     automatically (re)allocated if it is either unallocated or has a
     different shape.  The option is enabled by default except when
     '-std=f95' is given.  See also '-Wrealloc-lhs'.

'-faggressive-function-elimination'
     Functions with identical argument lists are eliminated within
     statements, regardless of whether these functions are marked 'PURE'
     or not.  For example, in
            a = f(b,c) + f(b,c)
     there will only be a single call to 'f'.  This option only works if
     '-ffrontend-optimize' is in effect.

'-ffrontend-optimize'
     This option performs front-end optimization, based on manipulating
     parts the Fortran parse tree.  Enabled by default by any '-O'
     option except '-O0' and '-Og'.  Optimizations enabled by this
     option include:
        * inlining calls to 'MATMUL',
        * elimination of identical function calls within expressions,
        * removing unnecessary calls to 'TRIM' in comparisons and
          assignments,
        * replacing 'TRIM(a)' with 'a(1:LEN_TRIM(a))' and
        * short-circuiting of logical operators ('.AND.' and '.OR.').
     It can be deselected by specifying '-fno-frontend-optimize'.

'-ffrontend-loop-interchange'
     Attempt to interchange loops in the Fortran front end where
     profitable.  Enabled by default by any '-O' option.  At the moment,
     this option only affects 'FORALL' and 'DO CONCURRENT' statements
     with several forall triplets.

   *Note Options for Code Generation Conventions: (gcc)Code Gen Options,
for information on more options offered by the GBE shared by 'gfortran',
'gcc', and other GNU compilers.


File: gfortran.info,  Node: Interoperability Options,  Next: Environment Variables,  Prev: Code Gen Options,  Up: Invoking GNU Fortran

2.10 Options for interoperability with other languages
======================================================

-fc-prototypes
     This option will generate C prototypes from 'BIND(C)' variable
     declarations, types and procedure interfaces and writes them to
     standard output.  'ENUM' is not yet supported.

     The generated prototypes may need inclusion of an appropriate
     header, such as '<stdint.h>' or '<stdlib.h>'.  For types which are
     not specified using the appropriate kind from the 'iso_c_binding'
     module, a warning is added as a comment to the code.

     For function pointers, a pointer to a function returning 'int'
     without an explicit argument list is generated.

     Example of use:
          $ gfortran -fc-prototypes -fsyntax-only foo.f90 > foo.h
     where the C code intended for interoperating with the Fortran code
     then uses '#include "foo.h"'.

-fc-prototypes-external
     This option will generate C prototypes from external functions and
     subroutines and write them to standard output.  This may be useful
     for making sure that C bindings to Fortran code are correct.  This
     option does not generate prototypes for 'BIND(C)' procedures, use
     '-fc-prototypes' for that.

     The generated prototypes may need inclusion of an appropriate
     header, such as as '<stdint.h>' or '<stdlib.h>'.

     This is primarily meant for legacy code to ensure that existing C
     bindings match what 'gfortran' emits.  The generated C prototypes
     should be correct for the current version of the compiler, but may
     not match what other compilers or earlier versions of 'gfortran'
     need.  For new developments, use of the 'BIND(C)' features is
     recommended.

     Example of use:
          $ gfortran -fc-prototypes-external -fsyntax-only foo.f > foo.h
     where the C code intended for interoperating with the Fortran code
     then uses '#include "foo.h"'.


File: gfortran.info,  Node: Environment Variables,  Prev: Interoperability Options,  Up: Invoking GNU Fortran

2.11 Environment variables affecting 'gfortran'
===============================================

The 'gfortran' compiler currently does not make use of any environment
variables to control its operation above and beyond those that affect
the operation of 'gcc'.

   *Note Environment Variables Affecting GCC: (gcc)Environment
Variables, for information on environment variables.

   *Note Runtime::, for environment variables that affect the run-time
behavior of programs compiled with GNU Fortran.


File: gfortran.info,  Node: Runtime,  Next: Fortran standards status,  Prev: Invoking GNU Fortran,  Up: Top

3 Runtime: Influencing runtime behavior with environment variables
******************************************************************

The behavior of the 'gfortran' can be influenced by environment
variables.

   Malformed environment variables are silently ignored.

* Menu:

* TMPDIR:: Directory for scratch files
* GFORTRAN_STDIN_UNIT:: Unit number for standard input
* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
* GFORTRAN_STDERR_UNIT:: Unit number for standard error
* GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units
* GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
* GFORTRAN_SHOW_LOCUS::  Show location for runtime errors
* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
* GFORTRAN_LIST_SEPARATOR::  Separator for list output
* GFORTRAN_CONVERT_UNIT::  Set endianness for unformatted I/O
* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
* GFORTRAN_FORMATTED_BUFFER_SIZE:: Buffer size for formatted files
* GFORTRAN_UNFORMATTED_BUFFER_SIZE:: Buffer size for unformatted files


File: gfortran.info,  Node: TMPDIR,  Next: GFORTRAN_STDIN_UNIT,  Up: Runtime

3.1 'TMPDIR'--Directory for scratch files
=========================================

When opening a file with 'STATUS='SCRATCH'', GNU Fortran tries to create
the file in one of the potential directories by testing each directory
in the order below.

  1. The environment variable 'TMPDIR', if it exists.

  2. On the MinGW target, the directory returned by the 'GetTempPath'
     function.  Alternatively, on the Cygwin target, the 'TMP' and
     'TEMP' environment variables, if they exist, in that order.

  3. The 'P_tmpdir' macro if it is defined, otherwise the directory
     '/tmp'.


File: gfortran.info,  Node: GFORTRAN_STDIN_UNIT,  Next: GFORTRAN_STDOUT_UNIT,  Prev: TMPDIR,  Up: Runtime

3.2 'GFORTRAN_STDIN_UNIT'--Unit number for standard input
=========================================================

This environment variable can be used to select the unit number
preconnected to standard input.  This must be a positive integer.  The
default value is 5.


File: gfortran.info,  Node: GFORTRAN_STDOUT_UNIT,  Next: GFORTRAN_STDERR_UNIT,  Prev: GFORTRAN_STDIN_UNIT,  Up: Runtime

3.3 'GFORTRAN_STDOUT_UNIT'--Unit number for standard output
===========================================================

This environment variable can be used to select the unit number
preconnected to standard output.  This must be a positive integer.  The
default value is 6.


File: gfortran.info,  Node: GFORTRAN_STDERR_UNIT,  Next: GFORTRAN_UNBUFFERED_ALL,  Prev: GFORTRAN_STDOUT_UNIT,  Up: Runtime

3.4 'GFORTRAN_STDERR_UNIT'--Unit number for standard error
==========================================================

This environment variable can be used to select the unit number
preconnected to standard error.  This must be a positive integer.  The
default value is 0.


File: gfortran.info,  Node: GFORTRAN_UNBUFFERED_ALL,  Next: GFORTRAN_UNBUFFERED_PRECONNECTED,  Prev: GFORTRAN_STDERR_UNIT,  Up: Runtime

3.5 'GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units
=============================================================

This environment variable controls whether all I/O is unbuffered.  If
the first letter is 'y', 'Y' or '1', all I/O is unbuffered.  This will
slow down small sequential reads and writes.  If the first letter is
'n', 'N' or '0', I/O is buffered.  This is the default.


File: gfortran.info,  Node: GFORTRAN_UNBUFFERED_PRECONNECTED,  Next: GFORTRAN_SHOW_LOCUS,  Prev: GFORTRAN_UNBUFFERED_ALL,  Up: Runtime

3.6 'GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units
===============================================================================

The environment variable named 'GFORTRAN_UNBUFFERED_PRECONNECTED'
controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is
unbuffered.  If the first letter is 'y', 'Y' or '1', I/O is unbuffered.
This will slow down small sequential reads and writes.  If the first
letter is 'n', 'N' or '0', I/O is buffered.  This is the default.


File: gfortran.info,  Node: GFORTRAN_SHOW_LOCUS,  Next: GFORTRAN_OPTIONAL_PLUS,  Prev: GFORTRAN_UNBUFFERED_PRECONNECTED,  Up: Runtime

3.7 'GFORTRAN_SHOW_LOCUS'--Show location for runtime errors
===========================================================

If the first letter is 'y', 'Y' or '1', filename and line numbers for
runtime errors are printed.  If the first letter is 'n', 'N' or '0', do
not print filename and line numbers for runtime errors.  The default is
to print the location.


File: gfortran.info,  Node: GFORTRAN_OPTIONAL_PLUS,  Next: GFORTRAN_LIST_SEPARATOR,  Prev: GFORTRAN_SHOW_LOCUS,  Up: Runtime

3.8 'GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted
=============================================================

If the first letter is 'y', 'Y' or '1', a plus sign is printed where
permitted by the Fortran standard.  If the first letter is 'n', 'N' or
'0', a plus sign is not printed in most cases.  Default is not to print
plus signs.


File: gfortran.info,  Node: GFORTRAN_LIST_SEPARATOR,  Next: GFORTRAN_CONVERT_UNIT,  Prev: GFORTRAN_OPTIONAL_PLUS,  Up: Runtime

3.9 'GFORTRAN_LIST_SEPARATOR'--Separator for list output
========================================================

This environment variable specifies the separator when writing
list-directed output.  It may contain any number of spaces and at most
one comma.  If you specify this on the command line, be sure to quote
spaces, as in
     $ GFORTRAN_LIST_SEPARATOR='  ,  ' ./a.out
   when 'a.out' is the compiled Fortran program that you want to run.
Default is a single space.


File: gfortran.info,  Node: GFORTRAN_CONVERT_UNIT,  Next: GFORTRAN_ERROR_BACKTRACE,  Prev: GFORTRAN_LIST_SEPARATOR,  Up: Runtime

3.10 'GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O
================================================================

By setting the 'GFORTRAN_CONVERT_UNIT' variable, it is possible to
change the representation of data for unformatted files.  The syntax for
the 'GFORTRAN_CONVERT_UNIT' variable is:
     GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
     mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
     exception: mode ':' unit_list | unit_list ;
     unit_list: unit_spec | unit_list unit_spec ;
     unit_spec: INTEGER | INTEGER '-' INTEGER ;
   The variable consists of an optional default mode, followed by a list
of optional exceptions, which are separated by semicolons from the
preceding default and each other.  Each exception consists of a format
and a comma-separated list of units.  Valid values for the modes are the
same as for the 'CONVERT' specifier:

     'NATIVE' Use the native format.  This is the default.
     'SWAP' Swap between little- and big-endian.
     'LITTLE_ENDIAN' Use the little-endian format for unformatted files.
     'BIG_ENDIAN' Use the big-endian format for unformatted files.
   A missing mode for an exception is taken to mean 'BIG_ENDIAN'.
Examples of values for 'GFORTRAN_CONVERT_UNIT' are:
     ''big_endian'' Do all unformatted I/O in big_endian mode.
     ''little_endian;native:10-20,25'' Do all unformatted I/O in
     little_endian mode, except for units 10 to 20 and 25, which are in
     native format.
     ''10-20'' Units 10 to 20 are big-endian, the rest is native.

   Setting the environment variables should be done on the command line
or via the 'export' command for 'sh'-compatible shells and via 'setenv'
for 'csh'-compatible shells.

   Example for 'sh':
     $ gfortran foo.f90
     $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out

   Example code for 'csh':
     % gfortran foo.f90
     % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
     % ./a.out

   Using anything but the native representation for unformatted data
carries a significant speed overhead.  If speed in this area matters to
you, it is best if you use this only for data that needs to be portable.

   *Note CONVERT specifier::, for an alternative way to specify the data
representation for unformatted files.  *Note Runtime Options::, for
setting a default data representation for the whole program.  The
'CONVERT' specifier overrides the '-fconvert' compile options.

   _Note that the values specified via the GFORTRAN_CONVERT_UNIT
environment variable will override the CONVERT specifier in the open
statement_.  This is to give control over data formats to users who do
not have the source code of their program available.


File: gfortran.info,  Node: GFORTRAN_ERROR_BACKTRACE,  Next: GFORTRAN_FORMATTED_BUFFER_SIZE,  Prev: GFORTRAN_CONVERT_UNIT,  Up: Runtime

3.11 'GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors
==================================================================

If the 'GFORTRAN_ERROR_BACKTRACE' variable is set to 'y', 'Y' or '1'
(only the first letter is relevant) then a backtrace is printed when a
serious run-time error occurs.  To disable the backtracing, set the
variable to 'n', 'N', '0'.  Default is to print a backtrace unless the
'-fno-backtrace' compile option was used.


File: gfortran.info,  Node: GFORTRAN_FORMATTED_BUFFER_SIZE,  Next: GFORTRAN_UNFORMATTED_BUFFER_SIZE,  Prev: GFORTRAN_ERROR_BACKTRACE,  Up: Runtime

3.12 'GFORTRAN_FORMATTED_BUFFER_SIZE'--Set buffer size for formatted I/O
========================================================================

The 'GFORTRAN_FORMATTED_BUFFER_SIZE' environment variable specifies
buffer size in bytes to be used for formatted output.  The default value
is 8192.


File: gfortran.info,  Node: GFORTRAN_UNFORMATTED_BUFFER_SIZE,  Prev: GFORTRAN_FORMATTED_BUFFER_SIZE,  Up: Runtime

3.13 'GFORTRAN_UNFORMATTED_BUFFER_SIZE'--Set buffer size for unformatted I/O
============================================================================

The 'GFORTRAN_UNFORMATTED_BUFFER_SIZE' environment variable specifies
buffer size in bytes to be used for unformatted output.  The default
value is 131072.


File: gfortran.info,  Node: Fortran standards status,  Next: Compiler Characteristics,  Prev: Runtime,  Up: Top

4 Fortran standards status
**************************

* Menu:

* Fortran 2003 status::
* Fortran 2008 status::
* Fortran 2018 status::


File: gfortran.info,  Node: Fortran 2003 status,  Next: Fortran 2008 status,  Up: Fortran standards status

4.1 Fortran 2003 status
=======================

GNU Fortran supports several Fortran 2003 features; an incomplete list
can be found below.  See also the wiki page
(https://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003.

   * Procedure pointers including procedure-pointer components with
     'PASS' attribute.

   * Procedures which are bound to a derived type (type-bound
     procedures) including 'PASS', 'PROCEDURE' and 'GENERIC', and
     operators bound to a type.

   * Abstract interfaces and type extension with the possibility to
     override type-bound procedures or to have deferred binding.

   * Polymorphic entities ("'CLASS'") for derived types and unlimited
     polymorphism ("'CLASS(*)'") - including 'SAME_TYPE_AS',
     'EXTENDS_TYPE_OF' and 'SELECT TYPE' for scalars and arrays and
     finalization.

   * Generic interface names, which have the same name as derived types,
     are now supported.  This allows one to write constructor functions.
     Note that Fortran does not support static constructor functions.
     For static variables, only default initialization or
     structure-constructor initialization are available.

   * The 'ASSOCIATE' construct.

   * Interoperability with C including enumerations,

   * In structure constructors the components with default values may be
     omitted.

   * Extensions to the 'ALLOCATE' statement, allowing for a
     type-specification with type parameter and for allocation and
     initialization from a 'SOURCE=' expression; 'ALLOCATE' and
     'DEALLOCATE' optionally return an error message string via
     'ERRMSG='.

   * Reallocation on assignment: If an intrinsic assignment is used, an
     allocatable variable on the left-hand side is automatically
     allocated (if unallocated) or reallocated (if the shape is
     different).  Currently, scalar deferred character length left-hand
     sides are correctly handled but arrays are not yet fully
     implemented.

   * Deferred-length character variables and scalar deferred-length
     character components of derived types are supported.  (Note that
     array-valued compoents are not yet implemented.)

   * Transferring of allocations via 'MOVE_ALLOC'.

   * The 'PRIVATE' and 'PUBLIC' attributes may be given individually to
     derived-type components.

   * In pointer assignments, the lower bound may be specified and the
     remapping of elements is supported.

   * For pointers an 'INTENT' may be specified which affect the
     association status not the value of the pointer target.

   * Intrinsics 'command_argument_count', 'get_command',
     'get_command_argument', and 'get_environment_variable'.

   * Support for Unicode characters (ISO 10646) and UTF-8, including the
     'SELECTED_CHAR_KIND' and 'NEW_LINE' intrinsic functions.

   * Support for binary, octal and hexadecimal (BOZ) constants in the
     intrinsic functions 'INT', 'REAL', 'CMPLX' and 'DBLE'.

   * Support for namelist variables with allocatable and pointer
     attribute and nonconstant length type parameter.

   * Array constructors using square brackets.  That is, '[...]' rather
     than '(/.../)'.  Type-specification for array constructors like '(/
     some-type :: ... /)'.

   * Extensions to the specification and initialization expressions,
     including the support for intrinsics with real and complex
     arguments.

   * Support for the asynchronous input/output.

   * 'FLUSH' statement.

   * 'IOMSG=' specifier for I/O statements.

   * Support for the declaration of enumeration constants via the 'ENUM'
     and 'ENUMERATOR' statements.  Interoperability with 'gcc' is
     guaranteed also for the case where the '-fshort-enums' command line
     option is given.

   * TR 15581:
        * 'ALLOCATABLE' dummy arguments.
        * 'ALLOCATABLE' function results
        * 'ALLOCATABLE' components of derived types

   * The 'OPEN' statement supports the 'ACCESS='STREAM'' specifier,
     allowing I/O without any record structure.

   * Namelist input/output for internal files.

   * Minor I/O features: Rounding during formatted output, using of a
     decimal comma instead of a decimal point, setting whether a plus
     sign should appear for positive numbers.  On systems where 'strtod'
     honours the rounding mode, the rounding mode is also supported for
     input.

   * The 'PROTECTED' statement and attribute.

   * The 'VALUE' statement and attribute.

   * The 'VOLATILE' statement and attribute.

   * The 'IMPORT' statement, allowing to import host-associated derived
     types.

   * The intrinsic modules 'ISO_FORTRAN_ENVIRONMENT' is supported, which
     contains parameters of the I/O units, storage sizes.  Additionally,
     procedures for C interoperability are available in the
     'ISO_C_BINDING' module.

   * 'USE' statement with 'INTRINSIC' and 'NON_INTRINSIC' attribute;
     supported intrinsic modules: 'ISO_FORTRAN_ENV', 'ISO_C_BINDING',
     'OMP_LIB' and 'OMP_LIB_KINDS', and 'OPENACC'.

   * Renaming of operators in the 'USE' statement.


File: gfortran.info,  Node: Fortran 2008 status,  Next: Fortran 2018 status,  Prev: Fortran 2003 status,  Up: Fortran standards status

4.2 Fortran 2008 status
=======================

The latest version of the Fortran standard is ISO/IEC 1539-1:2010,
informally known as Fortran 2008.  The official version is available
from International Organization for Standardization (ISO) or its
national member organizations.  The the final draft (FDIS) can be
downloaded free of charge from
<http://www.nag.co.uk/sc22wg5/links.html>.  Fortran is developed by the
Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1
of the International Organization for Standardization and the
International Electrotechnical Commission (IEC). This group is known as
WG5 (http://www.nag.co.uk/sc22wg5/).

   The GNU Fortran compiler supports several of the new features of
Fortran 2008; the wiki (https://gcc.gnu.org/wiki/Fortran2008Status) has
some information about the current Fortran 2008 implementation status.
In particular, the following is implemented.

   * The '-std=f2008' option and support for the file extensions '.f08'
     and '.F08'.

   * The 'OPEN' statement now supports the 'NEWUNIT=' option, which
     returns a unique file unit, thus preventing inadvertent use of the
     same unit in different parts of the program.

   * The 'g0' format descriptor and unlimited format items.

   * The mathematical intrinsics 'ASINH', 'ACOSH', 'ATANH', 'ERF',
     'ERFC', 'GAMMA', 'LOG_GAMMA', 'BESSEL_J0', 'BESSEL_J1',
     'BESSEL_JN', 'BESSEL_Y0', 'BESSEL_Y1', 'BESSEL_YN', 'HYPOT',
     'NORM2', and 'ERFC_SCALED'.

   * Using complex arguments with 'TAN', 'SINH', 'COSH', 'TANH', 'ASIN',
     'ACOS', and 'ATAN' is now possible; 'ATAN'(Y,X) is now an alias for
     'ATAN2'(Y,X).

   * Support of the 'PARITY' intrinsic functions.

   * The following bit intrinsics: 'LEADZ' and 'TRAILZ' for counting the
     number of leading and trailing zero bits, 'POPCNT' and 'POPPAR' for
     counting the number of one bits and returning the parity; 'BGE',
     'BGT', 'BLE', and 'BLT' for bitwise comparisons; 'DSHIFTL' and
     'DSHIFTR' for combined left and right shifts, 'MASKL' and 'MASKR'
     for simple left and right justified masks, 'MERGE_BITS' for a
     bitwise merge using a mask, 'SHIFTA', 'SHIFTL' and 'SHIFTR' for
     shift operations, and the transformational bit intrinsics 'IALL',
     'IANY' and 'IPARITY'.

   * Support of the 'EXECUTE_COMMAND_LINE' intrinsic subroutine.

   * Support for the 'STORAGE_SIZE' intrinsic inquiry function.

   * The 'INT{8,16,32}' and 'REAL{32,64,128}' kind type parameters and
     the array-valued named constants 'INTEGER_KINDS', 'LOGICAL_KINDS',
     'REAL_KINDS' and 'CHARACTER_KINDS' of the intrinsic module
     'ISO_FORTRAN_ENV'.

   * The module procedures 'C_SIZEOF' of the intrinsic module
     'ISO_C_BINDINGS' and 'COMPILER_VERSION' and 'COMPILER_OPTIONS' of
     'ISO_FORTRAN_ENV'.

   * Coarray support for serial programs with '-fcoarray=single' flag
     and experimental support for multiple images with the
     '-fcoarray=lib' flag.

   * Submodules are supported.  It should noted that 'MODULEs' do not
     produce the smod file needed by the descendent 'SUBMODULEs' unless
     they contain at least one 'MODULE PROCEDURE' interface.  The reason
     for this is that 'SUBMODULEs' are useless without 'MODULE
     PROCEDUREs'.  See http://j3-fortran.org/doc/meeting/207/15-209.txt
     for a discussion and a draft interpretation.  Adopting this
     interpretation has the advantage that code that does not use
     submodules does not generate smod files.

   * The 'DO CONCURRENT' construct is supported.

   * The 'BLOCK' construct is supported.

   * The 'STOP' and the new 'ERROR STOP' statements now support all
     constant expressions.  Both show the signals which were signaling
     at termination.

   * Support for the 'CONTIGUOUS' attribute.

   * Support for 'ALLOCATE' with 'MOLD'.

   * Support for the 'IMPURE' attribute for procedures, which allows for
     'ELEMENTAL' procedures without the restrictions of 'PURE'.

   * Null pointers (including 'NULL()') and not-allocated variables can
     be used as actual argument to optional non-pointer, non-allocatable
     dummy arguments, denoting an absent argument.

   * Non-pointer variables with 'TARGET' attribute can be used as actual
     argument to 'POINTER' dummies with 'INTENT(IN)'.

   * Pointers including procedure pointers and those in a derived type
     (pointer components) can now be initialized by a target instead of
     only by 'NULL'.

   * The 'EXIT' statement (with construct-name) can be now be used to
     leave not only the 'DO' but also the 'ASSOCIATE', 'BLOCK', 'IF',
     'SELECT CASE' and 'SELECT TYPE' constructs.

   * Internal procedures can now be used as actual argument.

   * Minor features: obsolesce diagnostics for 'ENTRY' with
     '-std=f2008'; a line may start with a semicolon; for internal and
     module procedures 'END' can be used instead of 'END SUBROUTINE' and
     'END FUNCTION'; 'SELECTED_REAL_KIND' now also takes a 'RADIX'
     argument; intrinsic types are supported for
     'TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be
     declared in a single 'PROCEDURE' statement; implied-shape arrays
     are supported for named constants ('PARAMETER').


File: gfortran.info,  Node: Fortran 2018 status,  Prev: Fortran 2008 status,  Up: Fortran standards status

4.3 Status of Fortran 2018 support
==================================

   * ERROR STOP in a PURE procedure An 'ERROR STOP' statement is
     permitted in a 'PURE' procedure.

   * IMPLICIT NONE with a spec-list Support the 'IMPLICIT NONE'
     statement with an 'implicit-none-spec-list'.

   * Behavior of INQUIRE with the RECL= specifier

     The behavior of the 'INQUIRE' statement with the 'RECL=' specifier
     now conforms to Fortran 2018.

4.3.1 TS 29113 Status (Further Interoperability with C)
-------------------------------------------------------

GNU Fortran supports some of the new features of the Technical
Specification (TS) 29113 on Further Interoperability of Fortran with C.
The wiki (https://gcc.gnu.org/wiki/TS29113Status) has some information
about the current TS 29113 implementation status.  In particular, the
following is implemented.

   See also *note Further Interoperability of Fortran with C::.

   * The 'OPTIONAL' attribute is allowed for dummy arguments of 'BIND(C)
     procedures.'

   * The 'RANK' intrinsic is supported.

   * GNU Fortran's implementation for variables with 'ASYNCHRONOUS'
     attribute is compatible with TS 29113.

   * Assumed types ('TYPE(*)').

   * Assumed-rank ('DIMENSION(..)').

   * ISO_Fortran_binding (now in Fortran 2018 18.4) is implemented such
     that conversion of the array descriptor for assumed type or assumed
     rank arrays is done in the library.  The include file
     ISO_Fortran_binding.h is can be found in
     '~prefix/lib/gcc/$target/$version'.

4.3.2 TS 18508 Status (Additional Parallel Features)
----------------------------------------------------

GNU Fortran supports the following new features of the Technical
Specification 18508 on Additional Parallel Features in Fortran:

   * The new atomic ADD, CAS, FETCH and ADD/OR/XOR, OR and XOR
     intrinsics.

   * The 'CO_MIN' and 'CO_MAX' and 'SUM' reduction intrinsics.  And the
     'CO_BROADCAST' and 'CO_REDUCE' intrinsic, except that those do not
     support polymorphic types or types with allocatable, pointer or
     polymorphic components.

   * Events ('EVENT POST', 'EVENT WAIT', 'EVENT_QUERY')

   * Failed images ('FAIL IMAGE', 'IMAGE_STATUS', 'FAILED_IMAGES',
     'STOPPED_IMAGES')


File: gfortran.info,  Node: Compiler Characteristics,  Next: Extensions,  Prev: Fortran standards status,  Up: Top

5 Compiler Characteristics
**************************

This chapter describes certain characteristics of the GNU Fortran
compiler, that are not specified by the Fortran standard, but which
might in some way or another become visible to the programmer.

* Menu:

* KIND Type Parameters::
* Internal representation of LOGICAL variables::
* Evaluation of logical expressions::
* MAX and MIN intrinsics with REAL NaN arguments::
* Thread-safety of the runtime library::
* Data consistency and durability::
* Files opened without an explicit ACTION= specifier::
* File operations on symbolic links::
* File format of unformatted sequential files::
* Asynchronous I/O::


File: gfortran.info,  Node: KIND Type Parameters,  Next: Internal representation of LOGICAL variables,  Up: Compiler Characteristics

5.1 KIND Type Parameters
========================

The 'KIND' type parameters supported by GNU Fortran for the primitive
data types are:

'INTEGER'
     1, 2, 4, 8*, 16*, default: 4**

'LOGICAL'
     1, 2, 4, 8*, 16*, default: 4**

'REAL'
     4, 8, 10*, 16*, default: 4***

'COMPLEX'
     4, 8, 10*, 16*, default: 4***

'DOUBLE PRECISION'
     4, 8, 10*, 16*, default: 8***

'CHARACTER'
     1, 4, default: 1

* not available on all systems
** unless '-fdefault-integer-8' is used
*** unless '-fdefault-real-8' is used (see *note Fortran Dialect
Options::)

The 'KIND' value matches the storage size in bytes, except for 'COMPLEX'
where the storage size is twice as much (or both real and imaginary part
are a real value of the given size).  It is recommended to use the *note
SELECTED_CHAR_KIND::, *note SELECTED_INT_KIND:: and *note
SELECTED_REAL_KIND:: intrinsics or the 'INT8', 'INT16', 'INT32',
'INT64', 'REAL32', 'REAL64', and 'REAL128' parameters of the
'ISO_FORTRAN_ENV' module instead of the concrete values.  The available
kind parameters can be found in the constant arrays 'CHARACTER_KINDS',
'INTEGER_KINDS', 'LOGICAL_KINDS' and 'REAL_KINDS' in the *note
ISO_FORTRAN_ENV:: module.  For C interoperability, the kind parameters
of the *note ISO_C_BINDING:: module should be used.


File: gfortran.info,  Node: Internal representation of LOGICAL variables,  Next: Evaluation of logical expressions,  Prev: KIND Type Parameters,  Up: Compiler Characteristics

5.2 Internal representation of LOGICAL variables
================================================

The Fortran standard does not specify how variables of 'LOGICAL' type
are represented, beyond requiring that 'LOGICAL' variables of default
kind have the same storage size as default 'INTEGER' and 'REAL'
variables.  The GNU Fortran internal representation is as follows.

   A 'LOGICAL(KIND=N)' variable is represented as an 'INTEGER(KIND=N)'
variable, however, with only two permissible values: '1' for '.TRUE.'
and '0' for '.FALSE.'.  Any other integer value results in undefined
behavior.

   See also *note Argument passing conventions:: and *note
Interoperability with C::.


File: gfortran.info,  Node: Evaluation of logical expressions,  Next: MAX and MIN intrinsics with REAL NaN arguments,  Prev: Internal representation of LOGICAL variables,  Up: Compiler Characteristics

5.3 Evaluation of logical expressions
=====================================

The Fortran standard does not require the compiler to evaluate all parts
of an expression, if they do not contribute to the final result.  For
logical expressions with '.AND.' or '.OR.' operators, in particular, GNU
Fortran will optimize out function calls (even to impure functions) if
the result of the expression can be established without them.  However,
since not all compilers do that, and such an optimization can
potentially modify the program flow and subsequent results, GNU Fortran
throws warnings for such situations with the '-Wfunction-elimination'
flag.


File: gfortran.info,  Node: MAX and MIN intrinsics with REAL NaN arguments,  Next: Thread-safety of the runtime library,  Prev: Evaluation of logical expressions,  Up: Compiler Characteristics

5.4 MAX and MIN intrinsics with REAL NaN arguments
==================================================

The Fortran standard does not specify what the result of the 'MAX' and
'MIN' intrinsics are if one of the arguments is a 'NaN'.  Accordingly,
the GNU Fortran compiler does not specify that either, as this allows
for faster and more compact code to be generated.  If the programmer
wishes to take some specific action in case one of the arguments is a
'NaN', it is necessary to explicitly test the arguments before calling
'MAX' or 'MIN', e.g.  with the 'IEEE_IS_NAN' function from the intrinsic
module 'IEEE_ARITHMETIC'.


File: gfortran.info,  Node: Thread-safety of the runtime library,  Next: Data consistency and durability,  Prev: MAX and MIN intrinsics with REAL NaN arguments,  Up: Compiler Characteristics

5.5 Thread-safety of the runtime library
========================================

GNU Fortran can be used in programs with multiple threads, e.g. by using
OpenMP, by calling OS thread handling functions via the 'ISO_C_BINDING'
facility, or by GNU Fortran compiled library code being called from a
multi-threaded program.

   The GNU Fortran runtime library, ('libgfortran'), supports being
called concurrently from multiple threads with the following exceptions.

   During library initialization, the C 'getenv' function is used, which
need not be thread-safe.  Similarly, the 'getenv' function is used to
implement the 'GET_ENVIRONMENT_VARIABLE' and 'GETENV' intrinsics.  It is
the responsibility of the user to ensure that the environment is not
being updated concurrently when any of these actions are taking place.

   The 'EXECUTE_COMMAND_LINE' and 'SYSTEM' intrinsics are implemented
with the 'system' function, which need not be thread-safe.  It is the
responsibility of the user to ensure that 'system' is not called
concurrently.

   For platforms not supporting thread-safe POSIX functions, further
functionality might not be thread-safe.  For details, please consult the
documentation for your operating system.

   The GNU Fortran runtime library uses various C library functions that
depend on the locale, such as 'strtod' and 'snprintf'.  In order to work
correctly in locale-aware programs that set the locale using
'setlocale', the locale is reset to the default "C" locale while
executing a formatted 'READ' or 'WRITE' statement.  On targets
supporting the POSIX 2008 per-thread locale functions (e.g.
'newlocale', 'uselocale', 'freelocale'), these are used and thus the
global locale set using 'setlocale' or the per-thread locales in other
threads are not affected.  However, on targets lacking this
functionality, the global LC_NUMERIC locale is set to "C" during the
formatted I/O. Thus, on such targets it's not safe to call 'setlocale'
concurrently from another thread while a Fortran formatted I/O operation
is in progress.  Also, other threads doing something dependent on the
LC_NUMERIC locale might not work correctly if a formatted I/O operation
is in progress in another thread.


File: gfortran.info,  Node: Data consistency and durability,  Next: Files opened without an explicit ACTION= specifier,  Prev: Thread-safety of the runtime library,  Up: Compiler Characteristics

5.6 Data consistency and durability
===================================

This section contains a brief overview of data and metadata consistency
and durability issues when doing I/O.

   With respect to durability, GNU Fortran makes no effort to ensure
that data is committed to stable storage.  If this is required, the GNU
Fortran programmer can use the intrinsic 'FNUM' to retrieve the low
level file descriptor corresponding to an open Fortran unit.  Then,
using e.g.  the 'ISO_C_BINDING' feature, one can call the underlying
system call to flush dirty data to stable storage, such as 'fsync' on
POSIX, '_commit' on MingW, or 'fcntl(fd, F_FULLSYNC, 0)' on Mac OS X.
The following example shows how to call fsync:

       ! Declare the interface for POSIX fsync function
       interface
         function fsync (fd) bind(c,name="fsync")
         use iso_c_binding, only: c_int
           integer(c_int), value :: fd
           integer(c_int) :: fsync
         end function fsync
       end interface

       ! Variable declaration
       integer :: ret

       ! Opening unit 10
       open (10,file="foo")

       ! ...
       ! Perform I/O on unit 10
       ! ...

       ! Flush and sync
       flush(10)
       ret = fsync(fnum(10))

       ! Handle possible error
       if (ret /= 0) stop "Error calling FSYNC"

   With respect to consistency, for regular files GNU Fortran uses
buffered I/O in order to improve performance.  This buffer is flushed
automatically when full and in some other situations, e.g.  when closing
a unit.  It can also be explicitly flushed with the 'FLUSH' statement.
Also, the buffering can be turned off with the 'GFORTRAN_UNBUFFERED_ALL'
and 'GFORTRAN_UNBUFFERED_PRECONNECTED' environment variables.  Special
files, such as terminals and pipes, are always unbuffered.  Sometimes,
however, further things may need to be done in order to allow other
processes to see data that GNU Fortran has written, as follows.

   The Windows platform supports a relaxed metadata consistency model,
where file metadata is written to the directory lazily.  This means
that, for instance, the 'dir' command can show a stale size for a file.
One can force a directory metadata update by closing the unit, or by
calling '_commit' on the file descriptor.  Note, though, that '_commit'
will force all dirty data to stable storage, which is often a very slow
operation.

   The Network File System (NFS) implements a relaxed consistency model
called open-to-close consistency.  Closing a file forces dirty data and
metadata to be flushed to the server, and opening a file forces the
client to contact the server in order to revalidate cached data.
'fsync' will also force a flush of dirty data and metadata to the
server.  Similar to 'open' and 'close', acquiring and releasing 'fcntl'
file locks, if the server supports them, will also force cache
validation and flushing dirty data and metadata.


File: gfortran.info,  Node: Files opened without an explicit ACTION= specifier,  Next: File operations on symbolic links,  Prev: Data consistency and durability,  Up: Compiler Characteristics

5.7 Files opened without an explicit ACTION= specifier
======================================================

The Fortran standard says that if an 'OPEN' statement is executed
without an explicit 'ACTION=' specifier, the default value is processor
dependent.  GNU Fortran behaves as follows:

  1. Attempt to open the file with 'ACTION='READWRITE''
  2. If that fails, try to open with 'ACTION='READ''
  3. If that fails, try to open with 'ACTION='WRITE''
  4. If that fails, generate an error


File: gfortran.info,  Node: File operations on symbolic links,  Next: File format of unformatted sequential files,  Prev: Files opened without an explicit ACTION= specifier,  Up: Compiler Characteristics

5.8 File operations on symbolic links
=====================================

This section documents the behavior of GNU Fortran for file operations
on symbolic links, on systems that support them.

   * Results of INQUIRE statements of the "inquire by file" form will
     relate to the target of the symbolic link.  For example,
     'INQUIRE(FILE="foo",EXIST=ex)' will set EX to .TRUE. if FOO is a
     symbolic link pointing to an existing file, and .FALSE. if FOO
     points to an non-existing file ("dangling" symbolic link).

   * Using the 'OPEN' statement with a 'STATUS="NEW"' specifier on a
     symbolic link will result in an error condition, whether the
     symbolic link points to an existing target or is dangling.

   * If a symbolic link was connected, using the 'CLOSE' statement with
     a 'STATUS="DELETE"' specifier will cause the symbolic link itself
     to be deleted, not its target.


File: gfortran.info,  Node: File format of unformatted sequential files,  Next: Asynchronous I/O,  Prev: File operations on symbolic links,  Up: Compiler Characteristics

5.9 File format of unformatted sequential files
===============================================

Unformatted sequential files are stored as logical records using record
markers.  Each logical record consists of one of more subrecords.

   Each subrecord consists of a leading record marker, the data written
by the user program, and a trailing record marker.  The record markers
are four-byte integers by default, and eight-byte integers if the
'-fmax-subrecord-length=8' option (which exists for backwards
compability only) is in effect.

   The representation of the record markers is that of unformatted files
given with the '-fconvert' option, the *note CONVERT specifier:: in an
open statement or the *note GFORTRAN_CONVERT_UNIT:: environment
variable.

   The maximum number of bytes of user data in a subrecord is 2147483639
(2 GiB - 9) for a four-byte record marker.  This limit can be lowered
with the '-fmax-subrecord-length' option, altough this is rarely useful.
If the length of a logical record exceeds this limit, the data is
distributed among several subrecords.

   The absolute of the number stored in the record markers is the number
of bytes of user data in the corresponding subrecord.  If the leading
record marker of a subrecord contains a negative number, another
subrecord follows the current one.  If the trailing record marker
contains a negative number, then there is a preceding subrecord.

   In the most simple case, with only one subrecord per logical record,
both record markers contain the number of bytes of user data in the
record.

   The format for unformatted sequential data can be duplicated using
unformatted stream, as shown in the example program for an unformatted
record containing a single subrecord:

     program main
       use iso_fortran_env, only: int32
       implicit none
       integer(int32) :: i
       real, dimension(10) :: a, b
       call random_number(a)
       open (10,file='test.dat',form='unformatted',access='stream')
       inquire (iolength=i) a
       write (10) i, a, i
       close (10)
       open (10,file='test.dat',form='unformatted')
       read (10) b
       if (all (a == b)) print *,'success!'
     end program main


File: gfortran.info,  Node: Asynchronous I/O,  Prev: File format of unformatted sequential files,  Up: Compiler Characteristics

5.10 Asynchronous I/O
=====================

Asynchronous I/O is supported if the program is linked against the POSIX
thread library.  If that is not the case, all I/O is performed as
synchronous.  On systems which do not support pthread condition
variables, such as AIX, I/O is also performed as synchronous.

   On some systems, such as Darwin or Solaris, the POSIX thread library
is always linked in, so asynchronous I/O is always performed.  On other
sytems, such as Linux, it is necessary to specify '-pthread',
'-lpthread' or '-fopenmp' during the linking step.


File: gfortran.info,  Node: Extensions,  Next: Mixed-Language Programming,  Prev: Compiler Characteristics,  Up: Top

6 Extensions
************

The two sections below detail the extensions to standard Fortran that
are implemented in GNU Fortran, as well as some of the popular or
historically important extensions that are not (or not yet) implemented.
For the latter case, we explain the alternatives available to GNU
Fortran users, including replacement by standard-conforming code or GNU
extensions.

* Menu:

* Extensions implemented in GNU Fortran::
* Extensions not implemented in GNU Fortran::


File: gfortran.info,  Node: Extensions implemented in GNU Fortran,  Next: Extensions not implemented in GNU Fortran,  Up: Extensions

6.1 Extensions implemented in GNU Fortran
=========================================

GNU Fortran implements a number of extensions over standard Fortran.
This chapter contains information on their syntax and meaning.  There
are currently two categories of GNU Fortran extensions, those that
provide functionality beyond that provided by any standard, and those
that are supported by GNU Fortran purely for backward compatibility with
legacy compilers.  By default, '-std=gnu' allows the compiler to accept
both types of extensions, but to warn about the use of the latter.
Specifying either '-std=f95', '-std=f2003', '-std=f2008', or
'-std=f2018' disables both types of extensions, and '-std=legacy' allows
both without warning.  The special compile flag '-fdec' enables
additional compatibility extensions along with those enabled by
'-std=legacy'.

* Menu:

* Old-style kind specifications::
* Old-style variable initialization::
* Extensions to namelist::
* X format descriptor without count field::
* Commas in FORMAT specifications::
* Missing period in FORMAT specifications::
* Default widths for F, G and I format descriptors::
* I/O item lists::
* Q exponent-letter::
* BOZ literal constants::
* Real array indices::
* Unary operators::
* Implicitly convert LOGICAL and INTEGER values::
* Hollerith constants support::
* Character conversion::
* Cray pointers::
* CONVERT specifier::
* OpenMP::
* OpenACC::
* Argument list functions::
* Read/Write after EOF marker::
* STRUCTURE and RECORD::
* UNION and MAP::
* Type variants for integer intrinsics::
* AUTOMATIC and STATIC attributes::
* Extended math intrinsics::
* Form feed as whitespace::
* TYPE as an alias for PRINT::
* %LOC as an rvalue::
* .XOR. operator::
* Bitwise logical operators::
* Extended I/O specifiers::
* Legacy PARAMETER statements::
* Default exponents::


File: gfortran.info,  Node: Old-style kind specifications,  Next: Old-style variable initialization,  Up: Extensions implemented in GNU Fortran

6.1.1 Old-style kind specifications
-----------------------------------

GNU Fortran allows old-style kind specifications in declarations.  These
look like:
           TYPESPEC*size x,y,z
where 'TYPESPEC' is a basic type ('INTEGER', 'REAL', etc.), and where
'size' is a byte count corresponding to the storage size of a valid kind
for that type.  (For 'COMPLEX' variables, 'size' is the total size of
the real and imaginary parts.)  The statement then declares 'x', 'y' and
'z' to be of type 'TYPESPEC' with the appropriate kind.  This is
equivalent to the standard-conforming declaration
           TYPESPEC(k) x,y,z
where 'k' is the kind parameter suitable for the intended precision.  As
kind parameters are implementation-dependent, use the 'KIND',
'SELECTED_INT_KIND' and 'SELECTED_REAL_KIND' intrinsics to retrieve the
correct value, for instance 'REAL*8 x' can be replaced by:
     INTEGER, PARAMETER :: dbl = KIND(1.0d0)
     REAL(KIND=dbl) :: x


File: gfortran.info,  Node: Old-style variable initialization,  Next: Extensions to namelist,  Prev: Old-style kind specifications,  Up: Extensions implemented in GNU Fortran

6.1.2 Old-style variable initialization
---------------------------------------

GNU Fortran allows old-style initialization of variables of the form:
           INTEGER i/1/,j/2/
           REAL x(2,2) /3*0.,1./
   The syntax for the initializers is as for the 'DATA' statement, but
unlike in a 'DATA' statement, an initializer only applies to the
variable immediately preceding the initialization.  In other words,
something like 'INTEGER I,J/2,3/' is not valid.  This style of
initialization is only allowed in declarations without double colons
('::'); the double colons were introduced in Fortran 90, which also
introduced a standard syntax for initializing variables in type
declarations.

   Examples of standard-conforming code equivalent to the above example
are:
     ! Fortran 90
           INTEGER :: i = 1, j = 2
           REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
     ! Fortran 77
           INTEGER i, j
           REAL x(2,2)
           DATA i/1/, j/2/, x/3*0.,1./

   Note that variables which are explicitly initialized in declarations
or in 'DATA' statements automatically acquire the 'SAVE' attribute.


File: gfortran.info,  Node: Extensions to namelist,  Next: X format descriptor without count field,  Prev: Old-style variable initialization,  Up: Extensions implemented in GNU Fortran

6.1.3 Extensions to namelist
----------------------------

GNU Fortran fully supports the Fortran 95 standard for namelist I/O
including array qualifiers, substrings and fully qualified derived
types.  The output from a namelist write is compatible with namelist
read.  The output has all names in upper case and indentation to column
1 after the namelist name.  Two extensions are permitted:

   Old-style use of '$' instead of '&'
     $MYNML
      X(:)%Y(2) = 1.0 2.0 3.0
      CH(1:4) = "abcd"
     $END

   It should be noted that the default terminator is '/' rather than
'&END'.

   Querying of the namelist when inputting from stdin.  After at least
one space, entering '?' sends to stdout the namelist name and the names
of the variables in the namelist:
      ?

     &mynml
      x
      x%y
      ch
     &end

   Entering '=?' outputs the namelist to stdout, as if 'WRITE(*,NML =
mynml)' had been called:
     =?

     &MYNML
      X(1)%Y=  0.000000    ,  1.000000    ,  0.000000    ,
      X(2)%Y=  0.000000    ,  2.000000    ,  0.000000    ,
      X(3)%Y=  0.000000    ,  3.000000    ,  0.000000    ,
      CH=abcd,  /

   To aid this dialog, when input is from stdin, errors send their
messages to stderr and execution continues, even if 'IOSTAT' is set.

   'PRINT' namelist is permitted.  This causes an error if '-std=f95' is
used.
     PROGRAM test_print
       REAL, dimension (4)  ::  x = (/1.0, 2.0, 3.0, 4.0/)
       NAMELIST /mynml/ x
       PRINT mynml
     END PROGRAM test_print

   Expanded namelist reads are permitted.  This causes an error if
'-std=f95' is used.  In the following example, the first element of the
array will be given the value 0.00 and the two succeeding elements will
be given the values 1.00 and 2.00.
     &MYNML
       X(1,1) = 0.00 , 1.00 , 2.00
     /

   When writing a namelist, if no 'DELIM=' is specified, by default a
double quote is used to delimit character strings.  If -std=F95, F2003,
or F2008, etc, the delim status is set to 'none'.  Defaulting to quotes
ensures that namelists with character strings can be subsequently read
back in accurately.


File: gfortran.info,  Node: X format descriptor without count field,  Next: Commas in FORMAT specifications,  Prev: Extensions to namelist,  Up: Extensions implemented in GNU Fortran

6.1.4 'X' format descriptor without count field
-----------------------------------------------

To support legacy codes, GNU Fortran permits the count field of the 'X'
edit descriptor in 'FORMAT' statements to be omitted.  When omitted, the
count is implicitly assumed to be one.

            PRINT 10, 2, 3
     10     FORMAT (I1, X, I1)


File: gfortran.info,  Node: Commas in FORMAT specifications,  Next: Missing period in FORMAT specifications,  Prev: X format descriptor without count field,  Up: Extensions implemented in GNU Fortran

6.1.5 Commas in 'FORMAT' specifications
---------------------------------------

To support legacy codes, GNU Fortran allows the comma separator to be
omitted immediately before and after character string edit descriptors
in 'FORMAT' statements.  A comma with no following format decriptor is
permited if the '-fdec-blank-format-item' is given on the command line.
This is considered non-conforming code and is discouraged.

            PRINT 10, 2, 3
     10     FORMAT ('FOO='I1' BAR='I2)
            print 20, 5, 6
     20     FORMAT (I3, I3,)


File: gfortran.info,  Node: Missing period in FORMAT specifications,  Next: Default widths for F, G and I format descriptors,  Prev: Commas in FORMAT specifications,  Up: Extensions implemented in GNU Fortran

6.1.6 Missing period in 'FORMAT' specifications
-----------------------------------------------

To support legacy codes, GNU Fortran allows missing periods in format
specifications if and only if '-std=legacy' is given on the command
line.  This is considered non-conforming code and is discouraged.

            REAL :: value
            READ(*,10) value
     10     FORMAT ('F4')


File: gfortran.info,  Node: Default widths for F, G and I format descriptors,  Next: I/O item lists,  Prev: Missing period in FORMAT specifications,  Up: Extensions implemented in GNU Fortran

6.1.7 Default widths for 'F', 'G' and 'I' format descriptors
------------------------------------------------------------

To support legacy codes, GNU Fortran allows width to be omitted from
format specifications if and only if '-fdec-format-defaults' is given on
the command line.  Default widths will be used.  This is considered
non-conforming code and is discouraged.

            REAL :: value1
            INTEGER :: value2
            WRITE(*,10) value1, value1, value2
     10     FORMAT ('F, G, I')


File: gfortran.info,  Node: I/O item lists,  Next: Q exponent-letter,  Prev: Default widths for F, G and I format descriptors,  Up: Extensions implemented in GNU Fortran

6.1.8 I/O item lists
--------------------

To support legacy codes, GNU Fortran allows the input item list of the
'READ' statement, and the output item lists of the 'WRITE' and 'PRINT'
statements, to start with a comma.


File: gfortran.info,  Node: Q exponent-letter,  Next: BOZ literal constants,  Prev: I/O item lists,  Up: Extensions implemented in GNU Fortran

6.1.9 'Q' exponent-letter
-------------------------

GNU Fortran accepts real literal constants with an exponent-letter of
'Q', for example, '1.23Q45'.  The constant is interpreted as a
'REAL(16)' entity on targets that support this type.  If the target does
not support 'REAL(16)' but has a 'REAL(10)' type, then the
real-literal-constant will be interpreted as a 'REAL(10)' entity.  In
the absence of 'REAL(16)' and 'REAL(10)', an error will occur.


File: gfortran.info,  Node: BOZ literal constants,  Next: Real array indices,  Prev: Q exponent-letter,  Up: Extensions implemented in GNU Fortran

6.1.10 BOZ literal constants
----------------------------

Besides decimal constants, Fortran also supports binary ('b'), octal
('o') and hexadecimal ('z') integer constants.  The syntax is: 'prefix
quote digits quote', were the prefix is either 'b', 'o' or 'z', quote is
either ''' or '"' and the digits are '0' or '1' for binary, between '0'
and '7' for octal, and between '0' and 'F' for hexadecimal.  (Example:
'b'01011101''.)

   Up to Fortran 95, BOZ literal constants were only allowed to
initialize integer variables in DATA statements.  Since Fortran 2003 BOZ
literal constants are also allowed as actual arguments to the 'REAL',
'DBLE', 'INT' and 'CMPLX' intrinsic functions.  The BOZ literal constant
is simply a string of bits, which is padded or truncated as needed,
during conversion to a numeric type.  The Fortran standard states that
the treatment of the sign bit is processor dependent.  Gfortran
interprets the sign bit as a user would expect.

   As a deprecated extension, GNU Fortran allows hexadecimal BOZ literal
constants to be specified using the 'X' prefix.  That the BOZ literal
constant can also be specified by adding a suffix to the string, for
example, 'Z'ABC'' and ''ABC'X' are equivalent.  Additionally, as
extension, BOZ literals are permitted in some contexts outside of 'DATA'
and the intrinsic functions listed in the Fortran standard.  Use
'-fallow-invalid-boz' to enable the extension.


File: gfortran.info,  Node: Real array indices,  Next: Unary operators,  Prev: BOZ literal constants,  Up: Extensions implemented in GNU Fortran

6.1.11 Real array indices
-------------------------

As an extension, GNU Fortran allows the use of 'REAL' expressions or
variables as array indices.


File: gfortran.info,  Node: Unary operators,  Next: Implicitly convert LOGICAL and INTEGER values,  Prev: Real array indices,  Up: Extensions implemented in GNU Fortran

6.1.12 Unary operators
----------------------

As an extension, GNU Fortran allows unary plus and unary minus operators
to appear as the second operand of binary arithmetic operators without
the need for parenthesis.

            X = Y * -Z


File: gfortran.info,  Node: Implicitly convert LOGICAL and INTEGER values,  Next: Hollerith constants support,  Prev: Unary operators,  Up: Extensions implemented in GNU Fortran

6.1.13 Implicitly convert 'LOGICAL' and 'INTEGER' values
--------------------------------------------------------

As an extension for backwards compatibility with other compilers, GNU
Fortran allows the implicit conversion of 'LOGICAL' values to 'INTEGER'
values and vice versa.  When converting from a 'LOGICAL' to an
'INTEGER', '.FALSE.' is interpreted as zero, and '.TRUE.' is interpreted
as one.  When converting from 'INTEGER' to 'LOGICAL', the value zero is
interpreted as '.FALSE.' and any nonzero value is interpreted as
'.TRUE.'.

             LOGICAL :: l
             l = 1
             INTEGER :: i
             i = .TRUE.

   However, there is no implicit conversion of 'INTEGER' values in
'if'-statements, nor of 'LOGICAL' or 'INTEGER' values in I/O operations.


File: gfortran.info,  Node: Hollerith constants support,  Next: Character conversion,  Prev: Implicitly convert LOGICAL and INTEGER values,  Up: Extensions implemented in GNU Fortran

6.1.14 Hollerith constants support
----------------------------------

GNU Fortran supports Hollerith constants in assignments, 'DATA'
statements, function and subroutine arguments.  A Hollerith constant is
written as a string of characters preceded by an integer constant
indicating the character count, and the letter 'H' or 'h', and stored in
bytewise fashion in a numeric ('INTEGER', 'REAL', or 'COMPLEX'),
'LOGICAL' or 'CHARACTER' variable.  The constant will be padded with
spaces or truncated to fit the size of the variable in which it is
stored.

   Examples of valid uses of Hollerith constants:
           complex*16 x(2)
           data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
           x(1) = 16HABCDEFGHIJKLMNOP
           call foo (4h abc)

   Examples of Hollerith constants:
           integer*4 a
           a = 0H         ! Invalid, at least one character is needed.
           a = 4HAB12     ! Valid
           a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
           a = 3Hxyz      ! Valid, but the Hollerith constant will be padded.

   In general, Hollerith constants were used to provide a rudimentary
facility for handling character strings in early Fortran compilers,
prior to the introduction of 'CHARACTER' variables in Fortran 77; in
those cases, the standard-compliant equivalent is to convert the program
to use proper character strings.  On occasion, there may be a case where
the intent is specifically to initialize a numeric variable with a given
byte sequence.  In these cases, the same result can be obtained by using
the 'TRANSFER' statement, as in this example.
           integer(kind=4) :: a
           a = transfer ("abcd", a)     ! equivalent to: a = 4Habcd

   The use of the '-fdec' option extends support of Hollerith constants
to comparisons:
           integer*4 a
           a = 4hABCD
           if (a .ne. 4habcd) then
             write(*,*) "no match"
           end if

   Supported types are numeric ('INTEGER', 'REAL', or 'COMPLEX'), and
'CHARACTER'.


File: gfortran.info,  Node: Character conversion,  Next: Cray pointers,  Prev: Hollerith constants support,  Up: Extensions implemented in GNU Fortran

6.1.15 Character conversion
---------------------------

Allowing character literals to be used in a similar way to Hollerith
constants is a non-standard extension.  This feature is enabled using
-fdec-char-conversions and only applies to character literals of
'kind=1'.

   Character literals can be used in 'DATA' statements and assignments
with numeric ('INTEGER', 'REAL', or 'COMPLEX') or 'LOGICAL' variables.
Like Hollerith constants they are copied byte-wise fashion.  The
constant will be padded with spaces or truncated to fit the size of the
variable in which it is stored.

   Examples:
           integer*4 x
           data x / 'abcd' /

           x = 'A'       ! Will be padded.
           x = 'ab1234'  ! Will be truncated.


File: gfortran.info,  Node: Cray pointers,  Next: CONVERT specifier,  Prev: Character conversion,  Up: Extensions implemented in GNU Fortran

6.1.16 Cray pointers
--------------------

Cray pointers are part of a non-standard extension that provides a
C-like pointer in Fortran.  This is accomplished through a pair of
variables: an integer "pointer" that holds a memory address, and a
"pointee" that is used to dereference the pointer.

   Pointer/pointee pairs are declared in statements of the form:
             pointer ( <pointer> , <pointee> )
   or,
             pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
   The pointer is an integer that is intended to hold a memory address.
The pointee may be an array or scalar.  If an assumed-size array is
permitted within the scoping unit, a pointee can be an assumed-size
array.  That is, the last dimension may be left unspecified by using a
'*' in place of a value.  A pointee cannot be an assumed shape array.
No space is allocated for the pointee.

   The pointee may have its type declared before or after the pointer
statement, and its array specification (if any) may be declared before,
during, or after the pointer statement.  The pointer may be declared as
an integer prior to the pointer statement.  However, some machines have
default integer sizes that are different than the size of a pointer, and
so the following code is not portable:
             integer ipt
             pointer (ipt, iarr)
   If a pointer is declared with a kind that is too small, the compiler
will issue a warning; the resulting binary will probably not work
correctly, because the memory addresses stored in the pointers may be
truncated.  It is safer to omit the first line of the above example; if
explicit declaration of ipt's type is omitted, then the compiler will
ensure that ipt is an integer variable large enough to hold a pointer.

   Pointer arithmetic is valid with Cray pointers, but it is not the
same as C pointer arithmetic.  Cray pointers are just ordinary integers,
so the user is responsible for determining how many bytes to add to a
pointer in order to increment it.  Consider the following example:
             real target(10)
             real pointee(10)
             pointer (ipt, pointee)
             ipt = loc (target)
             ipt = ipt + 1
   The last statement does not set 'ipt' to the address of 'target(1)',
as it would in C pointer arithmetic.  Adding '1' to 'ipt' just adds one
byte to the address stored in 'ipt'.

   Any expression involving the pointee will be translated to use the
value stored in the pointer as the base address.

   To get the address of elements, this extension provides an intrinsic
function 'LOC()'.  The 'LOC()' function is equivalent to the '&'
operator in C, except the address is cast to an integer type:
             real ar(10)
             pointer(ipt, arpte(10))
             real arpte
             ipt = loc(ar)  ! Makes arpte is an alias for ar
             arpte(1) = 1.0 ! Sets ar(1) to 1.0
   The pointer can also be set by a call to the 'MALLOC' intrinsic (see
*note MALLOC::).

   Cray pointees often are used to alias an existing variable.  For
example:
             integer target(10)
             integer iarr(10)
             pointer (ipt, iarr)
             ipt = loc(target)
   As long as 'ipt' remains unchanged, 'iarr' is now an alias for
'target'.  The optimizer, however, will not detect this aliasing, so it
is unsafe to use 'iarr' and 'target' simultaneously.  Using a pointee in
any way that violates the Fortran aliasing rules or assumptions is
illegal.  It is the user's responsibility to avoid doing this; the
compiler works under the assumption that no such aliasing occurs.

   Cray pointers will work correctly when there is no aliasing (i.e.,
when they are used to access a dynamically allocated block of memory),
and also in any routine where a pointee is used, but any variable with
which it shares storage is not used.  Code that violates these rules may
not run as the user intends.  This is not a bug in the optimizer; any
code that violates the aliasing rules is illegal.  (Note that this is
not unique to GNU Fortran; any Fortran compiler that supports Cray
pointers will "incorrectly" optimize code with illegal aliasing.)

   There are a number of restrictions on the attributes that can be
applied to Cray pointers and pointees.  Pointees may not have the
'ALLOCATABLE', 'INTENT', 'OPTIONAL', 'DUMMY', 'TARGET', 'INTRINSIC', or
'POINTER' attributes.  Pointers may not have the 'DIMENSION', 'POINTER',
'TARGET', 'ALLOCATABLE', 'EXTERNAL', or 'INTRINSIC' attributes, nor may
they be function results.  Pointees may not occur in more than one
pointer statement.  A pointee cannot be a pointer.  Pointees cannot
occur in equivalence, common, or data statements.

   A Cray pointer may also point to a function or a subroutine.  For
example, the following excerpt is valid:
       implicit none
       external sub
       pointer (subptr,subpte)
       external subpte
       subptr = loc(sub)
       call subpte()
       [...]
       subroutine sub
       [...]
       end subroutine sub

   A pointer may be modified during the course of a program, and this
will change the location to which the pointee refers.  However, when
pointees are passed as arguments, they are treated as ordinary variables
in the invoked function.  Subsequent changes to the pointer will not
change the base address of the array that was passed.


File: gfortran.info,  Node: CONVERT specifier,  Next: OpenMP,  Prev: Cray pointers,  Up: Extensions implemented in GNU Fortran

6.1.17 'CONVERT' specifier
--------------------------

GNU Fortran allows the conversion of unformatted data between little-
and big-endian representation to facilitate moving of data between
different systems.  The conversion can be indicated with the 'CONVERT'
specifier on the 'OPEN' statement.  *Note GFORTRAN_CONVERT_UNIT::, for
an alternative way of specifying the data format via an environment
variable.

   Valid values for 'CONVERT' are:
     'CONVERT='NATIVE'' Use the native format.  This is the default.
     'CONVERT='SWAP'' Swap between little- and big-endian.
     'CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for
     unformatted files.
     'CONVERT='BIG_ENDIAN'' Use the big-endian representation for
     unformatted files.

   Using the option could look like this:
       open(file='big.dat',form='unformatted',access='sequential', &
            convert='big_endian')

   The value of the conversion can be queried by using
'INQUIRE(CONVERT=ch)'.  The values returned are ''BIG_ENDIAN'' and
''LITTLE_ENDIAN''.

   'CONVERT' works between big- and little-endian for 'INTEGER' values
of all supported kinds and for 'REAL' on IEEE systems of kinds 4 and 8.
Conversion between different "extended double" types on different
architectures such as m68k and x86_64, which GNU Fortran supports as
'REAL(KIND=10)' and 'REAL(KIND=16)', will probably not work.

   _Note that the values specified via the GFORTRAN_CONVERT_UNIT
environment variable will override the CONVERT specifier in the open
statement_.  This is to give control over data formats to users who do
not have the source code of their program available.

   Using anything but the native representation for unformatted data
carries a significant speed overhead.  If speed in this area matters to
you, it is best if you use this only for data that needs to be portable.


File: gfortran.info,  Node: OpenMP,  Next: OpenACC,  Prev: CONVERT specifier,  Up: Extensions implemented in GNU Fortran

6.1.18 OpenMP
-------------

OpenMP (Open Multi-Processing) is an application programming interface
(API) that supports multi-platform shared memory multiprocessing
programming in C/C++ and Fortran on many architectures, including Unix
and Microsoft Windows platforms.  It consists of a set of compiler
directives, library routines, and environment variables that influence
run-time behavior.

   GNU Fortran strives to be compatible to the OpenMP Application
Program Interface v4.5 (http://openmp.org/wp/openmp-specifications/).

   To enable the processing of the OpenMP directive '!$omp' in free-form
source code; the 'c$omp', '*$omp' and '!$omp' directives in fixed form;
the '!$' conditional compilation sentinels in free form; and the 'c$',
'*$' and '!$' sentinels in fixed form, 'gfortran' needs to be invoked
with the '-fopenmp'.  This also arranges for automatic linking of the
GNU Offloading and Multi Processing Runtime Library *note libgomp:
(libgomp)Top.

   The OpenMP Fortran runtime library routines are provided both in a
form of a Fortran 90 module named 'omp_lib' and in a form of a Fortran
'include' file named 'omp_lib.h'.

   An example of a parallelized loop taken from Appendix A.1 of the
OpenMP Application Program Interface v2.5:
     SUBROUTINE A1(N, A, B)
       INTEGER I, N
       REAL B(N), A(N)
     !$OMP PARALLEL DO !I is private by default
       DO I=2,N
         B(I) = (A(I) + A(I-1)) / 2.0
       ENDDO
     !$OMP END PARALLEL DO
     END SUBROUTINE A1

   Please note:
   * '-fopenmp' implies '-frecursive', i.e., all local arrays will be
     allocated on the stack.  When porting existing code to OpenMP, this
     may lead to surprising results, especially to segmentation faults
     if the stacksize is limited.

   * On glibc-based systems, OpenMP enabled applications cannot be
     statically linked due to limitations of the underlying
     pthreads-implementation.  It might be possible to get a working
     solution if '-Wl,--whole-archive -lpthread -Wl,--no-whole-archive'
     is added to the command line.  However, this is not supported by
     'gcc' and thus not recommended.


File: gfortran.info,  Node: OpenACC,  Next: Argument list functions,  Prev: OpenMP,  Up: Extensions implemented in GNU Fortran

6.1.19 OpenACC
--------------

OpenACC is an application programming interface (API) that supports
offloading of code to accelerator devices.  It consists of a set of
compiler directives, library routines, and environment variables that
influence run-time behavior.

   GNU Fortran strives to be compatible to the OpenACC Application
Programming Interface v2.6 (http://www.openacc.org/).

   To enable the processing of the OpenACC directive '!$acc' in
free-form source code; the 'c$acc', '*$acc' and '!$acc' directives in
fixed form; the '!$' conditional compilation sentinels in free form; and
the 'c$', '*$' and '!$' sentinels in fixed form, 'gfortran' needs to be
invoked with the '-fopenacc'.  This also arranges for automatic linking
of the GNU Offloading and Multi Processing Runtime Library *note
libgomp: (libgomp)Top.

   The OpenACC Fortran runtime library routines are provided both in a
form of a Fortran 90 module named 'openacc' and in a form of a Fortran
'include' file named 'openacc_lib.h'.


File: gfortran.info,  Node: Argument list functions,  Next: Read/Write after EOF marker,  Prev: OpenACC,  Up: Extensions implemented in GNU Fortran

6.1.20 Argument list functions '%VAL', '%REF' and '%LOC'
--------------------------------------------------------

GNU Fortran supports argument list functions '%VAL', '%REF' and '%LOC'
statements, for backward compatibility with g77.  It is recommended that
these should be used only for code that is accessing facilities outside
of GNU Fortran, such as operating system or windowing facilities.  It is
best to constrain such uses to isolated portions of a program-portions
that deal specifically and exclusively with low-level, system-dependent
facilities.  Such portions might well provide a portable interface for
use by the program as a whole, but are themselves not portable, and
should be thoroughly tested each time they are rebuilt using a new
compiler or version of a compiler.

   '%VAL' passes a scalar argument by value, '%REF' passes it by
reference and '%LOC' passes its memory location.  Since gfortran already
passes scalar arguments by reference, '%REF' is in effect a do-nothing.
'%LOC' has the same effect as a Fortran pointer.

   An example of passing an argument by value to a C subroutine foo.:
     C
     C prototype      void foo_ (float x);
     C
           external foo
           real*4 x
           x = 3.14159
           call foo (%VAL (x))
           end

   For details refer to the g77 manual
<https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top>.

   Also, 'c_by_val.f' and its partner 'c_by_val.c' of the GNU Fortran
testsuite are worth a look.


File: gfortran.info,  Node: Read/Write after EOF marker,  Next: STRUCTURE and RECORD,  Prev: Argument list functions,  Up: Extensions implemented in GNU Fortran

6.1.21 Read/Write after EOF marker
----------------------------------

Some legacy codes rely on allowing 'READ' or 'WRITE' after the EOF file
marker in order to find the end of a file.  GNU Fortran normally rejects
these codes with a run-time error message and suggests the user consider
'BACKSPACE' or 'REWIND' to properly position the file before the EOF
marker.  As an extension, the run-time error may be disabled using
-std=legacy.


File: gfortran.info,  Node: STRUCTURE and RECORD,  Next: UNION and MAP,  Prev: Read/Write after EOF marker,  Up: Extensions implemented in GNU Fortran

6.1.22 'STRUCTURE' and 'RECORD'
-------------------------------

Record structures are a pre-Fortran-90 vendor extension to create
user-defined aggregate data types.  Support for record structures in GNU
Fortran can be enabled with the '-fdec-structure' compile flag.  If you
have a choice, you should instead use Fortran 90's "derived types",
which have a different syntax.

   In many cases, record structures can easily be converted to derived
types.  To convert, replace 'STRUCTURE /'STRUCTURE-NAME'/' by 'TYPE'
TYPE-NAME.  Additionally, replace 'RECORD /'STRUCTURE-NAME'/' by
'TYPE('TYPE-NAME')'.  Finally, in the component access, replace the
period ('.') by the percent sign ('%').

   Here is an example of code using the non portable record structure
syntax:

     ! Declaring a structure named ``item'' and containing three fields:
     ! an integer ID, an description string and a floating-point price.
     STRUCTURE /item/
       INTEGER id
       CHARACTER(LEN=200) description
       REAL price
     END STRUCTURE

     ! Define two variables, an single record of type ``item''
     ! named ``pear'', and an array of items named ``store_catalog''
     RECORD /item/ pear, store_catalog(100)

     ! We can directly access the fields of both variables
     pear.id = 92316
     pear.description = "juicy D'Anjou pear"
     pear.price = 0.15
     store_catalog(7).id = 7831
     store_catalog(7).description = "milk bottle"
     store_catalog(7).price = 1.2

     ! We can also manipulate the whole structure
     store_catalog(12) = pear
     print *, store_catalog(12)

This code can easily be rewritten in the Fortran 90 syntax as following:

     ! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
     ! ``TYPE name ... END TYPE''
     TYPE item
       INTEGER id
       CHARACTER(LEN=200) description
       REAL price
     END TYPE

     ! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
     TYPE(item) pear, store_catalog(100)

     ! Instead of using a dot (.) to access fields of a record, the
     ! standard syntax uses a percent sign (%)
     pear%id = 92316
     pear%description = "juicy D'Anjou pear"
     pear%price = 0.15
     store_catalog(7)%id = 7831
     store_catalog(7)%description = "milk bottle"
     store_catalog(7)%price = 1.2

     ! Assignments of a whole variable do not change
     store_catalog(12) = pear
     print *, store_catalog(12)

GNU Fortran implements STRUCTURES like derived types with the following
rules and exceptions:

   * Structures act like derived types with the 'SEQUENCE' attribute.
     Otherwise they may contain no specifiers.

   * Structures may contain a special field with the name '%FILL'.  This
     will create an anonymous component which cannot be accessed but
     occupies space just as if a component of the same type was declared
     in its place, useful for alignment purposes.  As an example, the
     following structure will consist of at least sixteen bytes:

          structure /padded/
            character(4) start
            character(8) %FILL
            character(4) end
          end structure

   * Structures may share names with other symbols.  For example, the
     following is invalid for derived types, but valid for structures:

          structure /header/
            ! ...
          end structure
          record /header/ header

   * Structure types may be declared nested within another parent
     structure.  The syntax is:
          structure /type-name/
              ...
              structure [/<type-name>/] <field-list>
          ...

     The type name may be ommitted, in which case the structure type
     itself is anonymous, and other structures of the same type cannot
     be instantiated.  The following shows some examples:

          structure /appointment/
            ! nested structure definition: app_time is an array of two 'time'
            structure /time/ app_time (2)
              integer(1) hour, minute
            end structure
            character(10) memo
          end structure

          ! The 'time' structure is still usable
          record /time/ now
          now = time(5, 30)

          ...

          structure /appointment/
            ! anonymous nested structure definition
            structure start, end
              integer(1) hour, minute
            end structure
            character(10) memo
          end structure

   * Structures may contain 'UNION' blocks.  For more detail see the
     section on *note UNION and MAP::.

   * Structures support old-style initialization of components, like
     those described in *note Old-style variable initialization::.  For
     array initializers, an initializer may contain a repeat
     specification of the form '<literal-integer> *
     <constant-initializer>'.  The value of the integer indicates the
     number of times to repeat the constant initializer when expanding
     the initializer list.


File: gfortran.info,  Node: UNION and MAP,  Next: Type variants for integer intrinsics,  Prev: STRUCTURE and RECORD,  Up: Extensions implemented in GNU Fortran

6.1.23 'UNION' and 'MAP'
------------------------

Unions are an old vendor extension which were commonly used with the
non-standard *note STRUCTURE and RECORD:: extensions.  Use of 'UNION'
and 'MAP' is automatically enabled with '-fdec-structure'.

   A 'UNION' declaration occurs within a structure; within the
definition of each union is a number of 'MAP' blocks.  Each 'MAP' shares
storage with its sibling maps (in the same union), and the size of the
union is the size of the largest map within it, just as with unions in
C. The major difference is that component references do not indicate
which union or map the component is in (the compiler gets to figure that
out).

   Here is a small example:
     structure /myunion/
     union
       map
         character(2) w0, w1, w2
       end map
       map
         character(6) long
       end map
     end union
     end structure

     record /myunion/ rec
     ! After this assignment...
     rec.long = 'hello!'

     ! The following is true:
     ! rec.w0 === 'he'
     ! rec.w1 === 'll'
     ! rec.w2 === 'o!'

   The two maps share memory, and the size of the union is ultimately
six bytes:

     0    1    2    3    4   5   6     Byte offset
     -------------------------------
     |    |    |    |    |    |    |
     -------------------------------

     ^    W0   ^    W1   ^    W2   ^
      \-------/ \-------/ \-------/

     ^             LONG            ^
      \---------------------------/

   Following is an example mirroring the layout of an Intel x86_64
register:

     structure /reg/
       union ! U0                ! rax
         map
           character(16) rx
         end map
         map
           character(8) rh         ! rah
           union ! U1
             map
               character(8) rl     ! ral
             end map
             map
               character(8) ex     ! eax
             end map
             map
               character(4) eh     ! eah
               union ! U2
                 map
                   character(4) el ! eal
                 end map
                 map
                   character(4) x  ! ax
                 end map
                 map
                   character(2) h  ! ah
                   character(2) l  ! al
                 end map
               end union
             end map
           end union
         end map
       end union
     end structure
     record /reg/ a

     ! After this assignment...
     a.rx     =     'AAAAAAAA.BBB.C.D'

     ! The following is true:
     a.rx === 'AAAAAAAA.BBB.C.D'
     a.rh === 'AAAAAAAA'
     a.rl ===         '.BBB.C.D'
     a.ex ===         '.BBB.C.D'
     a.eh ===         '.BBB'
     a.el ===             '.C.D'
     a.x  ===             '.C.D'
     a.h  ===             '.C'
     a.l  ===               '.D'


File: gfortran.info,  Node: Type variants for integer intrinsics,  Next: AUTOMATIC and STATIC attributes,  Prev: UNION and MAP,  Up: Extensions implemented in GNU Fortran

6.1.24 Type variants for integer intrinsics
-------------------------------------------

Similar to the D/C prefixes to real functions to specify the
input/output types, GNU Fortran offers B/I/J/K prefixes to integer
functions for compatibility with DEC programs.  The types implied by
each are:

     B - INTEGER(kind=1)
     I - INTEGER(kind=2)
     J - INTEGER(kind=4)
     K - INTEGER(kind=8)

   GNU Fortran supports these with the flag '-fdec-intrinsic-ints'.
Intrinsics for which prefixed versions are available and in what form
are noted in *note Intrinsic Procedures::.  The complete list of
supported intrinsics is here:

Intrinsic      B              I              J              K
                                                            
---------------------------------------------------------------------------
'*note ABS::'  'BABS'         'IIABS'        'JIABS'        'KIABS'
'*note BTEST::''BBTEST'       'BITEST'       'BJTEST'       'BKTEST'
'*note IAND::' 'BIAND'        'IIAND'        'JIAND'        'KIAND'
'*note IBCLR::''BBCLR'        'IIBCLR'       'JIBCLR'       'KIBCLR'
'*note IBITS::''BBITS'        'IIBITS'       'JIBITS'       'KIBITS'
'*note IBSET::''BBSET'        'IIBSET'       'JIBSET'       'KIBSET'
'*note IEOR::' 'BIEOR'        'IIEOR'        'JIEOR'        'KIEOR'
'*note IOR::'  'BIOR'         'IIOR'         'JIOR'         'KIOR'
'*note ISHFT::''BSHFT'        'IISHFT'       'JISHFT'       'KISHFT'
'*note ISHFTC::''BSHFTC'      'IISHFTC'      'JISHFTC'      'KISHFTC'
'*note MOD::'  'BMOD'         'IMOD'         'JMOD'         'KMOD'
'*note NOT::'  'BNOT'         'INOT'         'JNOT'         'KNOT'
'*note REAL::' '--'           'FLOATI'       'FLOATJ'       'FLOATK'


File: gfortran.info,  Node: AUTOMATIC and STATIC attributes,  Next: Extended math intrinsics,  Prev: Type variants for integer intrinsics,  Up: Extensions implemented in GNU Fortran

6.1.25 'AUTOMATIC' and 'STATIC' attributes
------------------------------------------

With '-fdec-static' GNU Fortran supports the DEC extended attributes
'STATIC' and 'AUTOMATIC' to provide explicit specification of entity
storage.  These follow the syntax of the Fortran standard 'SAVE'
attribute.

   'STATIC' is exactly equivalent to 'SAVE', and specifies that an
entity should be allocated in static memory.  As an example, 'STATIC'
local variables will retain their values across multiple calls to a
function.

   Entities marked 'AUTOMATIC' will be stack automatic whenever
possible.  'AUTOMATIC' is the default for local variables smaller than
'-fmax-stack-var-size', unless '-fno-automatic' is given.  This
attribute overrides '-fno-automatic', '-fmax-stack-var-size', and
blanket 'SAVE' statements.

   Examples:

     subroutine f
       integer, automatic :: i  ! automatic variable
       integer x, y             ! static variables
       save
       ...
     endsubroutine
     subroutine f
       integer a, b, c, x, y, z
       static :: x
       save y
       automatic z, c
       ! a, b, c, and z are automatic
       ! x and y are static
     endsubroutine
     ! Compiled with -fno-automatic
     subroutine f
       integer a, b, c, d
       automatic :: a
       ! a is automatic; b, c, and d are static
     endsubroutine


File: gfortran.info,  Node: Extended math intrinsics,  Next: Form feed as whitespace,  Prev: AUTOMATIC and STATIC attributes,  Up: Extensions implemented in GNU Fortran

6.1.26 Extended math intrinsics
-------------------------------

GNU Fortran supports an extended list of mathematical intrinsics with
the compile flag '-fdec-math' for compatability with legacy code.  These
intrinsics are described fully in *note Intrinsic Procedures:: where it
is noted that they are extensions and should be avoided whenever
possible.

   Specifically, '-fdec-math' enables the *note COTAN:: intrinsic, and
trigonometric intrinsics which accept or produce values in degrees
instead of radians.  Here is a summary of the new intrinsics:

Radians                              Degrees
--------------------------------------------------------------------------
'*note ACOS::'                       '*note ACOSD::'*
'*note ASIN::'                       '*note ASIND::'*
'*note ATAN::'                       '*note ATAND::'*
'*note ATAN2::'                      '*note ATAN2D::'*
'*note COS::'                        '*note COSD::'*
'*note COTAN::'*                     '*note COTAND::'*
'*note SIN::'                        '*note SIND::'*
'*note TAN::'                        '*note TAND::'*

   * Enabled with '-fdec-math'.

   For advanced users, it may be important to know the implementation of
these functions.  They are simply wrappers around the standard radian
functions, which have more accurate builtin versions.  These functions
convert their arguments (or results) to degrees (or radians) by taking
the value modulus 360 (or 2*pi) and then multiplying it by a constant
radian-to-degree (or degree-to-radian) factor, as appropriate.  The
factor is computed at compile-time as 180/pi (or pi/180).


File: gfortran.info,  Node: Form feed as whitespace,  Next: TYPE as an alias for PRINT,  Prev: Extended math intrinsics,  Up: Extensions implemented in GNU Fortran

6.1.27 Form feed as whitespace
------------------------------

Historically, legacy compilers allowed insertion of form feed characters
('\f', ASCII 0xC) at the beginning of lines for formatted output to line
printers, though the Fortran standard does not mention this.  GNU
Fortran supports the interpretation of form feed characters in source as
whitespace for compatibility.


File: gfortran.info,  Node: TYPE as an alias for PRINT,  Next: %LOC as an rvalue,  Prev: Form feed as whitespace,  Up: Extensions implemented in GNU Fortran

6.1.28 TYPE as an alias for PRINT
---------------------------------

For compatibility, GNU Fortran will interpret 'TYPE' statements as
'PRINT' statements with the flag '-fdec'.  With this flag asserted, the
following two examples are equivalent:

     TYPE *, 'hello world'

     PRINT *, 'hello world'


File: gfortran.info,  Node: %LOC as an rvalue,  Next: .XOR. operator,  Prev: TYPE as an alias for PRINT,  Up: Extensions implemented in GNU Fortran

6.1.29 %LOC as an rvalue
------------------------

Normally '%LOC' is allowed only in parameter lists.  However the
intrinsic function 'LOC' does the same thing, and is usable as the
right-hand-side of assignments.  For compatibility, GNU Fortran supports
the use of '%LOC' as an alias for the builtin 'LOC' with '-std=legacy'.
With this feature enabled the following two examples are equivalent:

     integer :: i, l
     l = %loc(i)
     call sub(l)

     integer :: i
     call sub(%loc(i))


File: gfortran.info,  Node: .XOR. operator,  Next: Bitwise logical operators,  Prev: %LOC as an rvalue,  Up: Extensions implemented in GNU Fortran

6.1.30 .XOR. operator
---------------------

GNU Fortran supports '.XOR.' as a logical operator with '-std=legacy'
for compatibility with legacy code.  '.XOR.' is equivalent to '.NEQV.'.
That is, the output is true if and only if the inputs differ.


File: gfortran.info,  Node: Bitwise logical operators,  Next: Extended I/O specifiers,  Prev: .XOR. operator,  Up: Extensions implemented in GNU Fortran

6.1.31 Bitwise logical operators
--------------------------------

With '-fdec', GNU Fortran relaxes the type constraints on logical
operators to allow integer operands, and performs the corresponding
bitwise operation instead.  This flag is for compatibility only, and
should be avoided in new code.  Consider:

       INTEGER :: i, j
       i = z'33'
       j = z'cc'
       print *, i .AND. j

   In this example, compiled with '-fdec', GNU Fortran will replace the
'.AND.' operation with a call to the intrinsic '*note IAND::' function,
yielding the bitwise-and of 'i' and 'j'.

   Note that this conversion will occur if at least one operand is of
integral type.  As a result, a logical operand will be converted to an
integer when the other operand is an integer in a logical operation.  In
this case, '.TRUE.' is converted to '1' and '.FALSE.' to '0'.

   Here is the mapping of logical operator to bitwise intrinsic used
with '-fdec':

Operator           Intrinsic          Bitwise operation
---------------------------------------------------------------------------
'.NOT.'            '*note NOT::'      complement
'.AND.'            '*note IAND::'     intersection
'.OR.'             '*note IOR::'      union
'.NEQV.'           '*note IEOR::'     exclusive or
'.EQV.'            '*note NOT::(*note IEOR::)'complement of exclusive or


File: gfortran.info,  Node: Extended I/O specifiers,  Next: Legacy PARAMETER statements,  Prev: Bitwise logical operators,  Up: Extensions implemented in GNU Fortran

6.1.32 Extended I/O specifiers
------------------------------

GNU Fortran supports the additional legacy I/O specifiers
'CARRIAGECONTROL', 'READONLY', and 'SHARE' with the compile flag
'-fdec', for compatibility.

'CARRIAGECONTROL'
     The 'CARRIAGECONTROL' specifier allows a user to control line
     termination settings between output records for an I/O unit.  The
     specifier has no meaning for readonly files.  When
     'CARRAIGECONTROL' is specified upon opening a unit for formatted
     writing, the exact 'CARRIAGECONTROL' setting determines what
     characters to write between output records.  The syntax is:

          OPEN(..., CARRIAGECONTROL=cc)

     Where _cc_ is a character expression that evaluates to one of the
     following values:

     ''LIST''       One line feed between records (default)
     ''FORTRAN''    Legacy interpretation of the first character (see below)
     ''NONE''       No separator between records

     With 'CARRIAGECONTROL='FORTRAN'', when a record is written, the
     first character of the input record is not written, and instead
     determines the output record separator as follows:

     Leading character      Meaning                Output separating
                                                   character(s)
     ----------------------------------------------------------------------------
     ''+''                  Overprinting           Carriage return only
     ''-''                  New line               Line feed and carriage
                                                   return
     ''0''                  Skip line              Two line feeds and carriage
                                                   return
     ''1''                  New page               Form feed and carriage
                                                   return
     ''$''                  Prompting              Line feed (no carriage
                                                   return)
     'CHAR(0)'              Overprinting (no       None
                            advance)

'READONLY'
     The 'READONLY' specifier may be given upon opening a unit, and is
     equivalent to specifying 'ACTION='READ'', except that the file may
     not be deleted on close (i.e.  'CLOSE' with 'STATUS="DELETE"').
     The syntax is:

          OPEN(..., READONLY)

'SHARE'
     The 'SHARE' specifier allows system-level locking on a unit upon
     opening it for controlled access from multiple processes/threads.
     The 'SHARE' specifier has several forms:

          OPEN(..., SHARE=sh)
          OPEN(..., SHARED)
          OPEN(..., NOSHARED)

     Where _sh_ in the first form is a character expression that
     evaluates to a value as seen in the table below.  The latter two
     forms are aliases for particular values of _sh_:

     Explicit form          Short form             Meaning
     ----------------------------------------------------------------------------
     'SHARE='DENYRW''       'NOSHARED'             Exclusive (write) lock
     'SHARE='DENYNONE''     'SHARED'               Shared (read) lock

     In general only one process may hold an exclusive (write) lock for
     a given file at a time, whereas many processes may hold shared
     (read) locks for the same file.

     The behavior of locking may vary with your operating system.  On
     POSIX systems, locking is implemented with 'fcntl'.  Consult your
     corresponding operating system's manual pages for further details.
     Locking via 'SHARE=' is not supported on other systems.


File: gfortran.info,  Node: Legacy PARAMETER statements,  Next: Default exponents,  Prev: Extended I/O specifiers,  Up: Extensions implemented in GNU Fortran

6.1.33 Legacy PARAMETER statements
----------------------------------

For compatibility, GNU Fortran supports legacy PARAMETER statements
without parentheses with '-std=legacy'.  A warning is emitted if used
with '-std=gnu', and an error is acknowledged with a real Fortran
standard flag ('-std=f95', etc...).  These statements take the following
form:

     implicit real (E)
     parameter e = 2.718282
     real c
     parameter c = 3.0e8


File: gfortran.info,  Node: Default exponents,  Prev: Legacy PARAMETER statements,  Up: Extensions implemented in GNU Fortran

6.1.34 Default exponents
------------------------

For compatibility, GNU Fortran supports a default exponent of zero in
real constants with '-fdec'.  For example, '9e' would be interpreted as
'9e0', rather than an error.


File: gfortran.info,  Node: Extensions not implemented in GNU Fortran,  Prev: Extensions implemented in GNU Fortran,  Up: Extensions

6.2 Extensions not implemented in GNU Fortran
=============================================

The long history of the Fortran language, its wide use and broad
userbase, the large number of different compiler vendors and the lack of
some features crucial to users in the first standards have lead to the
existence of a number of important extensions to the language.  While
some of the most useful or popular extensions are supported by the GNU
Fortran compiler, not all existing extensions are supported.  This
section aims at listing these extensions and offering advice on how best
make code that uses them running with the GNU Fortran compiler.

* Menu:

* ENCODE and DECODE statements::
* Variable FORMAT expressions::
* Alternate complex function syntax::
* Volatile COMMON blocks::
* OPEN( ... NAME=)::
* Q edit descriptor::


File: gfortran.info,  Node: ENCODE and DECODE statements,  Next: Variable FORMAT expressions,  Up: Extensions not implemented in GNU Fortran

6.2.1 'ENCODE' and 'DECODE' statements
--------------------------------------

GNU Fortran does not support the 'ENCODE' and 'DECODE' statements.
These statements are best replaced by 'READ' and 'WRITE' statements
involving internal files ('CHARACTER' variables and arrays), which have
been part of the Fortran standard since Fortran 77.  For example,
replace a code fragment like

           INTEGER*1 LINE(80)
           REAL A, B, C
     c     ... Code that sets LINE
           DECODE (80, 9000, LINE) A, B, C
      9000 FORMAT (1X, 3(F10.5))

with the following:

           CHARACTER(LEN=80) LINE
           REAL A, B, C
     c     ... Code that sets LINE
           READ (UNIT=LINE, FMT=9000) A, B, C
      9000 FORMAT (1X, 3(F10.5))

   Similarly, replace a code fragment like

           INTEGER*1 LINE(80)
           REAL A, B, C
     c     ... Code that sets A, B and C
           ENCODE (80, 9000, LINE) A, B, C
      9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))

with the following:

           CHARACTER(LEN=80) LINE
           REAL A, B, C
     c     ... Code that sets A, B and C
           WRITE (UNIT=LINE, FMT=9000) A, B, C
      9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))


File: gfortran.info,  Node: Variable FORMAT expressions,  Next: Alternate complex function syntax,  Prev: ENCODE and DECODE statements,  Up: Extensions not implemented in GNU Fortran

6.2.2 Variable 'FORMAT' expressions
-----------------------------------

A variable 'FORMAT' expression is format statement which includes angle
brackets enclosing a Fortran expression: 'FORMAT(I<N>)'.  GNU Fortran
does not support this legacy extension.  The effect of variable format
expressions can be reproduced by using the more powerful (and standard)
combination of internal output and string formats.  For example, replace
a code fragment like this:

           WRITE(6,20) INT1
      20   FORMAT(I<N+1>)

with the following:

     c     Variable declaration
           CHARACTER(LEN=20) FMT
     c
     c     Other code here...
     c
           WRITE(FMT,'("(I", I0, ")")') N+1
           WRITE(6,FMT) INT1

or with:

     c     Variable declaration
           CHARACTER(LEN=20) FMT
     c
     c     Other code here...
     c
           WRITE(FMT,*) N+1
           WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1


File: gfortran.info,  Node: Alternate complex function syntax,  Next: Volatile COMMON blocks,  Prev: Variable FORMAT expressions,  Up: Extensions not implemented in GNU Fortran

6.2.3 Alternate complex function syntax
---------------------------------------

Some Fortran compilers, including 'g77', let the user declare complex
functions with the syntax 'COMPLEX FUNCTION name*16()', as well as
'COMPLEX*16 FUNCTION name()'.  Both are non-standard, legacy extensions.
'gfortran' accepts the latter form, which is more common, but not the
former.


File: gfortran.info,  Node: Volatile COMMON blocks,  Next: OPEN( ... NAME=),  Prev: Alternate complex function syntax,  Up: Extensions not implemented in GNU Fortran

6.2.4 Volatile 'COMMON' blocks
------------------------------

Some Fortran compilers, including 'g77', let the user declare 'COMMON'
with the 'VOLATILE' attribute.  This is invalid standard Fortran syntax
and is not supported by 'gfortran'.  Note that 'gfortran' accepts
'VOLATILE' variables in 'COMMON' blocks since revision 4.3.


File: gfortran.info,  Node: OPEN( ... NAME=),  Next: Q edit descriptor,  Prev: Volatile COMMON blocks,  Up: Extensions not implemented in GNU Fortran

6.2.5 'OPEN( ... NAME=)'
------------------------

Some Fortran compilers, including 'g77', let the user declare 'OPEN( ...
NAME=)'.  This is invalid standard Fortran syntax and is not supported
by 'gfortran'.  'OPEN( ... NAME=)' should be replaced with 'OPEN( ...
FILE=)'.


File: gfortran.info,  Node: Q edit descriptor,  Prev: OPEN( ... NAME=),  Up: Extensions not implemented in GNU Fortran

6.2.6 'Q' edit descriptor
-------------------------

Some Fortran compilers provide the 'Q' edit descriptor, which transfers
the number of characters left within an input record into an integer
variable.

   A direct replacement of the 'Q' edit descriptor is not available in
'gfortran'.  How to replicate its functionality using
standard-conforming code depends on what the intent of the original code
is.

   Options to replace 'Q' may be to read the whole line into a character
variable and then counting the number of non-blank characters left using
'LEN_TRIM'.  Another method may be to use formatted stream, read the
data up to the position where the 'Q' descriptor occurred, use 'INQUIRE'
to get the file position, count the characters up to the next 'NEW_LINE'
and then start reading from the position marked previously.


File: gfortran.info,  Node: Mixed-Language Programming,  Next: Coarray Programming,  Prev: Extensions,  Up: Top

7 Mixed-Language Programming
****************************

* Menu:

* Interoperability with C::
* GNU Fortran Compiler Directives::
* Non-Fortran Main Program::
* Naming and argument-passing conventions::

This chapter is about mixed-language interoperability, but also applies
if one links Fortran code compiled by different compilers.  In most
cases, use of the C Binding features of the Fortran 2003 standard is
sufficient, and their use is highly recommended.


File: gfortran.info,  Node: Interoperability with C,  Next: GNU Fortran Compiler Directives,  Up: Mixed-Language Programming

7.1 Interoperability with C
===========================

* Menu:

* Intrinsic Types::
* Derived Types and struct::
* Interoperable Global Variables::
* Interoperable Subroutines and Functions::
* Working with Pointers::
* Further Interoperability of Fortran with C::

Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way
to generate procedure and derived-type declarations and global variables
which are interoperable with C (ISO/IEC 9899:1999).  The 'bind(C)'
attribute has been added to inform the compiler that a symbol shall be
interoperable with C; also, some constraints are added.  Note, however,
that not all C features have a Fortran equivalent or vice versa.  For
instance, neither C's unsigned integers nor C's functions with variable
number of arguments have an equivalent in Fortran.

   Note that array dimensions are reversely ordered in C and that arrays
in C always start with index 0 while in Fortran they start by default
with 1.  Thus, an array declaration 'A(n,m)' in Fortran matches
'A[m][n]' in C and accessing the element 'A(i,j)' matches 'A[j-1][i-1]'.
The element following 'A(i,j)' (C: 'A[j-1][i-1]'; assuming i < n) in
memory is 'A(i+1,j)' (C: 'A[j-1][i]').


File: gfortran.info,  Node: Intrinsic Types,  Next: Derived Types and struct,  Up: Interoperability with C

7.1.1 Intrinsic Types
---------------------

In order to ensure that exactly the same variable type and kind is used
in C and Fortran, the named constants shall be used which are defined in
the 'ISO_C_BINDING' intrinsic module.  That module contains named
constants for kind parameters and character named constants for the
escape sequences in C. For a list of the constants, see *note
ISO_C_BINDING::.

   For logical types, please note that the Fortran standard only
guarantees interoperability between C99's '_Bool' and Fortran's
'C_Bool'-kind logicals and C99 defines that 'true' has the value 1 and
'false' the value 0.  Using any other integer value with GNU Fortran's
'LOGICAL' (with any kind parameter) gives an undefined result.  (Passing
other integer values than 0 and 1 to GCC's '_Bool' is also undefined,
unless the integer is explicitly or implicitly casted to '_Bool'.)


File: gfortran.info,  Node: Derived Types and struct,  Next: Interoperable Global Variables,  Prev: Intrinsic Types,  Up: Interoperability with C

7.1.2 Derived Types and struct
------------------------------

For compatibility of derived types with 'struct', one needs to use the
'BIND(C)' attribute in the type declaration.  For instance, the
following type declaration

      USE ISO_C_BINDING
      TYPE, BIND(C) :: myType
        INTEGER(C_INT) :: i1, i2
        INTEGER(C_SIGNED_CHAR) :: i3
        REAL(C_DOUBLE) :: d1
        COMPLEX(C_FLOAT_COMPLEX) :: c1
        CHARACTER(KIND=C_CHAR) :: str(5)
      END TYPE

   matches the following 'struct' declaration in C

      struct {
        int i1, i2;
        /* Note: "char" might be signed or unsigned.  */
        signed char i3;
        double d1;
        float _Complex c1;
        char str[5];
      } myType;

   Derived types with the C binding attribute shall not have the
'sequence' attribute, type parameters, the 'extends' attribute, nor
type-bound procedures.  Every component must be of interoperable type
and kind and may not have the 'pointer' or 'allocatable' attribute.  The
names of the components are irrelevant for interoperability.

   As there exist no direct Fortran equivalents, neither unions nor
structs with bit field or variable-length array members are
interoperable.


File: gfortran.info,  Node: Interoperable Global Variables,  Next: Interoperable Subroutines and Functions,  Prev: Derived Types and struct,  Up: Interoperability with C

7.1.3 Interoperable Global Variables
------------------------------------

Variables can be made accessible from C using the C binding attribute,
optionally together with specifying a binding name.  Those variables
have to be declared in the declaration part of a 'MODULE', be of
interoperable type, and have neither the 'pointer' nor the 'allocatable'
attribute.

       MODULE m
         USE myType_module
         USE ISO_C_BINDING
         integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
         type(myType), bind(C) :: tp
       END MODULE

   Here, '_MyProject_flags' is the case-sensitive name of the variable
as seen from C programs while 'global_flag' is the case-insensitive name
as seen from Fortran.  If no binding name is specified, as for TP, the C
binding name is the (lowercase) Fortran binding name.  If a binding name
is specified, only a single variable may be after the double colon.
Note of warning: You cannot use a global variable to access ERRNO of the
C library as the C standard allows it to be a macro.  Use the 'IERRNO'
intrinsic (GNU extension) instead.


File: gfortran.info,  Node: Interoperable Subroutines and Functions,  Next: Working with Pointers,  Prev: Interoperable Global Variables,  Up: Interoperability with C

7.1.4 Interoperable Subroutines and Functions
---------------------------------------------

Subroutines and functions have to have the 'BIND(C)' attribute to be
compatible with C. The dummy argument declaration is relatively
straightforward.  However, one needs to be careful because C uses
call-by-value by default while Fortran behaves usually similar to
call-by-reference.  Furthermore, strings and pointers are handled
differently.  Note that in Fortran 2003 and 2008 only explicit size and
assumed-size arrays are supported but not assumed-shape or
deferred-shape (i.e.  allocatable or pointer) arrays.  However, those
are allowed since the Technical Specification 29113, see *note Further
Interoperability of Fortran with C::

   To pass a variable by value, use the 'VALUE' attribute.  Thus, the
following C prototype

     int func(int i, int *j)

   matches the Fortran declaration

       integer(c_int) function func(i,j)
         use iso_c_binding, only: c_int
         integer(c_int), VALUE :: i
         integer(c_int) :: j

   Note that pointer arguments also frequently need the 'VALUE'
attribute, see *note Working with Pointers::.

   Strings are handled quite differently in C and Fortran.  In C a
string is a 'NUL'-terminated array of characters while in Fortran each
string has a length associated with it and is thus not terminated (by
e.g.  'NUL').  For example, if one wants to use the following C
function,

       #include <stdio.h>
       void print_C(char *string) /* equivalent: char string[]  */
       {
          printf("%s\n", string);
       }

   to print "Hello World" from Fortran, one can call it using

       use iso_c_binding, only: C_CHAR, C_NULL_CHAR
       interface
         subroutine print_c(string) bind(C, name="print_C")
           use iso_c_binding, only: c_char
           character(kind=c_char) :: string(*)
         end subroutine print_c
       end interface
       call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)

   As the example shows, one needs to ensure that the string is 'NUL'
terminated.  Additionally, the dummy argument STRING of 'print_C' is a
length-one assumed-size array; using 'character(len=*)' is not allowed.
The example above uses 'c_char_"Hello World"' to ensure the string
literal has the right type; typically the default character kind and
'c_char' are the same and thus '"Hello World"' is equivalent.  However,
the standard does not guarantee this.

   The use of strings is now further illustrated using the C library
function 'strncpy', whose prototype is

       char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

   The function 'strncpy' copies at most N characters from string S2 to
S1 and returns S1.  In the following example, we ignore the return
value:

       use iso_c_binding
       implicit none
       character(len=30) :: str,str2
       interface
         ! Ignore the return value of strncpy -> subroutine
         ! "restrict" is always assumed if we do not pass a pointer
         subroutine strncpy(dest, src, n) bind(C)
           import
           character(kind=c_char),  intent(out) :: dest(*)
           character(kind=c_char),  intent(in)  :: src(*)
           integer(c_size_t), value, intent(in) :: n
         end subroutine strncpy
       end interface
       str = repeat('X',30) ! Initialize whole string with 'X'
       call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
                    len(c_char_"Hello World",kind=c_size_t))
       print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
       end

   The intrinsic procedures are described in *note Intrinsic
Procedures::.


File: gfortran.info,  Node: Working with Pointers,  Next: Further Interoperability of Fortran with C,  Prev: Interoperable Subroutines and Functions,  Up: Interoperability with C

7.1.5 Working with Pointers
---------------------------

C pointers are represented in Fortran via the special opaque derived
type 'type(c_ptr)' (with private components).  Thus one needs to use
intrinsic conversion procedures to convert from or to C pointers.

   For some applications, using an assumed type ('TYPE(*)') can be an
alternative to a C pointer; see *note Further Interoperability of
Fortran with C::.

   For example,

       use iso_c_binding
       type(c_ptr) :: cptr1, cptr2
       integer, target :: array(7), scalar
       integer, pointer :: pa(:), ps
       cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
                               ! array is contiguous if required by the C
                               ! procedure
       cptr2 = c_loc(scalar)
       call c_f_pointer(cptr2, ps)
       call c_f_pointer(cptr2, pa, shape=[7])

   When converting C to Fortran arrays, the one-dimensional 'SHAPE'
argument has to be passed.

   If a pointer is a dummy-argument of an interoperable procedure, it
usually has to be declared using the 'VALUE' attribute.  'void*' matches
'TYPE(C_PTR), VALUE', while 'TYPE(C_PTR)' alone matches 'void**'.

   Procedure pointers are handled analogously to pointers; the C type is
'TYPE(C_FUNPTR)' and the intrinsic conversion procedures are
'C_F_PROCPOINTER' and 'C_FUNLOC'.

   Let us consider two examples of actually passing a procedure pointer
from C to Fortran and vice versa.  Note that these examples are also
very similar to passing ordinary pointers between both languages.
First, consider this code in C:

     /* Procedure implemented in Fortran.  */
     void get_values (void (*)(double));

     /* Call-back routine we want called from Fortran.  */
     void
     print_it (double x)
     {
       printf ("Number is %f.\n", x);
     }

     /* Call Fortran routine and pass call-back to it.  */
     void
     foobar ()
     {
       get_values (&print_it);
     }

   A matching implementation for 'get_values' in Fortran, that correctly
receives the procedure pointer from C and is able to call it, is given
in the following 'MODULE':

     MODULE m
       IMPLICIT NONE

       ! Define interface of call-back routine.
       ABSTRACT INTERFACE
         SUBROUTINE callback (x)
           USE, INTRINSIC :: ISO_C_BINDING
           REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
         END SUBROUTINE callback
       END INTERFACE

     CONTAINS

       ! Define C-bound procedure.
       SUBROUTINE get_values (cproc) BIND(C)
         USE, INTRINSIC :: ISO_C_BINDING
         TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc

         PROCEDURE(callback), POINTER :: proc

         ! Convert C to Fortran procedure pointer.
         CALL C_F_PROCPOINTER (cproc, proc)

         ! Call it.
         CALL proc (1.0_C_DOUBLE)
         CALL proc (-42.0_C_DOUBLE)
         CALL proc (18.12_C_DOUBLE)
       END SUBROUTINE get_values

     END MODULE m

   Next, we want to call a C routine that expects a procedure pointer
argument and pass it a Fortran procedure (which clearly must be
interoperable!).  Again, the C function may be:

     int
     call_it (int (*func)(int), int arg)
     {
       return func (arg);
     }

   It can be used as in the following Fortran code:

     MODULE m
       USE, INTRINSIC :: ISO_C_BINDING
       IMPLICIT NONE

       ! Define interface of C function.
       INTERFACE
         INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
           USE, INTRINSIC :: ISO_C_BINDING
           TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
           INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
         END FUNCTION call_it
       END INTERFACE

     CONTAINS

       ! Define procedure passed to C function.
       ! It must be interoperable!
       INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
         INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
         double_it = arg + arg
       END FUNCTION double_it

       ! Call C function.
       SUBROUTINE foobar ()
         TYPE(C_FUNPTR) :: cproc
         INTEGER(KIND=C_INT) :: i

         ! Get C procedure pointer.
         cproc = C_FUNLOC (double_it)

         ! Use it.
         DO i = 1_C_INT, 10_C_INT
           PRINT *, call_it (cproc, i)
         END DO
       END SUBROUTINE foobar

     END MODULE m


File: gfortran.info,  Node: Further Interoperability of Fortran with C,  Prev: Working with Pointers,  Up: Interoperability with C

7.1.6 Further Interoperability of Fortran with C
------------------------------------------------

The Technical Specification ISO/IEC TS 29113:2012 on further
interoperability of Fortran with C extends the interoperability support
of Fortran 2003 and Fortran 2008.  Besides removing some restrictions
and constraints, it adds assumed-type ('TYPE(*)') and assumed-rank
('dimension') variables and allows for interoperability of
assumed-shape, assumed-rank and deferred-shape arrays, including
allocatables and pointers.

   Note: Currently, GNU Fortran does not use internally the array
descriptor (dope vector) as specified in the Technical Specification,
but uses an array descriptor with different fields.  Assumed type and
assumed rank formal arguments are converted in the library to the
specified form.  The ISO_Fortran_binding API functions (also Fortran
2018 18.4) are implemented in libgfortran.  Alternatively, the Chasm
Language Interoperability Tools,
<http://chasm-interop.sourceforge.net/>, provide an interface to GNU
Fortran's array descriptor.

   The Technical Specification adds the following new features, which
are supported by GNU Fortran:

   * The 'ASYNCHRONOUS' attribute has been clarified and extended to
     allow its use with asynchronous communication in user-provided
     libraries such as in implementations of the Message Passing
     Interface specification.

   * Many constraints have been relaxed, in particular for the 'C_LOC'
     and 'C_F_POINTER' intrinsics.

   * The 'OPTIONAL' attribute is now allowed for dummy arguments; an
     absent argument matches a 'NULL' pointer.

   * Assumed types ('TYPE(*)') have been added, which may only be used
     for dummy arguments.  They are unlimited polymorphic but contrary
     to 'CLASS(*)' they do not contain any type information, similar to
     C's 'void *' pointers.  Expressions of any type and kind can be
     passed; thus, it can be used as replacement for 'TYPE(C_PTR)',
     avoiding the use of 'C_LOC' in the caller.

     Note, however, that 'TYPE(*)' only accepts scalar arguments, unless
     the 'DIMENSION' is explicitly specified.  As 'DIMENSION(*)' only
     supports array (including array elements) but no scalars, it is not
     a full replacement for 'C_LOC'.  On the other hand, assumed-type
     assumed-rank dummy arguments ('TYPE(*), DIMENSION(..)') allow for
     both scalars and arrays, but require special code on the callee
     side to handle the array descriptor.

   * Assumed-rank arrays ('DIMENSION(..)') as dummy argument allow that
     scalars and arrays of any rank can be passed as actual argument.
     As the Technical Specification does not provide for direct means to
     operate with them, they have to be used either from the C side or
     be converted using 'C_LOC' and 'C_F_POINTER' to scalars or arrays
     of a specific rank.  The rank can be determined using the 'RANK'
     intrinisic.

   Currently unimplemented:

   * GNU Fortran always uses an array descriptor, which does not match
     the one of the Technical Specification.  The
     'ISO_Fortran_binding.h' header file and the C functions it
     specifies are not available.

   * Using assumed-shape, assumed-rank and deferred-shape arrays in
     'BIND(C)' procedures is not fully supported.  In particular, C
     interoperable strings of other length than one are not supported as
     this requires the new array descriptor.


File: gfortran.info,  Node: GNU Fortran Compiler Directives,  Next: Non-Fortran Main Program,  Prev: Interoperability with C,  Up: Mixed-Language Programming

7.2 GNU Fortran Compiler Directives
===================================

* Menu:

* ATTRIBUTES directive::
* UNROLL directive::
* BUILTIN directive::
* IVDEP directive::
* VECTOR directive::
* NOVECTOR directive::


File: gfortran.info,  Node: ATTRIBUTES directive,  Next: UNROLL directive,  Up: GNU Fortran Compiler Directives

7.2.1 ATTRIBUTES directive
--------------------------

The Fortran standard describes how a conforming program shall behave;
however, the exact implementation is not standardized.  In order to
allow the user to choose specific implementation details, compiler
directives can be used to set attributes of variables and procedures
which are not part of the standard.  Whether a given attribute is
supported and its exact effects depend on both the operating system and
on the processor; see *note C Extensions: (gcc)Top. for details.

   For procedures and procedure pointers, the following attributes can
be used to change the calling convention:

   * 'CDECL' - standard C calling convention
   * 'STDCALL' - convention where the called procedure pops the stack
   * 'FASTCALL' - part of the arguments are passed via registers instead
     using the stack

   Besides changing the calling convention, the attributes also
influence the decoration of the symbol name, e.g., by a leading
underscore or by a trailing at-sign followed by the number of bytes on
the stack.  When assigning a procedure to a procedure pointer, both
should use the same calling convention.

   On some systems, procedures and global variables (module variables
and 'COMMON' blocks) need special handling to be accessible when they
are in a shared library.  The following attributes are available:

   * 'DLLEXPORT' - provide a global pointer to a pointer in the DLL
   * 'DLLIMPORT' - reference the function or variable using a global
     pointer

   For dummy arguments, the 'NO_ARG_CHECK' attribute can be used; in
other compilers, it is also known as 'IGNORE_TKR'.  For dummy arguments
with this attribute actual arguments of any type and kind (similar to
'TYPE(*)'), scalars and arrays of any rank (no equivalent in Fortran
standard) are accepted.  As with 'TYPE(*)', the argument is unlimited
polymorphic and no type information is available.  Additionally, the
argument may only be passed to dummy arguments with the 'NO_ARG_CHECK'
attribute and as argument to the 'PRESENT' intrinsic function and to
'C_LOC' of the 'ISO_C_BINDING' module.

   Variables with 'NO_ARG_CHECK' attribute shall be of assumed-type
('TYPE(*)'; recommended) or of type 'INTEGER', 'LOGICAL', 'REAL' or
'COMPLEX'.  They shall not have the 'ALLOCATE', 'CODIMENSION',
'INTENT(OUT)', 'POINTER' or 'VALUE' attribute; furthermore, they shall
be either scalar or of assumed-size ('dimension(*)').  As 'TYPE(*)', the
'NO_ARG_CHECK' attribute requires an explicit interface.

   * 'NO_ARG_CHECK' - disable the type, kind and rank checking

   The attributes are specified using the syntax

   '!GCC$ ATTRIBUTES' ATTRIBUTE-LIST '::' VARIABLE-LIST

   where in free-form source code only whitespace is allowed before
'!GCC$' and in fixed-form source code '!GCC$', 'cGCC$' or '*GCC$' shall
start in the first column.

   For procedures, the compiler directives shall be placed into the body
of the procedure; for variables and procedure pointers, they shall be in
the same declaration part as the variable or procedure pointer.


File: gfortran.info,  Node: UNROLL directive,  Next: BUILTIN directive,  Prev: ATTRIBUTES directive,  Up: GNU Fortran Compiler Directives

7.2.2 UNROLL directive
----------------------

The syntax of the directive is

   '!GCC$ unroll N'

   You can use this directive to control how many times a loop should be
unrolled.  It must be placed immediately before a 'DO' loop and applies
only to the loop that follows.  N is an integer constant specifying the
unrolling factor.  The values of 0 and 1 block any unrolling of the
loop.


File: gfortran.info,  Node: BUILTIN directive,  Next: IVDEP directive,  Prev: UNROLL directive,  Up: GNU Fortran Compiler Directives

7.2.3 BUILTIN directive
-----------------------

The syntax of the directive is

   '!GCC$ BUILTIN (B) attributes simd FLAGS IF('target')'

   You can use this directive to define which middle-end built-ins
provide vector implementations.  'B' is name of the middle-end built-in.
'FLAGS' are optional and must be either "(inbranch)" or "(notinbranch)".
'IF' statement is optional and is used to filter multilib ABIs for the
built-in that should be vectorized.  Example usage:

     !GCC$ builtin (sinf) attributes simd (notinbranch) if('x86_64')

   The purpose of the directive is to provide an API among the GCC
compiler and the GNU C Library which would define vector implementations
of math routines.


File: gfortran.info,  Node: IVDEP directive,  Next: VECTOR directive,  Prev: BUILTIN directive,  Up: GNU Fortran Compiler Directives

7.2.4 IVDEP directive
---------------------

The syntax of the directive is

   '!GCC$ ivdep'

   This directive tells the compiler to ignore vector dependencies in
the following loop.  It must be placed immediately before a 'DO' loop
and applies only to the loop that follows.

   Sometimes the compiler may not have sufficient information to decide
whether a particular loop is vectorizable due to potential dependencies
between iterations.  The purpose of the directive is to tell the
compiler that vectorization is safe.

   This directive is intended for annotation of existing code.  For new
code it is recommended to consider OpenMP SIMD directives as potential
alternative.


File: gfortran.info,  Node: VECTOR directive,  Next: NOVECTOR directive,  Prev: IVDEP directive,  Up: GNU Fortran Compiler Directives

7.2.5 VECTOR directive
----------------------

The syntax of the directive is

   '!GCC$ vector'

   This directive tells the compiler to vectorize the following loop.
It must be placed immediately before a 'DO' loop and applies only to the
loop that follows.


File: gfortran.info,  Node: NOVECTOR directive,  Prev: VECTOR directive,  Up: GNU Fortran Compiler Directives

7.2.6 NOVECTOR directive
------------------------

The syntax of the directive is

   '!GCC$ novector'

   This directive tells the compiler to not vectorize the following
loop.  It must be placed immediately before a 'DO' loop and applies only
to the loop that follows.


File: gfortran.info,  Node: Non-Fortran Main Program,  Next: Naming and argument-passing conventions,  Prev: GNU Fortran Compiler Directives,  Up: Mixed-Language Programming

7.3 Non-Fortran Main Program
============================

* Menu:

* _gfortran_set_args:: Save command-line arguments
* _gfortran_set_options:: Set library option flags
* _gfortran_set_convert:: Set endian conversion
* _gfortran_set_record_marker:: Set length of record markers
* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
* _gfortran_set_max_subrecord_length:: Set subrecord length

Even if you are doing mixed-language programming, it is very likely that
you do not need to know or use the information in this section.  Since
it is about the internal structure of GNU Fortran, it may also change in
GCC minor releases.

   When you compile a 'PROGRAM' with GNU Fortran, a function with the
name 'main' (in the symbol table of the object file) is generated, which
initializes the libgfortran library and then calls the actual program
which uses the name 'MAIN__', for historic reasons.  If you link GNU
Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran
program compiled by a different compiler, the libgfortran library is not
initialized and thus a few intrinsic procedures do not work properly,
e.g.  those for obtaining the command-line arguments.

   Therefore, if your 'PROGRAM' is not compiled with GNU Fortran and the
GNU Fortran compiled procedures require intrinsics relying on the
library initialization, you need to initialize the library yourself.
Using the default options, gfortran calls '_gfortran_set_args' and
'_gfortran_set_options'.  The initialization of the former is needed if
the called procedures access the command line (and for backtracing); the
latter sets some flags based on the standard chosen or to enable
backtracing.  In typical programs, it is not necessary to call any
initialization function.

   If your 'PROGRAM' is compiled with GNU Fortran, you shall not call
any of the following functions.  The libgfortran initialization
functions are shown in C syntax but using C bindings they are also
accessible from Fortran.


File: gfortran.info,  Node: _gfortran_set_args,  Next: _gfortran_set_options,  Up: Non-Fortran Main Program

7.3.1 '_gfortran_set_args' -- Save command-line arguments
---------------------------------------------------------

_Description_:
     '_gfortran_set_args' saves the command-line arguments; this
     initialization is required if any of the command-line intrinsics is
     called.  Additionally, it shall be called if backtracing is enabled
     (see '_gfortran_set_options').

_Syntax_:
     'void _gfortran_set_args (int argc, char *argv[])'

_Arguments_:
     ARGC        number of command line argument strings
     ARGV        the command-line argument strings; argv[0] is
                 the pathname of the executable itself.

_Example_:
          int main (int argc, char *argv[])
          {
            /* Initialize libgfortran.  */
            _gfortran_set_args (argc, argv);
            return 0;
          }


File: gfortran.info,  Node: _gfortran_set_options,  Next: _gfortran_set_convert,  Prev: _gfortran_set_args,  Up: Non-Fortran Main Program

7.3.2 '_gfortran_set_options' -- Set library option flags
---------------------------------------------------------

_Description_:
     '_gfortran_set_options' sets several flags related to the Fortran
     standard to be used, whether backtracing should be enabled and
     whether range checks should be performed.  The syntax allows for
     upward compatibility since the number of passed flags is specified;
     for non-passed flags, the default value is used.  See also *note
     Code Gen Options::.  Please note that not all flags are actually
     used.

_Syntax_:
     'void _gfortran_set_options (int num, int options[])'

_Arguments_:
     NUM         number of options passed
     ARGV        The list of flag values

_option flag list_:
     OPTION[0]   Allowed standard; can give run-time errors if
                 e.g.  an input-output edit descriptor is invalid
                 in a given standard.  Possible values are
                 (bitwise or-ed) 'GFC_STD_F77' (1),
                 'GFC_STD_F95_OBS' (2), 'GFC_STD_F95_DEL' (4),
                 'GFC_STD_F95' (8), 'GFC_STD_F2003' (16),
                 'GFC_STD_GNU' (32), 'GFC_STD_LEGACY' (64),
                 'GFC_STD_F2008' (128), 'GFC_STD_F2008_OBS'
                 (256), 'GFC_STD_F2008_TS' (512), 'GFC_STD_F2018'
                 (1024), 'GFC_STD_F2018_OBS' (2048), and
                 'GFC_STD=F2018_DEL' (4096).  Default:
                 'GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95
                 | GFC_STD_F2003 | GFC_STD_F2008 |
                 GFC_STD_F2008_TS | GFC_STD_F2008_OBS |
                 GFC_STD_F77 | GFC_STD_F2018 | GFC_STD_F2018_OBS
                 | GFC_STD_F2018_DEL | GFC_STD_GNU |
                 GFC_STD_LEGACY'.
     OPTION[1]   Standard-warning flag; prints a warning to
                 standard error.  Default: 'GFC_STD_F95_DEL |
                 GFC_STD_LEGACY'.
     OPTION[2]   If non zero, enable pedantic checking.  Default:
                 off.
     OPTION[3]   Unused.
     OPTION[4]   If non zero, enable backtracing on run-time
                 errors.  Default: off.  (Default in the
                 compiler: on.)  Note: Installs a signal handler
                 and requires command-line initialization using
                 '_gfortran_set_args'.
     OPTION[5]   If non zero, supports signed zeros.  Default:
                 enabled.
     OPTION[6]   Enables run-time checking.  Possible values are
                 (bitwise or-ed): GFC_RTCHECK_BOUNDS (1),
                 GFC_RTCHECK_ARRAY_TEMPS (2),
                 GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16),
                 GFC_RTCHECK_POINTER (32), GFC_RTCHECK_BITS (64).
                 Default: disabled.
     OPTION[7]   Unused.
     OPTION[8]   Show a warning when invoking 'STOP' and 'ERROR
                 STOP' if a floating-point exception occurred.
                 Possible values are (bitwise or-ed)
                 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
                 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
                 'GFC_FPE_UNDERFLOW' (16), 'GFC_FPE_INEXACT'
                 (32).  Default: None (0).  (Default in the
                 compiler: 'GFC_FPE_INVALID | GFC_FPE_DENORMAL |
                 GFC_FPE_ZERO | GFC_FPE_OVERFLOW |
                 GFC_FPE_UNDERFLOW'.)

_Example_:
            /* Use gfortran 4.9 default options.  */
            static int options[] = {68, 511, 0, 0, 1, 1, 0, 0, 31};
            _gfortran_set_options (9, &options);


File: gfortran.info,  Node: _gfortran_set_convert,  Next: _gfortran_set_record_marker,  Prev: _gfortran_set_options,  Up: Non-Fortran Main Program

7.3.3 '_gfortran_set_convert' -- Set endian conversion
------------------------------------------------------

_Description_:
     '_gfortran_set_convert' set the representation of data for
     unformatted files.

_Syntax_:
     'void _gfortran_set_convert (int conv)'

_Arguments_:
     CONV        Endian conversion, possible values:
                 GFC_CONVERT_NATIVE (0, default),
                 GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2),
                 GFC_CONVERT_LITTLE (3).

_Example_:
          int main (int argc, char *argv[])
          {
            /* Initialize libgfortran.  */
            _gfortran_set_args (argc, argv);
            _gfortran_set_convert (1);
            return 0;
          }


File: gfortran.info,  Node: _gfortran_set_record_marker,  Next: _gfortran_set_fpe,  Prev: _gfortran_set_convert,  Up: Non-Fortran Main Program

7.3.4 '_gfortran_set_record_marker' -- Set length of record markers
-------------------------------------------------------------------

_Description_:
     '_gfortran_set_record_marker' sets the length of record markers for
     unformatted files.

_Syntax_:
     'void _gfortran_set_record_marker (int val)'

_Arguments_:
     VAL         Length of the record marker; valid values are 4
                 and 8.  Default is 4.

_Example_:
          int main (int argc, char *argv[])
          {
            /* Initialize libgfortran.  */
            _gfortran_set_args (argc, argv);
            _gfortran_set_record_marker (8);
            return 0;
          }


File: gfortran.info,  Node: _gfortran_set_fpe,  Next: _gfortran_set_max_subrecord_length,  Prev: _gfortran_set_record_marker,  Up: Non-Fortran Main Program

7.3.5 '_gfortran_set_fpe' -- Enable floating point exception traps
------------------------------------------------------------------

_Description_:
     '_gfortran_set_fpe' enables floating point exception traps for the
     specified exceptions.  On most systems, this will result in a
     SIGFPE signal being sent and the program being aborted.

_Syntax_:
     'void _gfortran_set_fpe (int val)'

_Arguments_:
     OPTION[0]   IEEE exceptions.  Possible values are (bitwise
                 or-ed) zero (0, default) no trapping,
                 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2),
                 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8),
                 'GFC_FPE_UNDERFLOW' (16), and 'GFC_FPE_INEXACT'
                 (32).

_Example_:
          int main (int argc, char *argv[])
          {
            /* Initialize libgfortran.  */
            _gfortran_set_args (argc, argv);
            /* FPE for invalid operations such as SQRT(-1.0).  */
            _gfortran_set_fpe (1);
            return 0;
          }


File: gfortran.info,  Node: _gfortran_set_max_subrecord_length,  Prev: _gfortran_set_fpe,  Up: Non-Fortran Main Program

7.3.6 '_gfortran_set_max_subrecord_length' -- Set subrecord length
------------------------------------------------------------------

_Description_:
     '_gfortran_set_max_subrecord_length' set the maximum length for a
     subrecord.  This option only makes sense for testing and debugging
     of unformatted I/O.

_Syntax_:
     'void _gfortran_set_max_subrecord_length (int val)'

_Arguments_:
     VAL         the maximum length for a subrecord; the maximum
                 permitted value is 2147483639, which is also the
                 default.

_Example_:
          int main (int argc, char *argv[])
          {
            /* Initialize libgfortran.  */
            _gfortran_set_args (argc, argv);
            _gfortran_set_max_subrecord_length (8);
            return 0;
          }


File: gfortran.info,  Node: Naming and argument-passing conventions,  Prev: Non-Fortran Main Program,  Up: Mixed-Language Programming

7.4 Naming and argument-passing conventions
===========================================

This section gives an overview about the naming convention of procedures
and global variables and about the argument passing conventions used by
GNU Fortran.  If a C binding has been specified, the naming convention
and some of the argument-passing conventions change.  If possible,
mixed-language and mixed-compiler projects should use the better defined
C binding for interoperability.  See *note Interoperability with C::.

* Menu:

* Naming conventions::
* Argument passing conventions::


File: gfortran.info,  Node: Naming conventions,  Next: Argument passing conventions,  Up: Naming and argument-passing conventions

7.4.1 Naming conventions
------------------------

According the Fortran standard, valid Fortran names consist of a letter
between 'A' to 'Z', 'a' to 'z', digits '0', '1' to '9' and underscores
('_') with the restriction that names may only start with a letter.  As
vendor extension, the dollar sign ('$') is additionally permitted with
the option '-fdollar-ok', but not as first character and only if the
target system supports it.

   By default, the procedure name is the lower-cased Fortran name with
an appended underscore ('_'); using '-fno-underscoring' no underscore is
appended while '-fsecond-underscore' appends two underscores.  Depending
on the target system and the calling convention, the procedure might be
additionally dressed; for instance, on 32bit Windows with 'stdcall', an
at-sign '@' followed by an integer number is appended.  For the changing
the calling convention, see *note GNU Fortran Compiler Directives::.

   For common blocks, the same convention is used, i.e.  by default an
underscore is appended to the lower-cased Fortran name.  Blank commons
have the name '__BLNK__'.

   For procedures and variables declared in the specification space of a
module, the name is formed by '__', followed by the lower-cased module
name, '_MOD_', and the lower-cased Fortran name.  Note that no
underscore is appended.


File: gfortran.info,  Node: Argument passing conventions,  Prev: Naming conventions,  Up: Naming and argument-passing conventions

7.4.2 Argument passing conventions
----------------------------------

Subroutines do not return a value (matching C99's 'void') while
functions either return a value as specified in the platform ABI or the
result variable is passed as hidden argument to the function and no
result is returned.  A hidden result variable is used when the result
variable is an array or of type 'CHARACTER'.

   Arguments are passed according to the platform ABI. In particular,
complex arguments might not be compatible to a struct with two real
components for the real and imaginary part.  The argument passing
matches the one of C99's '_Complex'.  Functions with scalar complex
result variables return their value and do not use a by-reference
argument.  Note that with the '-ff2c' option, the argument passing is
modified and no longer completely matches the platform ABI. Some other
Fortran compilers use 'f2c' semantic by default; this might cause
problems with interoperablility.

   GNU Fortran passes most arguments by reference, i.e.  by passing a
pointer to the data.  Note that the compiler might use a temporary
variable into which the actual argument has been copied, if required
semantically (copy-in/copy-out).

   For arguments with 'ALLOCATABLE' and 'POINTER' attribute (including
procedure pointers), a pointer to the pointer is passed such that the
pointer address can be modified in the procedure.

   For dummy arguments with the 'VALUE' attribute: Scalar arguments of
the type 'INTEGER', 'LOGICAL', 'REAL' and 'COMPLEX' are passed by value
according to the platform ABI. (As vendor extension and not recommended,
using '%VAL()' in the call to a procedure has the same effect.)  For
'TYPE(C_PTR)' and procedure pointers, the pointer itself is passed such
that it can be modified without affecting the caller.

   For Boolean ('LOGICAL') arguments, please note that GCC expects only
the integer value 0 and 1.  If a GNU Fortran 'LOGICAL' variable contains
another integer value, the result is undefined.  As some other Fortran
compilers use -1 for '.TRUE.', extra care has to be taken - such as
passing the value as 'INTEGER'.  (The same value restriction also
applies to other front ends of GCC, e.g.  to GCC's C99 compiler for
'_Bool' or GCC's Ada compiler for 'Boolean'.)

   For arguments of 'CHARACTER' type, the character length is passed as
a hidden argument at the end of the argument list.  For deferred-length
strings, the value is passed by reference, otherwise by value.  The
character length has the C type 'size_t' (or 'INTEGER(kind=C_SIZE_T)' in
Fortran).  Note that this is different to older versions of the GNU
Fortran compiler, where the type of the hidden character length argument
was a C 'int'.  In order to retain compatibility with older versions,
one can e.g.  for the following Fortran procedure

     subroutine fstrlen (s, a)
        character(len=*) :: s
        integer :: a
        print*, len(s)
     end subroutine fstrlen

   define the corresponding C prototype as follows:

     #if __GNUC__ > 7
     typedef size_t fortran_charlen_t;
     #else
     typedef int fortran_charlen_t;
     #endif

     void fstrlen_ (char*, int*, fortran_charlen_t);

   In order to avoid such compiler-specific details, for new code it is
instead recommended to use the ISO_C_BINDING feature.

   Note with C binding, 'CHARACTER(len=1)' result variables are returned
according to the platform ABI and no hidden length argument is used for
dummy arguments; with 'VALUE', those variables are passed by value.

   For 'OPTIONAL' dummy arguments, an absent argument is denoted by a
NULL pointer, except for scalar dummy arguments of type 'INTEGER',
'LOGICAL', 'REAL' and 'COMPLEX' which have the 'VALUE' attribute.  For
those, a hidden Boolean argument ('logical(kind=C_bool),value') is used
to indicate whether the argument is present.

   Arguments which are assumed-shape, assumed-rank or deferred-rank
arrays or, with '-fcoarray=lib', allocatable scalar coarrays use an
array descriptor.  All other arrays pass the address of the first
element of the array.  With '-fcoarray=lib', the token and the offset
belonging to nonallocatable coarrays dummy arguments are passed as
hidden argument along the character length hidden arguments.  The token
is an oparque pointer identifying the coarray and the offset is a
passed-by-value integer of kind 'C_PTRDIFF_T', denoting the byte offset
between the base address of the coarray and the passed scalar or first
element of the passed array.

   The arguments are passed in the following order
   * Result variable, when the function result is passed by reference
   * Character length of the function result, if it is a of type
     'CHARACTER' and no C binding is used
   * The arguments in the order in which they appear in the Fortran
     declaration
   * The the present status for optional arguments with value attribute,
     which are internally passed by value
   * The character length and/or coarray token and offset for the first
     argument which is a 'CHARACTER' or a nonallocatable coarray dummy
     argument, followed by the hidden arguments of the next dummy
     argument of such a type


File: gfortran.info,  Node: Coarray Programming,  Next: Intrinsic Procedures,  Prev: Mixed-Language Programming,  Up: Top

8 Coarray Programming
*********************

* Menu:

* Type and enum ABI Documentation::
* Function ABI Documentation::


File: gfortran.info,  Node: Type and enum ABI Documentation,  Next: Function ABI Documentation,  Up: Coarray Programming

8.1 Type and enum ABI Documentation
===================================

* Menu:

* caf_token_t::
* caf_register_t::
* caf_deregister_t::
* caf_reference_t::
* caf_team_t::


File: gfortran.info,  Node: caf_token_t,  Next: caf_register_t,  Up: Type and enum ABI Documentation

8.1.1 'caf_token_t'
-------------------

Typedef of type 'void *' on the compiler side.  Can be any data type on
the library side.


File: gfortran.info,  Node: caf_register_t,  Next: caf_deregister_t,  Prev: caf_token_t,  Up: Type and enum ABI Documentation

8.1.2 'caf_register_t'
----------------------

Indicates which kind of coarray variable should be registered.

typedef enum caf_register_t {
  CAF_REGTYPE_COARRAY_STATIC,
  CAF_REGTYPE_COARRAY_ALLOC,
  CAF_REGTYPE_LOCK_STATIC,
  CAF_REGTYPE_LOCK_ALLOC,
  CAF_REGTYPE_CRITICAL,
  CAF_REGTYPE_EVENT_STATIC,
  CAF_REGTYPE_EVENT_ALLOC,
  CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY,
  CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY
}
caf_register_t;

   The values 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' and
'CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY' are for allocatable components
in derived type coarrays only.  The first one sets up the token without
allocating memory for allocatable component.  The latter one only
allocates the memory for an allocatable component in a derived type
coarray.  The token needs to be setup previously by the REGISTER_ONLY.
This allows to have allocatable components un-allocated on some images.
The status whether an allocatable component is allocated on a remote
image can be queried by '_caf_is_present' which used internally by the
'ALLOCATED' intrinsic.


File: gfortran.info,  Node: caf_deregister_t,  Next: caf_reference_t,  Prev: caf_register_t,  Up: Type and enum ABI Documentation

8.1.3 'caf_deregister_t'
------------------------

typedef enum caf_deregister_t {
  CAF_DEREGTYPE_COARRAY_DEREGISTER,
  CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY
}
caf_deregister_t;

   Allows to specifiy the type of deregistration of a coarray object.
The 'CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY' flag is only allowed for
allocatable components in derived type coarrays.


File: gfortran.info,  Node: caf_reference_t,  Next: caf_team_t,  Prev: caf_deregister_t,  Up: Type and enum ABI Documentation

8.1.4 'caf_reference_t'
-----------------------

The structure used for implementing arbitrary reference chains.  A
'CAF_REFERENCE_T' allows to specify a component reference or any kind of
array reference of any rank supported by gfortran.  For array references
all kinds as known by the compiler/Fortran standard are supported
indicated by a 'MODE'.

typedef enum caf_ref_type_t {
  /* Reference a component of a derived type, either regular one or an
     allocatable or pointer type.  For regular ones idx in caf_reference_t is
     set to -1.  */
  CAF_REF_COMPONENT,
  /* Reference an allocatable array.  */
  CAF_REF_ARRAY,
  /* Reference a non-allocatable/non-pointer array.  I.e., the coarray object
     has no array descriptor associated and the addressing is done
     completely using the ref.  */
  CAF_REF_STATIC_ARRAY
} caf_ref_type_t;

typedef enum caf_array_ref_t {
  /* No array ref.  This terminates the array ref.  */
  CAF_ARR_REF_NONE = 0,
  /* Reference array elements given by a vector.  Only for this mode
     caf_reference_t.u.a.dim[i].v is valid.  */
  CAF_ARR_REF_VECTOR,
  /* A full array ref (:).  */
  CAF_ARR_REF_FULL,
  /* Reference a range on elements given by start, end and stride.  */
  CAF_ARR_REF_RANGE,
  /* Only a single item is referenced given in the start member.  */
  CAF_ARR_REF_SINGLE,
  /* An array ref of the kind (i:), where i is an arbitrary valid index in the
     array.  The index i is given in the start member.  */
  CAF_ARR_REF_OPEN_END,
  /* An array ref of the kind (:i), where the lower bound of the array ref
     is given by the remote side.  The index i is given in the end member.  */
  CAF_ARR_REF_OPEN_START
} caf_array_ref_t;

/* References to remote components of a derived type.  */
typedef struct caf_reference_t {
  /* A pointer to the next ref or NULL.  */
  struct caf_reference_t *next;
  /* The type of the reference.  */
  /* caf_ref_type_t, replaced by int to allow specification in fortran FE.  */
  int type;
  /* The size of an item referenced in bytes.  I.e. in an array ref this is
     the factor to advance the array pointer with to get to the next item.
     For component refs this gives just the size of the element referenced.  */
  size_t item_size;
  union {
    struct {
      /* The offset (in bytes) of the component in the derived type.
         Unused for allocatable or pointer components.  */
      ptrdiff_t offset;
      /* The offset (in bytes) to the caf_token associated with this
         component.  NULL, when not allocatable/pointer ref.  */
      ptrdiff_t caf_token_offset;
    } c;
    struct {
      /* The mode of the array ref.  See CAF_ARR_REF_*.  */
      /* caf_array_ref_t, replaced by unsigend char to allow specification in
         fortran FE.  */
     unsigned char mode[GFC_MAX_DIMENSIONS];
      /* The type of a static array.  Unset for array's with descriptors.  */
      int static_array_type;
      /* Subscript refs (s) or vector refs (v).  */
      union {
        struct {
          /* The start and end boundary of the ref and the stride.  */
          index_type start, end, stride;
        } s;
        struct {
          /* nvec entries of kind giving the elements to reference.  */
          void *vector;
          /* The number of entries in vector.  */
          size_t nvec;
          /* The integer kind used for the elements in vector.  */
          int kind;
        } v;
      } dim[GFC_MAX_DIMENSIONS];
    } a;
  } u;
} caf_reference_t;

   The references make up a single linked list of reference operations.
The 'NEXT' member links to the next reference or NULL to indicate the
end of the chain.  Component and array refs can be arbitrarly mixed as
long as they comply to the Fortran standard.

   _NOTES_ The member 'STATIC_ARRAY_TYPE' is used only when the 'TYPE'
is 'CAF_REF_STATIC_ARRAY'.  The member gives the type of the data
referenced.  Because no array descriptor is available for a
descriptor-less array and type conversion still needs to take place the
type is transported here.

   At the moment 'CAF_ARR_REF_VECTOR' is not implemented in the front
end for descriptor-less arrays.  The library caf_single has untested
support for it.


File: gfortran.info,  Node: caf_team_t,  Prev: caf_reference_t,  Up: Type and enum ABI Documentation

8.1.5 'caf_team_t'
------------------

Opaque pointer to represent a team-handle.  This type is a stand-in for
the future implementation of teams.  It is about to change without
further notice.


File: gfortran.info,  Node: Function ABI Documentation,  Prev: Type and enum ABI Documentation,  Up: Coarray Programming

8.2 Function ABI Documentation
==============================

* Menu:

* _gfortran_caf_init:: Initialiation function
* _gfortran_caf_finish:: Finalization function
* _gfortran_caf_this_image:: Querying the image number
* _gfortran_caf_num_images:: Querying the maximal number of images
* _gfortran_caf_image_status :: Query the status of an image
* _gfortran_caf_failed_images :: Get an array of the indexes of the failed images
* _gfortran_caf_stopped_images :: Get an array of the indexes of the stopped images
* _gfortran_caf_register:: Registering coarrays
* _gfortran_caf_deregister:: Deregistering coarrays
* _gfortran_caf_is_present:: Query whether an allocatable or pointer component in a derived type coarray is allocated
* _gfortran_caf_send:: Sending data from a local image to a remote image
* _gfortran_caf_get:: Getting data from a remote image
* _gfortran_caf_sendget:: Sending data between remote images
* _gfortran_caf_send_by_ref:: Sending data from a local image to a remote image using enhanced references
* _gfortran_caf_get_by_ref:: Getting data from a remote image using enhanced references
* _gfortran_caf_sendget_by_ref:: Sending data between remote images using enhanced references
* _gfortran_caf_lock:: Locking a lock variable
* _gfortran_caf_unlock:: Unlocking a lock variable
* _gfortran_caf_event_post:: Post an event
* _gfortran_caf_event_wait:: Wait that an event occurred
* _gfortran_caf_event_query:: Query event count
* _gfortran_caf_sync_all:: All-image barrier
* _gfortran_caf_sync_images:: Barrier for selected images
* _gfortran_caf_sync_memory:: Wait for completion of segment-memory operations
* _gfortran_caf_error_stop:: Error termination with exit code
* _gfortran_caf_error_stop_str:: Error termination with string
* _gfortran_caf_fail_image :: Mark the image failed and end its execution
* _gfortran_caf_atomic_define:: Atomic variable assignment
* _gfortran_caf_atomic_ref:: Atomic variable reference
* _gfortran_caf_atomic_cas:: Atomic compare and swap
* _gfortran_caf_atomic_op:: Atomic operation
* _gfortran_caf_co_broadcast:: Sending data to all images
* _gfortran_caf_co_max:: Collective maximum reduction
* _gfortran_caf_co_min:: Collective minimum reduction
* _gfortran_caf_co_sum:: Collective summing reduction
* _gfortran_caf_co_reduce:: Generic collective reduction


File: gfortran.info,  Node: _gfortran_caf_init,  Next: _gfortran_caf_finish,  Up: Function ABI Documentation

8.2.1 '_gfortran_caf_init' -- Initialiation function
----------------------------------------------------

_Description_:
     This function is called at startup of the program before the
     Fortran main program, if the latter has been compiled with
     '-fcoarray=lib'.  It takes as arguments the command-line arguments
     of the program.  It is permitted to pass two 'NULL' pointers as
     argument; if non-'NULL', the library is permitted to modify the
     arguments.

_Syntax_:
     'void _gfortran_caf_init (int *argc, char ***argv)'

_Arguments_:
     ARGC        intent(inout) An integer pointer with the number
                 of arguments passed to the program or 'NULL'.
     ARGV        intent(inout) A pointer to an array of strings
                 with the command-line arguments or 'NULL'.

_NOTES_
     The function is modelled after the initialization function of the
     Message Passing Interface (MPI) specification.  Due to the way
     coarray registration works, it might not be the first call to the
     library.  If the main program is not written in Fortran and only a
     library uses coarrays, it can happen that this function is never
     called.  Therefore, it is recommended that the library does not
     rely on the passed arguments and whether the call has been done.


File: gfortran.info,  Node: _gfortran_caf_finish,  Next: _gfortran_caf_this_image,  Prev: _gfortran_caf_init,  Up: Function ABI Documentation

8.2.2 '_gfortran_caf_finish' -- Finalization function
-----------------------------------------------------

_Description_:
     This function is called at the end of the Fortran main program, if
     it has been compiled with the '-fcoarray=lib' option.

_Syntax_:
     'void _gfortran_caf_finish (void)'

_NOTES_
     For non-Fortran programs, it is recommended to call the function at
     the end of the main program.  To ensure that the shutdown is also
     performed for programs where this function is not explicitly
     invoked, for instance non-Fortran programs or calls to the system's
     exit() function, the library can use a destructor function.  Note
     that programs can also be terminated using the STOP and ERROR STOP
     statements; those use different library calls.


File: gfortran.info,  Node: _gfortran_caf_this_image,  Next: _gfortran_caf_num_images,  Prev: _gfortran_caf_finish,  Up: Function ABI Documentation

8.2.3 '_gfortran_caf_this_image' -- Querying the image number
-------------------------------------------------------------

_Description_:
     This function returns the current image number, which is a positive
     number.

_Syntax_:
     'int _gfortran_caf_this_image (int distance)'

_Arguments_:
     DISTANCE    As specified for the 'this_image' intrinsic in
                 TS18508.  Shall be a non-negative number.

_NOTES_
     If the Fortran intrinsic 'this_image' is invoked without an
     argument, which is the only permitted form in Fortran 2008, GCC
     passes '0' as first argument.


File: gfortran.info,  Node: _gfortran_caf_num_images,  Next: _gfortran_caf_image_status,  Prev: _gfortran_caf_this_image,  Up: Function ABI Documentation

8.2.4 '_gfortran_caf_num_images' -- Querying the maximal number of images
-------------------------------------------------------------------------

_Description_:
     This function returns the number of images in the current team, if
     DISTANCE is 0 or the number of images in the parent team at the
     specified distance.  If failed is -1, the function returns the
     number of all images at the specified distance; if it is 0, the
     function returns the number of nonfailed images, and if it is 1, it
     returns the number of failed images.

_Syntax_:
     'int _gfortran_caf_num_images(int distance, int failed)'

_Arguments_:
     DISTANCE    the distance from this image to the ancestor.
                 Shall be positive.
     FAILED      shall be -1, 0, or 1

_NOTES_
     This function follows TS18508.  If the num_image intrinsic has no
     arguments, then the compiler passes 'distance=0' and 'failed=-1' to
     the function.


File: gfortran.info,  Node: _gfortran_caf_image_status,  Next: _gfortran_caf_failed_images,  Prev: _gfortran_caf_num_images,  Up: Function ABI Documentation

8.2.5 '_gfortran_caf_image_status' -- Query the status of an image
------------------------------------------------------------------

_Description_:
     Get the status of the image given by the id IMAGE of the team given
     by TEAM.  Valid results are zero, for image is ok,
     'STAT_STOPPED_IMAGE' from the ISO_FORTRAN_ENV module to indicate
     that the image has been stopped and 'STAT_FAILED_IMAGE' also from
     ISO_FORTRAN_ENV to indicate that the image has executed a 'FAIL
     IMAGE' statement.

_Syntax_:
     'int _gfortran_caf_image_status (int image, caf_team_t * team)'

_Arguments_:
     IMAGE       the positive scalar id of the image in the
                 current TEAM.
     TEAM        optional; team on the which the inquiry is to be
                 performed.

_NOTES_
     This function follows TS18508.  Because team-functionality is not
     yet implemented a null-pointer is passed for the TEAM argument at
     the moment.


File: gfortran.info,  Node: _gfortran_caf_failed_images,  Next: _gfortran_caf_stopped_images,  Prev: _gfortran_caf_image_status,  Up: Function ABI Documentation

8.2.6 '_gfortran_caf_failed_images' -- Get an array of the indexes of the failed images
---------------------------------------------------------------------------------------

_Description_:
     Get an array of image indexes in the current TEAM that have failed.
     The array is sorted ascendingly.  When TEAM is not provided the
     current team is to be used.  When KIND is provided then the
     resulting array is of that integer kind else it is of default
     integer kind.  The returns an unallocated size zero array when no
     images have failed.

_Syntax_:
     'int _gfortran_caf_failed_images (caf_team_t * team, int * kind)'

_Arguments_:
     TEAM        optional; team on the which the inquiry is to be
                 performed.
     IMAGE       optional; the kind of the resulting integer
                 array.

_NOTES_
     This function follows TS18508.  Because team-functionality is not
     yet implemented a null-pointer is passed for the TEAM argument at
     the moment.


File: gfortran.info,  Node: _gfortran_caf_stopped_images,  Next: _gfortran_caf_register,  Prev: _gfortran_caf_failed_images,  Up: Function ABI Documentation

8.2.7 '_gfortran_caf_stopped_images' -- Get an array of the indexes of the stopped images
-----------------------------------------------------------------------------------------

_Description_:
     Get an array of image indexes in the current TEAM that have
     stopped.  The array is sorted ascendingly.  When TEAM is not
     provided the current team is to be used.  When KIND is provided
     then the resulting array is of that integer kind else it is of
     default integer kind.  The returns an unallocated size zero array
     when no images have failed.

_Syntax_:
     'int _gfortran_caf_stopped_images (caf_team_t * team, int * kind)'

_Arguments_:
     TEAM        optional; team on the which the inquiry is to be
                 performed.
     IMAGE       optional; the kind of the resulting integer
                 array.

_NOTES_
     This function follows TS18508.  Because team-functionality is not
     yet implemented a null-pointer is passed for the TEAM argument at
     the moment.


File: gfortran.info,  Node: _gfortran_caf_register,  Next: _gfortran_caf_deregister,  Prev: _gfortran_caf_stopped_images,  Up: Function ABI Documentation

8.2.8 '_gfortran_caf_register' -- Registering coarrays
------------------------------------------------------

_Description_:
     Registers memory for a coarray and creates a token to identify the
     coarray.  The routine is called for both coarrays with 'SAVE'
     attribute and using an explicit 'ALLOCATE' statement.  If an error
     occurs and STAT is a 'NULL' pointer, the function shall abort with
     printing an error message and starting the error termination.  If
     no error occurs and STAT is present, it shall be set to zero.
     Otherwise, it shall be set to a positive value and, if not-'NULL',
     ERRMSG shall be set to a string describing the failure.  The
     routine shall register the memory provided in the 'DATA'-component
     of the array descriptor DESC, when that component is non-'NULL',
     else it shall allocate sufficient memory and provide a pointer to
     it in the 'DATA'-component of DESC.  The array descriptor has rank
     zero, when a scalar object is to be registered and the array
     descriptor may be invalid after the call to
     '_gfortran_caf_register'.  When an array is to be allocated the
     descriptor persists.

     For 'CAF_REGTYPE_COARRAY_STATIC' and 'CAF_REGTYPE_COARRAY_ALLOC',
     the passed size is the byte size requested.  For
     'CAF_REGTYPE_LOCK_STATIC', 'CAF_REGTYPE_LOCK_ALLOC' and
     'CAF_REGTYPE_CRITICAL' it is the array size or one for a scalar.

     When 'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' is used, then only a
     token for an allocatable or pointer component is created.  The
     'SIZE' parameter is not used then.  On the contrary when
     'CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY' is specified, then the
     TOKEN needs to be registered by a previous call with regtype
     'CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY' and either the memory
     specified in the DESC's data-ptr is registered or allocate when the
     data-ptr is 'NULL'.

_Syntax_:
     'void caf_register (size_t size, caf_register_t type, caf_token_t
     *token, gfc_descriptor_t *desc, int *stat, char *errmsg, size_t
     errmsg_len)'

_Arguments_:
     SIZE        For normal coarrays, the byte size of the
                 coarray to be allocated; for lock types and
                 event types, the number of elements.
     TYPE        one of the caf_register_t types.
     TOKEN       intent(out) An opaque pointer identifying the
                 coarray.
     DESC        intent(inout) The (pseudo) array descriptor.
     STAT        intent(out) For allocatable coarrays, stores the
                 STAT=; may be 'NULL'
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be 'NULL'
     ERRMSG_LEN  the buffer size of errmsg.

_NOTES_
     Nonallocatable coarrays have to be registered prior use from remote
     images.  In order to guarantee this, they have to be registered
     before the main program.  This can be achieved by creating
     constructor functions.  That is what GCC does such that also for
     nonallocatable coarrays the memory is allocated and no static
     memory is used.  The token permits to identify the coarray; to the
     processor, the token is a nonaliasing pointer.  The library can,
     for instance, store the base address of the coarray in the token,
     some handle or a more complicated struct.  The library may also
     store the array descriptor DESC when its rank is non-zero.

     For lock types, the value shall only be used for checking the
     allocation status.  Note that for critical blocks, the locking is
     only required on one image; in the locking statement, the processor
     shall always pass an image index of one for critical-block lock
     variables ('CAF_REGTYPE_CRITICAL').  For lock types and
     critical-block variables, the initial value shall be unlocked (or,
     respecitively, not in critical section) such as the value false;
     for event types, the initial state should be no event, e.g.  zero.


File: gfortran.info,  Node: _gfortran_caf_deregister,  Next: _gfortran_caf_is_present,  Prev: _gfortran_caf_register,  Up: Function ABI Documentation

8.2.9 '_gfortran_caf_deregister' -- Deregistering coarrays
----------------------------------------------------------

_Description_:
     Called to free or deregister the memory of a coarray; the processor
     calls this function for automatic and explicit deallocation.  In
     case of an error, this function shall fail with an error message,
     unless the STAT variable is not null.  The library is only expected
     to free memory it allocated itself during a call to
     '_gfortran_caf_register'.

_Syntax_:
     'void caf_deregister (caf_token_t *token, caf_deregister_t type,
     int *stat, char *errmsg, size_t errmsg_len)'

_Arguments_:
     TOKEN       the token to free.
     TYPE        the type of action to take for the coarray.  A
                 'CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY' is
                 allowed only for allocatable or pointer
                 components of derived type coarrays.  The action
                 only deallocates the local memory without
                 deleting the token.
     STAT        intent(out) Stores the STAT=; may be NULL
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL
     ERRMSG_LEN  the buffer size of errmsg.

_NOTES_
     For nonalloatable coarrays this function is never called.  If a
     cleanup is required, it has to be handled via the finish, stop and
     error stop functions, and via destructors.


File: gfortran.info,  Node: _gfortran_caf_is_present,  Next: _gfortran_caf_send,  Prev: _gfortran_caf_deregister,  Up: Function ABI Documentation

8.2.10 '_gfortran_caf_is_present' -- Query whether an allocatable or pointer component in a derived type coarray is allocated
-----------------------------------------------------------------------------------------------------------------------------

_Description_:
     Used to query the coarray library whether an allocatable component
     in a derived type coarray is allocated on a remote image.

_Syntax_:
     'void _gfortran_caf_is_present (caf_token_t token, int image_index,
     gfc_reference_t *ref)'

_Arguments_:
     TOKEN       An opaque pointer identifying the coarray.
     IMAGE_INDEX The ID of the remote image; must be a positive
                 number.
     REF         A chain of references to address the allocatable
                 or pointer component in the derived type
                 coarray.  The object reference needs to be a
                 scalar or a full array reference, respectively.


File: gfortran.info,  Node: _gfortran_caf_send,  Next: _gfortran_caf_get,  Prev: _gfortran_caf_is_present,  Up: Function ABI Documentation

8.2.11 '_gfortran_caf_send' -- Sending data from a local image to a remote image
--------------------------------------------------------------------------------

_Description_:
     Called to send a scalar, an array section or a whole array from a
     local to a remote image identified by the image_index.

_Syntax_:
     'void _gfortran_caf_send (caf_token_t token, size_t offset, int
     image_index, gfc_descriptor_t *dest, caf_vector_t *dst_vector,
     gfc_descriptor_t *src, int dst_kind, int src_kind, bool
     may_require_tmp, int *stat)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     OFFSET      intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number.
     DEST        intent(in) Array descriptor for the remote image
                 for the bounds and the size.  The 'base_addr'
                 shall not be accessed.
     DST_VECTOR  intent(in) If not NULL, it contains the vector
                 subscript of the destination array; the values
                 are relative to the dimension triplet of the
                 dest argument.
     SRC         intent(in) Array descriptor of the local array
                 to be transferred to the remote image
     DST_KIND    intent(in) Kind of the destination argument
     SRC_KIND    intent(in) Kind of the source argument
     MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
                 known at compile time that the DEST and SRC
                 either cannot overlap or overlap (fully or
                 partially) such that walking SRC and DEST in
                 element wise element order (honoring the stride
                 value) will not lead to wrong results.
                 Otherwise, the value is 'true'.
     STAT        intent(out) when non-NULL give the result of the
                 operation, i.e., zero on success and non-zero on
                 error.  When NULL and an error occurs, then an
                 error message is printed and the program is
                 terminated.

_NOTES_
     It is permitted to have IMAGE_INDEX equal the current image; the
     memory of the send-to and the send-from might (partially) overlap
     in that case.  The implementation has to take care that it handles
     this case, e.g.  using 'memmove' which handles (partially)
     overlapping memory.  If MAY_REQUIRE_TMP is true, the library might
     additionally create a temporary variable, unless additional checks
     show that this is not required (e.g.  because walking backward is
     possible or because both arrays are contiguous and 'memmove' takes
     care of overlap issues).

     Note that the assignment of a scalar to an array is permitted.  In
     addition, the library has to handle numeric-type conversion and for
     strings, padding and different character kinds.


File: gfortran.info,  Node: _gfortran_caf_get,  Next: _gfortran_caf_sendget,  Prev: _gfortran_caf_send,  Up: Function ABI Documentation

8.2.12 '_gfortran_caf_get' -- Getting data from a remote image
--------------------------------------------------------------

_Description_:
     Called to get an array section or a whole array from a remote,
     image identified by the image_index.

_Syntax_:
     'void _gfortran_caf_get (caf_token_t token, size_t offset, int
     image_index, gfc_descriptor_t *src, caf_vector_t *src_vector,
     gfc_descriptor_t *dest, int src_kind, int dst_kind, bool
     may_require_tmp, int *stat)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     OFFSET      intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number.
     DEST        intent(out) Array descriptor of the local array
                 to store the data retrieved from the remote
                 image
     SRC         intent(in) Array descriptor for the remote image
                 for the bounds and the size.  The 'base_addr'
                 shall not be accessed.
     SRC_VECTOR  intent(in) If not NULL, it contains the vector
                 subscript of the source array; the values are
                 relative to the dimension triplet of the SRC
                 argument.
     DST_KIND    intent(in) Kind of the destination argument
     SRC_KIND    intent(in) Kind of the source argument
     MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
                 known at compile time that the DEST and SRC
                 either cannot overlap or overlap (fully or
                 partially) such that walking SRC and DEST in
                 element wise element order (honoring the stride
                 value) will not lead to wrong results.
                 Otherwise, the value is 'true'.
     STAT        intent(out) When non-NULL give the result of the
                 operation, i.e., zero on success and non-zero on
                 error.  When NULL and an error occurs, then an
                 error message is printed and the program is
                 terminated.

_NOTES_
     It is permitted to have IMAGE_INDEX equal the current image; the
     memory of the send-to and the send-from might (partially) overlap
     in that case.  The implementation has to take care that it handles
     this case, e.g.  using 'memmove' which handles (partially)
     overlapping memory.  If MAY_REQUIRE_TMP is true, the library might
     additionally create a temporary variable, unless additional checks
     show that this is not required (e.g.  because walking backward is
     possible or because both arrays are contiguous and 'memmove' takes
     care of overlap issues).

     Note that the library has to handle numeric-type conversion and for
     strings, padding and different character kinds.


File: gfortran.info,  Node: _gfortran_caf_sendget,  Next: _gfortran_caf_send_by_ref,  Prev: _gfortran_caf_get,  Up: Function ABI Documentation

8.2.13 '_gfortran_caf_sendget' -- Sending data between remote images
--------------------------------------------------------------------

_Description_:
     Called to send a scalar, an array section or a whole array from a
     remote image identified by the SRC_IMAGE_INDEX to a remote image
     identified by the DST_IMAGE_INDEX.

_Syntax_:
     'void _gfortran_caf_sendget (caf_token_t dst_token, size_t
     dst_offset, int dst_image_index, gfc_descriptor_t *dest,
     caf_vector_t *dst_vector, caf_token_t src_token, size_t src_offset,
     int src_image_index, gfc_descriptor_t *src, caf_vector_t
     *src_vector, int dst_kind, int src_kind, bool may_require_tmp, int
     *stat)'

_Arguments_:
     DST_TOKEN   intent(in) An opaque pointer identifying the
                 destination coarray.
     DST_OFFSET  intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the destination coarray.
     DST_IMAGE_INDEXintent(in) The ID of the destination remote
                 image; must be a positive number.
     DEST        intent(in) Array descriptor for the destination
                 remote image for the bounds and the size.  The
                 'base_addr' shall not be accessed.
     DST_VECTOR  intent(int) If not NULL, it contains the vector
                 subscript of the destination array; the values
                 are relative to the dimension triplet of the
                 DEST argument.
     SRC_TOKEN   intent(in) An opaque pointer identifying the
                 source coarray.
     SRC_OFFSET  intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the source coarray.
     SRC_IMAGE_INDEXintent(in) The ID of the source remote image;
                 must be a positive number.
     SRC         intent(in) Array descriptor of the local array
                 to be transferred to the remote image.
     SRC_VECTOR  intent(in) Array descriptor of the local array
                 to be transferred to the remote image
     DST_KIND    intent(in) Kind of the destination argument
     SRC_KIND    intent(in) Kind of the source argument
     MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
                 known at compile time that the DEST and SRC
                 either cannot overlap or overlap (fully or
                 partially) such that walking SRC and DEST in
                 element wise element order (honoring the stride
                 value) will not lead to wrong results.
                 Otherwise, the value is 'true'.
     STAT        intent(out) when non-NULL give the result of the
                 operation, i.e., zero on success and non-zero on
                 error.  When NULL and an error occurs, then an
                 error message is printed and the program is
                 terminated.

_NOTES_
     It is permitted to have the same image index for both
     SRC_IMAGE_INDEX and DST_IMAGE_INDEX; the memory of the send-to and
     the send-from might (partially) overlap in that case.  The
     implementation has to take care that it handles this case, e.g.
     using 'memmove' which handles (partially) overlapping memory.  If
     MAY_REQUIRE_TMP is true, the library might additionally create a
     temporary variable, unless additional checks show that this is not
     required (e.g.  because walking backward is possible or because
     both arrays are contiguous and 'memmove' takes care of overlap
     issues).

     Note that the assignment of a scalar to an array is permitted.  In
     addition, the library has to handle numeric-type conversion and for
     strings, padding and different character kinds.


File: gfortran.info,  Node: _gfortran_caf_send_by_ref,  Next: _gfortran_caf_get_by_ref,  Prev: _gfortran_caf_sendget,  Up: Function ABI Documentation

8.2.14 '_gfortran_caf_send_by_ref' -- Sending data from a local image to a remote image with enhanced referencing options
-------------------------------------------------------------------------------------------------------------------------

_Description_:
     Called to send a scalar, an array section or a whole array from a
     local to a remote image identified by the IMAGE_INDEX.

_Syntax_:
     'void _gfortran_caf_send_by_ref (caf_token_t token, int
     image_index, gfc_descriptor_t *src, caf_reference_t *refs, int
     dst_kind, int src_kind, bool may_require_tmp, bool
     dst_reallocatable, int *stat, int dst_type)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number.
     SRC         intent(in) Array descriptor of the local array
                 to be transferred to the remote image
     REFS        intent(in) The references on the remote array to
                 store the data given by src.  Guaranteed to have
                 at least one entry.
     DST_KIND    intent(in) Kind of the destination argument
     SRC_KIND    intent(in) Kind of the source argument
     MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
                 known at compile time that the DEST and SRC
                 either cannot overlap or overlap (fully or
                 partially) such that walking SRC and DEST in
                 element wise element order (honoring the stride
                 value) will not lead to wrong results.
                 Otherwise, the value is 'true'.
     DST_REALLOCATABLEintent(in) Set when the destination is of
                 allocatable or pointer type and the refs will
                 allow reallocation, i.e., the ref is a full
                 array or component ref.
     STAT        intent(out) When non-'NULL' give the result of
                 the operation, i.e., zero on success and
                 non-zero on error.  When 'NULL' and an error
                 occurs, then an error message is printed and the
                 program is terminated.
     DST_TYPE    intent(in) Give the type of the destination.
                 When the destination is not an array, than the
                 precise type, e.g.  of a component in a derived
                 type, is not known, but provided here.

_NOTES_
     It is permitted to have IMAGE_INDEX equal the current image; the
     memory of the send-to and the send-from might (partially) overlap
     in that case.  The implementation has to take care that it handles
     this case, e.g.  using 'memmove' which handles (partially)
     overlapping memory.  If MAY_REQUIRE_TMP is true, the library might
     additionally create a temporary variable, unless additional checks
     show that this is not required (e.g.  because walking backward is
     possible or because both arrays are contiguous and 'memmove' takes
     care of overlap issues).

     Note that the assignment of a scalar to an array is permitted.  In
     addition, the library has to handle numeric-type conversion and for
     strings, padding and different character kinds.

     Because of the more complicated references possible some operations
     may be unsupported by certain libraries.  The library is expected
     to issue a precise error message why the operation is not
     permitted.


File: gfortran.info,  Node: _gfortran_caf_get_by_ref,  Next: _gfortran_caf_sendget_by_ref,  Prev: _gfortran_caf_send_by_ref,  Up: Function ABI Documentation

8.2.15 '_gfortran_caf_get_by_ref' -- Getting data from a remote image using enhanced references
-----------------------------------------------------------------------------------------------

_Description_:
     Called to get a scalar, an array section or a whole array from a
     remote image identified by the IMAGE_INDEX.

_Syntax_:
     'void _gfortran_caf_get_by_ref (caf_token_t token, int image_index,
     caf_reference_t *refs, gfc_descriptor_t *dst, int dst_kind, int
     src_kind, bool may_require_tmp, bool dst_reallocatable, int *stat,
     int src_type)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number.
     REFS        intent(in) The references to apply to the remote
                 structure to get the data.
     DST         intent(in) Array descriptor of the local array
                 to store the data transferred from the remote
                 image.  May be reallocated where needed and when
                 DST_REALLOCATABLE allows it.
     DST_KIND    intent(in) Kind of the destination argument
     SRC_KIND    intent(in) Kind of the source argument
     MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
                 known at compile time that the DEST and SRC
                 either cannot overlap or overlap (fully or
                 partially) such that walking SRC and DEST in
                 element wise element order (honoring the stride
                 value) will not lead to wrong results.
                 Otherwise, the value is 'true'.
     DST_REALLOCATABLEintent(in) Set when DST is of allocatable or
                 pointer type and its refs allow reallocation,
                 i.e., the full array or a component is
                 referenced.
     STAT        intent(out) When non-'NULL' give the result of
                 the operation, i.e., zero on success and
                 non-zero on error.  When 'NULL' and an error
                 occurs, then an error message is printed and the
                 program is terminated.
     SRC_TYPE    intent(in) Give the type of the source.  When
                 the source is not an array, than the precise
                 type, e.g.  of a component in a derived type, is
                 not known, but provided here.

_NOTES_
     It is permitted to have 'image_index' equal the current image; the
     memory of the send-to and the send-from might (partially) overlap
     in that case.  The implementation has to take care that it handles
     this case, e.g.  using 'memmove' which handles (partially)
     overlapping memory.  If MAY_REQUIRE_TMP is true, the library might
     additionally create a temporary variable, unless additional checks
     show that this is not required (e.g.  because walking backward is
     possible or because both arrays are contiguous and 'memmove' takes
     care of overlap issues).

     Note that the library has to handle numeric-type conversion and for
     strings, padding and different character kinds.

     Because of the more complicated references possible some operations
     may be unsupported by certain libraries.  The library is expected
     to issue a precise error message why the operation is not
     permitted.


File: gfortran.info,  Node: _gfortran_caf_sendget_by_ref,  Next: _gfortran_caf_lock,  Prev: _gfortran_caf_get_by_ref,  Up: Function ABI Documentation

8.2.16 '_gfortran_caf_sendget_by_ref' -- Sending data between remote images using enhanced references on both sides
-------------------------------------------------------------------------------------------------------------------

_Description_:
     Called to send a scalar, an array section or a whole array from a
     remote image identified by the SRC_IMAGE_INDEX to a remote image
     identified by the DST_IMAGE_INDEX.

_Syntax_:
     'void _gfortran_caf_sendget_by_ref (caf_token_t dst_token, int
     dst_image_index, caf_reference_t *dst_refs, caf_token_t src_token,
     int src_image_index, caf_reference_t *src_refs, int dst_kind, int
     src_kind, bool may_require_tmp, int *dst_stat, int *src_stat, int
     dst_type, int src_type)'

_Arguments_:
     DST_TOKEN   intent(in) An opaque pointer identifying the
                 destination coarray.
     DST_IMAGE_INDEXintent(in) The ID of the destination remote
                 image; must be a positive number.
     DST_REFS    intent(in) The references on the remote array to
                 store the data given by the source.  Guaranteed
                 to have at least one entry.
     SRC_TOKEN   intent(in) An opaque pointer identifying the
                 source coarray.
     SRC_IMAGE_INDEXintent(in) The ID of the source remote image;
                 must be a positive number.
     SRC_REFS    intent(in) The references to apply to the remote
                 structure to get the data.
     DST_KIND    intent(in) Kind of the destination argument
     SRC_KIND    intent(in) Kind of the source argument
     MAY_REQUIRE_TMPintent(in) The variable is 'false' when it is
                 known at compile time that the DEST and SRC
                 either cannot overlap or overlap (fully or
                 partially) such that walking SRC and DEST in
                 element wise element order (honoring the stride
                 value) will not lead to wrong results.
                 Otherwise, the value is 'true'.
     DST_STAT    intent(out) when non-'NULL' give the result of
                 the send-operation, i.e., zero on success and
                 non-zero on error.  When 'NULL' and an error
                 occurs, then an error message is printed and the
                 program is terminated.
     SRC_STAT    intent(out) When non-'NULL' give the result of
                 the get-operation, i.e., zero on success and
                 non-zero on error.  When 'NULL' and an error
                 occurs, then an error message is printed and the
                 program is terminated.
     DST_TYPE    intent(in) Give the type of the destination.
                 When the destination is not an array, than the
                 precise type, e.g.  of a component in a derived
                 type, is not known, but provided here.
     SRC_TYPE    intent(in) Give the type of the source.  When
                 the source is not an array, than the precise
                 type, e.g.  of a component in a derived type, is
                 not known, but provided here.

_NOTES_
     It is permitted to have the same image index for both
     SRC_IMAGE_INDEX and DST_IMAGE_INDEX; the memory of the send-to and
     the send-from might (partially) overlap in that case.  The
     implementation has to take care that it handles this case, e.g.
     using 'memmove' which handles (partially) overlapping memory.  If
     MAY_REQUIRE_TMP is true, the library might additionally create a
     temporary variable, unless additional checks show that this is not
     required (e.g.  because walking backward is possible or because
     both arrays are contiguous and 'memmove' takes care of overlap
     issues).

     Note that the assignment of a scalar to an array is permitted.  In
     addition, the library has to handle numeric-type conversion and for
     strings, padding and different character kinds.

     Because of the more complicated references possible some operations
     may be unsupported by certain libraries.  The library is expected
     to issue a precise error message why the operation is not
     permitted.


File: gfortran.info,  Node: _gfortran_caf_lock,  Next: _gfortran_caf_unlock,  Prev: _gfortran_caf_sendget_by_ref,  Up: Function ABI Documentation

8.2.17 '_gfortran_caf_lock' -- Locking a lock variable
------------------------------------------------------

_Description_:
     Acquire a lock on the given image on a scalar locking variable or
     for the given array element for an array-valued variable.  If the
     AQUIRED_LOCK is 'NULL', the function returns after having obtained
     the lock.  If it is non-'NULL', then ACQUIRED_LOCK is assigned the
     value true (one) when the lock could be obtained and false (zero)
     otherwise.  Locking a lock variable which has already been locked
     by the same image is an error.

_Syntax_:
     'void _gfortran_caf_lock (caf_token_t token, size_t index, int
     image_index, int *aquired_lock, int *stat, char *errmsg, size_t
     errmsg_len)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     INDEX       intent(in) Array index; first array index is 0.
                 For scalars, it is always 0.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number.
     AQUIRED_LOCKintent(out) If not NULL, it returns whether lock
                 could be obtained.
     STAT        intent(out) Stores the STAT=; may be NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     This function is also called for critical blocks; for those, the
     array index is always zero and the image index is one.  Libraries
     are permitted to use other images for critical-block locking
     variables.


File: gfortran.info,  Node: _gfortran_caf_unlock,  Next: _gfortran_caf_event_post,  Prev: _gfortran_caf_lock,  Up: Function ABI Documentation

8.2.18 '_gfortran_caf_lock' -- Unlocking a lock variable
--------------------------------------------------------

_Description_:
     Release a lock on the given image on a scalar locking variable or
     for the given array element for an array-valued variable.
     Unlocking a lock variable which is unlocked or has been locked by a
     different image is an error.

_Syntax_:
     'void _gfortran_caf_unlock (caf_token_t token, size_t index, int
     image_index, int *stat, char *errmsg, size_t errmsg_len)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     INDEX       intent(in) Array index; first array index is 0.
                 For scalars, it is always 0.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number.
     STAT        intent(out) For allocatable coarrays, stores the
                 STAT=; may be NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     This function is also called for critical block; for those, the
     array index is always zero and the image index is one.  Libraries
     are permitted to use other images for critical-block locking
     variables.


File: gfortran.info,  Node: _gfortran_caf_event_post,  Next: _gfortran_caf_event_wait,  Prev: _gfortran_caf_unlock,  Up: Function ABI Documentation

8.2.19 '_gfortran_caf_event_post' -- Post an event
--------------------------------------------------

_Description_:
     Increment the event count of the specified event variable.

_Syntax_:
     'void _gfortran_caf_event_post (caf_token_t token, size_t index,
     int image_index, int *stat, char *errmsg, size_t errmsg_len)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     INDEX       intent(in) Array index; first array index is 0.
                 For scalars, it is always 0.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number; zero indicates the current
                 image, when accessed noncoindexed.
     STAT        intent(out) Stores the STAT=; may be NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     This acts like an atomic add of one to the remote image's event
     variable.  The statement is an image-control statement but does not
     imply sync memory.  Still, all preceeding push communications of
     this image to the specified remote image have to be completed
     before 'event_wait' on the remote image returns.


File: gfortran.info,  Node: _gfortran_caf_event_wait,  Next: _gfortran_caf_event_query,  Prev: _gfortran_caf_event_post,  Up: Function ABI Documentation

8.2.20 '_gfortran_caf_event_wait' -- Wait that an event occurred
----------------------------------------------------------------

_Description_:
     Wait until the event count has reached at least the specified
     UNTIL_COUNT; if so, atomically decrement the event variable by this
     amount and return.

_Syntax_:
     'void _gfortran_caf_event_wait (caf_token_t token, size_t index,
     int until_count, int *stat, char *errmsg, size_t errmsg_len)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     INDEX       intent(in) Array index; first array index is 0.
                 For scalars, it is always 0.
     UNTIL_COUNT intent(in) The number of events which have to be
                 available before the function returns.
     STAT        intent(out) Stores the STAT=; may be NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     This function only operates on a local coarray.  It acts like a
     loop checking atomically the value of the event variable, breaking
     if the value is greater or equal the requested number of counts.
     Before the function returns, the event variable has to be
     decremented by the requested UNTIL_COUNT value.  A possible
     implementation would be a busy loop for a certain number of spins
     (possibly depending on the number of threads relative to the number
     of available cores) followed by another waiting strategy such as a
     sleeping wait (possibly with an increasing number of sleep time)
     or, if possible, a futex wait.

     The statement is an image-control statement but does not imply sync
     memory.  Still, all preceeding push communications of this image to
     the specified remote image have to be completed before 'event_wait'
     on the remote image returns.


File: gfortran.info,  Node: _gfortran_caf_event_query,  Next: _gfortran_caf_sync_all,  Prev: _gfortran_caf_event_wait,  Up: Function ABI Documentation

8.2.21 '_gfortran_caf_event_query' -- Query event count
-------------------------------------------------------

_Description_:
     Return the event count of the specified event variable.

_Syntax_:
     'void _gfortran_caf_event_query (caf_token_t token, size_t index,
     int image_index, int *count, int *stat)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     INDEX       intent(in) Array index; first array index is 0.
                 For scalars, it is always 0.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number; zero indicates the current
                 image when accessed noncoindexed.
     COUNT       intent(out) The number of events currently
                 posted to the event variable.
     STAT        intent(out) Stores the STAT=; may be NULL.

_NOTES_
     The typical use is to check the local event variable to only call
     'event_wait' when the data is available.  However, a coindexed
     variable is permitted; there is no ordering or synchronization
     implied.  It acts like an atomic fetch of the value of the event
     variable.


File: gfortran.info,  Node: _gfortran_caf_sync_all,  Next: _gfortran_caf_sync_images,  Prev: _gfortran_caf_event_query,  Up: Function ABI Documentation

8.2.22 '_gfortran_caf_sync_all' -- All-image barrier
----------------------------------------------------

_Description_:
     Synchronization of all images in the current team; the program only
     continues on a given image after this function has been called on
     all images of the current team.  Additionally, it ensures that all
     pending data transfers of previous segment have completed.

_Syntax_:
     'void _gfortran_caf_sync_all (int *stat, char *errmsg, size_t
     errmsg_len)'

_Arguments_:
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg


File: gfortran.info,  Node: _gfortran_caf_sync_images,  Next: _gfortran_caf_sync_memory,  Prev: _gfortran_caf_sync_all,  Up: Function ABI Documentation

8.2.23 '_gfortran_caf_sync_images' -- Barrier for selected images
-----------------------------------------------------------------

_Description_:
     Synchronization between the specified images; the program only
     continues on a given image after this function has been called on
     all images specified for that image.  Note that one image can wait
     for all other images in the current team (e.g.  via 'sync
     images(*)') while those only wait for that specific image.
     Additionally, 'sync images' ensures that all pending data transfers
     of previous segments have completed.

_Syntax_:
     'void _gfortran_caf_sync_images (int count, int images[], int
     *stat, char *errmsg, size_t errmsg_len)'

_Arguments_:
     COUNT       intent(in) The number of images which are
                 provided in the next argument.  For a zero-sized
                 array, the value is zero.  For 'sync images
                 (*)', the value is -1.
     IMAGES      intent(in) An array with the images provided by
                 the user.  If COUNT is zero, a NULL pointer is
                 passed.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg


File: gfortran.info,  Node: _gfortran_caf_sync_memory,  Next: _gfortran_caf_error_stop,  Prev: _gfortran_caf_sync_images,  Up: Function ABI Documentation

8.2.24 '_gfortran_caf_sync_memory' -- Wait for completion of segment-memory operations
--------------------------------------------------------------------------------------

_Description_:
     Acts as optimization barrier between different segments.  It also
     ensures that all pending memory operations of this image have been
     completed.

_Syntax_:
     'void _gfortran_caf_sync_memory (int *stat, char *errmsg, size_t
     errmsg_len)'

_Arguments_:
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTE_ A simple implementation could be
     '__asm__ __volatile__ ("":::"memory")' to prevent code movements.


File: gfortran.info,  Node: _gfortran_caf_error_stop,  Next: _gfortran_caf_error_stop_str,  Prev: _gfortran_caf_sync_memory,  Up: Function ABI Documentation

8.2.25 '_gfortran_caf_error_stop' -- Error termination with exit code
---------------------------------------------------------------------

_Description_:
     Invoked for an 'ERROR STOP' statement which has an integer
     argument.  The function should terminate the program with the
     specified exit code.

_Syntax_:
     'void _gfortran_caf_error_stop (int error)'

_Arguments_:
     ERROR       intent(in) The exit status to be used.


File: gfortran.info,  Node: _gfortran_caf_error_stop_str,  Next: _gfortran_caf_fail_image,  Prev: _gfortran_caf_error_stop,  Up: Function ABI Documentation

8.2.26 '_gfortran_caf_error_stop_str' -- Error termination with string
----------------------------------------------------------------------

_Description_:
     Invoked for an 'ERROR STOP' statement which has a string as
     argument.  The function should terminate the program with a
     nonzero-exit code.

_Syntax_:
     'void _gfortran_caf_error_stop (const char *string, size_t len)'

_Arguments_:
     STRING      intent(in) the error message (not zero
                 terminated)
     LEN         intent(in) the length of the string


File: gfortran.info,  Node: _gfortran_caf_fail_image,  Next: _gfortran_caf_atomic_define,  Prev: _gfortran_caf_error_stop_str,  Up: Function ABI Documentation

8.2.27 '_gfortran_caf_fail_image' -- Mark the image failed and end its execution
--------------------------------------------------------------------------------

_Description_:
     Invoked for an 'FAIL IMAGE' statement.  The function should
     terminate the current image.

_Syntax_:
     'void _gfortran_caf_fail_image ()'

_NOTES_
     This function follows TS18508.


File: gfortran.info,  Node: _gfortran_caf_atomic_define,  Next: _gfortran_caf_atomic_ref,  Prev: _gfortran_caf_fail_image,  Up: Function ABI Documentation

8.2.28 '_gfortran_caf_atomic_define' -- Atomic variable assignment
------------------------------------------------------------------

_Description_:
     Assign atomically a value to an integer or logical variable.

_Syntax_:
     'void _gfortran_caf_atomic_define (caf_token_t token, size_t
     offset, int image_index, void *value, int *stat, int type, int
     kind)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     OFFSET      intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number; zero indicates the current
                 image when used noncoindexed.
     VALUE       intent(in) the value to be assigned, passed by
                 reference
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     TYPE        intent(in) The data type, i.e.  'BT_INTEGER' (1)
                 or 'BT_LOGICAL' (2).
     KIND        intent(in) The kind value (only 4; always 'int')


File: gfortran.info,  Node: _gfortran_caf_atomic_ref,  Next: _gfortran_caf_atomic_cas,  Prev: _gfortran_caf_atomic_define,  Up: Function ABI Documentation

8.2.29 '_gfortran_caf_atomic_ref' -- Atomic variable reference
--------------------------------------------------------------

_Description_:
     Reference atomically a value of a kind-4 integer or logical
     variable.

_Syntax_:
     'void _gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
     int image_index, void *value, int *stat, int type, int kind)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     OFFSET      intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number; zero indicates the current
                 image when used noncoindexed.
     VALUE       intent(out) The variable assigned the atomically
                 referenced variable.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     TYPE        the data type, i.e.  'BT_INTEGER' (1) or
                 'BT_LOGICAL' (2).
     KIND        The kind value (only 4; always 'int')


File: gfortran.info,  Node: _gfortran_caf_atomic_cas,  Next: _gfortran_caf_atomic_op,  Prev: _gfortran_caf_atomic_ref,  Up: Function ABI Documentation

8.2.30 '_gfortran_caf_atomic_cas' -- Atomic compare and swap
------------------------------------------------------------

_Description_:
     Atomic compare and swap of a kind-4 integer or logical variable.
     Assigns atomically the specified value to the atomic variable, if
     the latter has the value specified by the passed condition value.

_Syntax_:
     'void _gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
     int image_index, void *old, void *compare, void *new_val, int
     *stat, int type, int kind)'

_Arguments_:
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     OFFSET      intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number; zero indicates the current
                 image when used noncoindexed.
     OLD         intent(out) The value which the atomic variable
                 had just before the cas operation.
     COMPARE     intent(in) The value used for comparision.
     NEW_VAL     intent(in) The new value for the atomic
                 variable, assigned to the atomic variable, if
                 'compare' equals the value of the atomic
                 variable.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     TYPE        intent(in) the data type, i.e.  'BT_INTEGER' (1)
                 or 'BT_LOGICAL' (2).
     KIND        intent(in) The kind value (only 4; always 'int')


File: gfortran.info,  Node: _gfortran_caf_atomic_op,  Next: _gfortran_caf_co_broadcast,  Prev: _gfortran_caf_atomic_cas,  Up: Function ABI Documentation

8.2.31 '_gfortran_caf_atomic_op' -- Atomic operation
----------------------------------------------------

_Description_:
     Apply an operation atomically to an atomic integer or logical
     variable.  After the operation, OLD contains the value just before
     the operation, which, respectively, adds (GFC_CAF_ATOMIC_ADD)
     atomically the 'value' to the atomic integer variable or does a
     bitwise AND, OR or exclusive OR between the atomic variable and
     VALUE; the result is then stored in the atomic variable.

_Syntax_:
     'void _gfortran_caf_atomic_op (int op, caf_token_t token, size_t
     offset, int image_index, void *value, void *old, int *stat, int
     type, int kind)'

_Arguments_:
     OP          intent(in) the operation to be performed;
                 possible values 'GFC_CAF_ATOMIC_ADD' (1),
                 'GFC_CAF_ATOMIC_AND' (2), 'GFC_CAF_ATOMIC_OR'
                 (3), 'GFC_CAF_ATOMIC_XOR' (4).
     TOKEN       intent(in) An opaque pointer identifying the
                 coarray.
     OFFSET      intent(in) By which amount of bytes the actual
                 data is shifted compared to the base address of
                 the coarray.
     IMAGE_INDEX intent(in) The ID of the remote image; must be a
                 positive number; zero indicates the current
                 image when used noncoindexed.
     OLD         intent(out) The value which the atomic variable
                 had just before the atomic operation.
     VAL         intent(in) The new value for the atomic
                 variable, assigned to the atomic variable, if
                 'compare' equals the value of the atomic
                 variable.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     TYPE        intent(in) the data type, i.e.  'BT_INTEGER' (1)
                 or 'BT_LOGICAL' (2)
     KIND        intent(in) the kind value (only 4; always 'int')


File: gfortran.info,  Node: _gfortran_caf_co_broadcast,  Next: _gfortran_caf_co_max,  Prev: _gfortran_caf_atomic_op,  Up: Function ABI Documentation

8.2.32 '_gfortran_caf_co_broadcast' -- Sending data to all images
-----------------------------------------------------------------

_Description_:
     Distribute a value from a given image to all other images in the
     team.  Has to be called collectively.

_Syntax_:
     'void _gfortran_caf_co_broadcast (gfc_descriptor_t *a, int
     source_image, int *stat, char *errmsg, size_t errmsg_len)'

_Arguments_:
     A           intent(inout) An array descriptor with the data
                 to be broadcasted (on SOURCE_IMAGE) or to be
                 received (other images).
     SOURCE_IMAGEintent(in) The ID of the image from which the
                 data should be broadcasted.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg.


File: gfortran.info,  Node: _gfortran_caf_co_max,  Next: _gfortran_caf_co_min,  Prev: _gfortran_caf_co_broadcast,  Up: Function ABI Documentation

8.2.33 '_gfortran_caf_co_max' -- Collective maximum reduction
-------------------------------------------------------------

_Description_:
     Calculates for each array element of the variable A the maximum
     value for that element in the current team; if RESULT_IMAGE has the
     value 0, the result shall be stored on all images, otherwise, only
     on the specified image.  This function operates on numeric values
     and character strings.

_Syntax_:
     'void _gfortran_caf_co_max (gfc_descriptor_t *a, int result_image,
     int *stat, char *errmsg, int a_len, size_t errmsg_len)'

_Arguments_:
     A           intent(inout) An array descriptor for the data
                 to be processed.  On the destination image(s)
                 the result overwrites the old content.
     RESULT_IMAGEintent(in) The ID of the image to which the
                 reduced value should be copied to; if zero, it
                 has to be copied to all images.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     A_LEN       intent(in) the string length of argument A
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     If RESULT_IMAGE is nonzero, the data in the array descriptor A on
     all images except of the specified one become undefined; hence, the
     library may make use of this.


File: gfortran.info,  Node: _gfortran_caf_co_min,  Next: _gfortran_caf_co_sum,  Prev: _gfortran_caf_co_max,  Up: Function ABI Documentation

8.2.34 '_gfortran_caf_co_min' -- Collective minimum reduction
-------------------------------------------------------------

_Description_:
     Calculates for each array element of the variable A the minimum
     value for that element in the current team; if RESULT_IMAGE has the
     value 0, the result shall be stored on all images, otherwise, only
     on the specified image.  This function operates on numeric values
     and character strings.

_Syntax_:
     'void _gfortran_caf_co_min (gfc_descriptor_t *a, int result_image,
     int *stat, char *errmsg, int a_len, size_t errmsg_len)'

_Arguments_:
     A           intent(inout) An array descriptor for the data
                 to be processed.  On the destination image(s)
                 the result overwrites the old content.
     RESULT_IMAGEintent(in) The ID of the image to which the
                 reduced value should be copied to; if zero, it
                 has to be copied to all images.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     A_LEN       intent(in) the string length of argument A
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     If RESULT_IMAGE is nonzero, the data in the array descriptor A on
     all images except of the specified one become undefined; hence, the
     library may make use of this.


File: gfortran.info,  Node: _gfortran_caf_co_sum,  Next: _gfortran_caf_co_reduce,  Prev: _gfortran_caf_co_min,  Up: Function ABI Documentation

8.2.35 '_gfortran_caf_co_sum' -- Collective summing reduction
-------------------------------------------------------------

_Description_:
     Calculates for each array element of the variable A the sum of all
     values for that element in the current team; if RESULT_IMAGE has
     the value 0, the result shall be stored on all images, otherwise,
     only on the specified image.  This function operates on numeric
     values only.

_Syntax_:
     'void _gfortran_caf_co_sum (gfc_descriptor_t *a, int result_image,
     int *stat, char *errmsg, size_t errmsg_len)'

_Arguments_:
     A           intent(inout) An array descriptor with the data
                 to be processed.  On the destination image(s)
                 the result overwrites the old content.
     RESULT_IMAGEintent(in) The ID of the image to which the
                 reduced value should be copied to; if zero, it
                 has to be copied to all images.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     If RESULT_IMAGE is nonzero, the data in the array descriptor A on
     all images except of the specified one become undefined; hence, the
     library may make use of this.


File: gfortran.info,  Node: _gfortran_caf_co_reduce,  Prev: _gfortran_caf_co_sum,  Up: Function ABI Documentation

8.2.36 '_gfortran_caf_co_reduce' -- Generic collective reduction
----------------------------------------------------------------

_Description_:
     Calculates for each array element of the variable A the reduction
     value for that element in the current team; if RESULT_IMAGE has the
     value 0, the result shall be stored on all images, otherwise, only
     on the specified image.  The OPR is a pure function doing a
     mathematically commutative and associative operation.

     The OPR_FLAGS denote the following; the values are bitwise ored.
     'GFC_CAF_BYREF' (1) if the result should be returned by reference;
     'GFC_CAF_HIDDENLEN' (2) whether the result and argument string
     lengths shall be specified as hidden arguments; 'GFC_CAF_ARG_VALUE'
     (4) whether the arguments shall be passed by value,
     'GFC_CAF_ARG_DESC' (8) whether the arguments shall be passed by
     descriptor.

_Syntax_:
     'void _gfortran_caf_co_reduce (gfc_descriptor_t *a, void * (*opr)
     (void *, void *), int opr_flags, int result_image, int *stat, char
     *errmsg, int a_len, size_t errmsg_len)'

_Arguments_:
     A           intent(inout) An array descriptor with the data
                 to be processed.  On the destination image(s)
                 the result overwrites the old content.
     OPR         intent(in) Function pointer to the reduction
                 function
     OPR_FLAGS   intent(in) Flags regarding the reduction
                 function
     RESULT_IMAGEintent(in) The ID of the image to which the
                 reduced value should be copied to; if zero, it
                 has to be copied to all images.
     STAT        intent(out) Stores the status STAT= and may be
                 NULL.
     ERRMSG      intent(out) When an error occurs, this will be
                 set to an error message; may be NULL.
     A_LEN       intent(in) the string length of argument A
     ERRMSG_LEN  intent(in) the buffer size of errmsg

_NOTES_
     If RESULT_IMAGE is nonzero, the data in the array descriptor A on
     all images except of the specified one become undefined; hence, the
     library may make use of this.

     For character arguments, the result is passed as first argument,
     followed by the result string length, next come the two string
     arguments, followed by the two hidden string length arguments.
     With C binding, there are no hidden arguments and by-reference
     passing and either only a single character is passed or an array
     descriptor.


File: gfortran.info,  Node: Intrinsic Procedures,  Next: Intrinsic Modules,  Prev: Coarray Programming,  Up: Top

9 Intrinsic Procedures
**********************

* Menu:

* Introduction:         Introduction to Intrinsics
* 'ABORT':         ABORT,     Abort the program
* 'ABS':           ABS,       Absolute value
* 'ACCESS':        ACCESS,    Checks file access modes
* 'ACHAR':         ACHAR,     Character in ASCII collating sequence
* 'ACOS':          ACOS,      Arccosine function
* 'ACOSD':         ACOSD,     Arccosine function, degrees
* 'ACOSH':         ACOSH,     Inverse hyperbolic cosine function
* 'ADJUSTL':       ADJUSTL,   Left adjust a string
* 'ADJUSTR':       ADJUSTR,   Right adjust a string
* 'AIMAG':         AIMAG,     Imaginary part of complex number
* 'AINT':          AINT,      Truncate to a whole number
* 'ALARM':         ALARM,     Set an alarm clock
* 'ALL':           ALL,       Determine if all values are true
* 'ALLOCATED':     ALLOCATED, Status of allocatable entity
* 'AND':           AND,       Bitwise logical AND
* 'ANINT':         ANINT,     Nearest whole number
* 'ANY':           ANY,       Determine if any values are true
* 'ASIN':          ASIN,      Arcsine function
* 'ASIND':         ASIND,     Arcsine function, degrees
* 'ASINH':         ASINH,     Inverse hyperbolic sine function
* 'ASSOCIATED':    ASSOCIATED, Status of a pointer or pointer/target pair
* 'ATAN':          ATAN,      Arctangent function
* 'ATAND':         ATAND,     Arctangent function, degrees
* 'ATAN2':         ATAN2,     Arctangent function
* 'ATAN2D':        ATAN2D,    Arctangent function, degrees
* 'ATANH':         ATANH,     Inverse hyperbolic tangent function
* 'ATOMIC_ADD':    ATOMIC_ADD, Atomic ADD operation
* 'ATOMIC_AND':    ATOMIC_AND, Atomic bitwise AND operation
* 'ATOMIC_CAS':    ATOMIC_CAS, Atomic compare and swap
* 'ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically
* 'ATOMIC_FETCH_ADD': ATOMIC_FETCH_ADD, Atomic ADD operation with prior fetch
* 'ATOMIC_FETCH_AND': ATOMIC_FETCH_AND, Atomic bitwise AND operation with prior fetch
* 'ATOMIC_FETCH_OR': ATOMIC_FETCH_OR, Atomic bitwise OR operation with prior fetch
* 'ATOMIC_FETCH_XOR': ATOMIC_FETCH_XOR, Atomic bitwise XOR operation with prior fetch
* 'ATOMIC_OR':     ATOMIC_OR, Atomic bitwise OR operation
* 'ATOMIC_REF':    ATOMIC_REF, Obtaining the value of a variable atomically
* 'ATOMIC_XOR':    ATOMIC_XOR, Atomic bitwise OR operation
* 'BACKTRACE':     BACKTRACE, Show a backtrace
* 'BESSEL_J0':     BESSEL_J0, Bessel function of the first kind of order 0
* 'BESSEL_J1':     BESSEL_J1, Bessel function of the first kind of order 1
* 'BESSEL_JN':     BESSEL_JN, Bessel function of the first kind
* 'BESSEL_Y0':     BESSEL_Y0, Bessel function of the second kind of order 0
* 'BESSEL_Y1':     BESSEL_Y1, Bessel function of the second kind of order 1
* 'BESSEL_YN':     BESSEL_YN, Bessel function of the second kind
* 'BGE':           BGE,       Bitwise greater than or equal to
* 'BGT':           BGT,       Bitwise greater than
* 'BIT_SIZE':      BIT_SIZE,  Bit size inquiry function
* 'BLE':           BLE,       Bitwise less than or equal to
* 'BLT':           BLT,       Bitwise less than
* 'BTEST':         BTEST,     Bit test function
* 'C_ASSOCIATED':  C_ASSOCIATED, Status of a C pointer
* 'C_F_POINTER':   C_F_POINTER, Convert C into Fortran pointer
* 'C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer
* 'C_FUNLOC':      C_FUNLOC,  Obtain the C address of a procedure
* 'C_LOC':         C_LOC,     Obtain the C address of an object
* 'C_SIZEOF':      C_SIZEOF,  Size in bytes of an expression
* 'CEILING':       CEILING,   Integer ceiling function
* 'CHAR':          CHAR,      Integer-to-character conversion function
* 'CHDIR':         CHDIR,     Change working directory
* 'CHMOD':         CHMOD,     Change access permissions of files
* 'CMPLX':         CMPLX,     Complex conversion function
* 'CO_BROADCAST':  CO_BROADCAST, Copy a value to all images the current set of images
* 'CO_MAX':        CO_MAX,    Maximal value on the current set of images
* 'CO_MIN':        CO_MIN,    Minimal value on the current set of images
* 'CO_REDUCE':     CO_REDUCE, Reduction of values on the current set of images
* 'CO_SUM':        CO_SUM,    Sum of values on the current set of images
* 'COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments
* 'COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler
* 'COMPILER_VERSION': COMPILER_VERSION, Compiler version string
* 'COMPLEX':       COMPLEX,   Complex conversion function
* 'CONJG':         CONJG,     Complex conjugate function
* 'COS':           COS,       Cosine function
* 'COSD':          COSD,      Cosine function, degrees
* 'COSH':          COSH,      Hyperbolic cosine function
* 'COTAN':         COTAN,     Cotangent function
* 'COTAND':        COTAND,    Cotangent function, degrees
* 'COUNT':         COUNT,     Count occurrences of TRUE in an array
* 'CPU_TIME':      CPU_TIME,  CPU time subroutine
* 'CSHIFT':        CSHIFT,    Circular shift elements of an array
* 'CTIME':         CTIME,     Subroutine (or function) to convert a time into a string
* 'DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine
* 'DBLE':          DBLE,      Double precision conversion function
* 'DCMPLX':        DCMPLX,    Double complex conversion function
* 'DIGITS':        DIGITS,    Significant digits function
* 'DIM':           DIM,       Positive difference
* 'DOT_PRODUCT':   DOT_PRODUCT, Dot product function
* 'DPROD':         DPROD,     Double product function
* 'DREAL':         DREAL,     Double real part function
* 'DSHIFTL':       DSHIFTL,   Combined left shift
* 'DSHIFTR':       DSHIFTR,   Combined right shift
* 'DTIME':         DTIME,     Execution time subroutine (or function)
* 'EOSHIFT':       EOSHIFT,   End-off shift elements of an array
* 'EPSILON':       EPSILON,   Epsilon function
* 'ERF':           ERF,       Error function
* 'ERFC':          ERFC,      Complementary error function
* 'ERFC_SCALED':   ERFC_SCALED, Exponentially-scaled complementary error function
* 'ETIME':         ETIME,     Execution time subroutine (or function)
* 'EVENT_QUERY': EVENT_QUERY, Query whether a coarray event has occurred
* 'EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command
* 'EXIT':          EXIT,      Exit the program with status.
* 'EXP':           EXP,       Exponential function
* 'EXPONENT':      EXPONENT,  Exponent function
* 'EXTENDS_TYPE_OF': EXTENDS_TYPE_OF,  Query dynamic type for extension
* 'FDATE':         FDATE,     Subroutine (or function) to get the current time as a string
* 'FGET':          FGET,      Read a single character in stream mode from stdin
* 'FGETC':         FGETC,     Read a single character in stream mode
* 'FINDLOC':       FINDLOC,   Search an array for a value
* 'FLOOR':         FLOOR,     Integer floor function
* 'FLUSH':         FLUSH,     Flush I/O unit(s)
* 'FNUM':          FNUM,      File number function
* 'FPUT':          FPUT,      Write a single character in stream mode to stdout
* 'FPUTC':         FPUTC,     Write a single character in stream mode
* 'FRACTION':      FRACTION,  Fractional part of the model representation
* 'FREE':          FREE,      Memory de-allocation subroutine
* 'FSEEK':         FSEEK,     Low level file positioning subroutine
* 'FSTAT':         FSTAT,     Get file status
* 'FTELL':         FTELL,     Current stream position
* 'GAMMA':         GAMMA,     Gamma function
* 'GERROR':        GERROR,    Get last system error message
* 'GETARG':        GETARG,    Get command line arguments
* 'GET_COMMAND':   GET_COMMAND, Get the entire command line
* 'GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments
* 'GETCWD':        GETCWD,    Get current working directory
* 'GETENV':        GETENV,    Get an environmental variable
* 'GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable
* 'GETGID':        GETGID,    Group ID function
* 'GETLOG':        GETLOG,    Get login name
* 'GETPID':        GETPID,    Process ID function
* 'GETUID':        GETUID,    User ID function
* 'GMTIME':        GMTIME,    Convert time to GMT info
* 'HOSTNM':        HOSTNM,    Get system host name
* 'HUGE':          HUGE,      Largest number of a kind
* 'HYPOT':         HYPOT,     Euclidean distance function
* 'IACHAR':        IACHAR,    Code in ASCII collating sequence
* 'IALL':          IALL,      Bitwise AND of array elements
* 'IAND':          IAND,      Bitwise logical and
* 'IANY':          IANY,      Bitwise OR of array elements
* 'IARGC':         IARGC,     Get the number of command line arguments
* 'IBCLR':         IBCLR,     Clear bit
* 'IBITS':         IBITS,     Bit extraction
* 'IBSET':         IBSET,     Set bit
* 'ICHAR':         ICHAR,     Character-to-integer conversion function
* 'IDATE':         IDATE,     Current local time (day/month/year)
* 'IEOR':          IEOR,      Bitwise logical exclusive or
* 'IERRNO':        IERRNO,    Function to get the last system error number
* 'IMAGE_INDEX':   IMAGE_INDEX, Cosubscript to image index conversion
* 'INDEX':         INDEX intrinsic, Position of a substring within a string
* 'INT':           INT,       Convert to integer type
* 'INT2':          INT2,      Convert to 16-bit integer type
* 'INT8':          INT8,      Convert to 64-bit integer type
* 'IOR':           IOR,       Bitwise logical or
* 'IPARITY':       IPARITY,   Bitwise XOR of array elements
* 'IRAND':         IRAND,     Integer pseudo-random number
* 'IS_CONTIGUOUS':  IS_CONTIGUOUS, Test whether an array is contiguous
* 'IS_IOSTAT_END':  IS_IOSTAT_END, Test for end-of-file value
* 'IS_IOSTAT_EOR':  IS_IOSTAT_EOR, Test for end-of-record value
* 'ISATTY':        ISATTY,    Whether a unit is a terminal device
* 'ISHFT':         ISHFT,     Shift bits
* 'ISHFTC':        ISHFTC,    Shift bits circularly
* 'ISNAN':         ISNAN,     Tests for a NaN
* 'ITIME':         ITIME,     Current local time (hour/minutes/seconds)
* 'KILL':          KILL,      Send a signal to a process
* 'KIND':          KIND,      Kind of an entity
* 'LBOUND':        LBOUND,    Lower dimension bounds of an array
* 'LCOBOUND':      LCOBOUND,  Lower codimension bounds of an array
* 'LEADZ':         LEADZ,     Number of leading zero bits of an integer
* 'LEN':           LEN,       Length of a character entity
* 'LEN_TRIM':      LEN_TRIM,  Length of a character entity without trailing blank characters
* 'LGE':           LGE,       Lexical greater than or equal
* 'LGT':           LGT,       Lexical greater than
* 'LINK':          LINK,      Create a hard link
* 'LLE':           LLE,       Lexical less than or equal
* 'LLT':           LLT,       Lexical less than
* 'LNBLNK':        LNBLNK,    Index of the last non-blank character in a string
* 'LOC':           LOC,       Returns the address of a variable
* 'LOG':           LOG,       Logarithm function
* 'LOG10':         LOG10,     Base 10 logarithm function
* 'LOG_GAMMA':     LOG_GAMMA, Logarithm of the Gamma function
* 'LOGICAL':       LOGICAL,   Convert to logical type
* 'LONG':          LONG,      Convert to integer type
* 'LSHIFT':        LSHIFT,    Left shift bits
* 'LSTAT':         LSTAT,     Get file status
* 'LTIME':         LTIME,     Convert time to local time info
* 'MALLOC':        MALLOC,    Dynamic memory allocation function
* 'MASKL':         MASKL,     Left justified mask
* 'MASKR':         MASKR,     Right justified mask
* 'MATMUL':        MATMUL,    matrix multiplication
* 'MAX':           MAX,       Maximum value of an argument list
* 'MAXEXPONENT':   MAXEXPONENT, Maximum exponent of a real kind
* 'MAXLOC':        MAXLOC,    Location of the maximum value within an array
* 'MAXVAL':        MAXVAL,    Maximum value of an array
* 'MCLOCK':        MCLOCK,    Time function
* 'MCLOCK8':       MCLOCK8,   Time function (64-bit)
* 'MERGE':         MERGE,     Merge arrays
* 'MERGE_BITS':    MERGE_BITS, Merge of bits under mask
* 'MIN':           MIN,       Minimum value of an argument list
* 'MINEXPONENT':   MINEXPONENT, Minimum exponent of a real kind
* 'MINLOC':        MINLOC,    Location of the minimum value within an array
* 'MINVAL':        MINVAL,    Minimum value of an array
* 'MOD':           MOD,       Remainder function
* 'MODULO':        MODULO,    Modulo function
* 'MOVE_ALLOC':    MOVE_ALLOC, Move allocation from one object to another
* 'MVBITS':        MVBITS,    Move bits from one integer to another
* 'NEAREST':       NEAREST,   Nearest representable number
* 'NEW_LINE':      NEW_LINE,  New line character
* 'NINT':          NINT,      Nearest whole number
* 'NORM2':         NORM2,     Euclidean vector norm
* 'NOT':           NOT,       Logical negation
* 'NULL':          NULL,      Function that returns an disassociated pointer
* 'NUM_IMAGES':    NUM_IMAGES, Number of images
* 'OR':            OR,        Bitwise logical OR
* 'PACK':          PACK,      Pack an array into an array of rank one
* 'PARITY':        PARITY,    Reduction with exclusive OR
* 'PERROR':        PERROR,    Print system error message
* 'POPCNT':        POPCNT,    Number of bits set
* 'POPPAR':        POPPAR,    Parity of the number of bits set
* 'PRECISION':     PRECISION, Decimal precision of a real kind
* 'PRESENT':       PRESENT,   Determine whether an optional dummy argument is specified
* 'PRODUCT':       PRODUCT,   Product of array elements
* 'RADIX':         RADIX,     Base of a data model
* 'RAN':           RAN,       Real pseudo-random number
* 'RAND':          RAND,      Real pseudo-random number
* 'RANDOM_INIT':   RANDOM_INIT, Initialize pseudo-random number generator
* 'RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number
* 'RANDOM_SEED':   RANDOM_SEED, Initialize a pseudo-random number sequence
* 'RANGE':         RANGE,     Decimal exponent range
* 'RANK' :         RANK,      Rank of a data object
* 'REAL':          REAL,      Convert to real type
* 'RENAME':        RENAME,    Rename a file
* 'REPEAT':        REPEAT,    Repeated string concatenation
* 'RESHAPE':       RESHAPE,   Function to reshape an array
* 'RRSPACING':     RRSPACING, Reciprocal of the relative spacing
* 'RSHIFT':        RSHIFT,    Right shift bits
* 'SAME_TYPE_AS':  SAME_TYPE_AS,  Query dynamic types for equality
* 'SCALE':         SCALE,     Scale a real value
* 'SCAN':          SCAN,      Scan a string for the presence of a set of characters
* 'SECNDS':        SECNDS,    Time function
* 'SECOND':        SECOND,    CPU time function
* 'SELECTED_CHAR_KIND': SELECTED_CHAR_KIND,  Choose character kind
* 'SELECTED_INT_KIND': SELECTED_INT_KIND,  Choose integer kind
* 'SELECTED_REAL_KIND': SELECTED_REAL_KIND,  Choose real kind
* 'SET_EXPONENT':  SET_EXPONENT, Set the exponent of the model
* 'SHAPE':         SHAPE,     Determine the shape of an array
* 'SHIFTA':        SHIFTA,    Right shift with fill
* 'SHIFTL':        SHIFTL,    Left shift
* 'SHIFTR':        SHIFTR,    Right shift
* 'SIGN':          SIGN,      Sign copying function
* 'SIGNAL':        SIGNAL,    Signal handling subroutine (or function)
* 'SIN':           SIN,       Sine function
* 'SIND':          SIND,      Sine function, degrees
* 'SINH':          SINH,      Hyperbolic sine function
* 'SIZE':          SIZE,      Function to determine the size of an array
* 'SIZEOF':        SIZEOF,    Determine the size in bytes of an expression
* 'SLEEP':         SLEEP,     Sleep for the specified number of seconds
* 'SPACING':       SPACING,   Smallest distance between two numbers of a given type
* 'SPREAD':        SPREAD,    Add a dimension to an array
* 'SQRT':          SQRT,      Square-root function
* 'SRAND':         SRAND,     Reinitialize the random number generator
* 'STAT':          STAT,      Get file status
* 'STORAGE_SIZE':  STORAGE_SIZE, Storage size in bits
* 'SUM':           SUM,       Sum of array elements
* 'SYMLNK':        SYMLNK,    Create a symbolic link
* 'SYSTEM':        SYSTEM,    Execute a shell command
* 'SYSTEM_CLOCK':  SYSTEM_CLOCK, Time function
* 'TAN':           TAN,       Tangent function
* 'TAND':          TAND,      Tangent function, degrees
* 'TANH':          TANH,      Hyperbolic tangent function
* 'THIS_IMAGE':    THIS_IMAGE, Cosubscript index of this image
* 'TIME':          TIME,      Time function
* 'TIME8':         TIME8,     Time function (64-bit)
* 'TINY':          TINY,      Smallest positive number of a real kind
* 'TRAILZ':        TRAILZ,    Number of trailing zero bits of an integer
* 'TRANSFER':      TRANSFER,  Transfer bit patterns
* 'TRANSPOSE':     TRANSPOSE, Transpose an array of rank two
* 'TRIM':          TRIM,      Remove trailing blank characters of a string
* 'TTYNAM':        TTYNAM,    Get the name of a terminal device.
* 'UBOUND':        UBOUND,    Upper dimension bounds of an array
* 'UCOBOUND':      UCOBOUND,  Upper codimension bounds of an array
* 'UMASK':         UMASK,     Set the file creation mask
* 'UNLINK':        UNLINK,    Remove a file from the file system
* 'UNPACK':        UNPACK,    Unpack an array of rank one into an array
* 'VERIFY':        VERIFY,    Scan a string for the absence of a set of characters
* 'XOR':           XOR,       Bitwise logical exclusive or


File: gfortran.info,  Node: Introduction to Intrinsics,  Next: ABORT,  Up: Intrinsic Procedures

9.1 Introduction to intrinsic procedures
========================================

The intrinsic procedures provided by GNU Fortran include all of the
intrinsic procedures required by the Fortran 95 standard, a set of
intrinsic procedures for backwards compatibility with G77, and a
selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
standards.  Any conflict between a description here and a description in
either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
2008 standard is unintentional, and the standard(s) should be considered
authoritative.

   The enumeration of the 'KIND' type parameter is processor defined in
the Fortran 95 standard.  GNU Fortran defines the default integer type
and default real type by 'INTEGER(KIND=4)' and 'REAL(KIND=4)',
respectively.  The standard mandates that both data types shall have
another kind, which have more precision.  On typical target
architectures supported by 'gfortran', this kind type parameter is
'KIND=8'.  Hence, 'REAL(KIND=8)' and 'DOUBLE PRECISION' are equivalent.
In the description of generic intrinsic procedures, the kind type
parameter will be specified by 'KIND=*', and in the description of
specific names for an intrinsic procedure the kind type parameter will
be explicitly given (e.g., 'REAL(KIND=4)' or 'REAL(KIND=8)').  Finally,
for brevity the optional 'KIND=' syntax will be omitted.

   Many of the intrinsic procedures take one or more optional arguments.
This document follows the convention used in the Fortran 95 standard,
and denotes such arguments by square brackets.

   GNU Fortran offers the '-std=f95' and '-std=gnu' options, which can
be used to restrict the set of intrinsic procedures to a given standard.
By default, 'gfortran' sets the '-std=gnu' option, and so all intrinsic
procedures described here are accepted.  There is one caveat.  For a
select group of intrinsic procedures, 'g77' implemented both a function
and a subroutine.  Both classes have been implemented in 'gfortran' for
backwards compatibility with 'g77'.  It is noted here that these
functions and subroutines cannot be intermixed in a given subprogram.
In the descriptions that follow, the applicable standard for each
intrinsic procedure is noted.


File: gfortran.info,  Node: ABORT,  Next: ABS,  Prev: Introduction to Intrinsics,  Up: Intrinsic Procedures

9.2 'ABORT' -- Abort the program
================================

_Description_:
     'ABORT' causes immediate termination of the program.  On operating
     systems that support a core dump, 'ABORT' will produce a core dump.
     It will also print a backtrace, unless '-fno-backtrace' is given.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL ABORT'

_Return value_:
     Does not return.

_Example_:
          program test_abort
            integer :: i = 1, j = 2
            if (i /= j) call abort
          end program test_abort

_See also_:
     *note EXIT::, *note KILL::, *note BACKTRACE::


File: gfortran.info,  Node: ABS,  Next: ACCESS,  Prev: ABORT,  Up: Intrinsic Procedures

9.3 'ABS' -- Absolute value
===========================

_Description_:
     'ABS(A)' computes the absolute value of 'A'.

_Standard_:
     Fortran 77 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ABS(A)'

_Arguments_:
     A           The type of the argument shall be an 'INTEGER',
                 'REAL', or 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as the argument
     except the return value is 'REAL' for a 'COMPLEX' argument.

_Example_:
          program test_abs
            integer :: i = -1
            real :: x = -1.e0
            complex :: z = (-1.e0,0.e0)
            i = abs(i)
            x = abs(x)
            x = abs(z)
          end program test_abs

_Specific names_:
     Name           Argument       Return type    Standard
     'ABS(A)'       'REAL(4) A'    'REAL(4)'      Fortran 77 and
                                                  later
     'CABS(A)'      'COMPLEX(4)    'REAL(4)'      Fortran 77 and
                    A'                            later
     'DABS(A)'      'REAL(8) A'    'REAL(8)'      Fortran 77 and
                                                  later
     'IABS(A)'      'INTEGER(4)    'INTEGER(4)'   Fortran 77 and
                    A'                            later
     'BABS(A)'      'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IIABS(A)'     'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JIABS(A)'     'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KIABS(A)'     'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'
     'ZABS(A)'      'COMPLEX(8)    'REAL(8)'      GNU extension
                    A'
     'CDABS(A)'     'COMPLEX(8)    'REAL(8)'      GNU extension
                    A'


File: gfortran.info,  Node: ACCESS,  Next: ACHAR,  Prev: ABS,  Up: Intrinsic Procedures

9.4 'ACCESS' -- Checks file access modes
========================================

_Description_:
     'ACCESS(NAME, MODE)' checks whether the file NAME exists, is
     readable, writable or executable.  Except for the executable check,
     'ACCESS' can be replaced by Fortran 95's 'INQUIRE'.

_Standard_:
     GNU extension

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = ACCESS(NAME, MODE)'

_Arguments_:
     NAME        Scalar 'CHARACTER' of default kind with the file
                 name.  Tailing blank are ignored unless the
                 character 'achar(0)' is present, then all
                 characters up to and excluding 'achar(0)' are
                 used as file name.
     MODE        Scalar 'CHARACTER' of default kind with the file
                 access mode, may be any concatenation of '"r"'
                 (readable), '"w"' (writable) and '"x"'
                 (executable), or '" "' to check for existence.

_Return value_:
     Returns a scalar 'INTEGER', which is '0' if the file is accessible
     in the given mode; otherwise or if an invalid argument has been
     given for 'MODE' the value '1' is returned.

_Example_:
          program access_test
            implicit none
            character(len=*), parameter :: file  = 'test.dat'
            character(len=*), parameter :: file2 = 'test.dat  '//achar(0)
            if(access(file,' ') == 0) print *, trim(file),' is exists'
            if(access(file,'r') == 0) print *, trim(file),' is readable'
            if(access(file,'w') == 0) print *, trim(file),' is writable'
            if(access(file,'x') == 0) print *, trim(file),' is executable'
            if(access(file2,'rwx') == 0) &
              print *, trim(file2),' is readable, writable and executable'
          end program access_test


File: gfortran.info,  Node: ACHAR,  Next: ACOS,  Prev: ACCESS,  Up: Intrinsic Procedures

9.5 'ACHAR' -- Character in ASCII collating sequence
====================================================

_Description_:
     'ACHAR(I)' returns the character located at position 'I' in the
     ASCII collating sequence.

_Standard_:
     Fortran 77 and later, with KIND argument Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ACHAR(I [, KIND])'

_Arguments_:
     I           The type shall be 'INTEGER'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'CHARACTER' with a length of one.  If
     the KIND argument is present, the return value is of the specified
     kind and of the default kind otherwise.

_Example_:
          program test_achar
            character c
            c = achar(32)
          end program test_achar

_Note_:
     See *note ICHAR:: for a discussion of converting between numerical
     values and formatted string representations.

_See also_:
     *note CHAR::, *note IACHAR::, *note ICHAR::


File: gfortran.info,  Node: ACOS,  Next: ACOSD,  Prev: ACHAR,  Up: Intrinsic Procedures

9.6 'ACOS' -- Arccosine function
================================

_Description_:
     'ACOS(X)' computes the arccosine of X (inverse of 'COS(X)').

_Standard_:
     Fortran 77 and later, for a complex argument Fortran 2008 or later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ACOS(X)'

_Arguments_:
     X           The type shall either be 'REAL' with a magnitude
                 that is less than or equal to one - or the type
                 shall be 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as X.  The real part
     of the result is in radians and lies in the range 0 \leq \Re
     \acos(x) \leq \pi.

_Example_:
          program test_acos
            real(8) :: x = 0.866_8
            x = acos(x)
          end program test_acos

_Specific names_:
     Name           Argument       Return type    Standard
     'ACOS(X)'      'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DACOS(X)'     'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     Inverse function: *note COS:: Degrees function: *note ACOSD::


File: gfortran.info,  Node: ACOSD,  Next: ACOSH,  Prev: ACOS,  Up: Intrinsic Procedures

9.7 'ACOSD' -- Arccosine function, degrees
==========================================

_Description_:
     'ACOSD(X)' computes the arccosine of X in degrees (inverse of
     'COSD(X)').

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ACOSD(X)'

_Arguments_:
     X           The type shall either be 'REAL' with a magnitude
                 that is less than or equal to one - or the type
                 shall be 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as X.  The real part
     of the result is in degrees and lies in the range 0 \leq \Re
     \acos(x) \leq 180.

_Example_:
          program test_acosd
            real(8) :: x = 0.866_8
            x = acosd(x)
          end program test_acosd

_Specific names_:
     Name           Argument       Return type    Standard
     'ACOSD(X)'     'REAL(4) X'    'REAL(4)'      GNU extension
     'DACOSD(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Inverse function: *note COSD:: Radians function: *note ACOS::


File: gfortran.info,  Node: ACOSH,  Next: ADJUSTL,  Prev: ACOSD,  Up: Intrinsic Procedures

9.8 'ACOSH' -- Inverse hyperbolic cosine function
=================================================

_Description_:
     'ACOSH(X)' computes the inverse hyperbolic cosine of X.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ACOSH(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has the same type and kind as X.  If X is complex,
     the imaginary part of the result is in radians and lies between 0
     \leq \Im \acosh(x) \leq \pi.

_Example_:
          PROGRAM test_acosh
            REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
            WRITE (*,*) ACOSH(x)
          END PROGRAM

_Specific names_:
     Name           Argument       Return type    Standard
     'DACOSH(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Inverse function: *note COSH::


File: gfortran.info,  Node: ADJUSTL,  Next: ADJUSTR,  Prev: ACOSH,  Up: Intrinsic Procedures

9.9 'ADJUSTL' -- Left adjust a string
=====================================

_Description_:
     'ADJUSTL(STRING)' will left adjust a string by removing leading
     spaces.  Spaces are inserted at the end of the string as needed.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ADJUSTL(STRING)'

_Arguments_:
     STRING      The type shall be 'CHARACTER'.

_Return value_:
     The return value is of type 'CHARACTER' and of the same kind as
     STRING where leading spaces are removed and the same number of
     spaces are inserted on the end of STRING.

_Example_:
          program test_adjustl
            character(len=20) :: str = '   gfortran'
            str = adjustl(str)
            print *, str
          end program test_adjustl

_See also_:
     *note ADJUSTR::, *note TRIM::


File: gfortran.info,  Node: ADJUSTR,  Next: AIMAG,  Prev: ADJUSTL,  Up: Intrinsic Procedures

9.10 'ADJUSTR' -- Right adjust a string
=======================================

_Description_:
     'ADJUSTR(STRING)' will right adjust a string by removing trailing
     spaces.  Spaces are inserted at the start of the string as needed.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ADJUSTR(STRING)'

_Arguments_:
     STR         The type shall be 'CHARACTER'.

_Return value_:
     The return value is of type 'CHARACTER' and of the same kind as
     STRING where trailing spaces are removed and the same number of
     spaces are inserted at the start of STRING.

_Example_:
          program test_adjustr
            character(len=20) :: str = 'gfortran'
            str = adjustr(str)
            print *, str
          end program test_adjustr

_See also_:
     *note ADJUSTL::, *note TRIM::


File: gfortran.info,  Node: AIMAG,  Next: AINT,  Prev: ADJUSTR,  Up: Intrinsic Procedures

9.11 'AIMAG' -- Imaginary part of complex number
================================================

_Description_:
     'AIMAG(Z)' yields the imaginary part of complex argument 'Z'.  The
     'IMAG(Z)' and 'IMAGPART(Z)' intrinsic functions are provided for
     compatibility with 'g77', and their use in new code is strongly
     discouraged.

_Standard_:
     Fortran 77 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = AIMAG(Z)'

_Arguments_:
     Z           The type of the argument shall be 'COMPLEX'.

_Return value_:
     The return value is of type 'REAL' with the kind type parameter of
     the argument.

_Example_:
          program test_aimag
            complex(4) z4
            complex(8) z8
            z4 = cmplx(1.e0_4, 0.e0_4)
            z8 = cmplx(0.e0_8, 1.e0_8)
            print *, aimag(z4), dimag(z8)
          end program test_aimag

_Specific names_:
     Name           Argument       Return type    Standard
     'AIMAG(Z)'     'COMPLEX Z'    'REAL'         Fortran 77 and
                                                  later
     'DIMAG(Z)'     'COMPLEX(8)    'REAL(8)'      GNU extension
                    Z'
     'IMAG(Z)'      'COMPLEX Z'    'REAL'         GNU extension
     'IMAGPART(Z)'  'COMPLEX Z'    'REAL'         GNU extension


File: gfortran.info,  Node: AINT,  Next: ALARM,  Prev: AIMAG,  Up: Intrinsic Procedures

9.12 'AINT' -- Truncate to a whole number
=========================================

_Description_:
     'AINT(A [, KIND])' truncates its argument to a whole number.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = AINT(A [, KIND])'

_Arguments_:
     A           The type of the argument shall be 'REAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'REAL' with the kind type parameter of
     the argument if the optional KIND is absent; otherwise, the kind
     type parameter will be given by KIND.  If the magnitude of X is
     less than one, 'AINT(X)' returns zero.  If the magnitude is equal
     to or greater than one then it returns the largest whole number
     that does not exceed its magnitude.  The sign is the same as the
     sign of X.

_Example_:
          program test_aint
            real(4) x4
            real(8) x8
            x4 = 1.234E0_4
            x8 = 4.321_8
            print *, aint(x4), dint(x8)
            x8 = aint(x4,8)
          end program test_aint

_Specific names_:
     Name           Argument       Return type    Standard
     'AINT(A)'      'REAL(4) A'    'REAL(4)'      Fortran 77 and
                                                  later
     'DINT(A)'      'REAL(8) A'    'REAL(8)'      Fortran 77 and
                                                  later


File: gfortran.info,  Node: ALARM,  Next: ALL,  Prev: AINT,  Up: Intrinsic Procedures

9.13 'ALARM' -- Execute a routine after a given delay
=====================================================

_Description_:
     'ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine
     HANDLER to be executed after a delay of SECONDS by using 'alarm(2)'
     to set up a signal and 'signal(2)' to catch it.  If STATUS is
     supplied, it will be returned with the number of seconds remaining
     until any previously scheduled alarm was due to be delivered, or
     zero if there was no previously scheduled alarm.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL ALARM(SECONDS, HANDLER [, STATUS])'

_Arguments_:
     SECONDS     The type of the argument shall be a scalar
                 'INTEGER'.  It is 'INTENT(IN)'.
     HANDLER     Signal handler ('INTEGER FUNCTION' or
                 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
                 The scalar values may be either 'SIG_IGN=1' to
                 ignore the alarm generated or 'SIG_DFL=0' to set
                 the default action.  It is 'INTENT(IN)'.
     STATUS      (Optional) STATUS shall be a scalar variable of
                 the default 'INTEGER' kind.  It is
                 'INTENT(OUT)'.

_Example_:
          program test_alarm
            external handler_print
            integer i
            call alarm (3, handler_print, i)
            print *, i
            call sleep(10)
          end program test_alarm
     This will cause the external routine HANDLER_PRINT to be called
     after 3 seconds.


File: gfortran.info,  Node: ALL,  Next: ALLOCATED,  Prev: ALARM,  Up: Intrinsic Procedures

9.14 'ALL' -- All values in MASK along DIM are true
===================================================

_Description_:
     'ALL(MASK [, DIM])' determines if all the values are true in MASK
     in the array along dimension DIM.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = ALL(MASK [, DIM])'

_Arguments_:
     MASK        The type of the argument shall be 'LOGICAL' and
                 it shall not be scalar.
     DIM         (Optional) DIM shall be a scalar integer with a
                 value that lies between one and the rank of
                 MASK.

_Return value_:
     'ALL(MASK)' returns a scalar value of type 'LOGICAL' where the kind
     type parameter is the same as the kind type parameter of MASK.  If
     DIM is present, then 'ALL(MASK, DIM)' returns an array with the
     rank of MASK minus 1.  The shape is determined from the shape of
     MASK where the DIM dimension is elided.

     (A)
          'ALL(MASK)' is true if all elements of MASK are true.  It also
          is true if MASK has zero size; otherwise, it is false.
     (B)
          If the rank of MASK is one, then 'ALL(MASK,DIM)' is equivalent
          to 'ALL(MASK)'.  If the rank is greater than one, then
          'ALL(MASK,DIM)' is determined by applying 'ALL' to the array
          sections.

_Example_:
          program test_all
            logical l
            l = all((/.true., .true., .true./))
            print *, l
            call section
            contains
              subroutine section
                integer a(2,3), b(2,3)
                a = 1
                b = 1
                b(2,2) = 2
                print *, all(a .eq. b, 1)
                print *, all(a .eq. b, 2)
              end subroutine section
          end program test_all


File: gfortran.info,  Node: ALLOCATED,  Next: AND,  Prev: ALL,  Up: Intrinsic Procedures

9.15 'ALLOCATED' -- Status of an allocatable entity
===================================================

_Description_:
     'ALLOCATED(ARRAY)' and 'ALLOCATED(SCALAR)' check the allocation
     status of ARRAY and SCALAR, respectively.

_Standard_:
     Fortran 90 and later.  Note, the 'SCALAR=' keyword and allocatable
     scalar entities are available in Fortran 2003 and later.

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = ALLOCATED(ARRAY)'
     'RESULT = ALLOCATED(SCALAR)'

_Arguments_:
     ARRAY       The argument shall be an 'ALLOCATABLE' array.
     SCALAR      The argument shall be an 'ALLOCATABLE' scalar.

_Return value_:
     The return value is a scalar 'LOGICAL' with the default logical
     kind type parameter.  If the argument is allocated, then the result
     is '.TRUE.'; otherwise, it returns '.FALSE.'

_Example_:
          program test_allocated
            integer :: i = 4
            real(4), allocatable :: x(:)
            if (.not. allocated(x)) allocate(x(i))
          end program test_allocated


File: gfortran.info,  Node: AND,  Next: ANINT,  Prev: ALLOCATED,  Up: Intrinsic Procedures

9.16 'AND' -- Bitwise logical AND
=================================

_Description_:
     Bitwise logical 'AND'.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  For integer arguments, programmers should consider
     the use of the *note IAND:: intrinsic defined by the Fortran
     standard.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = AND(I, J)'

_Arguments_:
     I           The type shall be either a scalar 'INTEGER' type
                 or a scalar 'LOGICAL' type or a
                 boz-literal-constant.
     J           The type shall be the same as the type of I or a
                 boz-literal-constant.  I and J shall not both be
                 boz-literal-constants.  If either I or J is a
                 boz-literal-constant, then the other argument
                 must be a scalar 'INTEGER'.

_Return value_:
     The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
     If the kind type parameters differ, then the smaller kind type is
     implicitly converted to larger kind, and the return has the larger
     kind.  A boz-literal-constant is converted to an 'INTEGER' with the
     kind type parameter of the other argument as-if a call to *note
     INT:: occurred.

_Example_:
          PROGRAM test_and
            LOGICAL :: T = .TRUE., F = .FALSE.
            INTEGER :: a, b
            DATA a / Z'F' /, b / Z'3' /

            WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
            WRITE (*,*) AND(a, b)
          END PROGRAM

_See also_:
     Fortran 95 elemental function: *note IAND::


File: gfortran.info,  Node: ANINT,  Next: ANY,  Prev: AND,  Up: Intrinsic Procedures

9.17 'ANINT' -- Nearest whole number
====================================

_Description_:
     'ANINT(A [, KIND])' rounds its argument to the nearest whole
     number.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ANINT(A [, KIND])'

_Arguments_:
     A           The type of the argument shall be 'REAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type real with the kind type parameter of
     the argument if the optional KIND is absent; otherwise, the kind
     type parameter will be given by KIND.  If A is greater than zero,
     'ANINT(A)' returns 'AINT(X+0.5)'.  If A is less than or equal to
     zero then it returns 'AINT(X-0.5)'.

_Example_:
          program test_anint
            real(4) x4
            real(8) x8
            x4 = 1.234E0_4
            x8 = 4.321_8
            print *, anint(x4), dnint(x8)
            x8 = anint(x4,8)
          end program test_anint

_Specific names_:
     Name           Argument       Return type    Standard
     'AINT(A)'      'REAL(4) A'    'REAL(4)'      Fortran 77 and
                                                  later
     'DNINT(A)'     'REAL(8) A'    'REAL(8)'      Fortran 77 and
                                                  later


File: gfortran.info,  Node: ANY,  Next: ASIN,  Prev: ANINT,  Up: Intrinsic Procedures

9.18 'ANY' -- Any value in MASK along DIM is true
=================================================

_Description_:
     'ANY(MASK [, DIM])' determines if any of the values in the logical
     array MASK along dimension DIM are '.TRUE.'.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = ANY(MASK [, DIM])'

_Arguments_:
     MASK        The type of the argument shall be 'LOGICAL' and
                 it shall not be scalar.
     DIM         (Optional) DIM shall be a scalar integer with a
                 value that lies between one and the rank of
                 MASK.

_Return value_:
     'ANY(MASK)' returns a scalar value of type 'LOGICAL' where the kind
     type parameter is the same as the kind type parameter of MASK.  If
     DIM is present, then 'ANY(MASK, DIM)' returns an array with the
     rank of MASK minus 1.  The shape is determined from the shape of
     MASK where the DIM dimension is elided.

     (A)
          'ANY(MASK)' is true if any element of MASK is true; otherwise,
          it is false.  It also is false if MASK has zero size.
     (B)
          If the rank of MASK is one, then 'ANY(MASK,DIM)' is equivalent
          to 'ANY(MASK)'.  If the rank is greater than one, then
          'ANY(MASK,DIM)' is determined by applying 'ANY' to the array
          sections.

_Example_:
          program test_any
            logical l
            l = any((/.true., .true., .true./))
            print *, l
            call section
            contains
              subroutine section
                integer a(2,3), b(2,3)
                a = 1
                b = 1
                b(2,2) = 2
                print *, any(a .eq. b, 1)
                print *, any(a .eq. b, 2)
              end subroutine section
          end program test_any


File: gfortran.info,  Node: ASIN,  Next: ASIND,  Prev: ANY,  Up: Intrinsic Procedures

9.19 'ASIN' -- Arcsine function
===============================

_Description_:
     'ASIN(X)' computes the arcsine of its X (inverse of 'SIN(X)').

_Standard_:
     Fortran 77 and later, for a complex argument Fortran 2008 or later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ASIN(X)'

_Arguments_:
     X           The type shall be either 'REAL' and a magnitude
                 that is less than or equal to one - or be
                 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as X.  The real part
     of the result is in radians and lies in the range -\pi/2 \leq \Re
     \asin(x) \leq \pi/2.

_Example_:
          program test_asin
            real(8) :: x = 0.866_8
            x = asin(x)
          end program test_asin

_Specific names_:
     Name           Argument       Return type    Standard
     'ASIN(X)'      'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DASIN(X)'     'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     Inverse function: *note SIN:: Degrees function: *note ASIND::


File: gfortran.info,  Node: ASIND,  Next: ASINH,  Prev: ASIN,  Up: Intrinsic Procedures

9.20 'ASIND' -- Arcsine function, degrees
=========================================

_Description_:
     'ASIND(X)' computes the arcsine of its X in degrees (inverse of
     'SIND(X)').

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ASIND(X)'

_Arguments_:
     X           The type shall be either 'REAL' and a magnitude
                 that is less than or equal to one - or be
                 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as X.  The real part
     of the result is in degrees and lies in the range -90 \leq \Re
     \asin(x) \leq 90.

_Example_:
          program test_asind
            real(8) :: x = 0.866_8
            x = asind(x)
          end program test_asind

_Specific names_:
     Name           Argument       Return type    Standard
     'ASIND(X)'     'REAL(4) X'    'REAL(4)'      GNU extension
     'DASIND(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Inverse function: *note SIND:: Radians function: *note ASIN::


File: gfortran.info,  Node: ASINH,  Next: ASSOCIATED,  Prev: ASIND,  Up: Intrinsic Procedures

9.21 'ASINH' -- Inverse hyperbolic sine function
================================================

_Description_:
     'ASINH(X)' computes the inverse hyperbolic sine of X.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ASINH(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as X.  If X is
     complex, the imaginary part of the result is in radians and lies
     between -\pi/2 \leq \Im \asinh(x) \leq \pi/2.

_Example_:
          PROGRAM test_asinh
            REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
            WRITE (*,*) ASINH(x)
          END PROGRAM

_Specific names_:
     Name           Argument       Return type    Standard
     'DASINH(X)'    'REAL(8) X'    'REAL(8)'      GNU extension.

_See also_:
     Inverse function: *note SINH::


File: gfortran.info,  Node: ASSOCIATED,  Next: ATAN,  Prev: ASINH,  Up: Intrinsic Procedures

9.22 'ASSOCIATED' -- Status of a pointer or pointer/target pair
===============================================================

_Description_:
     'ASSOCIATED(POINTER [, TARGET])' determines the status of the
     pointer POINTER or if POINTER is associated with the target TARGET.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = ASSOCIATED(POINTER [, TARGET])'

_Arguments_:
     POINTER     POINTER shall have the 'POINTER' attribute and
                 it can be of any type.
     TARGET      (Optional) TARGET shall be a pointer or a
                 target.  It must have the same type, kind type
                 parameter, and array rank as POINTER.
     The association status of neither POINTER nor TARGET shall be
     undefined.

_Return value_:
     'ASSOCIATED(POINTER)' returns a scalar value of type 'LOGICAL(4)'.
     There are several cases:
     (A) When the optional TARGET is not present then
          'ASSOCIATED(POINTER)' is true if POINTER is associated with a
          target; otherwise, it returns false.
     (B) If TARGET is present and a scalar target, the result is true if
          TARGET is not a zero-sized storage sequence and the target
          associated with POINTER occupies the same storage units.  If
          POINTER is disassociated, the result is false.
     (C) If TARGET is present and an array target, the result is true if
          TARGET and POINTER have the same shape, are not zero-sized
          arrays, are arrays whose elements are not zero-sized storage
          sequences, and TARGET and POINTER occupy the same storage
          units in array element order.  As in case(B), the result is
          false, if POINTER is disassociated.
     (D) If TARGET is present and an scalar pointer, the result is true
          if TARGET is associated with POINTER, the target associated
          with TARGET are not zero-sized storage sequences and occupy
          the same storage units.  The result is false, if either TARGET
          or POINTER is disassociated.
     (E) If TARGET is present and an array pointer, the result is true if
          target associated with POINTER and the target associated with
          TARGET have the same shape, are not zero-sized arrays, are
          arrays whose elements are not zero-sized storage sequences,
          and TARGET and POINTER occupy the same storage units in array
          element order.  The result is false, if either TARGET or
          POINTER is disassociated.

_Example_:
          program test_associated
             implicit none
             real, target  :: tgt(2) = (/1., 2./)
             real, pointer :: ptr(:)
             ptr => tgt
             if (associated(ptr)     .eqv. .false.) call abort
             if (associated(ptr,tgt) .eqv. .false.) call abort
          end program test_associated

_See also_:
     *note NULL::


File: gfortran.info,  Node: ATAN,  Next: ATAND,  Prev: ASSOCIATED,  Up: Intrinsic Procedures

9.23 'ATAN' -- Arctangent function
==================================

_Description_:
     'ATAN(X)' computes the arctangent of X.

_Standard_:
     Fortran 77 and later, for a complex argument and for two arguments
     Fortran 2008 or later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ATAN(X)'
     'RESULT = ATAN(Y, X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'; if Y is
                 present, X shall be REAL.
     Y           The type and kind type parameter shall be the
                 same as X.

_Return value_:
     The return value is of the same type and kind as X.  If Y is
     present, the result is identical to 'ATAN2(Y,X)'.  Otherwise, it
     the arcus tangent of X, where the real part of the result is in
     radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2.

_Example_:
          program test_atan
            real(8) :: x = 2.866_8
            x = atan(x)
          end program test_atan

_Specific names_:
     Name           Argument       Return type    Standard
     'ATAN(X)'      'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DATAN(X)'     'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     Inverse function: *note TAN:: Degrees function: *note ATAND::


File: gfortran.info,  Node: ATAND,  Next: ATAN2,  Prev: ATAN,  Up: Intrinsic Procedures

9.24 'ATAND' -- Arctangent function, degrees
============================================

_Description_:
     'ATAND(X)' computes the arctangent of X in degrees (inverse of
     *note TAND::).

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ATAND(X)'
     'RESULT = ATAND(Y, X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'; if Y is
                 present, X shall be REAL.
     Y           The type and kind type parameter shall be the
                 same as X.

_Return value_:
     The return value is of the same type and kind as X.  If Y is
     present, the result is identical to 'ATAND2(Y,X)'.  Otherwise, it
     is the arcus tangent of X, where the real part of the result is in
     degrees and lies in the range -90 \leq \Re \atand(x) \leq 90.

_Example_:
          program test_atand
            real(8) :: x = 2.866_8
            x = atand(x)
          end program test_atand

_Specific names_:
     Name           Argument       Return type    Standard
     'ATAND(X)'     'REAL(4) X'    'REAL(4)'      GNU extension
     'DATAND(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Inverse function: *note TAND:: Radians function: *note ATAN::


File: gfortran.info,  Node: ATAN2,  Next: ATAN2D,  Prev: ATAND,  Up: Intrinsic Procedures

9.25 'ATAN2' -- Arctangent function
===================================

_Description_:
     'ATAN2(Y, X)' computes the principal value of the argument function
     of the complex number X + i Y. This function can be used to
     transform from Cartesian into polar coordinates and allows to
     determine the angle in the correct quadrant.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ATAN2(Y, X)'

_Arguments_:
     Y           The type shall be 'REAL'.
     X           The type and kind type parameter shall be the
                 same as Y.  If Y is zero, then X must be
                 nonzero.

_Return value_:
     The return value has the same type and kind type parameter as Y.
     It is the principal value of the complex number X + i Y. If X is
     nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi.
     The sign is positive if Y is positive.  If Y is zero, then the
     return value is zero if X is strictly positive, \pi if X is
     negative and Y is positive zero (or the processor does not handle
     signed zeros), and -\pi if X is negative and Y is negative zero.
     Finally, if X is zero, then the magnitude of the result is \pi/2.

_Example_:
          program test_atan2
            real(4) :: x = 1.e0_4, y = 0.5e0_4
            x = atan2(y,x)
          end program test_atan2

_Specific names_:
     Name           Argument       Return type    Standard
     'ATAN2(X,      'REAL(4) X,    'REAL(4)'      Fortran 77 and
     Y)'            Y'                            later
     'DATAN2(X,     'REAL(8) X,    'REAL(8)'      Fortran 77 and
     Y)'            Y'                            later

_See also_:
     Alias: *note ATAN:: Degrees function: *note ATAN2D::


File: gfortran.info,  Node: ATAN2D,  Next: ATANH,  Prev: ATAN2,  Up: Intrinsic Procedures

9.26 'ATAN2D' -- Arctangent function, degrees
=============================================

_Description_:
     'ATAN2D(Y, X)' computes the principal value of the argument
     function of the complex number X + i Y in degrees.  This function
     can be used to transform from Cartesian into polar coordinates and
     allows to determine the angle in the correct quadrant.

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ATAN2D(Y, X)'

_Arguments_:
     Y           The type shall be 'REAL'.
     X           The type and kind type parameter shall be the
                 same as Y.  If Y is zero, then X must be
                 nonzero.

_Return value_:
     The return value has the same type and kind type parameter as Y.
     It is the principal value of the complex number X + i Y. If X is
     nonzero, then it lies in the range -180 \le \atan (x) \leq 180.
     The sign is positive if Y is positive.  If Y is zero, then the
     return value is zero if X is strictly positive, 180 if X is
     negative and Y is positive zero (or the processor does not handle
     signed zeros), and -180 if X is negative and Y is negative zero.
     Finally, if X is zero, then the magnitude of the result is 90.

_Example_:
          program test_atan2d
            real(4) :: x = 1.e0_4, y = 0.5e0_4
            x = atan2d(y,x)
          end program test_atan2d

_Specific names_:
     Name           Argument       Return type    Standard
     'ATAN2D(X,     'REAL(4) X,    'REAL(4)'      GNU extension
     Y)'            Y'
     'DATAN2D(X,    'REAL(8) X,    'REAL(8)'      GNU extension
     Y)'            Y'

_See also_:
     Alias: *note ATAND:: Radians function: *note ATAN2::


File: gfortran.info,  Node: ATANH,  Next: ATOMIC_ADD,  Prev: ATAN2D,  Up: Intrinsic Procedures

9.27 'ATANH' -- Inverse hyperbolic tangent function
===================================================

_Description_:
     'ATANH(X)' computes the inverse hyperbolic tangent of X.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ATANH(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X.  If X is complex, the
     imaginary part of the result is in radians and lies between -\pi/2
     \leq \Im \atanh(x) \leq \pi/2.

_Example_:
          PROGRAM test_atanh
            REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
            WRITE (*,*) ATANH(x)
          END PROGRAM

_Specific names_:
     Name           Argument       Return type    Standard
     'DATANH(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Inverse function: *note TANH::


File: gfortran.info,  Node: ATOMIC_ADD,  Next: ATOMIC_AND,  Prev: ATANH,  Up: Intrinsic Procedures

9.28 'ATOMIC_ADD' -- Atomic ADD operation
=========================================

_Description_:
     'ATOMIC_ADD(ATOM, VALUE)' atomically adds the value of VAR to the
     variable ATOM.  When STAT is present and the invocation was
     successful, it is assigned the value 0.  If it is present and the
     invocation has failed, it is assigned a positive value; in
     particular, for a coindexed ATOM, if the remote image has stopped,
     it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_ADD (ATOM, VALUE [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*]
            call atomic_add (atom[1], this_image())
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_ADD::, *note
     ISO_FORTRAN_ENV::, *note ATOMIC_AND::, *note ATOMIC_OR::, *note
     ATOMIC_XOR::


File: gfortran.info,  Node: ATOMIC_AND,  Next: ATOMIC_CAS,  Prev: ATOMIC_ADD,  Up: Intrinsic Procedures

9.29 'ATOMIC_AND' -- Atomic bitwise AND operation
=================================================

_Description_:
     'ATOMIC_AND(ATOM, VALUE)' atomically defines ATOM with the bitwise
     AND between the values of ATOM and VALUE.  When STAT is present and
     the invocation was successful, it is assigned the value 0.  If it
     is present and the invocation has failed, it is assigned a positive
     value; in particular, for a coindexed ATOM, if the remote image has
     stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_AND (ATOM, VALUE [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*]
            call atomic_and (atom[1], int(b'10100011101'))
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_AND::, *note
     ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
     ATOMIC_XOR::


File: gfortran.info,  Node: ATOMIC_CAS,  Next: ATOMIC_DEFINE,  Prev: ATOMIC_AND,  Up: Intrinsic Procedures

9.30 'ATOMIC_CAS' -- Atomic compare and swap
============================================

_Description_:
     'ATOMIC_CAS' compares the variable ATOM with the value of COMPARE;
     if the value is the same, ATOM is set to the value of NEW.
     Additionally, OLD is set to the value of ATOM that was used for the
     comparison.  When STAT is present and the invocation was
     successful, it is assigned the value 0.  If it is present and the
     invocation has failed, it is assigned a positive value; in
     particular, for a coindexed ATOM, if the remote image has stopped,
     it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of either
                 integer type with 'ATOMIC_INT_KIND' kind or
                 logical type with 'ATOMIC_LOGICAL_KIND' kind.
     OLD         Scalar of the same type and kind as ATOM.
     COMPARE     Scalar variable of the same type and kind as
                 ATOM.
     NEW         Scalar variable of the same type as ATOM.  If
                 kind is different, the value is converted to the
                 kind of ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            logical(atomic_logical_kind) :: atom[*], prev
            call atomic_cas (atom[1], prev, .false., .true.))
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_REF::, *note ISO_FORTRAN_ENV::


File: gfortran.info,  Node: ATOMIC_DEFINE,  Next: ATOMIC_FETCH_ADD,  Prev: ATOMIC_CAS,  Up: Intrinsic Procedures

9.31 'ATOMIC_DEFINE' -- Setting a variable atomically
=====================================================

_Description_:
     'ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the
     value VALUE atomically.  When STAT is present and the invocation
     was successful, it is assigned the value 0.  If it is present and
     the invocation has failed, it is assigned a positive value; in
     particular, for a coindexed ATOM, if the remote image has stopped,
     it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     Fortran 2008 and later; with STAT, TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_DEFINE (ATOM, VALUE [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of either
                 integer type with 'ATOMIC_INT_KIND' kind or
                 logical type with 'ATOMIC_LOGICAL_KIND' kind.
                 
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*]
            call atomic_define (atom[1], this_image())
          end program atomic

_See also_:
     *note ATOMIC_REF::, *note ATOMIC_CAS::, *note ISO_FORTRAN_ENV::,
     *note ATOMIC_ADD::, *note ATOMIC_AND::, *note ATOMIC_OR::, *note
     ATOMIC_XOR::


File: gfortran.info,  Node: ATOMIC_FETCH_ADD,  Next: ATOMIC_FETCH_AND,  Prev: ATOMIC_DEFINE,  Up: Intrinsic Procedures

9.32 'ATOMIC_FETCH_ADD' -- Atomic ADD operation with prior fetch
================================================================

_Description_:
     'ATOMIC_FETCH_ADD(ATOM, VALUE, OLD)' atomically stores the value of
     ATOM in OLD and adds the value of VAR to the variable ATOM.  When
     STAT is present and the invocation was successful, it is assigned
     the value 0.  If it is present and the invocation has failed, it is
     assigned a positive value; in particular, for a coindexed ATOM, if
     the remote image has stopped, it is assigned the value of
     'ISO_FORTRAN_ENV''s 'STAT_STOPPED_IMAGE' and if the remote image
     has failed, the value 'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_FETCH_ADD (ATOM, VALUE, old [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
                 'ATOMIC_LOGICAL_KIND' kind.
                 
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     OLD         Scalar of the same type and kind as ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*], old
            call atomic_add (atom[1], this_image(), old)
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_ADD::, *note ISO_FORTRAN_ENV::,
     *note ATOMIC_FETCH_AND::, *note ATOMIC_FETCH_OR::, *note
     ATOMIC_FETCH_XOR::


File: gfortran.info,  Node: ATOMIC_FETCH_AND,  Next: ATOMIC_FETCH_OR,  Prev: ATOMIC_FETCH_ADD,  Up: Intrinsic Procedures

9.33 'ATOMIC_FETCH_AND' -- Atomic bitwise AND operation with prior fetch
========================================================================

_Description_:
     'ATOMIC_AND(ATOM, VALUE)' atomically stores the value of ATOM in
     OLD and defines ATOM with the bitwise AND between the values of
     ATOM and VALUE.  When STAT is present and the invocation was
     successful, it is assigned the value 0.  If it is present and the
     invocation has failed, it is assigned a positive value; in
     particular, for a coindexed ATOM, if the remote image has stopped,
     it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     OLD         Scalar of the same type and kind as ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*], old
            call atomic_fetch_and (atom[1], int(b'10100011101'), old)
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_AND::, *note ISO_FORTRAN_ENV::,
     *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_OR::, *note
     ATOMIC_FETCH_XOR::


File: gfortran.info,  Node: ATOMIC_FETCH_OR,  Next: ATOMIC_FETCH_XOR,  Prev: ATOMIC_FETCH_AND,  Up: Intrinsic Procedures

9.34 'ATOMIC_FETCH_OR' -- Atomic bitwise OR operation with prior fetch
======================================================================

_Description_:
     'ATOMIC_OR(ATOM, VALUE)' atomically stores the value of ATOM in OLD
     and defines ATOM with the bitwise OR between the values of ATOM and
     VALUE.  When STAT is present and the invocation was successful, it
     is assigned the value 0.  If it is present and the invocation has
     failed, it is assigned a positive value; in particular, for a
     coindexed ATOM, if the remote image has stopped, it is assigned the
     value of 'ISO_FORTRAN_ENV''s 'STAT_STOPPED_IMAGE' and if the remote
     image has failed, the value 'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     OLD         Scalar of the same type and kind as ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*], old
            call atomic_fetch_or (atom[1], int(b'10100011101'), old)
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_OR::, *note ISO_FORTRAN_ENV::,
     *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
     ATOMIC_FETCH_XOR::


File: gfortran.info,  Node: ATOMIC_FETCH_XOR,  Next: ATOMIC_OR,  Prev: ATOMIC_FETCH_OR,  Up: Intrinsic Procedures

9.35 'ATOMIC_FETCH_XOR' -- Atomic bitwise XOR operation with prior fetch
========================================================================

_Description_:
     'ATOMIC_XOR(ATOM, VALUE)' atomically stores the value of ATOM in
     OLD and defines ATOM with the bitwise XOR between the values of
     ATOM and VALUE.  When STAT is present and the invocation was
     successful, it is assigned the value 0.  If it is present and the
     invocation has failed, it is assigned a positive value; in
     particular, for a coindexed ATOM, if the remote image has stopped,
     it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     OLD         Scalar of the same type and kind as ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*], old
            call atomic_fetch_xor (atom[1], int(b'10100011101'), old)
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_XOR::, *note ISO_FORTRAN_ENV::,
     *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
     ATOMIC_FETCH_OR::


File: gfortran.info,  Node: ATOMIC_OR,  Next: ATOMIC_REF,  Prev: ATOMIC_FETCH_XOR,  Up: Intrinsic Procedures

9.36 'ATOMIC_OR' -- Atomic bitwise OR operation
===============================================

_Description_:
     'ATOMIC_OR(ATOM, VALUE)' atomically defines ATOM with the bitwise
     AND between the values of ATOM and VALUE.  When STAT is present and
     the invocation was successful, it is assigned the value 0.  If it
     is present and the invocation has failed, it is assigned a positive
     value; in particular, for a coindexed ATOM, if the remote image has
     stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_OR (ATOM, VALUE [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*]
            call atomic_or (atom[1], int(b'10100011101'))
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_OR::, *note
     ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
     ATOMIC_XOR::


File: gfortran.info,  Node: ATOMIC_REF,  Next: ATOMIC_XOR,  Prev: ATOMIC_OR,  Up: Intrinsic Procedures

9.37 'ATOMIC_REF' -- Obtaining the value of a variable atomically
=================================================================

_Description_:
     'ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the
     variable ATOM to VALUE.  When STAT is present and the invocation
     was successful, it is assigned the value 0.  If it is present and
     the invocation has failed, it is assigned a positive value; in
     particular, for a coindexed ATOM, if the remote image has stopped,
     it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     Fortran 2008 and later; with STAT, TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_REF(VALUE, ATOM [, STAT])'

_Arguments_:
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     ATOM        Scalar coarray or coindexed variable of either
                 integer type with 'ATOMIC_INT_KIND' kind or
                 logical type with 'ATOMIC_LOGICAL_KIND' kind.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            logical(atomic_logical_kind) :: atom[*]
            logical :: val
            call atomic_ref (atom, .false.)
            ! ...
            call atomic_ref (atom, val)
            if (val) then
              print *, "Obtained"
            end if
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_CAS::, *note ISO_FORTRAN_ENV::,
     *note ATOMIC_FETCH_ADD::, *note ATOMIC_FETCH_AND::, *note
     ATOMIC_FETCH_OR::, *note ATOMIC_FETCH_XOR::


File: gfortran.info,  Node: ATOMIC_XOR,  Next: BACKTRACE,  Prev: ATOMIC_REF,  Up: Intrinsic Procedures

9.38 'ATOMIC_XOR' -- Atomic bitwise OR operation
================================================

_Description_:
     'ATOMIC_AND(ATOM, VALUE)' atomically defines ATOM with the bitwise
     XOR between the values of ATOM and VALUE.  When STAT is present and
     the invocation was successful, it is assigned the value 0.  If it
     is present and the invocation has failed, it is assigned a positive
     value; in particular, for a coindexed ATOM, if the remote image has
     stopped, it is assigned the value of 'ISO_FORTRAN_ENV''s
     'STAT_STOPPED_IMAGE' and if the remote image has failed, the value
     'STAT_FAILED_IMAGE'.

_Standard_:
     TS 18508 or later

_Class_:
     Atomic subroutine

_Syntax_:
     'CALL ATOMIC_XOR (ATOM, VALUE [, STAT])'

_Arguments_:
     ATOM        Scalar coarray or coindexed variable of integer
                 type with 'ATOMIC_INT_KIND' kind.
     VALUE       Scalar of the same type as ATOM.  If the kind is
                 different, the value is converted to the kind of
                 ATOM.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            integer(atomic_int_kind) :: atom[*]
            call atomic_xor (atom[1], int(b'10100011101'))
          end program atomic

_See also_:
     *note ATOMIC_DEFINE::, *note ATOMIC_FETCH_XOR::, *note
     ISO_FORTRAN_ENV::, *note ATOMIC_ADD::, *note ATOMIC_OR::, *note
     ATOMIC_XOR::


File: gfortran.info,  Node: BACKTRACE,  Next: BESSEL_J0,  Prev: ATOMIC_XOR,  Up: Intrinsic Procedures

9.39 'BACKTRACE' -- Show a backtrace
====================================

_Description_:
     'BACKTRACE' shows a backtrace at an arbitrary place in user code.
     Program execution continues normally afterwards.  The backtrace
     information is printed to the unit corresponding to 'ERROR_UNIT' in
     'ISO_FORTRAN_ENV'.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL BACKTRACE'

_Arguments_:
     None

_See also_:
     *note ABORT::


File: gfortran.info,  Node: BESSEL_J0,  Next: BESSEL_J1,  Prev: BACKTRACE,  Up: Intrinsic Procedures

9.40 'BESSEL_J0' -- Bessel function of the first kind of order 0
================================================================

_Description_:
     'BESSEL_J0(X)' computes the Bessel function of the first kind of
     order 0 of X.  This function is available under the name 'BESJ0' as
     a GNU extension.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BESSEL_J0(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL' and lies in the range -
     0.4027... \leq Bessel (0,x) \leq 1.  It has the same kind as X.

_Example_:
          program test_besj0
            real(8) :: x = 0.0_8
            x = bessel_j0(x)
          end program test_besj0

_Specific names_:
     Name           Argument       Return type    Standard
     'DBESJ0(X)'    'REAL(8) X'    'REAL(8)'      GNU extension


File: gfortran.info,  Node: BESSEL_J1,  Next: BESSEL_JN,  Prev: BESSEL_J0,  Up: Intrinsic Procedures

9.41 'BESSEL_J1' -- Bessel function of the first kind of order 1
================================================================

_Description_:
     'BESSEL_J1(X)' computes the Bessel function of the first kind of
     order 1 of X.  This function is available under the name 'BESJ1' as
     a GNU extension.

_Standard_:
     Fortran 2008

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BESSEL_J1(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL' and lies in the range -
     0.5818... \leq Bessel (0,x) \leq 0.5818 .  It has the same kind as
     X.

_Example_:
          program test_besj1
            real(8) :: x = 1.0_8
            x = bessel_j1(x)
          end program test_besj1

_Specific names_:
     Name           Argument       Return type    Standard
     'DBESJ1(X)'    'REAL(8) X'    'REAL(8)'      GNU extension


File: gfortran.info,  Node: BESSEL_JN,  Next: BESSEL_Y0,  Prev: BESSEL_J1,  Up: Intrinsic Procedures

9.42 'BESSEL_JN' -- Bessel function of the first kind
=====================================================

_Description_:
     'BESSEL_JN(N, X)' computes the Bessel function of the first kind of
     order N of X.  This function is available under the name 'BESJN' as
     a GNU extension.  If N and X are arrays, their ranks and shapes
     shall conform.

     'BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions
     of the first kind of the orders N1 to N2.

_Standard_:
     Fortran 2008 and later, negative N is allowed as GNU extension

_Class_:
     Elemental function, except for the transformational function
     'BESSEL_JN(N1, N2, X)'

_Syntax_:
     'RESULT = BESSEL_JN(N, X)'
     'RESULT = BESSEL_JN(N1, N2, X)'

_Arguments_:
     N           Shall be a scalar or an array of type 'INTEGER'.
     N1          Shall be a non-negative scalar of type
                 'INTEGER'.
     N2          Shall be a non-negative scalar of type
                 'INTEGER'.
     X           Shall be a scalar or an array of type 'REAL';
                 for 'BESSEL_JN(N1, N2, X)' it shall be scalar.

_Return value_:
     The return value is a scalar of type 'REAL'.  It has the same kind
     as X.

_Note_:
     The transformational function uses a recurrence algorithm which
     might, for some values of X, lead to different results than calls
     to the elemental function.

_Example_:
          program test_besjn
            real(8) :: x = 1.0_8
            x = bessel_jn(5,x)
          end program test_besjn

_Specific names_:
     Name           Argument       Return type    Standard
     'DBESJN(N,     'INTEGER N'    'REAL(8)'      GNU extension
     X)'
                    'REAL(8) X'


File: gfortran.info,  Node: BESSEL_Y0,  Next: BESSEL_Y1,  Prev: BESSEL_JN,  Up: Intrinsic Procedures

9.43 'BESSEL_Y0' -- Bessel function of the second kind of order 0
=================================================================

_Description_:
     'BESSEL_Y0(X)' computes the Bessel function of the second kind of
     order 0 of X.  This function is available under the name 'BESY0' as
     a GNU extension.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BESSEL_Y0(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL'.  It has the same kind as X.

_Example_:
          program test_besy0
            real(8) :: x = 0.0_8
            x = bessel_y0(x)
          end program test_besy0

_Specific names_:
     Name           Argument       Return type    Standard
     'DBESY0(X)'    'REAL(8) X'    'REAL(8)'      GNU extension


File: gfortran.info,  Node: BESSEL_Y1,  Next: BESSEL_YN,  Prev: BESSEL_Y0,  Up: Intrinsic Procedures

9.44 'BESSEL_Y1' -- Bessel function of the second kind of order 1
=================================================================

_Description_:
     'BESSEL_Y1(X)' computes the Bessel function of the second kind of
     order 1 of X.  This function is available under the name 'BESY1' as
     a GNU extension.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BESSEL_Y1(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL'.  It has the same kind as X.

_Example_:
          program test_besy1
            real(8) :: x = 1.0_8
            x = bessel_y1(x)
          end program test_besy1

_Specific names_:
     Name           Argument       Return type    Standard
     'DBESY1(X)'    'REAL(8) X'    'REAL(8)'      GNU extension


File: gfortran.info,  Node: BESSEL_YN,  Next: BGE,  Prev: BESSEL_Y1,  Up: Intrinsic Procedures

9.45 'BESSEL_YN' -- Bessel function of the second kind
======================================================

_Description_:
     'BESSEL_YN(N, X)' computes the Bessel function of the second kind
     of order N of X.  This function is available under the name 'BESYN'
     as a GNU extension.  If N and X are arrays, their ranks and shapes
     shall conform.

     'BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions
     of the first kind of the orders N1 to N2.

_Standard_:
     Fortran 2008 and later, negative N is allowed as GNU extension

_Class_:
     Elemental function, except for the transformational function
     'BESSEL_YN(N1, N2, X)'

_Syntax_:
     'RESULT = BESSEL_YN(N, X)'
     'RESULT = BESSEL_YN(N1, N2, X)'

_Arguments_:
     N           Shall be a scalar or an array of type 'INTEGER'
                 .
     N1          Shall be a non-negative scalar of type
                 'INTEGER'.
     N2          Shall be a non-negative scalar of type
                 'INTEGER'.
     X           Shall be a scalar or an array of type 'REAL';
                 for 'BESSEL_YN(N1, N2, X)' it shall be scalar.

_Return value_:
     The return value is a scalar of type 'REAL'.  It has the same kind
     as X.

_Note_:
     The transformational function uses a recurrence algorithm which
     might, for some values of X, lead to different results than calls
     to the elemental function.

_Example_:
          program test_besyn
            real(8) :: x = 1.0_8
            x = bessel_yn(5,x)
          end program test_besyn

_Specific names_:
     Name           Argument       Return type    Standard
     'DBESYN(N,X)'  'INTEGER N'    'REAL(8)'      GNU extension
                    'REAL(8) X'


File: gfortran.info,  Node: BGE,  Next: BGT,  Prev: BESSEL_YN,  Up: Intrinsic Procedures

9.46 'BGE' -- Bitwise greater than or equal to
==============================================

_Description_:
     Determines whether an integral is a bitwise greater than or equal
     to another.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BGE(I, J)'

_Arguments_:
     I           Shall be of 'INTEGER' type.
     J           Shall be of 'INTEGER' type, and of the same kind
                 as I.

_Return value_:
     The return value is of type 'LOGICAL' and of the default kind.

_See also_:
     *note BGT::, *note BLE::, *note BLT::


File: gfortran.info,  Node: BGT,  Next: BIT_SIZE,  Prev: BGE,  Up: Intrinsic Procedures

9.47 'BGT' -- Bitwise greater than
==================================

_Description_:
     Determines whether an integral is a bitwise greater than another.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BGT(I, J)'

_Arguments_:
     I           Shall be of 'INTEGER' type.
     J           Shall be of 'INTEGER' type, and of the same kind
                 as I.

_Return value_:
     The return value is of type 'LOGICAL' and of the default kind.

_See also_:
     *note BGE::, *note BLE::, *note BLT::


File: gfortran.info,  Node: BIT_SIZE,  Next: BLE,  Prev: BGT,  Up: Intrinsic Procedures

9.48 'BIT_SIZE' -- Bit size inquiry function
============================================

_Description_:
     'BIT_SIZE(I)' returns the number of bits (integer precision plus
     sign bit) represented by the type of I.  The result of
     'BIT_SIZE(I)' is independent of the actual value of I.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = BIT_SIZE(I)'

_Arguments_:
     I           The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER'

_Example_:
          program test_bit_size
              integer :: i = 123
              integer :: size
              size = bit_size(i)
              print *, size
          end program test_bit_size


File: gfortran.info,  Node: BLE,  Next: BLT,  Prev: BIT_SIZE,  Up: Intrinsic Procedures

9.49 'BLE' -- Bitwise less than or equal to
===========================================

_Description_:
     Determines whether an integral is a bitwise less than or equal to
     another.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BLE(I, J)'

_Arguments_:
     I           Shall be of 'INTEGER' type.
     J           Shall be of 'INTEGER' type, and of the same kind
                 as I.

_Return value_:
     The return value is of type 'LOGICAL' and of the default kind.

_See also_:
     *note BGT::, *note BGE::, *note BLT::


File: gfortran.info,  Node: BLT,  Next: BTEST,  Prev: BLE,  Up: Intrinsic Procedures

9.50 'BLT' -- Bitwise less than
===============================

_Description_:
     Determines whether an integral is a bitwise less than another.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BLT(I, J)'

_Arguments_:
     I           Shall be of 'INTEGER' type.
     J           Shall be of 'INTEGER' type, and of the same kind
                 as I.

_Return value_:
     The return value is of type 'LOGICAL' and of the default kind.

_See also_:
     *note BGE::, *note BGT::, *note BLE::


File: gfortran.info,  Node: BTEST,  Next: C_ASSOCIATED,  Prev: BLT,  Up: Intrinsic Procedures

9.51 'BTEST' -- Bit test function
=================================

_Description_:
     'BTEST(I,POS)' returns logical '.TRUE.' if the bit at POS in I is
     set.  The counting of the bits starts at 0.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = BTEST(I, POS)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     POS         The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'LOGICAL'

_Example_:
          program test_btest
              integer :: i = 32768 + 1024 + 64
              integer :: pos
              logical :: bool
              do pos=0,16
                  bool = btest(i, pos)
                  print *, pos, bool
              end do
          end program test_btest

_Specific names_:
     Name           Argument       Return type    Standard
     'BTEST(I,POS)' 'INTEGER       'LOGICAL'      Fortran 95 and
                    I,POS'                        later
     'BBTEST(I,POS)''INTEGER(1)    'LOGICAL(1)'   GNU extension
                    I,POS'
     'BITEST(I,POS)''INTEGER(2)    'LOGICAL(2)'   GNU extension
                    I,POS'
     'BJTEST(I,POS)''INTEGER(4)    'LOGICAL(4)'   GNU extension
                    I,POS'
     'BKTEST(I,POS)''INTEGER(8)    'LOGICAL(8)'   GNU extension
                    I,POS'


File: gfortran.info,  Node: C_ASSOCIATED,  Next: C_F_POINTER,  Prev: BTEST,  Up: Intrinsic Procedures

9.52 'C_ASSOCIATED' -- Status of a C pointer
============================================

_Description_:
     'C_ASSOCIATED(c_ptr_1[, c_ptr_2])' determines the status of the C
     pointer C_PTR_1 or if C_PTR_1 is associated with the target
     C_PTR_2.

_Standard_:
     Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = C_ASSOCIATED(c_ptr_1[, c_ptr_2])'

_Arguments_:
     C_PTR_1     Scalar of the type 'C_PTR' or 'C_FUNPTR'.
     C_PTR_2     (Optional) Scalar of the same type as C_PTR_1.

_Return value_:
     The return value is of type 'LOGICAL'; it is '.false.' if either
     C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to
     different addresses.

_Example_:
          subroutine association_test(a,b)
            use iso_c_binding, only: c_associated, c_loc, c_ptr
            implicit none
            real, pointer :: a
            type(c_ptr) :: b
            if(c_associated(b, c_loc(a))) &
               stop 'b and a do not point to same target'
          end subroutine association_test

_See also_:
     *note C_LOC::, *note C_FUNLOC::


File: gfortran.info,  Node: C_F_POINTER,  Next: C_F_PROCPOINTER,  Prev: C_ASSOCIATED,  Up: Intrinsic Procedures

9.53 'C_F_POINTER' -- Convert C into Fortran pointer
====================================================

_Description_:
     'C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C
     pointer CPTR to the Fortran pointer FPTR and specifies its shape.

_Standard_:
     Fortran 2003 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL C_F_POINTER(CPTR, FPTR[, SHAPE])'

_Arguments_:
     CPTR        scalar of the type 'C_PTR'.  It is 'INTENT(IN)'.
     FPTR        pointer interoperable with CPTR.  It is
                 'INTENT(OUT)'.
     SHAPE       (Optional) Rank-one array of type 'INTEGER' with
                 'INTENT(IN)'.  It shall be present if and only
                 if FPTR is an array.  The size must be equal to
                 the rank of FPTR.

_Example_:
          program main
            use iso_c_binding
            implicit none
            interface
              subroutine my_routine(p) bind(c,name='myC_func')
                import :: c_ptr
                type(c_ptr), intent(out) :: p
              end subroutine
            end interface
            type(c_ptr) :: cptr
            real,pointer :: a(:)
            call my_routine(cptr)
            call c_f_pointer(cptr, a, [12])
          end program main

_See also_:
     *note C_LOC::, *note C_F_PROCPOINTER::


File: gfortran.info,  Node: C_F_PROCPOINTER,  Next: C_FUNLOC,  Prev: C_F_POINTER,  Up: Intrinsic Procedures

9.54 'C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer
==================================================================

_Description_:
     'C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function
     pointer CPTR to the Fortran procedure pointer FPTR.

_Standard_:
     Fortran 2003 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL C_F_PROCPOINTER(cptr, fptr)'

_Arguments_:
     CPTR        scalar of the type 'C_FUNPTR'.  It is
                 'INTENT(IN)'.
     FPTR        procedure pointer interoperable with CPTR.  It
                 is 'INTENT(OUT)'.

_Example_:
          program main
            use iso_c_binding
            implicit none
            abstract interface
              function func(a)
                import :: c_float
                real(c_float), intent(in) :: a
                real(c_float) :: func
              end function
            end interface
            interface
               function getIterFunc() bind(c,name="getIterFunc")
                 import :: c_funptr
                 type(c_funptr) :: getIterFunc
               end function
            end interface
            type(c_funptr) :: cfunptr
            procedure(func), pointer :: myFunc
            cfunptr = getIterFunc()
            call c_f_procpointer(cfunptr, myFunc)
          end program main

_See also_:
     *note C_LOC::, *note C_F_POINTER::


File: gfortran.info,  Node: C_FUNLOC,  Next: C_LOC,  Prev: C_F_PROCPOINTER,  Up: Intrinsic Procedures

9.55 'C_FUNLOC' -- Obtain the C address of a procedure
======================================================

_Description_:
     'C_FUNLOC(x)' determines the C address of the argument.

_Standard_:
     Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = C_FUNLOC(x)'

_Arguments_:
     X           Interoperable function or pointer to such
                 function.

_Return value_:
     The return value is of type 'C_FUNPTR' and contains the C address
     of the argument.

_Example_:
          module x
            use iso_c_binding
            implicit none
          contains
            subroutine sub(a) bind(c)
              real(c_float) :: a
              a = sqrt(a)+5.0
            end subroutine sub
          end module x
          program main
            use iso_c_binding
            use x
            implicit none
            interface
              subroutine my_routine(p) bind(c,name='myC_func')
                import :: c_funptr
                type(c_funptr), intent(in) :: p
              end subroutine
            end interface
            call my_routine(c_funloc(sub))
          end program main

_See also_:
     *note C_ASSOCIATED::, *note C_LOC::, *note C_F_POINTER::, *note
     C_F_PROCPOINTER::


File: gfortran.info,  Node: C_LOC,  Next: C_SIZEOF,  Prev: C_FUNLOC,  Up: Intrinsic Procedures

9.56 'C_LOC' -- Obtain the C address of an object
=================================================

_Description_:
     'C_LOC(X)' determines the C address of the argument.

_Standard_:
     Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = C_LOC(X)'

_Arguments_:
     X       Shall have either the POINTER or TARGET attribute.
             It shall not be a coindexed object.  It shall either
             be a variable with interoperable type and kind type
             parameters, or be a scalar, nonpolymorphic variable
             with no length type parameters.
             

_Return value_:
     The return value is of type 'C_PTR' and contains the C address of
     the argument.

_Example_:
          subroutine association_test(a,b)
            use iso_c_binding, only: c_associated, c_loc, c_ptr
            implicit none
            real, pointer :: a
            type(c_ptr) :: b
            if(c_associated(b, c_loc(a))) &
               stop 'b and a do not point to same target'
          end subroutine association_test

_See also_:
     *note C_ASSOCIATED::, *note C_FUNLOC::, *note C_F_POINTER::, *note
     C_F_PROCPOINTER::


File: gfortran.info,  Node: C_SIZEOF,  Next: CEILING,  Prev: C_LOC,  Up: Intrinsic Procedures

9.57 'C_SIZEOF' -- Size in bytes of an expression
=================================================

_Description_:
     'C_SIZEOF(X)' calculates the number of bytes of storage the
     expression 'X' occupies.

_Standard_:
     Fortran 2008

_Class_:
     Inquiry function of the module 'ISO_C_BINDING'

_Syntax_:
     'N = C_SIZEOF(X)'

_Arguments_:
     X           The argument shall be an interoperable data
                 entity.

_Return value_:
     The return value is of type integer and of the system-dependent
     kind 'C_SIZE_T' (from the 'ISO_C_BINDING' module).  Its value is
     the number of bytes occupied by the argument.  If the argument has
     the 'POINTER' attribute, the number of bytes of the storage area
     pointed to is returned.  If the argument is of a derived type with
     'POINTER' or 'ALLOCATABLE' components, the return value does not
     account for the sizes of the data pointed to by these components.

_Example_:
             use iso_c_binding
             integer(c_int) :: i
             real(c_float) :: r, s(5)
             print *, (c_sizeof(s)/c_sizeof(r) == 5)
             end
     The example will print 'T' unless you are using a platform where
     default 'REAL' variables are unusually padded.

_See also_:
     *note SIZEOF::, *note STORAGE_SIZE::


File: gfortran.info,  Node: CEILING,  Next: CHAR,  Prev: C_SIZEOF,  Up: Intrinsic Procedures

9.58 'CEILING' -- Integer ceiling function
==========================================

_Description_:
     'CEILING(A)' returns the least integer greater than or equal to A.

_Standard_:
     Fortran 95 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = CEILING(A [, KIND])'

_Arguments_:
     A           The type shall be 'REAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER(KIND)' if KIND is present and
     a default-kind 'INTEGER' otherwise.

_Example_:
          program test_ceiling
              real :: x = 63.29
              real :: y = -63.59
              print *, ceiling(x) ! returns 64
              print *, ceiling(y) ! returns -63
          end program test_ceiling

_See also_:
     *note FLOOR::, *note NINT::


File: gfortran.info,  Node: CHAR,  Next: CHDIR,  Prev: CEILING,  Up: Intrinsic Procedures

9.59 'CHAR' -- Character conversion function
============================================

_Description_:
     'CHAR(I [, KIND])' returns the character represented by the integer
     I.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = CHAR(I [, KIND])'

_Arguments_:
     I           The type shall be 'INTEGER'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'CHARACTER(1)'

_Example_:
          program test_char
              integer :: i = 74
              character(1) :: c
              c = char(i)
              print *, i, c ! returns 'J'
          end program test_char

_Specific names_:
     Name          Argument      Return type       Standard
     'CHAR(I)'     'INTEGER I'   'CHARACTER(LEN=1)'Fortran 77 and
                                                   later

_Note_:
     See *note ICHAR:: for a discussion of converting between numerical
     values and formatted string representations.

_See also_:
     *note ACHAR::, *note IACHAR::, *note ICHAR::


File: gfortran.info,  Node: CHDIR,  Next: CHMOD,  Prev: CHAR,  Up: Intrinsic Procedures

9.60 'CHDIR' -- Change working directory
========================================

_Description_:
     Change current working directory to a specified path.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL CHDIR(NAME [, STATUS])'
     'STATUS = CHDIR(NAME)'

_Arguments_:
     NAME        The type shall be 'CHARACTER' of default kind
                 and shall specify a valid path within the file
                 system.
     STATUS      (Optional) 'INTEGER' status flag of the default
                 kind.  Returns 0 on success, and a system
                 specific and nonzero error code otherwise.

_Example_:
          PROGRAM test_chdir
            CHARACTER(len=255) :: path
            CALL getcwd(path)
            WRITE(*,*) TRIM(path)
            CALL chdir("/tmp")
            CALL getcwd(path)
            WRITE(*,*) TRIM(path)
          END PROGRAM

_See also_:
     *note GETCWD::


File: gfortran.info,  Node: CHMOD,  Next: CMPLX,  Prev: CHDIR,  Up: Intrinsic Procedures

9.61 'CHMOD' -- Change access permissions of files
==================================================

_Description_:
     'CHMOD' changes the permissions of a file.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL CHMOD(NAME, MODE[, STATUS])'
     'STATUS = CHMOD(NAME, MODE)'

_Arguments_:

     NAME        Scalar 'CHARACTER' of default kind with the file
                 name.  Trailing blanks are ignored unless the
                 character 'achar(0)' is present, then all
                 characters up to and excluding 'achar(0)' are
                 used as the file name.
                 
     MODE        Scalar 'CHARACTER' of default kind giving the
                 file permission.  MODE uses the same syntax as
                 the 'chmod' utility as defined by the POSIX
                 standard.  The argument shall either be a string
                 of a nonnegative octal number or a symbolic
                 mode.
                 
     STATUS      (optional) scalar 'INTEGER', which is '0' on
                 success and nonzero otherwise.

_Return value_:
     In either syntax, STATUS is set to '0' on success and nonzero
     otherwise.

_Example_:
     'CHMOD' as subroutine
          program chmod_test
            implicit none
            integer :: status
            call chmod('test.dat','u+x',status)
            print *, 'Status: ', status
          end program chmod_test
     'CHMOD' as function:
          program chmod_test
            implicit none
            integer :: status
            status = chmod('test.dat','u+x')
            print *, 'Status: ', status
          end program chmod_test


File: gfortran.info,  Node: CMPLX,  Next: CO_BROADCAST,  Prev: CHMOD,  Up: Intrinsic Procedures

9.62 'CMPLX' -- Complex conversion function
===========================================

_Description_:
     'CMPLX(X [, Y [, KIND]])' returns a complex number where X is
     converted to the real component.  If Y is present it is converted
     to the imaginary component.  If Y is not present then the imaginary
     component is set to 0.0.  If X is complex then Y must not be
     present.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = CMPLX(X [, Y [, KIND]])'

_Arguments_:
     X           The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
     Y           (Optional; only allowed if X is not 'COMPLEX'.)
                 May be 'INTEGER' or 'REAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of 'COMPLEX' type, with a kind equal to KIND if
     it is specified.  If KIND is not specified, the result is of the
     default 'COMPLEX' kind, regardless of the kinds of X and Y.

_Example_:
          program test_cmplx
              integer :: i = 42
              real :: x = 3.14
              complex :: z
              z = cmplx(i, x)
              print *, z, cmplx(x)
          end program test_cmplx

_See also_:
     *note COMPLEX::


File: gfortran.info,  Node: CO_BROADCAST,  Next: CO_MAX,  Prev: CMPLX,  Up: Intrinsic Procedures

9.63 'CO_BROADCAST' -- Copy a value to all images the current set of images
===========================================================================

_Description_:
     'CO_BROADCAST' copies the value of argument A on the image with
     image index 'SOURCE_IMAGE' to all images in the current team.  A
     becomes defined as if by intrinsic assignment.  If the execution
     was successful and STAT is present, it is assigned the value zero.
     If the execution failed, STAT gets assigned a nonzero value and, if
     present, ERRMSG gets assigned a value describing the occurred
     error.

_Standard_:
     Technical Specification (TS) 18508 or later

_Class_:
     Collective subroutine

_Syntax_:
     'CALL CO_BROADCAST(A, SOURCE_IMAGE [, STAT, ERRMSG])'

_Arguments_:
     A              INTENT(INOUT) argument; shall have the same
                    dynamic type and type parameters on all
                    images of the current team.  If it is an
                    array, it shall have the same shape on all
                    images.
     SOURCE_IMAGE   a scalar integer expression.  It shall have
                    the same the same value on all images and
                    refer to an image of the current team.
     STAT           (optional) a scalar integer variable
     ERRMSG         (optional) a scalar character variable

_Example_:
          program test
            integer :: val(3)
            if (this_image() == 1) then
              val = [1, 5, 3]
            end if
            call co_broadcast (val, source_image=1)
            print *, this_image, ":", val
          end program test

_See also_:
     *note CO_MAX::, *note CO_MIN::, *note CO_SUM::, *note CO_REDUCE::


File: gfortran.info,  Node: CO_MAX,  Next: CO_MIN,  Prev: CO_BROADCAST,  Up: Intrinsic Procedures

9.64 'CO_MAX' -- Maximal value on the current set of images
===========================================================

_Description_:
     'CO_MAX' determines element-wise the maximal value of A on all
     images of the current team.  If RESULT_IMAGE is present, the
     maximum values are returned in A on the specified image only and
     the value of A on the other images become undefined.  If
     RESULT_IMAGE is not present, the value is returned on all images.
     If the execution was successful and STAT is present, it is assigned
     the value zero.  If the execution failed, STAT gets assigned a
     nonzero value and, if present, ERRMSG gets assigned a value
     describing the occurred error.

_Standard_:
     Technical Specification (TS) 18508 or later

_Class_:
     Collective subroutine

_Syntax_:
     'CALL CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])'

_Arguments_:
     A              shall be an integer, real or character
                    variable, which has the same type and type
                    parameters on all images of the team.
     RESULT_IMAGE   (optional) a scalar integer expression; if
                    present, it shall have the same the same
                    value on all images and refer to an image of
                    the current team.
     STAT           (optional) a scalar integer variable
     ERRMSG         (optional) a scalar character variable

_Example_:
          program test
            integer :: val
            val = this_image ()
            call co_max (val, result_image=1)
            if (this_image() == 1) then
              write(*,*) "Maximal value", val  ! prints num_images()
            end if
          end program test

_See also_:
     *note CO_MIN::, *note CO_SUM::, *note CO_REDUCE::, *note
     CO_BROADCAST::


File: gfortran.info,  Node: CO_MIN,  Next: CO_REDUCE,  Prev: CO_MAX,  Up: Intrinsic Procedures

9.65 'CO_MIN' -- Minimal value on the current set of images
===========================================================

_Description_:
     'CO_MIN' determines element-wise the minimal value of A on all
     images of the current team.  If RESULT_IMAGE is present, the
     minimal values are returned in A on the specified image only and
     the value of A on the other images become undefined.  If
     RESULT_IMAGE is not present, the value is returned on all images.
     If the execution was successful and STAT is present, it is assigned
     the value zero.  If the execution failed, STAT gets assigned a
     nonzero value and, if present, ERRMSG gets assigned a value
     describing the occurred error.

_Standard_:
     Technical Specification (TS) 18508 or later

_Class_:
     Collective subroutine

_Syntax_:
     'CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])'

_Arguments_:
     A              shall be an integer, real or character
                    variable, which has the same type and type
                    parameters on all images of the team.
     RESULT_IMAGE   (optional) a scalar integer expression; if
                    present, it shall have the same the same
                    value on all images and refer to an image of
                    the current team.
     STAT           (optional) a scalar integer variable
     ERRMSG         (optional) a scalar character variable

_Example_:
          program test
            integer :: val
            val = this_image ()
            call co_min (val, result_image=1)
            if (this_image() == 1) then
              write(*,*) "Minimal value", val  ! prints 1
            end if
          end program test

_See also_:
     *note CO_MAX::, *note CO_SUM::, *note CO_REDUCE::, *note
     CO_BROADCAST::


File: gfortran.info,  Node: CO_REDUCE,  Next: CO_SUM,  Prev: CO_MIN,  Up: Intrinsic Procedures

9.66 'CO_REDUCE' -- Reduction of values on the current set of images
====================================================================

_Description_:
     'CO_REDUCE' determines element-wise the reduction of the value of A
     on all images of the current team.  The pure function passed as
     OPERATOR is used to pairwise reduce the values of A by passing
     either the value of A of different images or the result values of
     such a reduction as argument.  If A is an array, the deduction is
     done element wise.  If RESULT_IMAGE is present, the result values
     are returned in A on the specified image only and the value of A on
     the other images become undefined.  If RESULT_IMAGE is not present,
     the value is returned on all images.  If the execution was
     successful and STAT is present, it is assigned the value zero.  If
     the execution failed, STAT gets assigned a nonzero value and, if
     present, ERRMSG gets assigned a value describing the occurred
     error.

_Standard_:
     Technical Specification (TS) 18508 or later

_Class_:
     Collective subroutine

_Syntax_:
     'CALL CO_REDUCE(A, OPERATOR, [, RESULT_IMAGE, STAT, ERRMSG])'

_Arguments_:
     A              is an 'INTENT(INOUT)' argument and shall be
                    nonpolymorphic.  If it is allocatable, it
                    shall be allocated; if it is a pointer, it
                    shall be associated.  A shall have the same
                    type and type parameters on all images of the
                    team; if it is an array, it shall have the
                    same shape on all images.
     OPERATOR       pure function with two scalar nonallocatable
                    arguments, which shall be nonpolymorphic and
                    have the same type and type parameters as A.
                    The function shall return a nonallocatable
                    scalar of the same type and type parameters
                    as A.  The function shall be the same on all
                    images and with regards to the arguments
                    mathematically commutative and associative.
                    Note that OPERATOR may not be an elemental
                    function, unless it is an intrisic function.
     RESULT_IMAGE   (optional) a scalar integer expression; if
                    present, it shall have the same the same
                    value on all images and refer to an image of
                    the current team.
     STAT           (optional) a scalar integer variable
     ERRMSG         (optional) a scalar character variable

_Example_:
          program test
            integer :: val
            val = this_image ()
            call co_reduce (val, result_image=1, operator=myprod)
            if (this_image() == 1) then
              write(*,*) "Product value", val  ! prints num_images() factorial
            end if
          contains
            pure function myprod(a, b)
              integer, value :: a, b
              integer :: myprod
              myprod = a * b
            end function myprod
          end program test

_Note_:
     While the rules permit in principle an intrinsic function, none of
     the intrinsics in the standard fulfill the criteria of having a
     specific function, which takes two arguments of the same type and
     returning that type as result.

_See also_:
     *note CO_MIN::, *note CO_MAX::, *note CO_SUM::, *note
     CO_BROADCAST::


File: gfortran.info,  Node: CO_SUM,  Next: COMMAND_ARGUMENT_COUNT,  Prev: CO_REDUCE,  Up: Intrinsic Procedures

9.67 'CO_SUM' -- Sum of values on the current set of images
===========================================================

_Description_:
     'CO_SUM' sums up the values of each element of A on all images of
     the current team.  If RESULT_IMAGE is present, the summed-up values
     are returned in A on the specified image only and the value of A on
     the other images become undefined.  If RESULT_IMAGE is not present,
     the value is returned on all images.  If the execution was
     successful and STAT is present, it is assigned the value zero.  If
     the execution failed, STAT gets assigned a nonzero value and, if
     present, ERRMSG gets assigned a value describing the occurred
     error.

_Standard_:
     Technical Specification (TS) 18508 or later

_Class_:
     Collective subroutine

_Syntax_:
     'CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])'

_Arguments_:
     A              shall be an integer, real or complex
                    variable, which has the same type and type
                    parameters on all images of the team.
     RESULT_IMAGE   (optional) a scalar integer expression; if
                    present, it shall have the same the same
                    value on all images and refer to an image of
                    the current team.
     STAT           (optional) a scalar integer variable
     ERRMSG         (optional) a scalar character variable

_Example_:
          program test
            integer :: val
            val = this_image ()
            call co_sum (val, result_image=1)
            if (this_image() == 1) then
              write(*,*) "The sum is ", val ! prints (n**2 + n)/2,
                                            ! with n = num_images()
            end if
          end program test

_See also_:
     *note CO_MAX::, *note CO_MIN::, *note CO_REDUCE::, *note
     CO_BROADCAST::


File: gfortran.info,  Node: COMMAND_ARGUMENT_COUNT,  Next: COMPILER_OPTIONS,  Prev: CO_SUM,  Up: Intrinsic Procedures

9.68 'COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments
=====================================================================

_Description_:
     'COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on
     the command line when the containing program was invoked.

_Standard_:
     Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = COMMAND_ARGUMENT_COUNT()'

_Arguments_:
     None

_Return value_:
     The return value is an 'INTEGER' of default kind.

_Example_:
          program test_command_argument_count
              integer :: count
              count = command_argument_count()
              print *, count
          end program test_command_argument_count

_See also_:
     *note GET_COMMAND::, *note GET_COMMAND_ARGUMENT::


File: gfortran.info,  Node: COMPILER_OPTIONS,  Next: COMPILER_VERSION,  Prev: COMMAND_ARGUMENT_COUNT,  Up: Intrinsic Procedures

9.69 'COMPILER_OPTIONS' -- Options passed to the compiler
=========================================================

_Description_:
     'COMPILER_OPTIONS' returns a string with the options used for
     compiling.

_Standard_:
     Fortran 2008

_Class_:
     Inquiry function of the module 'ISO_FORTRAN_ENV'

_Syntax_:
     'STR = COMPILER_OPTIONS()'

_Arguments_:
     None

_Return value_:
     The return value is a default-kind string with system-dependent
     length.  It contains the compiler flags used to compile the file,
     which called the 'COMPILER_OPTIONS' intrinsic.

_Example_:
             use iso_fortran_env
             print '(4a)', 'This file was compiled by ', &
                           compiler_version(), ' using the options ', &
                           compiler_options()
             end

_See also_:
     *note COMPILER_VERSION::, *note ISO_FORTRAN_ENV::


File: gfortran.info,  Node: COMPILER_VERSION,  Next: COMPLEX,  Prev: COMPILER_OPTIONS,  Up: Intrinsic Procedures

9.70 'COMPILER_VERSION' -- Compiler version string
==================================================

_Description_:
     'COMPILER_VERSION' returns a string with the name and the version
     of the compiler.

_Standard_:
     Fortran 2008

_Class_:
     Inquiry function of the module 'ISO_FORTRAN_ENV'

_Syntax_:
     'STR = COMPILER_VERSION()'

_Arguments_:
     None

_Return value_:
     The return value is a default-kind string with system-dependent
     length.  It contains the name of the compiler and its version
     number.

_Example_:
             use iso_fortran_env
             print '(4a)', 'This file was compiled by ', &
                           compiler_version(), ' using the options ', &
                           compiler_options()
             end

_See also_:
     *note COMPILER_OPTIONS::, *note ISO_FORTRAN_ENV::


File: gfortran.info,  Node: COMPLEX,  Next: CONJG,  Prev: COMPILER_VERSION,  Up: Intrinsic Procedures

9.71 'COMPLEX' -- Complex conversion function
=============================================

_Description_:
     'COMPLEX(X, Y)' returns a complex number where X is converted to
     the real component and Y is converted to the imaginary component.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = COMPLEX(X, Y)'

_Arguments_:
     X           The type may be 'INTEGER' or 'REAL'.
     Y           The type may be 'INTEGER' or 'REAL'.

_Return value_:
     If X and Y are both of 'INTEGER' type, then the return value is of
     default 'COMPLEX' type.

     If X and Y are of 'REAL' type, or one is of 'REAL' type and one is
     of 'INTEGER' type, then the return value is of 'COMPLEX' type with
     a kind equal to that of the 'REAL' argument with the highest
     precision.

_Example_:
          program test_complex
              integer :: i = 42
              real :: x = 3.14
              print *, complex(i, x)
          end program test_complex

_See also_:
     *note CMPLX::


File: gfortran.info,  Node: CONJG,  Next: COS,  Prev: COMPLEX,  Up: Intrinsic Procedures

9.72 'CONJG' -- Complex conjugate function
==========================================

_Description_:
     'CONJG(Z)' returns the conjugate of Z.  If Z is '(x, y)' then the
     result is '(x, -y)'

_Standard_:
     Fortran 77 and later, has an overload that is a GNU extension

_Class_:
     Elemental function

_Syntax_:
     'Z = CONJG(Z)'

_Arguments_:
     Z           The type shall be 'COMPLEX'.

_Return value_:
     The return value is of type 'COMPLEX'.

_Example_:
          program test_conjg
              complex :: z = (2.0, 3.0)
              complex(8) :: dz = (2.71_8, -3.14_8)
              z= conjg(z)
              print *, z
              dz = dconjg(dz)
              print *, dz
          end program test_conjg

_Specific names_:
     Name           Argument       Return type    Standard
     'DCONJG(Z)'    'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    Z'


File: gfortran.info,  Node: COS,  Next: COSD,  Prev: CONJG,  Up: Intrinsic Procedures

9.73 'COS' -- Cosine function
=============================

_Description_:
     'COS(X)' computes the cosine of X.

_Standard_:
     Fortran 77 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = COS(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as X.  The real part
     of the result is in radians.  If X is of the type 'REAL', the
     return value lies in the range -1 \leq \cos (x) \leq 1.

_Example_:
          program test_cos
            real :: x = 0.0
            x = cos(x)
          end program test_cos

_Specific names_:
     Name           Argument       Return type    Standard
     'COS(X)'       'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DCOS(X)'      'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later
     'CCOS(X)'      'COMPLEX(4)    'COMPLEX(4)'   Fortran 77 and
                    X'                            later
     'ZCOS(X)'      'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'
     'CDCOS(X)'     'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'

_See also_:
     Inverse function: *note ACOS:: Degrees function: *note COSD::


File: gfortran.info,  Node: COSD,  Next: COSH,  Prev: COS,  Up: Intrinsic Procedures

9.74 'COSD' -- Cosine function, degrees
=======================================

_Description_:
     'COSD(X)' computes the cosine of X in degrees.

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = COSD(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value is of the same type and kind as X.  The real part
     of the result is in degrees.  If X is of the type 'REAL', the
     return value lies in the range -1 \leq \cosd (x) \leq 1.

_Example_:
          program test_cosd
            real :: x = 0.0
            x = cosd(x)
          end program test_cosd

_Specific names_:
     Name           Argument       Return type    Standard
     'COSD(X)'      'REAL(4) X'    'REAL(4)'      GNU extension
     'DCOSD(X)'     'REAL(8) X'    'REAL(8)'      GNU extension
     'CCOSD(X)'     'COMPLEX(4)    'COMPLEX(4)'   GNU extension
                    X'
     'ZCOSD(X)'     'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'
     'CDCOSD(X)'    'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'

_See also_:
     Inverse function: *note ACOSD:: Radians function: *note COS::


File: gfortran.info,  Node: COSH,  Next: COTAN,  Prev: COSD,  Up: Intrinsic Procedures

9.75 'COSH' -- Hyperbolic cosine function
=========================================

_Description_:
     'COSH(X)' computes the hyperbolic cosine of X.

_Standard_:
     Fortran 77 and later, for a complex argument Fortran 2008 or later

_Class_:
     Elemental function

_Syntax_:
     'X = COSH(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X.  If X is complex, the
     imaginary part of the result is in radians.  If X is 'REAL', the
     return value has a lower bound of one, \cosh (x) \geq 1.

_Example_:
          program test_cosh
            real(8) :: x = 1.0_8
            x = cosh(x)
          end program test_cosh

_Specific names_:
     Name           Argument       Return type    Standard
     'COSH(X)'      'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DCOSH(X)'     'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     Inverse function: *note ACOSH::


File: gfortran.info,  Node: COTAN,  Next: COTAND,  Prev: COSH,  Up: Intrinsic Procedures

9.76 'COTAN' -- Cotangent function
==================================

_Description_:
     'COTAN(X)' computes the cotangent of X.  Equivalent to 'COS(x)'
     divided by 'SIN(x)', or '1 / TAN(x)'.

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = COTAN(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X, and its value is in
     radians.

_Example_:
          program test_cotan
            real(8) :: x = 0.165_8
            x = cotan(x)
          end program test_cotan

_Specific names_:
     Name           Argument       Return type    Standard
     'COTAN(X)'     'REAL(4) X'    'REAL(4)'      GNU extension
     'DCOTAN(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Converse function: *note TAN:: Degrees function: *note COTAND::


File: gfortran.info,  Node: COTAND,  Next: COUNT,  Prev: COTAN,  Up: Intrinsic Procedures

9.77 'COTAND' -- Cotangent function, degrees
============================================

_Description_:
     'COTAND(X)' computes the cotangent of X in degrees.  Equivalent to
     'COSD(x)' divided by 'SIND(x)', or '1 / TAND(x)'.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = COTAND(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X, and its value is in
     degrees.

_Example_:
          program test_cotand
            real(8) :: x = 0.165_8
            x = cotand(x)
          end program test_cotand

_Specific names_:
     Name           Argument       Return type    Standard
     'COTAND(X)'    'REAL(4) X'    'REAL(4)'      GNU extension
     'DCOTAND(X)'   'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Converse function: *note TAND:: Radians function: *note COTAN::


File: gfortran.info,  Node: COUNT,  Next: CPU_TIME,  Prev: COTAND,  Up: Intrinsic Procedures

9.78 'COUNT' -- Count function
==============================

_Description_:

     Counts the number of '.TRUE.' elements in a logical MASK, or, if
     the DIM argument is supplied, counts the number of elements along
     each row of the array in the DIM direction.  If the array has zero
     size, or all of the elements of MASK are '.FALSE.', then the result
     is '0'.

_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = COUNT(MASK [, DIM, KIND])'

_Arguments_:
     MASK        The type shall be 'LOGICAL'.
     DIM         (Optional) The type shall be 'INTEGER'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.  If DIM is
     present, the result is an array with a rank one less than the rank
     of ARRAY, and a size corresponding to the shape of ARRAY with the
     DIM dimension removed.

_Example_:
          program test_count
              integer, dimension(2,3) :: a, b
              logical, dimension(2,3) :: mask
              a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
              b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
              print '(3i3)', a(1,:)
              print '(3i3)', a(2,:)
              print *
              print '(3i3)', b(1,:)
              print '(3i3)', b(2,:)
              print *
              mask = a.ne.b
              print '(3l3)', mask(1,:)
              print '(3l3)', mask(2,:)
              print *
              print '(3i3)', count(mask)
              print *
              print '(3i3)', count(mask, 1)
              print *
              print '(3i3)', count(mask, 2)
          end program test_count


File: gfortran.info,  Node: CPU_TIME,  Next: CSHIFT,  Prev: COUNT,  Up: Intrinsic Procedures

9.79 'CPU_TIME' -- CPU elapsed time in seconds
==============================================

_Description_:
     Returns a 'REAL' value representing the elapsed CPU time in
     seconds.  This is useful for testing segments of code to determine
     execution time.

     If a time source is available, time will be reported with
     microsecond resolution.  If no time source is available, TIME is
     set to '-1.0'.

     Note that TIME may contain a, system dependent, arbitrary offset
     and may not start with '0.0'.  For 'CPU_TIME', the absolute value
     is meaningless, only differences between subsequent calls to this
     subroutine, as shown in the example below, should be used.

_Standard_:
     Fortran 95 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL CPU_TIME(TIME)'

_Arguments_:
     TIME        The type shall be 'REAL' with 'INTENT(OUT)'.

_Return value_:
     None

_Example_:
          program test_cpu_time
              real :: start, finish
              call cpu_time(start)
                  ! put code to test here
              call cpu_time(finish)
              print '("Time = ",f6.3," seconds.")',finish-start
          end program test_cpu_time

_See also_:
     *note SYSTEM_CLOCK::, *note DATE_AND_TIME::


File: gfortran.info,  Node: CSHIFT,  Next: CTIME,  Prev: CPU_TIME,  Up: Intrinsic Procedures

9.80 'CSHIFT' -- Circular shift elements of an array
====================================================

_Description_:
     'CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on
     elements of ARRAY along the dimension of DIM.  If DIM is omitted it
     is taken to be '1'.  DIM is a scalar of type 'INTEGER' in the range
     of 1 \leq DIM \leq n) where n is the rank of ARRAY.  If the rank of
     ARRAY is one, then all elements of ARRAY are shifted by SHIFT
     places.  If rank is greater than one, then all complete rank one
     sections of ARRAY along the given dimension are shifted.  Elements
     shifted out one end of each rank one section are shifted back in
     the other end.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = CSHIFT(ARRAY, SHIFT [, DIM])'

_Arguments_:
     ARRAY       Shall be an array of any type.
     SHIFT       The type shall be 'INTEGER'.
     DIM         The type shall be 'INTEGER'.

_Return value_:
     Returns an array of same type and rank as the ARRAY argument.

_Example_:
          program test_cshift
              integer, dimension(3,3) :: a
              a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
              print '(3i3)', a(1,:)
              print '(3i3)', a(2,:)
              print '(3i3)', a(3,:)
              a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
              print *
              print '(3i3)', a(1,:)
              print '(3i3)', a(2,:)
              print '(3i3)', a(3,:)
          end program test_cshift


File: gfortran.info,  Node: CTIME,  Next: DATE_AND_TIME,  Prev: CSHIFT,  Up: Intrinsic Procedures

9.81 'CTIME' -- Convert a time into a string
============================================

_Description_:
     'CTIME' converts a system time value, such as returned by *note
     TIME8::, to a string.  The output will be of the form 'Sat Aug 19
     18:13:14 1995'.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL CTIME(TIME, RESULT)'.
     'RESULT = CTIME(TIME)'.

_Arguments_:
     TIME        The type shall be of type 'INTEGER'.
     RESULT      The type shall be of type 'CHARACTER' and of
                 default kind.  It is an 'INTENT(OUT)' argument.
                 If the length of this variable is too short for
                 the time and date string to fit completely, it
                 will be blank on procedure return.

_Return value_:
     The converted date and time as a string.

_Example_:
          program test_ctime
              integer(8) :: i
              character(len=30) :: date
              i = time8()

              ! Do something, main part of the program

              call ctime(i,date)
              print *, 'Program was started on ', date
          end program test_ctime

_See Also_:
     *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note TIME::,
     *note TIME8::


File: gfortran.info,  Node: DATE_AND_TIME,  Next: DBLE,  Prev: CTIME,  Up: Intrinsic Procedures

9.82 'DATE_AND_TIME' -- Date and time subroutine
================================================

_Description_:
     'DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding
     date and time information from the real-time system clock.  DATE is
     'INTENT(OUT)' and has form ccyymmdd.  TIME is 'INTENT(OUT)' and has
     form hhmmss.sss.  ZONE is 'INTENT(OUT)' and has form (+-)hhmm,
     representing the difference with respect to Coordinated Universal
     Time (UTC). Unavailable time and date parameters return blanks.

     VALUES is 'INTENT(OUT)' and provides the following:

                 'VALUE(1)':            The year
                 'VALUE(2)':            The month
                 'VALUE(3)':            The day of the month
                 'VALUE(4)':            Time difference with UTC in
                                        minutes
                 'VALUE(5)':            The hour of the day
                 'VALUE(6)':            The minutes of the hour
                 'VALUE(7)':            The seconds of the minute
                 'VALUE(8)':            The milliseconds of the
                                        second

_Standard_:
     Fortran 90 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])'

_Arguments_:
     DATE        (Optional) The type shall be 'CHARACTER(LEN=8)'
                 or larger, and of default kind.
     TIME        (Optional) The type shall be 'CHARACTER(LEN=10)'
                 or larger, and of default kind.
     ZONE        (Optional) The type shall be 'CHARACTER(LEN=5)'
                 or larger, and of default kind.
     VALUES      (Optional) The type shall be 'INTEGER(8)'.

_Return value_:
     None

_Example_:
          program test_time_and_date
              character(8)  :: date
              character(10) :: time
              character(5)  :: zone
              integer,dimension(8) :: values
              ! using keyword arguments
              call date_and_time(date,time,zone,values)
              call date_and_time(DATE=date,ZONE=zone)
              call date_and_time(TIME=time)
              call date_and_time(VALUES=values)
              print '(a,2x,a,2x,a)', date, time, zone
              print '(8i5)', values
          end program test_time_and_date

_See also_:
     *note CPU_TIME::, *note SYSTEM_CLOCK::


File: gfortran.info,  Node: DBLE,  Next: DCMPLX,  Prev: DATE_AND_TIME,  Up: Intrinsic Procedures

9.83 'DBLE' -- Double conversion function
=========================================

_Description_:
     'DBLE(A)' Converts A to double precision real type.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = DBLE(A)'

_Arguments_:
     A           The type shall be 'INTEGER', 'REAL', or
                 'COMPLEX'.

_Return value_:
     The return value is of type double precision real.

_Example_:
          program test_dble
              real    :: x = 2.18
              integer :: i = 5
              complex :: z = (2.3,1.14)
              print *, dble(x), dble(i), dble(z)
          end program test_dble

_See also_:
     *note REAL::


File: gfortran.info,  Node: DCMPLX,  Next: DIGITS,  Prev: DBLE,  Up: Intrinsic Procedures

9.84 'DCMPLX' -- Double complex conversion function
===================================================

_Description_:
     'DCMPLX(X [,Y])' returns a double complex number where X is
     converted to the real component.  If Y is present it is converted
     to the imaginary component.  If Y is not present then the imaginary
     component is set to 0.0.  If X is complex then Y must not be
     present.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = DCMPLX(X [, Y])'

_Arguments_:
     X           The type may be 'INTEGER', 'REAL', or 'COMPLEX'.
     Y           (Optional if X is not 'COMPLEX'.)  May be
                 'INTEGER' or 'REAL'.

_Return value_:
     The return value is of type 'COMPLEX(8)'

_Example_:
          program test_dcmplx
              integer :: i = 42
              real :: x = 3.14
              complex :: z
              z = cmplx(i, x)
              print *, dcmplx(i)
              print *, dcmplx(x)
              print *, dcmplx(z)
              print *, dcmplx(x,i)
          end program test_dcmplx


File: gfortran.info,  Node: DIGITS,  Next: DIM,  Prev: DCMPLX,  Up: Intrinsic Procedures

9.85 'DIGITS' -- Significant binary digits function
===================================================

_Description_:
     'DIGITS(X)' returns the number of significant binary digits of the
     internal model representation of X.  For example, on a system using
     a 32-bit floating point representation, a default real number would
     likely return 24.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = DIGITS(X)'

_Arguments_:
     X           The type may be 'INTEGER' or 'REAL'.

_Return value_:
     The return value is of type 'INTEGER'.

_Example_:
          program test_digits
              integer :: i = 12345
              real :: x = 3.143
              real(8) :: y = 2.33
              print *, digits(i)
              print *, digits(x)
              print *, digits(y)
          end program test_digits


File: gfortran.info,  Node: DIM,  Next: DOT_PRODUCT,  Prev: DIGITS,  Up: Intrinsic Procedures

9.86 'DIM' -- Positive difference
=================================

_Description_:
     'DIM(X,Y)' returns the difference 'X-Y' if the result is positive;
     otherwise returns zero.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = DIM(X, Y)'

_Arguments_:
     X           The type shall be 'INTEGER' or 'REAL'
     Y           The type shall be the same type and kind as X.
                 (As a GNU extension, arguments of different
                 kinds are permitted.)

_Return value_:
     The return value is of type 'INTEGER' or 'REAL'.  (As a GNU
     extension, kind is the largest kind of the actual arguments.)

_Example_:
          program test_dim
              integer :: i
              real(8) :: x
              i = dim(4, 15)
              x = dim(4.345_8, 2.111_8)
              print *, i
              print *, x
          end program test_dim

_Specific names_:
     Name           Argument       Return type    Standard
     'DIM(X,Y)'     'REAL(4) X,    'REAL(4)'      Fortran 77 and
                    Y'                            later
     'IDIM(X,Y)'    'INTEGER(4)    'INTEGER(4)'   Fortran 77 and
                    X, Y'                         later
     'DDIM(X,Y)'    'REAL(8) X,    'REAL(8)'      Fortran 77 and
                    Y'                            later


File: gfortran.info,  Node: DOT_PRODUCT,  Next: DPROD,  Prev: DIM,  Up: Intrinsic Procedures

9.87 'DOT_PRODUCT' -- Dot product function
==========================================

_Description_:
     'DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product
     multiplication of two vectors VECTOR_A and VECTOR_B.  The two
     vectors may be either numeric or logical and must be arrays of rank
     one and of equal size.  If the vectors are 'INTEGER' or 'REAL', the
     result is 'SUM(VECTOR_A*VECTOR_B)'.  If the vectors are 'COMPLEX',
     the result is 'SUM(CONJG(VECTOR_A)*VECTOR_B)'.  If the vectors are
     'LOGICAL', the result is 'ANY(VECTOR_A .AND. VECTOR_B)'.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)'

_Arguments_:
     VECTOR_A    The type shall be numeric or 'LOGICAL', rank 1.
     VECTOR_B    The type shall be numeric if VECTOR_A is of
                 numeric type or 'LOGICAL' if VECTOR_A is of type
                 'LOGICAL'.  VECTOR_B shall be a rank-one array.

_Return value_:
     If the arguments are numeric, the return value is a scalar of
     numeric type, 'INTEGER', 'REAL', or 'COMPLEX'.  If the arguments
     are 'LOGICAL', the return value is '.TRUE.' or '.FALSE.'.

_Example_:
          program test_dot_prod
              integer, dimension(3) :: a, b
              a = (/ 1, 2, 3 /)
              b = (/ 4, 5, 6 /)
              print '(3i3)', a
              print *
              print '(3i3)', b
              print *
              print *, dot_product(a,b)
          end program test_dot_prod


File: gfortran.info,  Node: DPROD,  Next: DREAL,  Prev: DOT_PRODUCT,  Up: Intrinsic Procedures

9.88 'DPROD' -- Double product function
=======================================

_Description_:
     'DPROD(X,Y)' returns the product 'X*Y'.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = DPROD(X, Y)'

_Arguments_:
     X           The type shall be 'REAL'.
     Y           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL(8)'.

_Example_:
          program test_dprod
              real :: x = 5.2
              real :: y = 2.3
              real(8) :: d
              d = dprod(x,y)
              print *, d
          end program test_dprod

_Specific names_:
     Name           Argument       Return type    Standard
     'DPROD(X,Y)'   'REAL(4) X,    'REAL(8)'      Fortran 77 and
                    Y'                            later


File: gfortran.info,  Node: DREAL,  Next: DSHIFTL,  Prev: DPROD,  Up: Intrinsic Procedures

9.89 'DREAL' -- Double real part function
=========================================

_Description_:
     'DREAL(Z)' returns the real part of complex variable Z.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = DREAL(A)'

_Arguments_:
     A           The type shall be 'COMPLEX(8)'.

_Return value_:
     The return value is of type 'REAL(8)'.

_Example_:
          program test_dreal
              complex(8) :: z = (1.3_8,7.2_8)
              print *, dreal(z)
          end program test_dreal

_See also_:
     *note AIMAG::


File: gfortran.info,  Node: DSHIFTL,  Next: DSHIFTR,  Prev: DREAL,  Up: Intrinsic Procedures

9.90 'DSHIFTL' -- Combined left shift
=====================================

_Description_:
     'DSHIFTL(I, J, SHIFT)' combines bits of I and J.  The rightmost
     SHIFT bits of the result are the leftmost SHIFT bits of J, and the
     remaining bits are the rightmost bits of I.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = DSHIFTL(I, J, SHIFT)'

_Arguments_:
     I           Shall be of type 'INTEGER' or a BOZ constant.
     J           Shall be of type 'INTEGER' or a BOZ constant.
                 If both I and J have integer type, then they
                 shall have the same kind type parameter.  I and
                 J shall not both be BOZ constants.
     SHIFT       Shall be of type 'INTEGER'.  It shall be
                 nonnegative.  If I is not a BOZ constant, then
                 SHIFT shall be less than or equal to
                 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
                 than or equal to 'BIT_SIZE(J)'.

_Return value_:
     If either I or J is a BOZ constant, it is first converted as if by
     the intrinsic function 'INT' to an integer type with the kind type
     parameter of the other.

_See also_:
     *note DSHIFTR::


File: gfortran.info,  Node: DSHIFTR,  Next: DTIME,  Prev: DSHIFTL,  Up: Intrinsic Procedures

9.91 'DSHIFTR' -- Combined right shift
======================================

_Description_:
     'DSHIFTR(I, J, SHIFT)' combines bits of I and J.  The leftmost
     SHIFT bits of the result are the rightmost SHIFT bits of I, and the
     remaining bits are the leftmost bits of J.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = DSHIFTR(I, J, SHIFT)'

_Arguments_:
     I           Shall be of type 'INTEGER' or a BOZ constant.
     J           Shall be of type 'INTEGER' or a BOZ constant.
                 If both I and J have integer type, then they
                 shall have the same kind type parameter.  I and
                 J shall not both be BOZ constants.
     SHIFT       Shall be of type 'INTEGER'.  It shall be
                 nonnegative.  If I is not a BOZ constant, then
                 SHIFT shall be less than or equal to
                 'BIT_SIZE(I)'; otherwise, SHIFT shall be less
                 than or equal to 'BIT_SIZE(J)'.

_Return value_:
     If either I or J is a BOZ constant, it is first converted as if by
     the intrinsic function 'INT' to an integer type with the kind type
     parameter of the other.

_See also_:
     *note DSHIFTL::


File: gfortran.info,  Node: DTIME,  Next: EOSHIFT,  Prev: DSHIFTR,  Up: Intrinsic Procedures

9.92 'DTIME' -- Execution time subroutine (or function)
=======================================================

_Description_:
     'DTIME(VALUES, TIME)' initially returns the number of seconds of
     runtime since the start of the process's execution in TIME.  VALUES
     returns the user and system components of this time in 'VALUES(1)'
     and 'VALUES(2)' respectively.  TIME is equal to 'VALUES(1) +
     VALUES(2)'.

     Subsequent invocations of 'DTIME' return values accumulated since
     the previous invocation.

     On some systems, the underlying timings are represented using types
     with sufficiently small limits that overflows (wrap around) are
     possible, such as 32-bit types.  Therefore, the values returned by
     this intrinsic might be, or become, negative, or numerically less
     than previous values, during a single run of the compiled program.

     Please note, that this implementation is thread safe if used within
     OpenMP directives, i.e., its state will be consistent while called
     from multiple threads.  However, if 'DTIME' is called from multiple
     threads, the result is still the time since the last invocation.
     This may not give the intended results.  If possible, use
     'CPU_TIME' instead.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

     VALUES and TIME are 'INTENT(OUT)' and provide the following:

                 'VALUES(1)':           User time in seconds.
                 'VALUES(2)':           System time in seconds.
                 'TIME':                Run time since start in
                                        seconds.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL DTIME(VALUES, TIME)'.
     'TIME = DTIME(VALUES)', (not recommended).

_Arguments_:
     VALUES      The type shall be 'REAL(4), DIMENSION(2)'.
     TIME        The type shall be 'REAL(4)'.

_Return value_:
     Elapsed time in seconds since the last invocation or since the
     start of program execution if not called before.

_Example_:
          program test_dtime
              integer(8) :: i, j
              real, dimension(2) :: tarray
              real :: result
              call dtime(tarray, result)
              print *, result
              print *, tarray(1)
              print *, tarray(2)
              do i=1,100000000    ! Just a delay
                  j = i * i - i
              end do
              call dtime(tarray, result)
              print *, result
              print *, tarray(1)
              print *, tarray(2)
          end program test_dtime

_See also_:
     *note CPU_TIME::


File: gfortran.info,  Node: EOSHIFT,  Next: EPSILON,  Prev: DTIME,  Up: Intrinsic Procedures

9.93 'EOSHIFT' -- End-off shift elements of an array
====================================================

_Description_:
     'EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift
     on elements of ARRAY along the dimension of DIM.  If DIM is omitted
     it is taken to be '1'.  DIM is a scalar of type 'INTEGER' in the
     range of 1 \leq DIM \leq n) where n is the rank of ARRAY.  If the
     rank of ARRAY is one, then all elements of ARRAY are shifted by
     SHIFT places.  If rank is greater than one, then all complete rank
     one sections of ARRAY along the given dimension are shifted.
     Elements shifted out one end of each rank one section are dropped.
     If BOUNDARY is present then the corresponding value of from
     BOUNDARY is copied back in the other end.  If BOUNDARY is not
     present then the following are copied in depending on the type of
     ARRAY.

     _Array      _Boundary Value_
     Type_
     Numeric     0 of the type and kind of ARRAY.
     Logical     '.FALSE.'.
     Character(LEN)LEN blanks.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])'

_Arguments_:
     ARRAY       May be any type, not scalar.
     SHIFT       The type shall be 'INTEGER'.
     BOUNDARY    Same type as ARRAY.
     DIM         The type shall be 'INTEGER'.

_Return value_:
     Returns an array of same type and rank as the ARRAY argument.

_Example_:
          program test_eoshift
              integer, dimension(3,3) :: a
              a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
              print '(3i3)', a(1,:)
              print '(3i3)', a(2,:)
              print '(3i3)', a(3,:)
              a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
              print *
              print '(3i3)', a(1,:)
              print '(3i3)', a(2,:)
              print '(3i3)', a(3,:)
          end program test_eoshift


File: gfortran.info,  Node: EPSILON,  Next: ERF,  Prev: EOSHIFT,  Up: Intrinsic Procedures

9.94 'EPSILON' -- Epsilon function
==================================

_Description_:
     'EPSILON(X)' returns the smallest number E of the same kind as X
     such that 1 + E > 1.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = EPSILON(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of same type as the argument.

_Example_:
          program test_epsilon
              real :: x = 3.143
              real(8) :: y = 2.33
              print *, EPSILON(x)
              print *, EPSILON(y)
          end program test_epsilon


File: gfortran.info,  Node: ERF,  Next: ERFC,  Prev: EPSILON,  Up: Intrinsic Procedures

9.95 'ERF' -- Error function
============================

_Description_:
     'ERF(X)' computes the error function of X.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ERF(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL', of the same kind as X and lies
     in the range -1 \leq erf (x) \leq 1 .

_Example_:
          program test_erf
            real(8) :: x = 0.17_8
            x = erf(x)
          end program test_erf

_Specific names_:
     Name           Argument       Return type    Standard
     'DERF(X)'      'REAL(8) X'    'REAL(8)'      GNU extension


File: gfortran.info,  Node: ERFC,  Next: ERFC_SCALED,  Prev: ERF,  Up: Intrinsic Procedures

9.96 'ERFC' -- Error function
=============================

_Description_:
     'ERFC(X)' computes the complementary error function of X.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ERFC(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL' and of the same kind as X.  It
     lies in the range 0 \leq erfc (x) \leq 2 .

_Example_:
          program test_erfc
            real(8) :: x = 0.17_8
            x = erfc(x)
          end program test_erfc

_Specific names_:
     Name           Argument       Return type    Standard
     'DERFC(X)'     'REAL(8) X'    'REAL(8)'      GNU extension


File: gfortran.info,  Node: ERFC_SCALED,  Next: ETIME,  Prev: ERFC,  Up: Intrinsic Procedures

9.97 'ERFC_SCALED' -- Error function
====================================

_Description_:
     'ERFC_SCALED(X)' computes the exponentially-scaled complementary
     error function of X.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ERFC_SCALED(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL' and of the same kind as X.

_Example_:
          program test_erfc_scaled
            real(8) :: x = 0.17_8
            x = erfc_scaled(x)
          end program test_erfc_scaled


File: gfortran.info,  Node: ETIME,  Next: EVENT_QUERY,  Prev: ERFC_SCALED,  Up: Intrinsic Procedures

9.98 'ETIME' -- Execution time subroutine (or function)
=======================================================

_Description_:
     'ETIME(VALUES, TIME)' returns the number of seconds of runtime
     since the start of the process's execution in TIME.  VALUES returns
     the user and system components of this time in 'VALUES(1)' and
     'VALUES(2)' respectively.  TIME is equal to 'VALUES(1) +
     VALUES(2)'.

     On some systems, the underlying timings are represented using types
     with sufficiently small limits that overflows (wrap around) are
     possible, such as 32-bit types.  Therefore, the values returned by
     this intrinsic might be, or become, negative, or numerically less
     than previous values, during a single run of the compiled program.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

     VALUES and TIME are 'INTENT(OUT)' and provide the following:

                 'VALUES(1)':           User time in seconds.
                 'VALUES(2)':           System time in seconds.
                 'TIME':                Run time since start in seconds.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL ETIME(VALUES, TIME)'.
     'TIME = ETIME(VALUES)', (not recommended).

_Arguments_:
     VALUES      The type shall be 'REAL(4), DIMENSION(2)'.
     TIME        The type shall be 'REAL(4)'.

_Return value_:
     Elapsed time in seconds since the start of program execution.

_Example_:
          program test_etime
              integer(8) :: i, j
              real, dimension(2) :: tarray
              real :: result
              call ETIME(tarray, result)
              print *, result
              print *, tarray(1)
              print *, tarray(2)
              do i=1,100000000    ! Just a delay
                  j = i * i - i
              end do
              call ETIME(tarray, result)
              print *, result
              print *, tarray(1)
              print *, tarray(2)
          end program test_etime

_See also_:
     *note CPU_TIME::


File: gfortran.info,  Node: EVENT_QUERY,  Next: EXECUTE_COMMAND_LINE,  Prev: ETIME,  Up: Intrinsic Procedures

9.99 'EVENT_QUERY' -- Query whether a coarray event has occurred
================================================================

_Description_:
     'EVENT_QUERY' assignes the number of events to COUNT which have
     been posted to the EVENT variable and not yet been removed by
     calling 'EVENT WAIT'.  When STAT is present and the invocation was
     successful, it is assigned the value 0.  If it is present and the
     invocation has failed, it is assigned a positive value and COUNT is
     assigned the value -1.

_Standard_:
     TS 18508 or later

_Class_:
     subroutine

_Syntax_:
     'CALL EVENT_QUERY (EVENT, COUNT [, STAT])'

_Arguments_:
     EVENT       (intent(IN)) Scalar of type 'EVENT_TYPE',
                 defined in 'ISO_FORTRAN_ENV'; shall not be
                 coindexed.
     COUNT       (intent(out))Scalar integer with at least the
                 precision of default integer.
     STAT        (optional) Scalar default-kind integer variable.

_Example_:
          program atomic
            use iso_fortran_env
            implicit none
            type(event_type) :: event_value_has_been_set[*]
            integer :: cnt
            if (this_image() == 1) then
              call event_query (event_value_has_been_set, cnt)
              if (cnt > 0) write(*,*) "Value has been set"
            elseif (this_image() == 2) then
              event post (event_value_has_been_set[1])
            end if
          end program atomic


File: gfortran.info,  Node: EXECUTE_COMMAND_LINE,  Next: EXIT,  Prev: EVENT_QUERY,  Up: Intrinsic Procedures

9.100 'EXECUTE_COMMAND_LINE' -- Execute a shell command
=======================================================

_Description_:
     'EXECUTE_COMMAND_LINE' runs a shell command, synchronously or
     asynchronously.

     The 'COMMAND' argument is passed to the shell and executed (The
     shell is 'sh' on Unix systems, and 'cmd.exe' on Windows.).  If
     'WAIT' is present and has the value false, the execution of the
     command is asynchronous if the system supports it; otherwise, the
     command is executed synchronously using the C library's 'system'
     call.

     The three last arguments allow the user to get status information.
     After synchronous execution, 'EXITSTAT' contains the integer exit
     code of the command, as returned by 'system'.  'CMDSTAT' is set to
     zero if the command line was executed (whatever its exit status
     was).  'CMDMSG' is assigned an error message if an error has
     occurred.

     Note that the 'system' function need not be thread-safe.  It is the
     responsibility of the user to ensure that 'system' is not called
     concurrently.

     For asynchronous execution on supported targets, the POSIX
     'posix_spawn' or 'fork' functions are used.  Also, a signal handler
     for the 'SIGCHLD' signal is installed.

_Standard_:
     Fortran 2008 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT,
     CMDMSG ])'

_Arguments_:
     COMMAND     Shall be a default 'CHARACTER' scalar.
     WAIT        (Optional) Shall be a default 'LOGICAL' scalar.
     EXITSTAT    (Optional) Shall be an 'INTEGER' of the default
                 kind.
     CMDSTAT     (Optional) Shall be an 'INTEGER' of the default
                 kind.
     CMDMSG      (Optional) Shall be an 'CHARACTER' scalar of the
                 default kind.

_Example_:
          program test_exec
            integer :: i

            call execute_command_line ("external_prog.exe", exitstat=i)
            print *, "Exit status of external_prog.exe was ", i

            call execute_command_line ("reindex_files.exe", wait=.false.)
            print *, "Now reindexing files in the background"

          end program test_exec

_Note_:

     Because this intrinsic is implemented in terms of the 'system'
     function call, its behavior with respect to signaling is processor
     dependent.  In particular, on POSIX-compliant systems, the SIGINT
     and SIGQUIT signals will be ignored, and the SIGCHLD will be
     blocked.  As such, if the parent process is terminated, the child
     process might not be terminated alongside.

_See also_:
     *note SYSTEM::


File: gfortran.info,  Node: EXIT,  Next: EXP,  Prev: EXECUTE_COMMAND_LINE,  Up: Intrinsic Procedures

9.101 'EXIT' -- Exit the program with status.
=============================================

_Description_:
     'EXIT' causes immediate termination of the program with status.  If
     status is omitted it returns the canonical _success_ for the
     system.  All Fortran I/O units are closed.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL EXIT([STATUS])'

_Arguments_:
     STATUS      Shall be an 'INTEGER' of the default kind.

_Return value_:
     'STATUS' is passed to the parent process on exit.

_Example_:
          program test_exit
            integer :: STATUS = 0
            print *, 'This program is going to exit.'
            call EXIT(STATUS)
          end program test_exit

_See also_:
     *note ABORT::, *note KILL::


File: gfortran.info,  Node: EXP,  Next: EXPONENT,  Prev: EXIT,  Up: Intrinsic Procedures

9.102 'EXP' -- Exponential function
===================================

_Description_:
     'EXP(X)' computes the base e exponential of X.

_Standard_:
     Fortran 77 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = EXP(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X.

_Example_:
          program test_exp
            real :: x = 1.0
            x = exp(x)
          end program test_exp

_Specific names_:
     Name           Argument       Return type    Standard
     'EXP(X)'       'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DEXP(X)'      'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later
     'CEXP(X)'      'COMPLEX(4)    'COMPLEX(4)'   Fortran 77 and
                    X'                            later
     'ZEXP(X)'      'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'
     'CDEXP(X)'     'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'


File: gfortran.info,  Node: EXPONENT,  Next: EXTENDS_TYPE_OF,  Prev: EXP,  Up: Intrinsic Procedures

9.103 'EXPONENT' -- Exponent function
=====================================

_Description_:
     'EXPONENT(X)' returns the value of the exponent part of X.  If X is
     zero the value returned is zero.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = EXPONENT(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type default 'INTEGER'.

_Example_:
          program test_exponent
            real :: x = 1.0
            integer :: i
            i = exponent(x)
            print *, i
            print *, exponent(0.0)
          end program test_exponent


File: gfortran.info,  Node: EXTENDS_TYPE_OF,  Next: FDATE,  Prev: EXPONENT,  Up: Intrinsic Procedures

9.104 'EXTENDS_TYPE_OF' -- Query dynamic type for extension
===========================================================

_Description_:
     Query dynamic type for extension.

_Standard_:
     Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = EXTENDS_TYPE_OF(A, MOLD)'

_Arguments_:
     A           Shall be an object of extensible declared type
                 or unlimited polymorphic.
     MOLD        Shall be an object of extensible declared type
                 or unlimited polymorphic.

_Return value_:
     The return value is a scalar of type default logical.  It is true
     if and only if the dynamic type of A is an extension type of the
     dynamic type of MOLD.

_See also_:
     *note SAME_TYPE_AS::


File: gfortran.info,  Node: FDATE,  Next: FGET,  Prev: EXTENDS_TYPE_OF,  Up: Intrinsic Procedures

9.105 'FDATE' -- Get the current time as a string
=================================================

_Description_:
     'FDATE(DATE)' returns the current date (using the same format as
     *note CTIME::) in DATE.  It is equivalent to 'CALL CTIME(DATE,
     TIME())'.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL FDATE(DATE)'.
     'DATE = FDATE()'.

_Arguments_:
     DATE        The type shall be of type 'CHARACTER' of the
                 default kind.  It is an 'INTENT(OUT)' argument.
                 If the length of this variable is too short for
                 the date and time string to fit completely, it
                 will be blank on procedure return.

_Return value_:
     The current date and time as a string.

_Example_:
          program test_fdate
              integer(8) :: i, j
              character(len=30) :: date
              call fdate(date)
              print *, 'Program started on ', date
              do i = 1, 100000000 ! Just a delay
                  j = i * i - i
              end do
              call fdate(date)
              print *, 'Program ended on ', date
          end program test_fdate

_See also_:
     *note DATE_AND_TIME::, *note CTIME::


File: gfortran.info,  Node: FGET,  Next: FGETC,  Prev: FDATE,  Up: Intrinsic Procedures

9.106 'FGET' -- Read a single character in stream mode from stdin
=================================================================

_Description_:
     Read a single character in stream mode from stdin by bypassing
     normal formatted output.  Stream I/O should not be mixed with
     normal record-oriented (formatted or unformatted) I/O on the same
     unit; the results are unpredictable.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

     Note that the 'FGET' intrinsic is provided for backwards
     compatibility with 'g77'.  GNU Fortran provides the Fortran 2003
     Stream facility.  Programmers should consider the use of new stream
     IO feature in new code for future portability.  See also *note
     Fortran 2003 status::.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL FGET(C [, STATUS])'
     'STATUS = FGET(C)'

_Arguments_:
     C           The type shall be 'CHARACTER' and of default
                 kind.
     STATUS      (Optional) status flag of type 'INTEGER'.
                 Returns 0 on success, -1 on end-of-file, and a
                 system specific positive error code otherwise.

_Example_:
          PROGRAM test_fget
            INTEGER, PARAMETER :: strlen = 100
            INTEGER :: status, i = 1
            CHARACTER(len=strlen) :: str = ""

            WRITE (*,*) 'Enter text:'
            DO
              CALL fget(str(i:i), status)
              if (status /= 0 .OR. i > strlen) exit
              i = i + 1
            END DO
            WRITE (*,*) TRIM(str)
          END PROGRAM

_See also_:
     *note FGETC::, *note FPUT::, *note FPUTC::


File: gfortran.info,  Node: FGETC,  Next: FINDLOC,  Prev: FGET,  Up: Intrinsic Procedures

9.107 'FGETC' -- Read a single character in stream mode
=======================================================

_Description_:
     Read a single character in stream mode by bypassing normal
     formatted output.  Stream I/O should not be mixed with normal
     record-oriented (formatted or unformatted) I/O on the same unit;
     the results are unpredictable.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

     Note that the 'FGET' intrinsic is provided for backwards
     compatibility with 'g77'.  GNU Fortran provides the Fortran 2003
     Stream facility.  Programmers should consider the use of new stream
     IO feature in new code for future portability.  See also *note
     Fortran 2003 status::.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL FGETC(UNIT, C [, STATUS])'
     'STATUS = FGETC(UNIT, C)'

_Arguments_:
     UNIT        The type shall be 'INTEGER'.
     C           The type shall be 'CHARACTER' and of default
                 kind.
     STATUS      (Optional) status flag of type 'INTEGER'.
                 Returns 0 on success, -1 on end-of-file and a
                 system specific positive error code otherwise.

_Example_:
          PROGRAM test_fgetc
            INTEGER :: fd = 42, status
            CHARACTER :: c

            OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
            DO
              CALL fgetc(fd, c, status)
              IF (status /= 0) EXIT
              call fput(c)
            END DO
            CLOSE(UNIT=fd)
          END PROGRAM

_See also_:
     *note FGET::, *note FPUT::, *note FPUTC::


File: gfortran.info,  Node: FINDLOC,  Next: FLOOR,  Prev: FGETC,  Up: Intrinsic Procedures

9.108 'FINDLOC' -- Search an array for a value
==============================================

_Description_:
     Determines the location of the element in the array with the value
     given in the VALUE argument, or, if the DIM argument is supplied,
     determines the locations of the elements equal to the VALUE
     argument element along each row of the array in the DIM direction.
     If MASK is present, only the elements for which MASK is '.TRUE.'
     are considered.  If more than one element in the array has the
     value VALUE, the location returned is that of the first such
     element in array element order if the BACK is not present or if it
     is '.FALSE.'.  If BACK is true, the location returned is that of
     the last such element.  If the array has zero size, or all of the
     elements of MASK are '.FALSE.', then the result is an array of
     zeroes.  Similarly, if DIM is supplied and all of the elements of
     MASK along a given row are zero, the result value for that row is
     zero.

_Standard_:
     Fortran 2008 and later.

_Class_:
     Transformational function

_Syntax_:
     'RESULT = FINDLOC(ARRAY, VALUE, DIM [, MASK] [,KIND]
     [,BACK])'
     'RESULT = FINDLOC(ARRAY, VALUE, [, MASK] [,KIND]
     [,BACK])'

_Arguments_:
     ARRAY       Shall be an array of intrinsic type.
     VALUE       A scalar of intrinsic type which is in type
                 conformance with ARRAY.
     DIM         (Optional) Shall be a scalar of type 'INTEGER',
                 with a value between one and the rank of ARRAY,
                 inclusive.  It may not be an optional dummy
                 argument.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.
     BACK        (Optional) A scalar of type 'LOGICAL'.

_Return value_:
     If DIM is absent, the result is a rank-one array with a length
     equal to the rank of ARRAY.  If DIM is present, the result is an
     array with a rank one less than the rank of ARRAY, and a size
     corresponding to the size of ARRAY with the DIM dimension removed.
     If DIM is present and ARRAY has a rank of one, the result is a
     scalar.  If the optional argument KIND is present, the result is an
     integer of kind KIND, otherwise it is of default kind.

_See also_:
     *note MAXLOC::, *note MINLOC::


File: gfortran.info,  Node: FLOOR,  Next: FLUSH,  Prev: FINDLOC,  Up: Intrinsic Procedures

9.109 'FLOOR' -- Integer floor function
=======================================

_Description_:
     'FLOOR(A)' returns the greatest integer less than or equal to X.

_Standard_:
     Fortran 95 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = FLOOR(A [, KIND])'

_Arguments_:
     A           The type shall be 'REAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER(KIND)' if KIND is present and
     of default-kind 'INTEGER' otherwise.

_Example_:
          program test_floor
              real :: x = 63.29
              real :: y = -63.59
              print *, floor(x) ! returns 63
              print *, floor(y) ! returns -64
          end program test_floor

_See also_:
     *note CEILING::, *note NINT::


File: gfortran.info,  Node: FLUSH,  Next: FNUM,  Prev: FLOOR,  Up: Intrinsic Procedures

9.110 'FLUSH' -- Flush I/O unit(s)
==================================

_Description_:
     Flushes Fortran unit(s) currently open for output.  Without the
     optional argument, all units are flushed, otherwise just the unit
     specified.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL FLUSH(UNIT)'

_Arguments_:
     UNIT        (Optional) The type shall be 'INTEGER'.

_Note_:
     Beginning with the Fortran 2003 standard, there is a 'FLUSH'
     statement that should be preferred over the 'FLUSH' intrinsic.

     The 'FLUSH' intrinsic and the Fortran 2003 'FLUSH' statement have
     identical effect: they flush the runtime library's I/O buffer so
     that the data becomes visible to other processes.  This does not
     guarantee that the data is committed to disk.

     On POSIX systems, you can request that all data is transferred to
     the storage device by calling the 'fsync' function, with the POSIX
     file descriptor of the I/O unit as argument (retrieved with GNU
     intrinsic 'FNUM').  The following example shows how:

            ! Declare the interface for POSIX fsync function
            interface
              function fsync (fd) bind(c,name="fsync")
              use iso_c_binding, only: c_int
                integer(c_int), value :: fd
                integer(c_int) :: fsync
              end function fsync
            end interface

            ! Variable declaration
            integer :: ret

            ! Opening unit 10
            open (10,file="foo")

            ! ...
            ! Perform I/O on unit 10
            ! ...

            ! Flush and sync
            flush(10)
            ret = fsync(fnum(10))

            ! Handle possible error
            if (ret /= 0) stop "Error calling FSYNC"


File: gfortran.info,  Node: FNUM,  Next: FPUT,  Prev: FLUSH,  Up: Intrinsic Procedures

9.111 'FNUM' -- File number function
====================================

_Description_:
     'FNUM(UNIT)' returns the POSIX file descriptor number corresponding
     to the open Fortran I/O unit 'UNIT'.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = FNUM(UNIT)'

_Arguments_:
     UNIT        The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER'

_Example_:
          program test_fnum
            integer :: i
            open (unit=10, status = "scratch")
            i = fnum(10)
            print *, i
            close (10)
          end program test_fnum


File: gfortran.info,  Node: FPUT,  Next: FPUTC,  Prev: FNUM,  Up: Intrinsic Procedures

9.112 'FPUT' -- Write a single character in stream mode to stdout
=================================================================

_Description_:
     Write a single character in stream mode to stdout by bypassing
     normal formatted output.  Stream I/O should not be mixed with
     normal record-oriented (formatted or unformatted) I/O on the same
     unit; the results are unpredictable.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

     Note that the 'FGET' intrinsic is provided for backwards
     compatibility with 'g77'.  GNU Fortran provides the Fortran 2003
     Stream facility.  Programmers should consider the use of new stream
     IO feature in new code for future portability.  See also *note
     Fortran 2003 status::.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL FPUT(C [, STATUS])'
     'STATUS = FPUT(C)'

_Arguments_:
     C           The type shall be 'CHARACTER' and of default
                 kind.
     STATUS      (Optional) status flag of type 'INTEGER'.
                 Returns 0 on success, -1 on end-of-file and a
                 system specific positive error code otherwise.

_Example_:
          PROGRAM test_fput
            CHARACTER(len=10) :: str = "gfortran"
            INTEGER :: i
            DO i = 1, len_trim(str)
              CALL fput(str(i:i))
            END DO
          END PROGRAM

_See also_:
     *note FPUTC::, *note FGET::, *note FGETC::


File: gfortran.info,  Node: FPUTC,  Next: FRACTION,  Prev: FPUT,  Up: Intrinsic Procedures

9.113 'FPUTC' -- Write a single character in stream mode
========================================================

_Description_:
     Write a single character in stream mode by bypassing normal
     formatted output.  Stream I/O should not be mixed with normal
     record-oriented (formatted or unformatted) I/O on the same unit;
     the results are unpredictable.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

     Note that the 'FGET' intrinsic is provided for backwards
     compatibility with 'g77'.  GNU Fortran provides the Fortran 2003
     Stream facility.  Programmers should consider the use of new stream
     IO feature in new code for future portability.  See also *note
     Fortran 2003 status::.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL FPUTC(UNIT, C [, STATUS])'
     'STATUS = FPUTC(UNIT, C)'

_Arguments_:
     UNIT        The type shall be 'INTEGER'.
     C           The type shall be 'CHARACTER' and of default
                 kind.
     STATUS      (Optional) status flag of type 'INTEGER'.
                 Returns 0 on success, -1 on end-of-file and a
                 system specific positive error code otherwise.

_Example_:
          PROGRAM test_fputc
            CHARACTER(len=10) :: str = "gfortran"
            INTEGER :: fd = 42, i

            OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
            DO i = 1, len_trim(str)
              CALL fputc(fd, str(i:i))
            END DO
            CLOSE(fd)
          END PROGRAM

_See also_:
     *note FPUT::, *note FGET::, *note FGETC::


File: gfortran.info,  Node: FRACTION,  Next: FREE,  Prev: FPUTC,  Up: Intrinsic Procedures

9.114 'FRACTION' -- Fractional part of the model representation
===============================================================

_Description_:
     'FRACTION(X)' returns the fractional part of the model
     representation of 'X'.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'Y = FRACTION(X)'

_Arguments_:
     X           The type of the argument shall be a 'REAL'.

_Return value_:
     The return value is of the same type and kind as the argument.  The
     fractional part of the model representation of 'X' is returned; it
     is 'X * RADIX(X)**(-EXPONENT(X))'.

_Example_:
          program test_fraction
            real :: x
            x = 178.1387e-4
            print *, fraction(x), x * radix(x)**(-exponent(x))
          end program test_fraction


File: gfortran.info,  Node: FREE,  Next: FSEEK,  Prev: FRACTION,  Up: Intrinsic Procedures

9.115 'FREE' -- Frees memory
============================

_Description_:
     Frees memory previously allocated by 'MALLOC'.  The 'FREE'
     intrinsic is an extension intended to be used with Cray pointers,
     and is provided in GNU Fortran to allow user to compile legacy
     code.  For new code using Fortran 95 pointers, the memory
     de-allocation intrinsic is 'DEALLOCATE'.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL FREE(PTR)'

_Arguments_:
     PTR         The type shall be 'INTEGER'.  It represents the
                 location of the memory that should be
                 de-allocated.

_Return value_:
     None

_Example_:
     See 'MALLOC' for an example.

_See also_:
     *note MALLOC::


File: gfortran.info,  Node: FSEEK,  Next: FSTAT,  Prev: FREE,  Up: Intrinsic Procedures

9.116 'FSEEK' -- Low level file positioning subroutine
======================================================

_Description_:
     Moves UNIT to the specified OFFSET.  If WHENCE is set to 0, the
     OFFSET is taken as an absolute value 'SEEK_SET', if set to 1,
     OFFSET is taken to be relative to the current position 'SEEK_CUR',
     and if set to 2 relative to the end of the file 'SEEK_END'.  On
     error, STATUS is set to a nonzero value.  If STATUS the seek fails
     silently.

     This intrinsic routine is not fully backwards compatible with
     'g77'.  In 'g77', the 'FSEEK' takes a statement label instead of a
     STATUS variable.  If FSEEK is used in old code, change
            CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
     to
            INTEGER :: status
            CALL FSEEK(UNIT, OFFSET, WHENCE, status)
            IF (status /= 0) GOTO label

     Please note that GNU Fortran provides the Fortran 2003 Stream
     facility.  Programmers should consider the use of new stream IO
     feature in new code for future portability.  See also *note Fortran
     2003 status::.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])'

_Arguments_:
     UNIT        Shall be a scalar of type 'INTEGER'.
     OFFSET      Shall be a scalar of type 'INTEGER'.
     WHENCE      Shall be a scalar of type 'INTEGER'.  Its value
                 shall be either 0, 1 or 2.
     STATUS      (Optional) shall be a scalar of type
                 'INTEGER(4)'.

_Example_:
          PROGRAM test_fseek
            INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
            INTEGER :: fd, offset, ierr

            ierr   = 0
            offset = 5
            fd     = 10

            OPEN(UNIT=fd, FILE="fseek.test")
            CALL FSEEK(fd, offset, SEEK_SET, ierr)  ! move to OFFSET
            print *, FTELL(fd), ierr

            CALL FSEEK(fd, 0, SEEK_END, ierr)       ! move to end
            print *, FTELL(fd), ierr

            CALL FSEEK(fd, 0, SEEK_SET, ierr)       ! move to beginning
            print *, FTELL(fd), ierr

            CLOSE(UNIT=fd)
          END PROGRAM

_See also_:
     *note FTELL::


File: gfortran.info,  Node: FSTAT,  Next: FTELL,  Prev: FSEEK,  Up: Intrinsic Procedures

9.117 'FSTAT' -- Get file status
================================

_Description_:
     'FSTAT' is identical to *note STAT::, except that information about
     an already opened file is obtained.

     The elements in 'VALUES' are the same as described by *note STAT::.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL FSTAT(UNIT, VALUES [, STATUS])'
     'STATUS = FSTAT(UNIT, VALUES)'

_Arguments_:
     UNIT        An open I/O unit number of type 'INTEGER'.
     VALUES      The type shall be 'INTEGER(4), DIMENSION(13)'.
     STATUS      (Optional) status flag of type 'INTEGER(4)'.
                 Returns 0 on success and a system specific error
                 code otherwise.

_Example_:
     See *note STAT:: for an example.

_See also_:
     To stat a link: *note LSTAT:: To stat a file: *note STAT::


File: gfortran.info,  Node: FTELL,  Next: GAMMA,  Prev: FSTAT,  Up: Intrinsic Procedures

9.118 'FTELL' -- Current stream position
========================================

_Description_:
     Retrieves the current position within an open file.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL FTELL(UNIT, OFFSET)'
     'OFFSET = FTELL(UNIT)'

_Arguments_:
     OFFSET      Shall of type 'INTEGER'.
     UNIT        Shall of type 'INTEGER'.

_Return value_:
     In either syntax, OFFSET is set to the current offset of unit
     number UNIT, or to -1 if the unit is not currently open.

_Example_:
          PROGRAM test_ftell
            INTEGER :: i
            OPEN(10, FILE="temp.dat")
            CALL ftell(10,i)
            WRITE(*,*) i
          END PROGRAM

_See also_:
     *note FSEEK::


File: gfortran.info,  Node: GAMMA,  Next: GERROR,  Prev: FTELL,  Up: Intrinsic Procedures

9.119 'GAMMA' -- Gamma function
===============================

_Description_:
     'GAMMA(X)' computes Gamma (\Gamma) of X.  For positive, integer
     values of X the Gamma function simplifies to the factorial function
     \Gamma(x)=(x-1)!.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'X = GAMMA(X)'

_Arguments_:
     X           Shall be of type 'REAL' and neither zero nor a
                 negative integer.

_Return value_:
     The return value is of type 'REAL' of the same kind as X.

_Example_:
          program test_gamma
            real :: x = 1.0
            x = gamma(x) ! returns 1.0
          end program test_gamma

_Specific names_:
     Name           Argument       Return type    Standard
     'DGAMMA(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Logarithm of the Gamma function: *note LOG_GAMMA::


File: gfortran.info,  Node: GERROR,  Next: GETARG,  Prev: GAMMA,  Up: Intrinsic Procedures

9.120 'GERROR' -- Get last system error message
===============================================

_Description_:
     Returns the system error message corresponding to the last system
     error.  This resembles the functionality of 'strerror(3)' in C.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL GERROR(RESULT)'

_Arguments_:
     RESULT      Shall of type 'CHARACTER' and of default

_Example_:
          PROGRAM test_gerror
            CHARACTER(len=100) :: msg
            CALL gerror(msg)
            WRITE(*,*) msg
          END PROGRAM

_See also_:
     *note IERRNO::, *note PERROR::


File: gfortran.info,  Node: GETARG,  Next: GET_COMMAND,  Prev: GERROR,  Up: Intrinsic Procedures

9.121 'GETARG' -- Get command line arguments
============================================

_Description_:
     Retrieve the POS-th argument that was passed on the command line
     when the containing program was invoked.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  In new code, programmers should consider the use
     of the *note GET_COMMAND_ARGUMENT:: intrinsic defined by the
     Fortran 2003 standard.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL GETARG(POS, VALUE)'

_Arguments_:
     POS         Shall be of type 'INTEGER' and not wider than
                 the default integer kind; POS \geq 0
     VALUE       Shall be of type 'CHARACTER' and of default
                 kind.
     VALUE       Shall be of type 'CHARACTER'.

_Return value_:
     After 'GETARG' returns, the VALUE argument holds the POSth command
     line argument.  If VALUE cannot hold the argument, it is truncated
     to fit the length of VALUE.  If there are less than POS arguments
     specified at the command line, VALUE will be filled with blanks.
     If POS = 0, VALUE is set to the name of the program (on systems
     that support this feature).

_Example_:
          PROGRAM test_getarg
            INTEGER :: i
            CHARACTER(len=32) :: arg

            DO i = 1, iargc()
              CALL getarg(i, arg)
              WRITE (*,*) arg
            END DO
          END PROGRAM

_See also_:
     GNU Fortran 77 compatibility function: *note IARGC:: Fortran 2003
     functions and subroutines: *note GET_COMMAND::, *note
     GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::


File: gfortran.info,  Node: GET_COMMAND,  Next: GET_COMMAND_ARGUMENT,  Prev: GETARG,  Up: Intrinsic Procedures

9.122 'GET_COMMAND' -- Get the entire command line
==================================================

_Description_:
     Retrieve the entire command line that was used to invoke the
     program.

_Standard_:
     Fortran 2003 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL GET_COMMAND([COMMAND, LENGTH, STATUS])'

_Arguments_:
     COMMAND     (Optional) shall be of type 'CHARACTER' and of
                 default kind.
     LENGTH      (Optional) Shall be of type 'INTEGER' and of
                 default kind.
     STATUS      (Optional) Shall be of type 'INTEGER' and of
                 default kind.

_Return value_:
     If COMMAND is present, stores the entire command line that was used
     to invoke the program in COMMAND.  If LENGTH is present, it is
     assigned the length of the command line.  If STATUS is present, it
     is assigned 0 upon success of the command, -1 if COMMAND is too
     short to store the command line, or a positive value in case of an
     error.

_Example_:
          PROGRAM test_get_command
            CHARACTER(len=255) :: cmd
            CALL get_command(cmd)
            WRITE (*,*) TRIM(cmd)
          END PROGRAM

_See also_:
     *note GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::


File: gfortran.info,  Node: GET_COMMAND_ARGUMENT,  Next: GETCWD,  Prev: GET_COMMAND,  Up: Intrinsic Procedures

9.123 'GET_COMMAND_ARGUMENT' -- Get command line arguments
==========================================================

_Description_:
     Retrieve the NUMBER-th argument that was passed on the command line
     when the containing program was invoked.

_Standard_:
     Fortran 2003 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])'

_Arguments_:
     NUMBER      Shall be a scalar of type 'INTEGER' and of
                 default kind, NUMBER \geq 0
     VALUE       (Optional) Shall be a scalar of type 'CHARACTER'
                 and of default kind.
     LENGTH      (Optional) Shall be a scalar of type 'INTEGER'
                 and of default kind.
     STATUS      (Optional) Shall be a scalar of type 'INTEGER'
                 and of default kind.

_Return value_:
     After 'GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the
     NUMBER-th command line argument.  If VALUE cannot hold the
     argument, it is truncated to fit the length of VALUE.  If there are
     less than NUMBER arguments specified at the command line, VALUE
     will be filled with blanks.  If NUMBER = 0, VALUE is set to the
     name of the program (on systems that support this feature).  The
     LENGTH argument contains the length of the NUMBER-th command line
     argument.  If the argument retrieval fails, STATUS is a positive
     number; if VALUE contains a truncated command line argument, STATUS
     is -1; and otherwise the STATUS is zero.

_Example_:
          PROGRAM test_get_command_argument
            INTEGER :: i
            CHARACTER(len=32) :: arg

            i = 0
            DO
              CALL get_command_argument(i, arg)
              IF (LEN_TRIM(arg) == 0) EXIT

              WRITE (*,*) TRIM(arg)
              i = i+1
            END DO
          END PROGRAM

_See also_:
     *note GET_COMMAND::, *note COMMAND_ARGUMENT_COUNT::


File: gfortran.info,  Node: GETCWD,  Next: GETENV,  Prev: GET_COMMAND_ARGUMENT,  Up: Intrinsic Procedures

9.124 'GETCWD' -- Get current working directory
===============================================

_Description_:
     Get current working directory.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL GETCWD(C [, STATUS])'
     'STATUS = GETCWD(C)'

_Arguments_:
     C           The type shall be 'CHARACTER' and of default
                 kind.
     STATUS      (Optional) status flag.  Returns 0 on success, a
                 system specific and nonzero error code
                 otherwise.

_Example_:
          PROGRAM test_getcwd
            CHARACTER(len=255) :: cwd
            CALL getcwd(cwd)
            WRITE(*,*) TRIM(cwd)
          END PROGRAM

_See also_:
     *note CHDIR::


File: gfortran.info,  Node: GETENV,  Next: GET_ENVIRONMENT_VARIABLE,  Prev: GETCWD,  Up: Intrinsic Procedures

9.125 'GETENV' -- Get an environmental variable
===============================================

_Description_:
     Get the VALUE of the environmental variable NAME.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  In new code, programmers should consider the use
     of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the
     Fortran 2003 standard.

     Note that 'GETENV' need not be thread-safe.  It is the
     responsibility of the user to ensure that the environment is not
     being updated concurrently with a call to the 'GETENV' intrinsic.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL GETENV(NAME, VALUE)'

_Arguments_:
     NAME        Shall be of type 'CHARACTER' and of default
                 kind.
     VALUE       Shall be of type 'CHARACTER' and of default
                 kind.

_Return value_:
     Stores the value of NAME in VALUE.  If VALUE is not large enough to
     hold the data, it is truncated.  If NAME is not set, VALUE will be
     filled with blanks.

_Example_:
          PROGRAM test_getenv
            CHARACTER(len=255) :: homedir
            CALL getenv("HOME", homedir)
            WRITE (*,*) TRIM(homedir)
          END PROGRAM

_See also_:
     *note GET_ENVIRONMENT_VARIABLE::


File: gfortran.info,  Node: GET_ENVIRONMENT_VARIABLE,  Next: GETGID,  Prev: GETENV,  Up: Intrinsic Procedures

9.126 'GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable
=================================================================

_Description_:
     Get the VALUE of the environmental variable NAME.

     Note that 'GET_ENVIRONMENT_VARIABLE' need not be thread-safe.  It
     is the responsibility of the user to ensure that the environment is
     not being updated concurrently with a call to the
     'GET_ENVIRONMENT_VARIABLE' intrinsic.

_Standard_:
     Fortran 2003 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS,
     TRIM_NAME)'

_Arguments_:
     NAME        Shall be a scalar of type 'CHARACTER' and of
                 default kind.
     VALUE       (Optional) Shall be a scalar of type 'CHARACTER'
                 and of default kind.
     LENGTH      (Optional) Shall be a scalar of type 'INTEGER'
                 and of default kind.
     STATUS      (Optional) Shall be a scalar of type 'INTEGER'
                 and of default kind.
     TRIM_NAME   (Optional) Shall be a scalar of type 'LOGICAL'
                 and of default kind.

_Return value_:
     Stores the value of NAME in VALUE.  If VALUE is not large enough to
     hold the data, it is truncated.  If NAME is not set, VALUE will be
     filled with blanks.  Argument LENGTH contains the length needed for
     storing the environment variable NAME or zero if it is not present.
     STATUS is -1 if VALUE is present but too short for the environment
     variable; it is 1 if the environment variable does not exist and 2
     if the processor does not support environment variables; in all
     other cases STATUS is zero.  If TRIM_NAME is present with the value
     '.FALSE.', the trailing blanks in NAME are significant; otherwise
     they are not part of the environment variable name.

_Example_:
          PROGRAM test_getenv
            CHARACTER(len=255) :: homedir
            CALL get_environment_variable("HOME", homedir)
            WRITE (*,*) TRIM(homedir)
          END PROGRAM


File: gfortran.info,  Node: GETGID,  Next: GETLOG,  Prev: GET_ENVIRONMENT_VARIABLE,  Up: Intrinsic Procedures

9.127 'GETGID' -- Group ID function
===================================

_Description_:
     Returns the numerical group ID of the current process.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = GETGID()'

_Return value_:
     The return value of 'GETGID' is an 'INTEGER' of the default kind.

_Example_:
     See 'GETPID' for an example.

_See also_:
     *note GETPID::, *note GETUID::


File: gfortran.info,  Node: GETLOG,  Next: GETPID,  Prev: GETGID,  Up: Intrinsic Procedures

9.128 'GETLOG' -- Get login name
================================

_Description_:
     Gets the username under which the program is running.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL GETLOG(C)'

_Arguments_:
     C           Shall be of type 'CHARACTER' and of default
                 kind.

_Return value_:
     Stores the current user name in LOGIN.  (On systems where POSIX
     functions 'geteuid' and 'getpwuid' are not available, and the
     'getlogin' function is not implemented either, this will return a
     blank string.)

_Example_:
          PROGRAM TEST_GETLOG
            CHARACTER(32) :: login
            CALL GETLOG(login)
            WRITE(*,*) login
          END PROGRAM

_See also_:
     *note GETUID::


File: gfortran.info,  Node: GETPID,  Next: GETUID,  Prev: GETLOG,  Up: Intrinsic Procedures

9.129 'GETPID' -- Process ID function
=====================================

_Description_:
     Returns the numerical process identifier of the current process.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = GETPID()'

_Return value_:
     The return value of 'GETPID' is an 'INTEGER' of the default kind.

_Example_:
          program info
            print *, "The current process ID is ", getpid()
            print *, "Your numerical user ID is ", getuid()
            print *, "Your numerical group ID is ", getgid()
          end program info

_See also_:
     *note GETGID::, *note GETUID::


File: gfortran.info,  Node: GETUID,  Next: GMTIME,  Prev: GETPID,  Up: Intrinsic Procedures

9.130 'GETUID' -- User ID function
==================================

_Description_:
     Returns the numerical user ID of the current process.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = GETUID()'

_Return value_:
     The return value of 'GETUID' is an 'INTEGER' of the default kind.

_Example_:
     See 'GETPID' for an example.

_See also_:
     *note GETPID::, *note GETLOG::


File: gfortran.info,  Node: GMTIME,  Next: HOSTNM,  Prev: GETUID,  Up: Intrinsic Procedures

9.131 'GMTIME' -- Convert time to GMT info
==========================================

_Description_:
     Given a system time value TIME (as provided by the *note TIME::
     intrinsic), fills VALUES with values extracted from it appropriate
     to the UTC time zone (Universal Coordinated Time, also known in
     some countries as GMT, Greenwich Mean Time), using 'gmtime(3)'.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  In new code, programmers should consider the use
     of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
     standard.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL GMTIME(TIME, VALUES)'

_Arguments_:
     TIME        An 'INTEGER' scalar expression corresponding to
                 a system time, with 'INTENT(IN)'.
     VALUES      A default 'INTEGER' array with 9 elements, with
                 'INTENT(OUT)'.

_Return value_:
     The elements of VALUES are assigned as follows:
       1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
          seconds
       2. Minutes after the hour, range 0-59
       3. Hours past midnight, range 0-23
       4. Day of month, range 1-31
       5. Number of months since January, range 0-11
       6. Years since 1900
       7. Number of days since Sunday, range 0-6
       8. Days since January 1, range 0-365
       9. Daylight savings indicator: positive if daylight savings is in
          effect, zero if not, and negative if the information is not
          available.

_See also_:
     *note DATE_AND_TIME::, *note CTIME::, *note LTIME::, *note TIME::,
     *note TIME8::


File: gfortran.info,  Node: HOSTNM,  Next: HUGE,  Prev: GMTIME,  Up: Intrinsic Procedures

9.132 'HOSTNM' -- Get system host name
======================================

_Description_:
     Retrieves the host name of the system on which the program is
     running.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL HOSTNM(C [, STATUS])'
     'STATUS = HOSTNM(NAME)'

_Arguments_:
     C           Shall of type 'CHARACTER' and of default kind.
     STATUS      (Optional) status flag of type 'INTEGER'.
                 Returns 0 on success, or a system specific error
                 code otherwise.

_Return value_:
     In either syntax, NAME is set to the current hostname if it can be
     obtained, or to a blank string otherwise.


File: gfortran.info,  Node: HUGE,  Next: HYPOT,  Prev: HOSTNM,  Up: Intrinsic Procedures

9.133 'HUGE' -- Largest number of a kind
========================================

_Description_:
     'HUGE(X)' returns the largest number that is not an infinity in the
     model of the type of 'X'.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = HUGE(X)'

_Arguments_:
     X           Shall be of type 'REAL' or 'INTEGER'.

_Return value_:
     The return value is of the same type and kind as X

_Example_:
          program test_huge_tiny
            print *, huge(0), huge(0.0), huge(0.0d0)
            print *, tiny(0.0), tiny(0.0d0)
          end program test_huge_tiny


File: gfortran.info,  Node: HYPOT,  Next: IACHAR,  Prev: HUGE,  Up: Intrinsic Procedures

9.134 'HYPOT' -- Euclidean distance function
============================================

_Description_:
     'HYPOT(X,Y)' is the Euclidean distance function.  It is equal to
     \sqrt{X^2 + Y^2}, without undue underflow or overflow.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = HYPOT(X, Y)'

_Arguments_:
     X           The type shall be 'REAL'.
     Y           The type and kind type parameter shall be the
                 same as X.

_Return value_:
     The return value has the same type and kind type parameter as X.

_Example_:
          program test_hypot
            real(4) :: x = 1.e0_4, y = 0.5e0_4
            x = hypot(x,y)
          end program test_hypot


File: gfortran.info,  Node: IACHAR,  Next: IALL,  Prev: HYPOT,  Up: Intrinsic Procedures

9.135 'IACHAR' -- Code in ASCII collating sequence
==================================================

_Description_:
     'IACHAR(C)' returns the code for the ASCII character in the first
     character position of 'C'.

_Standard_:
     Fortran 95 and later, with KIND argument Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IACHAR(C [, KIND])'

_Arguments_:
     C           Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_Example_:
          program test_iachar
            integer i
            i = iachar(' ')
          end program test_iachar

_Note_:
     See *note ICHAR:: for a discussion of converting between numerical
     values and formatted string representations.

_See also_:
     *note ACHAR::, *note CHAR::, *note ICHAR::


File: gfortran.info,  Node: IALL,  Next: IAND,  Prev: IACHAR,  Up: Intrinsic Procedures

9.136 'IALL' -- Bitwise AND of array elements
=============================================

_Description_:
     Reduces with bitwise AND the elements of ARRAY along dimension DIM
     if the corresponding element in MASK is 'TRUE'.

_Standard_:
     Fortran 2008 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = IALL(ARRAY[, MASK])'
     'RESULT = IALL(ARRAY, DIM[, MASK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER'
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 with a value in the range from 1 to n, where n
                 equals the rank of ARRAY.
     MASK        (Optional) shall be of type 'LOGICAL' and either
                 be a scalar or an array of the same shape as
                 ARRAY.

_Return value_:
     The result is of the same type as ARRAY.

     If DIM is absent, a scalar with the bitwise ALL of all elements in
     ARRAY is returned.  Otherwise, an array of rank n-1, where n equals
     the rank of ARRAY, and a shape similar to that of ARRAY with
     dimension DIM dropped is returned.

_Example_:
          PROGRAM test_iall
            INTEGER(1) :: a(2)

            a(1) = b'00100100'
            a(2) = b'01101010'

            ! prints 00100000
            PRINT '(b8.8)', IALL(a)
          END PROGRAM

_See also_:
     *note IANY::, *note IPARITY::, *note IAND::


File: gfortran.info,  Node: IAND,  Next: IANY,  Prev: IALL,  Up: Intrinsic Procedures

9.137 'IAND' -- Bitwise logical and
===================================

_Description_:
     Bitwise logical 'AND'.

_Standard_:
     Fortran 90 and later, with boz-literal-constant Fortran 2008 and
     later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IAND(I, J)'

_Arguments_:
     I           The type shall be 'INTEGER' or a
                 boz-literal-constant.
     J           The type shall be 'INTEGER' with the same kind
                 type parameter as I or a boz-literal-constant.
                 I and J shall not both be boz-literal-constants.

_Return value_:
     The return type is 'INTEGER' with the kind type parameter of the
     arguments.  A boz-literal-constant is converted to an 'INTEGER'
     with the kind type parameter of the other argument as-if a call to
     *note INT:: occurred.

_Example_:
          PROGRAM test_iand
            INTEGER :: a, b
            DATA a / Z'F' /, b / Z'3' /
            WRITE (*,*) IAND(a, b)
          END PROGRAM

_Specific names_:
     Name           Argument       Return type    Standard
     'IAND(A)'      'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BIAND(A)'     'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IIAND(A)'     'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JIAND(A)'     'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KIAND(A)'     'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note
     IBCLR::, *note NOT::


File: gfortran.info,  Node: IANY,  Next: IARGC,  Prev: IAND,  Up: Intrinsic Procedures

9.138 'IANY' -- Bitwise OR of array elements
============================================

_Description_:
     Reduces with bitwise OR (inclusive or) the elements of ARRAY along
     dimension DIM if the corresponding element in MASK is 'TRUE'.

_Standard_:
     Fortran 2008 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = IANY(ARRAY[, MASK])'
     'RESULT = IANY(ARRAY, DIM[, MASK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER'
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 with a value in the range from 1 to n, where n
                 equals the rank of ARRAY.
     MASK        (Optional) shall be of type 'LOGICAL' and either
                 be a scalar or an array of the same shape as
                 ARRAY.

_Return value_:
     The result is of the same type as ARRAY.

     If DIM is absent, a scalar with the bitwise OR of all elements in
     ARRAY is returned.  Otherwise, an array of rank n-1, where n equals
     the rank of ARRAY, and a shape similar to that of ARRAY with
     dimension DIM dropped is returned.

_Example_:
          PROGRAM test_iany
            INTEGER(1) :: a(2)

            a(1) = b'00100100'
            a(2) = b'01101010'

            ! prints 01101110
            PRINT '(b8.8)', IANY(a)
          END PROGRAM

_See also_:
     *note IPARITY::, *note IALL::, *note IOR::


File: gfortran.info,  Node: IARGC,  Next: IBCLR,  Prev: IANY,  Up: Intrinsic Procedures

9.139 'IARGC' -- Get the number of command line arguments
=========================================================

_Description_:
     'IARGC' returns the number of arguments passed on the command line
     when the containing program was invoked.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  In new code, programmers should consider the use
     of the *note COMMAND_ARGUMENT_COUNT:: intrinsic defined by the
     Fortran 2003 standard.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = IARGC()'

_Arguments_:
     None

_Return value_:
     The number of command line arguments, type 'INTEGER(4)'.

_Example_:
     See *note GETARG::

_See also_:
     GNU Fortran 77 compatibility subroutine: *note GETARG:: Fortran
     2003 functions and subroutines: *note GET_COMMAND::, *note
     GET_COMMAND_ARGUMENT::, *note COMMAND_ARGUMENT_COUNT::


File: gfortran.info,  Node: IBCLR,  Next: IBITS,  Prev: IARGC,  Up: Intrinsic Procedures

9.140 'IBCLR' -- Clear bit
==========================

_Description_:
     'IBCLR' returns the value of I with the bit at position POS set to
     zero.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IBCLR(I, POS)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     POS         The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_Specific names_:
     Name           Argument       Return type    Standard
     'IBCLR(A)'     'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BBCLR(A)'     'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IIBCLR(A)'    'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JIBCLR(A)'    'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KIBCLR(A)'    'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note
     IEOR::, *note MVBITS::


File: gfortran.info,  Node: IBITS,  Next: IBSET,  Prev: IBCLR,  Up: Intrinsic Procedures

9.141 'IBITS' -- Bit extraction
===============================

_Description_:
     'IBITS' extracts a field of length LEN from I, starting from bit
     position POS and extending left for LEN bits.  The result is
     right-justified and the remaining bits are zeroed.  The value of
     'POS+LEN' must be less than or equal to the value 'BIT_SIZE(I)'.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IBITS(I, POS, LEN)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     POS         The type shall be 'INTEGER'.
     LEN         The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_Specific names_:
     Name           Argument       Return type    Standard
     'IBITS(A)'     'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BBITS(A)'     'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IIBITS(A)'    'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JIBITS(A)'    'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KIBITS(A)'    'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, *note
     IOR::, *note IEOR::


File: gfortran.info,  Node: IBSET,  Next: ICHAR,  Prev: IBITS,  Up: Intrinsic Procedures

9.142 'IBSET' -- Set bit
========================

_Description_:
     'IBSET' returns the value of I with the bit at position POS set to
     one.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IBSET(I, POS)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     POS         The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_Specific names_:
     Name           Argument       Return type    Standard
     'IBSET(A)'     'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BBSET(A)'     'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IIBSET(A)'    'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JIBSET(A)'    'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KIBSET(A)'    'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note
     IEOR::, *note MVBITS::


File: gfortran.info,  Node: ICHAR,  Next: IDATE,  Prev: IBSET,  Up: Intrinsic Procedures

9.143 'ICHAR' -- Character-to-integer conversion function
=========================================================

_Description_:
     'ICHAR(C)' returns the code for the character in the first
     character position of 'C' in the system's native character set.
     The correspondence between characters and their codes is not
     necessarily the same across different GNU Fortran implementations.

_Standard_:
     Fortran 77 and later, with KIND argument Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ICHAR(C [, KIND])'

_Arguments_:
     C           Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_Example_:
          program test_ichar
            integer i
            i = ichar(' ')
          end program test_ichar

_Specific names_:
     Name           Argument       Return type    Standard
     'ICHAR(C)'     'CHARACTER     'INTEGER(4)'   Fortran 77 and
                    C'                            later

_Note_:
     No intrinsic exists to convert between a numeric value and a
     formatted character string representation - for instance, given the
     'CHARACTER' value ''154'', obtaining an 'INTEGER' or 'REAL' value
     with the value 154, or vice versa.  Instead, this functionality is
     provided by internal-file I/O, as in the following example:
          program read_val
            integer value
            character(len=10) string, string2
            string = '154'

            ! Convert a string to a numeric value
            read (string,'(I10)') value
            print *, value

            ! Convert a value to a formatted string
            write (string2,'(I10)') value
            print *, string2
          end program read_val

_See also_:
     *note ACHAR::, *note CHAR::, *note IACHAR::


File: gfortran.info,  Node: IDATE,  Next: IEOR,  Prev: ICHAR,  Up: Intrinsic Procedures

9.144 'IDATE' -- Get current local time subroutine (day/month/year)
===================================================================

_Description_:
     'IDATE(VALUES)' Fills VALUES with the numerical values at the
     current local time.  The day (in the range 1-31), month (in the
     range 1-12), and year appear in elements 1, 2, and 3 of VALUES,
     respectively.  The year has four significant digits.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  In new code, programmers should consider the use
     of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
     standard.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL IDATE(VALUES)'

_Arguments_:
     VALUES      The type shall be 'INTEGER, DIMENSION(3)' and
                 the kind shall be the default integer kind.

_Return value_:
     Does not return anything.

_Example_:
          program test_idate
            integer, dimension(3) :: tarray
            call idate(tarray)
            print *, tarray(1)
            print *, tarray(2)
            print *, tarray(3)
          end program test_idate

_See also_:
     *note DATE_AND_TIME::


File: gfortran.info,  Node: IEOR,  Next: IERRNO,  Prev: IDATE,  Up: Intrinsic Procedures

9.145 'IEOR' -- Bitwise logical exclusive or
============================================

_Description_:
     'IEOR' returns the bitwise Boolean exclusive-OR of I and J.

_Standard_:
     Fortran 90 and later, with boz-literal-constant Fortran 2008 and
     later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IEOR(I, J)'

_Arguments_:
     I           The type shall be 'INTEGER' or a
                 boz-literal-constant.
     J           The type shall be 'INTEGER' with the same kind
                 type parameter as I or a boz-literal-constant.
                 I and J shall not both be boz-literal-constants.

_Return value_:
     The return type is 'INTEGER' with the kind type parameter of the
     arguments.  A boz-literal-constant is converted to an 'INTEGER'
     with the kind type parameter of the other argument as-if a call to
     *note INT:: occurred.

_Specific names_:
     Name           Argument       Return type    Standard
     'IEOR(A)'      'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BIEOR(A)'     'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IIEOR(A)'     'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JIEOR(A)'     'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KIEOR(A)'     'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
     IBCLR::, *note NOT::


File: gfortran.info,  Node: IERRNO,  Next: IMAGE_INDEX,  Prev: IEOR,  Up: Intrinsic Procedures

9.146 'IERRNO' -- Get the last system error number
==================================================

_Description_:
     Returns the last system error number, as given by the C 'errno'
     variable.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = IERRNO()'

_Arguments_:
     None

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.

_See also_:
     *note PERROR::


File: gfortran.info,  Node: IMAGE_INDEX,  Next: INDEX intrinsic,  Prev: IERRNO,  Up: Intrinsic Procedures

9.147 'IMAGE_INDEX' -- Function that converts a cosubscript to an image index
=============================================================================

_Description_:
     Returns the image index belonging to a cosubscript.

_Standard_:
     Fortran 2008 and later

_Class_:
     Inquiry function.

_Syntax_:
     'RESULT = IMAGE_INDEX(COARRAY, SUB)'

_Arguments_:
     COARRAY     Coarray of any type.
     SUB         default integer rank-1 array of a size equal to
                 the corank of COARRAY.

_Return value_:
     Scalar default integer with the value of the image index which
     corresponds to the cosubscripts.  For invalid cosubscripts the
     result is zero.

_Example_:
          INTEGER :: array[2,-1:4,8,*]
          ! Writes  28 (or 0 if there are fewer than 28 images)
          WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])

_See also_:
     *note THIS_IMAGE::, *note NUM_IMAGES::


File: gfortran.info,  Node: INDEX intrinsic,  Next: INT,  Prev: IMAGE_INDEX,  Up: Intrinsic Procedures

9.148 'INDEX' -- Position of a substring within a string
========================================================

_Description_:
     Returns the position of the start of the first occurrence of string
     SUBSTRING as a substring in STRING, counting from one.  If
     SUBSTRING is not present in STRING, zero is returned.  If the BACK
     argument is present and true, the return value is the start of the
     last occurrence rather than the first.

_Standard_:
     Fortran 77 and later, with KIND argument Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])'

_Arguments_:
     STRING      Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
     SUBSTRING   Shall be a scalar 'CHARACTER', with 'INTENT(IN)'
     BACK        (Optional) Shall be a scalar 'LOGICAL', with
                 'INTENT(IN)'
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_Specific names_:
     Name           Argument       Return type    Standard
     'INDEX(STRING, 'CHARACTER'    'INTEGER(4)'   Fortran 77 and
     SUBSTRING)'                                  later

_See also_:
     *note SCAN::, *note VERIFY::


File: gfortran.info,  Node: INT,  Next: INT2,  Prev: INDEX intrinsic,  Up: Intrinsic Procedures

9.149 'INT' -- Convert to integer type
======================================

_Description_:
     Convert to integer type

_Standard_:
     Fortran 77 and later, with boz-literal-constant Fortran 2008 and
     later.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = INT(A [, KIND))'

_Arguments_:
     A           Shall be of type 'INTEGER', 'REAL', or 'COMPLEX'
                 or or a boz-literal-constant.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     These functions return a 'INTEGER' variable or array under the
     following rules:

     (A)
          If A is of type 'INTEGER', 'INT(A) = A'
     (B)
          If A is of type 'REAL' and |A| < 1, 'INT(A)' equals '0'.  If
          |A| \geq 1, then 'INT(A)' is the integer whose magnitude is
          the largest integer that does not exceed the magnitude of A
          and whose sign is the same as the sign of A.
     (C)
          If A is of type 'COMPLEX', rule B is applied to the real part
          of A.

_Example_:
          program test_int
            integer :: i = 42
            complex :: z = (-3.7, 1.0)
            print *, int(i)
            print *, int(z), int(z,8)
          end program

_Specific names_:
     Name           Argument       Return type    Standard
     'INT(A)'       'REAL(4) A'    'INTEGER'      Fortran 77 and
                                                  later
     'IFIX(A)'      'REAL(4) A'    'INTEGER'      Fortran 77 and
                                                  later
     'IDINT(A)'     'REAL(8) A'    'INTEGER'      Fortran 77 and
                                                  later


File: gfortran.info,  Node: INT2,  Next: INT8,  Prev: INT,  Up: Intrinsic Procedures

9.150 'INT2' -- Convert to 16-bit integer type
==============================================

_Description_:
     Convert to a 'KIND=2' integer type.  This is equivalent to the
     standard 'INT' intrinsic with an optional argument of 'KIND=2', and
     is only included for backwards compatibility.

     The 'SHORT' intrinsic is equivalent to 'INT2'.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = INT2(A)'

_Arguments_:
     A           Shall be of type 'INTEGER', 'REAL', or
                 'COMPLEX'.

_Return value_:
     The return value is a 'INTEGER(2)' variable.

_See also_:
     *note INT::, *note INT8::, *note LONG::


File: gfortran.info,  Node: INT8,  Next: IOR,  Prev: INT2,  Up: Intrinsic Procedures

9.151 'INT8' -- Convert to 64-bit integer type
==============================================

_Description_:
     Convert to a 'KIND=8' integer type.  This is equivalent to the
     standard 'INT' intrinsic with an optional argument of 'KIND=8', and
     is only included for backwards compatibility.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = INT8(A)'

_Arguments_:
     A           Shall be of type 'INTEGER', 'REAL', or
                 'COMPLEX'.

_Return value_:
     The return value is a 'INTEGER(8)' variable.

_See also_:
     *note INT::, *note INT2::, *note LONG::


File: gfortran.info,  Node: IOR,  Next: IPARITY,  Prev: INT8,  Up: Intrinsic Procedures

9.152 'IOR' -- Bitwise logical or
=================================

_Description_:
     'IOR' returns the bitwise Boolean inclusive-OR of I and J.

_Standard_:
     Fortran 90 and later, with boz-literal-constant Fortran 2008 and
     later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IOR(I, J)'

_Arguments_:
     I           The type shall be 'INTEGER' or a
                 boz-literal-constant.
     J           The type shall be 'INTEGER' with the same kind
                 type parameter as I or a boz-literal-constant.
                 I and J shall not both be boz-literal-constants.

_Return value_:
     The return type is 'INTEGER' with the kind type parameter of the
     arguments.  A boz-literal-constant is converted to an 'INTEGER'
     with the kind type parameter of the other argument as-if a call to
     *note INT:: occurred.

_Specific names_:
     Name           Argument       Return type    Standard
     'IOR(A)'       'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BIOR(A)'      'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IIOR(A)'      'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JIOR(A)'      'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KIOR(A)'      'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note
     IBCLR::, *note NOT::


File: gfortran.info,  Node: IPARITY,  Next: IRAND,  Prev: IOR,  Up: Intrinsic Procedures

9.153 'IPARITY' -- Bitwise XOR of array elements
================================================

_Description_:
     Reduces with bitwise XOR (exclusive or) the elements of ARRAY along
     dimension DIM if the corresponding element in MASK is 'TRUE'.

_Standard_:
     Fortran 2008 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = IPARITY(ARRAY[, MASK])'
     'RESULT = IPARITY(ARRAY, DIM[, MASK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER'
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 with a value in the range from 1 to n, where n
                 equals the rank of ARRAY.
     MASK        (Optional) shall be of type 'LOGICAL' and either
                 be a scalar or an array of the same shape as
                 ARRAY.

_Return value_:
     The result is of the same type as ARRAY.

     If DIM is absent, a scalar with the bitwise XOR of all elements in
     ARRAY is returned.  Otherwise, an array of rank n-1, where n equals
     the rank of ARRAY, and a shape similar to that of ARRAY with
     dimension DIM dropped is returned.

_Example_:
          PROGRAM test_iparity
            INTEGER(1) :: a(2)

            a(1) = int(b'00100100', 1)
            a(2) = int(b'01101010', 1)

            ! prints 01001110
            PRINT '(b8.8)', IPARITY(a)
          END PROGRAM

_See also_:
     *note IANY::, *note IALL::, *note IEOR::, *note PARITY::


File: gfortran.info,  Node: IRAND,  Next: IS_CONTIGUOUS,  Prev: IPARITY,  Up: Intrinsic Procedures

9.154 'IRAND' -- Integer pseudo-random number
=============================================

_Description_:
     'IRAND(FLAG)' returns a pseudo-random number from a uniform
     distribution between 0 and a system-dependent limit (which is in
     most cases 2147483647).  If FLAG is 0, the next number in the
     current sequence is returned; if FLAG is 1, the generator is
     restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
     used as a new seed with 'SRAND'.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  It implements a simple modulo generator as
     provided by 'g77'.  For new code, one should consider the use of
     *note RANDOM_NUMBER:: as it implements a superior algorithm.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = IRAND(I)'

_Arguments_:
     I           Shall be a scalar 'INTEGER' of kind 4.

_Return value_:
     The return value is of 'INTEGER(kind=4)' type.

_Example_:
          program test_irand
            integer,parameter :: seed = 86456

            call srand(seed)
            print *, irand(), irand(), irand(), irand()
            print *, irand(seed), irand(), irand(), irand()
          end program test_irand


File: gfortran.info,  Node: IS_CONTIGUOUS,  Next: IS_IOSTAT_END,  Prev: IRAND,  Up: Intrinsic Procedures

9.155 'IS_CONTIGUOUS' -- Test whether an array is contiguous
============================================================

_Description_:
     'IS_CONTIGUOUS' tests whether an array is contiguous.

_Standard_:
     Fortran 2008 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = IS_CONTIGUOUS(ARRAY)'

_Arguments_:
     ARRAY       Shall be an array of any type.

_Return value_:
     Returns a 'LOGICAL' of the default kind, which '.TRUE.' if ARRAY is
     contiguous and false otherwise.

_Example_:
          program test
            integer :: a(10)
            a = [1,2,3,4,5,6,7,8,9,10]
            call sub (a)      ! every element, is contiguous
            call sub (a(::2)) ! every other element, is noncontiguous
          contains
            subroutine sub (x)
              integer :: x(:)
              if (is_contiguous (x)) then
                write (*,*) 'X is contiguous'
              else
                write (*,*) 'X is not contiguous'
              end if
            end subroutine sub
          end program test


File: gfortran.info,  Node: IS_IOSTAT_END,  Next: IS_IOSTAT_EOR,  Prev: IS_CONTIGUOUS,  Up: Intrinsic Procedures

9.156 'IS_IOSTAT_END' -- Test for end-of-file value
===================================================

_Description_:
     'IS_IOSTAT_END' tests whether an variable has the value of the I/O
     status "end of file".  The function is equivalent to comparing the
     variable with the 'IOSTAT_END' parameter of the intrinsic module
     'ISO_FORTRAN_ENV'.

_Standard_:
     Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IS_IOSTAT_END(I)'

_Arguments_:
     I           Shall be of the type 'INTEGER'.

_Return value_:
     Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
     the value which indicates an end of file condition for 'IOSTAT='
     specifiers, and is '.FALSE.' otherwise.

_Example_:
          PROGRAM iostat
            IMPLICIT NONE
            INTEGER :: stat, i
            OPEN(88, FILE='test.dat')
            READ(88, *, IOSTAT=stat) i
            IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
          END PROGRAM


File: gfortran.info,  Node: IS_IOSTAT_EOR,  Next: ISATTY,  Prev: IS_IOSTAT_END,  Up: Intrinsic Procedures

9.157 'IS_IOSTAT_EOR' -- Test for end-of-record value
=====================================================

_Description_:
     'IS_IOSTAT_EOR' tests whether an variable has the value of the I/O
     status "end of record".  The function is equivalent to comparing
     the variable with the 'IOSTAT_EOR' parameter of the intrinsic
     module 'ISO_FORTRAN_ENV'.

_Standard_:
     Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = IS_IOSTAT_EOR(I)'

_Arguments_:
     I           Shall be of the type 'INTEGER'.

_Return value_:
     Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has
     the value which indicates an end of file condition for 'IOSTAT='
     specifiers, and is '.FALSE.' otherwise.

_Example_:
          PROGRAM iostat
            IMPLICIT NONE
            INTEGER :: stat, i(50)
            OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
            READ(88, IOSTAT=stat) i
            IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
          END PROGRAM


File: gfortran.info,  Node: ISATTY,  Next: ISHFT,  Prev: IS_IOSTAT_EOR,  Up: Intrinsic Procedures

9.158 'ISATTY' -- Whether a unit is a terminal device.
======================================================

_Description_:
     Determine whether a unit is connected to a terminal device.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = ISATTY(UNIT)'

_Arguments_:
     UNIT        Shall be a scalar 'INTEGER'.

_Return value_:
     Returns '.TRUE.' if the UNIT is connected to a terminal device,
     '.FALSE.' otherwise.

_Example_:
          PROGRAM test_isatty
            INTEGER(kind=1) :: unit
            DO unit = 1, 10
              write(*,*) isatty(unit=unit)
            END DO
          END PROGRAM
_See also_:
     *note TTYNAM::


File: gfortran.info,  Node: ISHFT,  Next: ISHFTC,  Prev: ISATTY,  Up: Intrinsic Procedures

9.159 'ISHFT' -- Shift bits
===========================

_Description_:
     'ISHFT' returns a value corresponding to I with all of the bits
     shifted SHIFT places.  A value of SHIFT greater than zero
     corresponds to a left shift, a value of zero corresponds to no
     shift, and a value less than zero corresponds to a right shift.  If
     the absolute value of SHIFT is greater than 'BIT_SIZE(I)', the
     value is undefined.  Bits shifted out from the left end or right
     end are lost; zeros are shifted in from the opposite end.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ISHFT(I, SHIFT)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     SHIFT       The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_Specific names_:
     Name           Argument       Return type    Standard
     'ISHFT(A)'     'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BSHFT(A)'     'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IISHFT(A)'    'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JISHFT(A)'    'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KISHFT(A)'    'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note ISHFTC::


File: gfortran.info,  Node: ISHFTC,  Next: ISNAN,  Prev: ISHFT,  Up: Intrinsic Procedures

9.160 'ISHFTC' -- Shift bits circularly
=======================================

_Description_:
     'ISHFTC' returns a value corresponding to I with the rightmost SIZE
     bits shifted circularly SHIFT places; that is, bits shifted out one
     end are shifted into the opposite end.  A value of SHIFT greater
     than zero corresponds to a left shift, a value of zero corresponds
     to no shift, and a value less than zero corresponds to a right
     shift.  The absolute value of SHIFT must be less than SIZE.  If the
     SIZE argument is omitted, it is taken to be equivalent to
     'BIT_SIZE(I)'.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = ISHFTC(I, SHIFT [, SIZE])'

_Arguments_:
     I           The type shall be 'INTEGER'.
     SHIFT       The type shall be 'INTEGER'.
     SIZE        (Optional) The type shall be 'INTEGER'; the
                 value must be greater than zero and less than or
                 equal to 'BIT_SIZE(I)'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_Specific names_:
     Name           Argument       Return type    Standard
     'ISHFTC(A)'    'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BSHFTC(A)'    'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IISHFTC(A)'   'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JISHFTC(A)'   'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KISHFTC(A)'   'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note ISHFT::


File: gfortran.info,  Node: ISNAN,  Next: ITIME,  Prev: ISHFTC,  Up: Intrinsic Procedures

9.161 'ISNAN' -- Test for a NaN
===============================

_Description_:
     'ISNAN' tests whether a floating-point value is an IEEE
     Not-a-Number (NaN).
_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'ISNAN(X)'

_Arguments_:
     X           Variable of the type 'REAL'.
                 

_Return value_:
     Returns a default-kind 'LOGICAL'.  The returned value is 'TRUE' if
     X is a NaN and 'FALSE' otherwise.

_Example_:
          program test_nan
            implicit none
            real :: x
            x = -1.0
            x = sqrt(x)
            if (isnan(x)) stop '"x" is a NaN'
          end program test_nan


File: gfortran.info,  Node: ITIME,  Next: KILL,  Prev: ISNAN,  Up: Intrinsic Procedures

9.162 'ITIME' -- Get current local time subroutine (hour/minutes/seconds)
=========================================================================

_Description_:
     'ITIME(VALUES)' Fills VALUES with the numerical values at the
     current local time.  The hour (in the range 1-24), minute (in the
     range 1-60), and seconds (in the range 1-60) appear in elements 1,
     2, and 3 of VALUES, respectively.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  In new code, programmers should consider the use
     of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
     standard.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL ITIME(VALUES)'

_Arguments_:
     VALUES      The type shall be 'INTEGER, DIMENSION(3)' and
                 the kind shall be the default integer kind.

_Return value_:
     Does not return anything.

_Example_:
          program test_itime
            integer, dimension(3) :: tarray
            call itime(tarray)
            print *, tarray(1)
            print *, tarray(2)
            print *, tarray(3)
          end program test_itime

_See also_:
     *note DATE_AND_TIME::


File: gfortran.info,  Node: KILL,  Next: KIND,  Prev: ITIME,  Up: Intrinsic Procedures

9.163 'KILL' -- Send a signal to a process
==========================================

_Description_:
     Sends the signal specified by SIG to the process PID.  See
     'kill(2)'.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.
_Standard_:
     GNU extension

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL KILL(PID, SIG [, STATUS])'
     'STATUS = KILL(PID, SIG)'

_Arguments_:
     PID         Shall be a scalar 'INTEGER' with 'INTENT(IN)'.
     SIG         Shall be a scalar 'INTEGER' with 'INTENT(IN)'.
     STATUS      [Subroutine](Optional) Shall be a scalar
                 'INTEGER'.  Returns 0 on success; otherwise a
                 system-specific error code is returned.
     STATUS      [Function] The kind type parameter is that of
                 'pid'.  Returns 0 on success; otherwise a
                 system-specific error code is returned.

_See also_:
     *note ABORT::, *note EXIT::


File: gfortran.info,  Node: KIND,  Next: LBOUND,  Prev: KILL,  Up: Intrinsic Procedures

9.164 'KIND' -- Kind of an entity
=================================

_Description_:
     'KIND(X)' returns the kind value of the entity X.

_Standard_:
     Fortran 95 and later

_Class_:
     Inquiry function

_Syntax_:
     'K = KIND(X)'

_Arguments_:
     X           Shall be of type 'LOGICAL', 'INTEGER', 'REAL',
                 'COMPLEX' or 'CHARACTER'.  It may be scalar or
                 array valued.

_Return value_:
     The return value is a scalar of type 'INTEGER' and of the default
     integer kind.

_Example_:
          program test_kind
            integer,parameter :: kc = kind(' ')
            integer,parameter :: kl = kind(.true.)

            print *, "The default character kind is ", kc
            print *, "The default logical kind is ", kl
          end program test_kind


File: gfortran.info,  Node: LBOUND,  Next: LCOBOUND,  Prev: KIND,  Up: Intrinsic Procedures

9.165 'LBOUND' -- Lower dimension bounds of an array
====================================================

_Description_:
     Returns the lower bounds of an array, or a single lower bound along
     the DIM dimension.
_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = LBOUND(ARRAY [, DIM [, KIND]])'

_Arguments_:
     ARRAY       Shall be an array, of any type.
     DIM         (Optional) Shall be a scalar 'INTEGER'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.  If DIM is
     absent, the result is an array of the lower bounds of ARRAY.  If
     DIM is present, the result is a scalar corresponding to the lower
     bound of the array along that dimension.  If ARRAY is an expression
     rather than a whole array or array structure component, or if it
     has a zero extent along the relevant dimension, the lower bound is
     taken to be 1.

_See also_:
     *note UBOUND::, *note LCOBOUND::


File: gfortran.info,  Node: LCOBOUND,  Next: LEADZ,  Prev: LBOUND,  Up: Intrinsic Procedures

9.166 'LCOBOUND' -- Lower codimension bounds of an array
========================================================

_Description_:
     Returns the lower bounds of a coarray, or a single lower cobound
     along the DIM codimension.
_Standard_:
     Fortran 2008 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])'

_Arguments_:
     ARRAY       Shall be an coarray, of any type.
     DIM         (Optional) Shall be a scalar 'INTEGER'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.  If DIM is
     absent, the result is an array of the lower cobounds of COARRAY.
     If DIM is present, the result is a scalar corresponding to the
     lower cobound of the array along that codimension.

_See also_:
     *note UCOBOUND::, *note LBOUND::


File: gfortran.info,  Node: LEADZ,  Next: LEN,  Prev: LCOBOUND,  Up: Intrinsic Procedures

9.167 'LEADZ' -- Number of leading zero bits of an integer
==========================================================

_Description_:
     'LEADZ' returns the number of leading zero bits of an integer.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LEADZ(I)'

_Arguments_:
     I           Shall be of type 'INTEGER'.

_Return value_:
     The type of the return value is the default 'INTEGER'.  If all the
     bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.

_Example_:
          PROGRAM test_leadz
            WRITE (*,*) BIT_SIZE(1)  ! prints 32
            WRITE (*,*) LEADZ(1)     ! prints 31
          END PROGRAM

_See also_:
     *note BIT_SIZE::, *note TRAILZ::, *note POPCNT::, *note POPPAR::


File: gfortran.info,  Node: LEN,  Next: LEN_TRIM,  Prev: LEADZ,  Up: Intrinsic Procedures

9.168 'LEN' -- Length of a character entity
===========================================

_Description_:
     Returns the length of a character string.  If STRING is an array,
     the length of an element of STRING is returned.  Note that STRING
     need not be defined when this intrinsic is invoked, since only the
     length, not the content, of STRING is needed.

_Standard_:
     Fortran 77 and later, with KIND argument Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'L = LEN(STRING [, KIND])'

_Arguments_:
     STRING      Shall be a scalar or array of type 'CHARACTER',
                 with 'INTENT(IN)'
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_Specific names_:
     Name           Argument       Return type    Standard
     'LEN(STRING)'  'CHARACTER'    'INTEGER'      Fortran 77 and
                                                  later

_See also_:
     *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR::


File: gfortran.info,  Node: LEN_TRIM,  Next: LGE,  Prev: LEN,  Up: Intrinsic Procedures

9.169 'LEN_TRIM' -- Length of a character entity without trailing blank characters
==================================================================================

_Description_:
     Returns the length of a character string, ignoring any trailing
     blanks.

_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LEN_TRIM(STRING [, KIND])'

_Arguments_:
     STRING      Shall be a scalar of type 'CHARACTER', with
                 'INTENT(IN)'
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_See also_:
     *note LEN::, *note ADJUSTL::, *note ADJUSTR::


File: gfortran.info,  Node: LGE,  Next: LGT,  Prev: LEN_TRIM,  Up: Intrinsic Procedures

9.170 'LGE' -- Lexical greater than or equal
============================================

_Description_:
     Determines whether one string is lexically greater than or equal to
     another string, where the two strings are interpreted as containing
     ASCII character codes.  If the String A and String B are not the
     same length, the shorter is compared as if spaces were appended to
     it to form a value that has the same length as the longer.

     In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
     and 'LLT' differ from the corresponding intrinsic operators '.GE.',
     '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
     character ordering (which is not ASCII on some targets), whereas
     the former always use the ASCII ordering.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LGE(STRING_A, STRING_B)'

_Arguments_:
     STRING_A    Shall be of default 'CHARACTER' type.
     STRING_B    Shall be of default 'CHARACTER' type.

_Return value_:
     Returns '.TRUE.' if 'STRING_A >= STRING_B', and '.FALSE.'
     otherwise, based on the ASCII ordering.

_Specific names_:
     Name           Argument       Return type    Standard
     'LGE(STRING_A, 'CHARACTER'    'LOGICAL'      Fortran 77 and
     STRING_B)'                                   later

_See also_:
     *note LGT::, *note LLE::, *note LLT::


File: gfortran.info,  Node: LGT,  Next: LINK,  Prev: LGE,  Up: Intrinsic Procedures

9.171 'LGT' -- Lexical greater than
===================================

_Description_:
     Determines whether one string is lexically greater than another
     string, where the two strings are interpreted as containing ASCII
     character codes.  If the String A and String B are not the same
     length, the shorter is compared as if spaces were appended to it to
     form a value that has the same length as the longer.

     In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
     and 'LLT' differ from the corresponding intrinsic operators '.GE.',
     '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
     character ordering (which is not ASCII on some targets), whereas
     the former always use the ASCII ordering.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LGT(STRING_A, STRING_B)'

_Arguments_:
     STRING_A    Shall be of default 'CHARACTER' type.
     STRING_B    Shall be of default 'CHARACTER' type.

_Return value_:
     Returns '.TRUE.' if 'STRING_A > STRING_B', and '.FALSE.' otherwise,
     based on the ASCII ordering.

_Specific names_:
     Name           Argument       Return type    Standard
     'LGT(STRING_A, 'CHARACTER'    'LOGICAL'      Fortran 77 and
     STRING_B)'                                   later

_See also_:
     *note LGE::, *note LLE::, *note LLT::


File: gfortran.info,  Node: LINK,  Next: LLE,  Prev: LGT,  Up: Intrinsic Procedures

9.172 'LINK' -- Create a hard link
==================================

_Description_:
     Makes a (hard) link from file PATH1 to PATH2.  A null character
     ('CHAR(0)') can be used to mark the end of the names in PATH1 and
     PATH2; otherwise, trailing blanks in the file names are ignored.
     If the STATUS argument is supplied, it contains 0 on success or a
     nonzero error code upon return; see 'link(2)'.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL LINK(PATH1, PATH2 [, STATUS])'
     'STATUS = LINK(PATH1, PATH2)'

_Arguments_:
     PATH1       Shall be of default 'CHARACTER' type.
     PATH2       Shall be of default 'CHARACTER' type.
     STATUS      (Optional) Shall be of default 'INTEGER' type.

_See also_:
     *note SYMLNK::, *note UNLINK::


File: gfortran.info,  Node: LLE,  Next: LLT,  Prev: LINK,  Up: Intrinsic Procedures

9.173 'LLE' -- Lexical less than or equal
=========================================

_Description_:
     Determines whether one string is lexically less than or equal to
     another string, where the two strings are interpreted as containing
     ASCII character codes.  If the String A and String B are not the
     same length, the shorter is compared as if spaces were appended to
     it to form a value that has the same length as the longer.

     In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
     and 'LLT' differ from the corresponding intrinsic operators '.GE.',
     '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
     character ordering (which is not ASCII on some targets), whereas
     the former always use the ASCII ordering.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LLE(STRING_A, STRING_B)'

_Arguments_:
     STRING_A    Shall be of default 'CHARACTER' type.
     STRING_B    Shall be of default 'CHARACTER' type.

_Return value_:
     Returns '.TRUE.' if 'STRING_A <= STRING_B', and '.FALSE.'
     otherwise, based on the ASCII ordering.

_Specific names_:
     Name           Argument       Return type    Standard
     'LLE(STRING_A, 'CHARACTER'    'LOGICAL'      Fortran 77 and
     STRING_B)'                                   later

_See also_:
     *note LGE::, *note LGT::, *note LLT::


File: gfortran.info,  Node: LLT,  Next: LNBLNK,  Prev: LLE,  Up: Intrinsic Procedures

9.174 'LLT' -- Lexical less than
================================

_Description_:
     Determines whether one string is lexically less than another
     string, where the two strings are interpreted as containing ASCII
     character codes.  If the String A and String B are not the same
     length, the shorter is compared as if spaces were appended to it to
     form a value that has the same length as the longer.

     In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE',
     and 'LLT' differ from the corresponding intrinsic operators '.GE.',
     '.GT.', '.LE.', and '.LT.', in that the latter use the processor's
     character ordering (which is not ASCII on some targets), whereas
     the former always use the ASCII ordering.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LLT(STRING_A, STRING_B)'

_Arguments_:
     STRING_A    Shall be of default 'CHARACTER' type.
     STRING_B    Shall be of default 'CHARACTER' type.

_Return value_:
     Returns '.TRUE.' if 'STRING_A < STRING_B', and '.FALSE.' otherwise,
     based on the ASCII ordering.

_Specific names_:
     Name           Argument       Return type    Standard
     'LLT(STRING_A, 'CHARACTER'    'LOGICAL'      Fortran 77 and
     STRING_B)'                                   later

_See also_:
     *note LGE::, *note LGT::, *note LLE::


File: gfortran.info,  Node: LNBLNK,  Next: LOC,  Prev: LLT,  Up: Intrinsic Procedures

9.175 'LNBLNK' -- Index of the last non-blank character in a string
===================================================================

_Description_:
     Returns the length of a character string, ignoring any trailing
     blanks.  This is identical to the standard 'LEN_TRIM' intrinsic,
     and is only included for backwards compatibility.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LNBLNK(STRING)'

_Arguments_:
     STRING      Shall be a scalar of type 'CHARACTER', with
                 'INTENT(IN)'

_Return value_:
     The return value is of 'INTEGER(kind=4)' type.

_See also_:
     *note INDEX intrinsic::, *note LEN_TRIM::


File: gfortran.info,  Node: LOC,  Next: LOG,  Prev: LNBLNK,  Up: Intrinsic Procedures

9.176 'LOC' -- Returns the address of a variable
================================================

_Description_:
     'LOC(X)' returns the address of X as an integer.

_Standard_:
     GNU extension

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = LOC(X)'

_Arguments_:
     X           Variable of any type.

_Return value_:
     The return value is of type 'INTEGER', with a 'KIND' corresponding
     to the size (in bytes) of a memory address on the target machine.

_Example_:
          program test_loc
            integer :: i
            real :: r
            i = loc(r)
            print *, i
          end program test_loc


File: gfortran.info,  Node: LOG,  Next: LOG10,  Prev: LOC,  Up: Intrinsic Procedures

9.177 'LOG' -- Natural logarithm function
=========================================

_Description_:
     'LOG(X)' computes the natural logarithm of X, i.e.  the logarithm
     to the base e.

_Standard_:
     Fortran 77 and later, has GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LOG(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value is of type 'REAL' or 'COMPLEX'.  The kind type
     parameter is the same as X.  If X is 'COMPLEX', the imaginary part
     \omega is in the range -\pi < \omega \leq \pi.

_Example_:
          program test_log
            real(8) :: x = 2.7182818284590451_8
            complex :: z = (1.0, 2.0)
            x = log(x)    ! will yield (approximately) 1
            z = log(z)
          end program test_log

_Specific names_:
     Name           Argument       Return type    Standard
     'ALOG(X)'      'REAL(4) X'    'REAL(4)'      Fortran 77 or
                                                  later
     'DLOG(X)'      'REAL(8) X'    'REAL(8)'      Fortran 77 or
                                                  later
     'CLOG(X)'      'COMPLEX(4)    'COMPLEX(4)'   Fortran 77 or
                    X'                            later
     'ZLOG(X)'      'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'
     'CDLOG(X)'     'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'


File: gfortran.info,  Node: LOG10,  Next: LOG_GAMMA,  Prev: LOG,  Up: Intrinsic Procedures

9.178 'LOG10' -- Base 10 logarithm function
===========================================

_Description_:
     'LOG10(X)' computes the base 10 logarithm of X.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LOG10(X)'

_Arguments_:
     X           The type shall be 'REAL'.

_Return value_:
     The return value is of type 'REAL' or 'COMPLEX'.  The kind type
     parameter is the same as X.

_Example_:
          program test_log10
            real(8) :: x = 10.0_8
            x = log10(x)
          end program test_log10

_Specific names_:
     Name           Argument       Return type    Standard
     'ALOG10(X)'    'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DLOG10(X)'    'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later


File: gfortran.info,  Node: LOG_GAMMA,  Next: LOGICAL,  Prev: LOG10,  Up: Intrinsic Procedures

9.179 'LOG_GAMMA' -- Logarithm of the Gamma function
====================================================

_Description_:
     'LOG_GAMMA(X)' computes the natural logarithm of the absolute value
     of the Gamma (\Gamma) function.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'X = LOG_GAMMA(X)'

_Arguments_:
     X           Shall be of type 'REAL' and neither zero nor a
                 negative integer.

_Return value_:
     The return value is of type 'REAL' of the same kind as X.

_Example_:
          program test_log_gamma
            real :: x = 1.0
            x = lgamma(x) ! returns 0.0
          end program test_log_gamma

_Specific names_:
     Name           Argument       Return type    Standard
     'LGAMMA(X)'    'REAL(4) X'    'REAL(4)'      GNU extension
     'ALGAMA(X)'    'REAL(4) X'    'REAL(4)'      GNU extension
     'DLGAMA(X)'    'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Gamma function: *note GAMMA::


File: gfortran.info,  Node: LOGICAL,  Next: LONG,  Prev: LOG_GAMMA,  Up: Intrinsic Procedures

9.180 'LOGICAL' -- Convert to logical type
==========================================

_Description_:
     Converts one kind of 'LOGICAL' variable to another.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LOGICAL(L [, KIND])'

_Arguments_:
     L           The type shall be 'LOGICAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is a 'LOGICAL' value equal to L, with a kind
     corresponding to KIND, or of the default logical kind if KIND is
     not given.

_See also_:
     *note INT::, *note REAL::, *note CMPLX::


File: gfortran.info,  Node: LONG,  Next: LSHIFT,  Prev: LOGICAL,  Up: Intrinsic Procedures

9.181 'LONG' -- Convert to integer type
=======================================

_Description_:
     Convert to a 'KIND=4' integer type, which is the same size as a C
     'long' integer.  This is equivalent to the standard 'INT' intrinsic
     with an optional argument of 'KIND=4', and is only included for
     backwards compatibility.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LONG(A)'

_Arguments_:
     A           Shall be of type 'INTEGER', 'REAL', or
                 'COMPLEX'.

_Return value_:
     The return value is a 'INTEGER(4)' variable.

_See also_:
     *note INT::, *note INT2::, *note INT8::


File: gfortran.info,  Node: LSHIFT,  Next: LSTAT,  Prev: LONG,  Up: Intrinsic Procedures

9.182 'LSHIFT' -- Left shift bits
=================================

_Description_:
     'LSHIFT' returns a value corresponding to I with all of the bits
     shifted left by SHIFT places.  SHIFT shall be nonnegative and less
     than or equal to 'BIT_SIZE(I)', otherwise the result value is
     undefined.  Bits shifted out from the left end are lost; zeros are
     shifted in from the opposite end.

     This function has been superseded by the 'ISHFT' intrinsic, which
     is standard in Fortran 95 and later, and the 'SHIFTL' intrinsic,
     which is standard in Fortran 2008 and later.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = LSHIFT(I, SHIFT)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     SHIFT       The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_See also_:
     *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::,
     *note SHIFTL::, *note SHIFTR::


File: gfortran.info,  Node: LSTAT,  Next: LTIME,  Prev: LSHIFT,  Up: Intrinsic Procedures

9.183 'LSTAT' -- Get file status
================================

_Description_:
     'LSTAT' is identical to *note STAT::, except that if path is a
     symbolic link, then the link itself is statted, not the file that
     it refers to.

     The elements in 'VALUES' are the same as described by *note STAT::.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL LSTAT(NAME, VALUES [, STATUS])'
     'STATUS = LSTAT(NAME, VALUES)'

_Arguments_:
     NAME        The type shall be 'CHARACTER' of the default
                 kind, a valid path within the file system.
     VALUES      The type shall be 'INTEGER(4), DIMENSION(13)'.
     STATUS      (Optional) status flag of type 'INTEGER(4)'.
                 Returns 0 on success and a system specific error
                 code otherwise.

_Example_:
     See *note STAT:: for an example.

_See also_:
     To stat an open file: *note FSTAT:: To stat a file: *note STAT::


File: gfortran.info,  Node: LTIME,  Next: MALLOC,  Prev: LSTAT,  Up: Intrinsic Procedures

9.184 'LTIME' -- Convert time to local time info
================================================

_Description_:
     Given a system time value TIME (as provided by the *note TIME::
     intrinsic), fills VALUES with values extracted from it appropriate
     to the local time zone using 'localtime(3)'.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  In new code, programmers should consider the use
     of the *note DATE_AND_TIME:: intrinsic defined by the Fortran 95
     standard.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL LTIME(TIME, VALUES)'

_Arguments_:
     TIME        An 'INTEGER' scalar expression corresponding to
                 a system time, with 'INTENT(IN)'.
     VALUES      A default 'INTEGER' array with 9 elements, with
                 'INTENT(OUT)'.

_Return value_:
     The elements of VALUES are assigned as follows:
       1. Seconds after the minute, range 0-59 or 0-61 to allow for leap
          seconds
       2. Minutes after the hour, range 0-59
       3. Hours past midnight, range 0-23
       4. Day of month, range 1-31
       5. Number of months since January, range 0-11
       6. Years since 1900
       7. Number of days since Sunday, range 0-6
       8. Days since January 1, range 0-365
       9. Daylight savings indicator: positive if daylight savings is in
          effect, zero if not, and negative if the information is not
          available.

_See also_:
     *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note TIME::,
     *note TIME8::


File: gfortran.info,  Node: MALLOC,  Next: MASKL,  Prev: LTIME,  Up: Intrinsic Procedures

9.185 'MALLOC' -- Allocate dynamic memory
=========================================

_Description_:
     'MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns
     the address of the allocated memory.  The 'MALLOC' intrinsic is an
     extension intended to be used with Cray pointers, and is provided
     in GNU Fortran to allow the user to compile legacy code.  For new
     code using Fortran 95 pointers, the memory allocation intrinsic is
     'ALLOCATE'.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'PTR = MALLOC(SIZE)'

_Arguments_:
     SIZE        The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER(K)', with K such that
     variables of type 'INTEGER(K)' have the same size as C pointers
     ('sizeof(void *)').

_Example_:
     The following example demonstrates the use of 'MALLOC' and 'FREE'
     with Cray pointers.

          program test_malloc
            implicit none
            integer i
            real*8 x(*), z
            pointer(ptr_x,x)

            ptr_x = malloc(20*8)
            do i = 1, 20
              x(i) = sqrt(1.0d0 / i)
            end do
            z = 0
            do i = 1, 20
              z = z + x(i)
              print *, z
            end do
            call free(ptr_x)
          end program test_malloc

_See also_:
     *note FREE::


File: gfortran.info,  Node: MASKL,  Next: MASKR,  Prev: MALLOC,  Up: Intrinsic Procedures

9.186 'MASKL' -- Left justified mask
====================================

_Description_:
     'MASKL(I[, KIND])' has its leftmost I bits set to 1, and the
     remaining bits set to 0.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MASKL(I[, KIND])'

_Arguments_:
     I           Shall be of type 'INTEGER'.
     KIND        Shall be a scalar constant expression of type
                 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER'.  If KIND is present, it
     specifies the kind value of the return type; otherwise, it is of
     the default integer kind.

_See also_:
     *note MASKR::


File: gfortran.info,  Node: MASKR,  Next: MATMUL,  Prev: MASKL,  Up: Intrinsic Procedures

9.187 'MASKR' -- Right justified mask
=====================================

_Description_:
     'MASKL(I[, KIND])' has its rightmost I bits set to 1, and the
     remaining bits set to 0.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MASKR(I[, KIND])'

_Arguments_:
     I           Shall be of type 'INTEGER'.
     KIND        Shall be a scalar constant expression of type
                 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER'.  If KIND is present, it
     specifies the kind value of the return type; otherwise, it is of
     the default integer kind.

_See also_:
     *note MASKL::


File: gfortran.info,  Node: MATMUL,  Next: MAX,  Prev: MASKR,  Up: Intrinsic Procedures

9.188 'MATMUL' -- matrix multiplication
=======================================

_Description_:
     Performs a matrix multiplication on numeric or logical arguments.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = MATMUL(MATRIX_A, MATRIX_B)'

_Arguments_:
     MATRIX_A    An array of 'INTEGER', 'REAL', 'COMPLEX', or
                 'LOGICAL' type, with a rank of one or two.
     MATRIX_B    An array of 'INTEGER', 'REAL', or 'COMPLEX' type
                 if MATRIX_A is of a numeric type; otherwise, an
                 array of 'LOGICAL' type.  The rank shall be one
                 or two, and the first (or only) dimension of
                 MATRIX_B shall be equal to the last (or only)
                 dimension of MATRIX_A.  MATRIX_A and MATRIX_B
                 shall not both be rank one arrays.

_Return value_:
     The matrix product of MATRIX_A and MATRIX_B.  The type and kind of
     the result follow the usual type and kind promotion rules, as for
     the '*' or '.AND.' operators.


File: gfortran.info,  Node: MAX,  Next: MAXEXPONENT,  Prev: MATMUL,  Up: Intrinsic Procedures

9.189 'MAX' -- Maximum value of an argument list
================================================

_Description_:
     Returns the argument with the largest (most positive) value.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MAX(A1, A2 [, A3 [, ...]])'

_Arguments_:
     A1          The type shall be 'INTEGER' or 'REAL'.
     A2, A3,     An expression of the same type and kind as A1.
     ...         (As a GNU extension, arguments of different
                 kinds are permitted.)

_Return value_:
     The return value corresponds to the maximum value among the
     arguments, and has the same type and kind as the first argument.

_Specific names_:
     Name           Argument       Return type    Standard
     'MAX0(A1)'     'INTEGER(4)    'INTEGER(4)'   Fortran 77 and
                    A1'                           later
     'AMAX0(A1)'    'INTEGER(4)    'REAL(MAX(X))' Fortran 77 and
                    A1'                           later
     'MAX1(A1)'     'REAL A1'      'INT(MAX(X))'  Fortran 77 and
                                                  later
     'AMAX1(A1)'    'REAL(4) A1'   'REAL(4)'      Fortran 77 and
                                                  later
     'DMAX1(A1)'    'REAL(8) A1'   'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     *note MAXLOC:: *note MAXVAL::, *note MIN::


File: gfortran.info,  Node: MAXEXPONENT,  Next: MAXLOC,  Prev: MAX,  Up: Intrinsic Procedures

9.190 'MAXEXPONENT' -- Maximum exponent of a real kind
======================================================

_Description_:
     'MAXEXPONENT(X)' returns the maximum exponent in the model of the
     type of 'X'.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = MAXEXPONENT(X)'

_Arguments_:
     X           Shall be of type 'REAL'.

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.

_Example_:
          program exponents
            real(kind=4) :: x
            real(kind=8) :: y

            print *, minexponent(x), maxexponent(x)
            print *, minexponent(y), maxexponent(y)
          end program exponents


File: gfortran.info,  Node: MAXLOC,  Next: MAXVAL,  Prev: MAXEXPONENT,  Up: Intrinsic Procedures

9.191 'MAXLOC' -- Location of the maximum value within an array
===============================================================

_Description_:
     Determines the location of the element in the array with the
     maximum value, or, if the DIM argument is supplied, determines the
     locations of the maximum element along each row of the array in the
     DIM direction.  If MASK is present, only the elements for which
     MASK is '.TRUE.' are considered.  If more than one element in the
     array has the maximum value, the location returned is that of the
     first such element in array element order if the BACK is not
     present, or is false; if BACK is true, the location returned is
     that of the last such element.  If the array has zero size, or all
     of the elements of MASK are '.FALSE.', then the result is an array
     of zeroes.  Similarly, if DIM is supplied and all of the elements
     of MASK along a given row are zero, the result value for that row
     is zero.

_Standard_:
     Fortran 95 and later; ARRAY of 'CHARACTER' and the KIND argument
     are available in Fortran 2003 and later.  The BACK argument is
     available in Fortran 2008 and later.

_Class_:
     Transformational function

_Syntax_:
     'RESULT = MAXLOC(ARRAY, DIM [, MASK] [,KIND] [,BACK])'
     'RESULT = MAXLOC(ARRAY [, MASK] [,KIND] [,BACK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER' or 'REAL'.
     DIM         (Optional) Shall be a scalar of type 'INTEGER',
                 with a value between one and the rank of ARRAY,
                 inclusive.  It may not be an optional dummy
                 argument.
     MASK        Shall be an array of type 'LOGICAL', and
                 conformable with ARRAY.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.
     BACK        (Optional) A scalar of type 'LOGICAL'.

_Return value_:
     If DIM is absent, the result is a rank-one array with a length
     equal to the rank of ARRAY.  If DIM is present, the result is an
     array with a rank one less than the rank of ARRAY, and a size
     corresponding to the size of ARRAY with the DIM dimension removed.
     If DIM is present and ARRAY has a rank of one, the result is a
     scalar.  If the optional argument KIND is present, the result is an
     integer of kind KIND, otherwise it is of default kind.

_See also_:
     *note FINDLOC::, *note MAX::, *note MAXVAL::


File: gfortran.info,  Node: MAXVAL,  Next: MCLOCK,  Prev: MAXLOC,  Up: Intrinsic Procedures

9.192 'MAXVAL' -- Maximum value of an array
===========================================

_Description_:
     Determines the maximum value of the elements in an array value, or,
     if the DIM argument is supplied, determines the maximum value along
     each row of the array in the DIM direction.  If MASK is present,
     only the elements for which MASK is '.TRUE.' are considered.  If
     the array has zero size, or all of the elements of MASK are
     '.FALSE.', then the result is '-HUGE(ARRAY)' if ARRAY is numeric,
     or a string of nulls if ARRAY is of character type.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = MAXVAL(ARRAY, DIM [, MASK])'
     'RESULT = MAXVAL(ARRAY [, MASK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER' or 'REAL'.
     DIM         (Optional) Shall be a scalar of type 'INTEGER',
                 with a value between one and the rank of ARRAY,
                 inclusive.  It may not be an optional dummy
                 argument.
     MASK        (Opional) Shall be an array of type 'LOGICAL',
                 and conformable with ARRAY.

_Return value_:
     If DIM is absent, or if ARRAY has a rank of one, the result is a
     scalar.  If DIM is present, the result is an array with a rank one
     less than the rank of ARRAY, and a size corresponding to the size
     of ARRAY with the DIM dimension removed.  In all cases, the result
     is of the same type and kind as ARRAY.

_See also_:
     *note MAX::, *note MAXLOC::


File: gfortran.info,  Node: MCLOCK,  Next: MCLOCK8,  Prev: MAXVAL,  Up: Intrinsic Procedures

9.193 'MCLOCK' -- Time function
===============================

_Description_:
     Returns the number of clock ticks since the start of the process,
     based on the function 'clock(3)' in the C standard library.

     This intrinsic is not fully portable, such as to systems with
     32-bit 'INTEGER' types but supporting times wider than 32 bits.
     Therefore, the values returned by this intrinsic might be, or
     become, negative, or numerically less than previous values, during
     a single run of the compiled program.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = MCLOCK()'

_Return value_:
     The return value is a scalar of type 'INTEGER(4)', equal to the
     number of clock ticks since the start of the process, or '-1' if
     the system does not support 'clock(3)'.

_See also_:
     *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
     TIME::


File: gfortran.info,  Node: MCLOCK8,  Next: MERGE,  Prev: MCLOCK,  Up: Intrinsic Procedures

9.194 'MCLOCK8' -- Time function (64-bit)
=========================================

_Description_:
     Returns the number of clock ticks since the start of the process,
     based on the function 'clock(3)' in the C standard library.

     _Warning:_ this intrinsic does not increase the range of the timing
     values over that returned by 'clock(3)'.  On a system with a 32-bit
     'clock(3)', 'MCLOCK8' will return a 32-bit value, even though it is
     converted to a 64-bit 'INTEGER(8)' value.  That means overflows of
     the 32-bit value can still occur.  Therefore, the values returned
     by this intrinsic might be or become negative or numerically less
     than previous values during a single run of the compiled program.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = MCLOCK8()'

_Return value_:
     The return value is a scalar of type 'INTEGER(8)', equal to the
     number of clock ticks since the start of the process, or '-1' if
     the system does not support 'clock(3)'.

_See also_:
     *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note
     TIME8::


File: gfortran.info,  Node: MERGE,  Next: MERGE_BITS,  Prev: MCLOCK8,  Up: Intrinsic Procedures

9.195 'MERGE' -- Merge variables
================================

_Description_:
     Select values from two arrays according to a logical mask.  The
     result is equal to TSOURCE if MASK is '.TRUE.', or equal to FSOURCE
     if it is '.FALSE.'.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MERGE(TSOURCE, FSOURCE, MASK)'

_Arguments_:
     TSOURCE     May be of any type.
     FSOURCE     Shall be of the same type and type parameters as
                 TSOURCE.
     MASK        Shall be of type 'LOGICAL'.

_Return value_:
     The result is of the same type and type parameters as TSOURCE.


File: gfortran.info,  Node: MERGE_BITS,  Next: MIN,  Prev: MERGE,  Up: Intrinsic Procedures

9.196 'MERGE_BITS' -- Merge of bits under mask
==============================================

_Description_:
     'MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined
     by the mask.  The i-th bit of the result is equal to the i-th bit
     of I if the i-th bit of MASK is 1; it is equal to the i-th bit of J
     otherwise.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MERGE_BITS(I, J, MASK)'

_Arguments_:
     I           Shall be of type 'INTEGER' or a
                 boz-literal-constant.
     J           Shall be of type 'INTEGER' with the same kind
                 type parameter as I or a boz-literal-constant.
                 I and J shall not both be boz-literal-constants.
     MASK        Shall be of type 'INTEGER' or a
                 boz-literal-constant and of the same kind as I.

_Return value_:
     The result is of the same type and kind as I.


File: gfortran.info,  Node: MIN,  Next: MINEXPONENT,  Prev: MERGE_BITS,  Up: Intrinsic Procedures

9.197 'MIN' -- Minimum value of an argument list
================================================

_Description_:
     Returns the argument with the smallest (most negative) value.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MIN(A1, A2 [, A3, ...])'

_Arguments_:
     A1          The type shall be 'INTEGER' or 'REAL'.
     A2, A3,     An expression of the same type and kind as A1.
     ...         (As a GNU extension, arguments of different
                 kinds are permitted.)

_Return value_:
     The return value corresponds to the maximum value among the
     arguments, and has the same type and kind as the first argument.

_Specific names_:
     Name           Argument       Return type    Standard
     'MIN0(A1)'     'INTEGER(4)    'INTEGER(4)'   Fortran 77 and
                    A1'                           later
     'AMIN0(A1)'    'INTEGER(4)    'REAL(4)'      Fortran 77 and
                    A1'                           later
     'MIN1(A1)'     'REAL A1'      'INTEGER(4)'   Fortran 77 and
                                                  later
     'AMIN1(A1)'    'REAL(4) A1'   'REAL(4)'      Fortran 77 and
                                                  later
     'DMIN1(A1)'    'REAL(8) A1'   'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     *note MAX::, *note MINLOC::, *note MINVAL::


File: gfortran.info,  Node: MINEXPONENT,  Next: MINLOC,  Prev: MIN,  Up: Intrinsic Procedures

9.198 'MINEXPONENT' -- Minimum exponent of a real kind
======================================================

_Description_:
     'MINEXPONENT(X)' returns the minimum exponent in the model of the
     type of 'X'.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = MINEXPONENT(X)'

_Arguments_:
     X           Shall be of type 'REAL'.

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.

_Example_:
     See 'MAXEXPONENT' for an example.


File: gfortran.info,  Node: MINLOC,  Next: MINVAL,  Prev: MINEXPONENT,  Up: Intrinsic Procedures

9.199 'MINLOC' -- Location of the minimum value within an array
===============================================================

_Description_:
     Determines the location of the element in the array with the
     minimum value, or, if the DIM argument is supplied, determines the
     locations of the minimum element along each row of the array in the
     DIM direction.  If MASK is present, only the elements for which
     MASK is '.TRUE.' are considered.  If more than one element in the
     array has the minimum value, the location returned is that of the
     first such element in array element order if the BACK is not
     present, or is false; if BACK is true, the location returned is
     that of the last such element.  If the array has zero size, or all
     of the elements of MASK are '.FALSE.', then the result is an array
     of zeroes.  Similarly, if DIM is supplied and all of the elements
     of MASK along a given row are zero, the result value for that row
     is zero.

_Standard_:
     Fortran 90 and later; ARRAY of 'CHARACTER' and the KIND argument
     are available in Fortran 2003 and later.  The BACK argument is
     available in Fortran 2008 and later.

_Class_:
     Transformational function

_Syntax_:
     'RESULT = MINLOC(ARRAY, DIM [, MASK] [,KIND] [,BACK])'
     'RESULT = MINLOC(ARRAY [, MASK], [,KIND] [,BACK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER', 'REAL' or
                 'CHARACTER'.
     DIM         (Optional) Shall be a scalar of type 'INTEGER',
                 with a value between one and the rank of ARRAY,
                 inclusive.  It may not be an optional dummy
                 argument.
     MASK        Shall be an array of type 'LOGICAL', and
                 conformable with ARRAY.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.
     BACK        (Optional) A scalar of type 'LOGICAL'.

_Return value_:
     If DIM is absent, the result is a rank-one array with a length
     equal to the rank of ARRAY.  If DIM is present, the result is an
     array with a rank one less than the rank of ARRAY, and a size
     corresponding to the size of ARRAY with the DIM dimension removed.
     If DIM is present and ARRAY has a rank of one, the result is a
     scalar.  If the optional argument KIND is present, the result is an
     integer of kind KIND, otherwise it is of default kind.

_See also_:
     *note FINDLOC::, *note MIN::, *note MINVAL::


File: gfortran.info,  Node: MINVAL,  Next: MOD,  Prev: MINLOC,  Up: Intrinsic Procedures

9.200 'MINVAL' -- Minimum value of an array
===========================================

_Description_:
     Determines the minimum value of the elements in an array value, or,
     if the DIM argument is supplied, determines the minimum value along
     each row of the array in the DIM direction.  If MASK is present,
     only the elements for which MASK is '.TRUE.' are considered.  If
     the array has zero size, or all of the elements of MASK are
     '.FALSE.', then the result is 'HUGE(ARRAY)' if ARRAY is numeric, or
     a string of 'CHAR(255)' characters if ARRAY is of character type.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = MINVAL(ARRAY, DIM [, MASK])'
     'RESULT = MINVAL(ARRAY [, MASK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER' or 'REAL'.
     DIM         (Optional) Shall be a scalar of type 'INTEGER',
                 with a value between one and the rank of ARRAY,
                 inclusive.  It may not be an optional dummy
                 argument.
     MASK        Shall be an array of type 'LOGICAL', and
                 conformable with ARRAY.

_Return value_:
     If DIM is absent, or if ARRAY has a rank of one, the result is a
     scalar.  If DIM is present, the result is an array with a rank one
     less than the rank of ARRAY, and a size corresponding to the size
     of ARRAY with the DIM dimension removed.  In all cases, the result
     is of the same type and kind as ARRAY.

_See also_:
     *note MIN::, *note MINLOC::


File: gfortran.info,  Node: MOD,  Next: MODULO,  Prev: MINVAL,  Up: Intrinsic Procedures

9.201 'MOD' -- Remainder function
=================================

_Description_:
     'MOD(A,P)' computes the remainder of the division of A by P.

_Standard_:
     Fortran 77 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MOD(A, P)'

_Arguments_:
     A           Shall be a scalar of type 'INTEGER' or 'REAL'.
     P           Shall be a scalar of the same type and kind as A
                 and not equal to zero.  (As a GNU extension,
                 arguments of different kinds are permitted.)

_Return value_:
     The return value is the result of 'A - (INT(A/P) * P)'.  The type
     and kind of the return value is the same as that of the arguments.
     The returned value has the same sign as A and a magnitude less than
     the magnitude of P. (As a GNU extension, kind is the largest kind
     of the actual arguments.)

_Example_:
          program test_mod
            print *, mod(17,3)
            print *, mod(17.5,5.5)
            print *, mod(17.5d0,5.5)
            print *, mod(17.5,5.5d0)

            print *, mod(-17,3)
            print *, mod(-17.5,5.5)
            print *, mod(-17.5d0,5.5)
            print *, mod(-17.5,5.5d0)

            print *, mod(17,-3)
            print *, mod(17.5,-5.5)
            print *, mod(17.5d0,-5.5)
            print *, mod(17.5,-5.5d0)
          end program test_mod

_Specific names_:
     Name           Arguments      Return type    Standard
     'MOD(A,P)'     'INTEGER       'INTEGER'      Fortran 77 and
                    A,P'                          later
     'AMOD(A,P)'    'REAL(4)       'REAL(4)'      Fortran 77 and
                    A,P'                          later
     'DMOD(A,P)'    'REAL(8)       'REAL(8)'      Fortran 77 and
                    A,P'                          later
     'BMOD(A,P)'    'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A,P'
     'IMOD(A,P)'    'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A,P'
     'JMOD(A,P)'    'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A,P'
     'KMOD(A,P)'    'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A,P'

_See also_:
     *note MODULO::


File: gfortran.info,  Node: MODULO,  Next: MOVE_ALLOC,  Prev: MOD,  Up: Intrinsic Procedures

9.202 'MODULO' -- Modulo function
=================================

_Description_:
     'MODULO(A,P)' computes the A modulo P.

_Standard_:
     Fortran 95 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = MODULO(A, P)'

_Arguments_:
     A           Shall be a scalar of type 'INTEGER' or 'REAL'.
     P           Shall be a scalar of the same type and kind as
                 A.  It shall not be zero.  (As a GNU extension,
                 arguments of different kinds are permitted.)

_Return value_:
     The type and kind of the result are those of the arguments.  (As a
     GNU extension, kind is the largest kind of the actual arguments.)
     If A and P are of type 'INTEGER':
          'MODULO(A,P)' has the value R such that 'A=Q*P+R', where Q is
          an integer and R is between 0 (inclusive) and P (exclusive).
     If A and P are of type 'REAL':
          'MODULO(A,P)' has the value of 'A - FLOOR (A / P) * P'.
     The returned value has the same sign as P and a magnitude less than
     the magnitude of P.

_Example_:
          program test_modulo
            print *, modulo(17,3)
            print *, modulo(17.5,5.5)

            print *, modulo(-17,3)
            print *, modulo(-17.5,5.5)

            print *, modulo(17,-3)
            print *, modulo(17.5,-5.5)
          end program

_See also_:
     *note MOD::


File: gfortran.info,  Node: MOVE_ALLOC,  Next: MVBITS,  Prev: MODULO,  Up: Intrinsic Procedures

9.203 'MOVE_ALLOC' -- Move allocation from one object to another
================================================================

_Description_:
     'MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO.  FROM
     will become deallocated in the process.

_Standard_:
     Fortran 2003 and later

_Class_:
     Pure subroutine

_Syntax_:
     'CALL MOVE_ALLOC(FROM, TO)'

_Arguments_:
     FROM        'ALLOCATABLE', 'INTENT(INOUT)', may be of any
                 type and kind.
     TO          'ALLOCATABLE', 'INTENT(OUT)', shall be of the
                 same type, kind and rank as FROM.

_Return value_:
     None

_Example_:
          program test_move_alloc
              integer, allocatable :: a(:), b(:)

              allocate(a(3))
              a = [ 1, 2, 3 ]
              call move_alloc(a, b)
              print *, allocated(a), allocated(b)
              print *, b
          end program test_move_alloc


File: gfortran.info,  Node: MVBITS,  Next: NEAREST,  Prev: MOVE_ALLOC,  Up: Intrinsic Procedures

9.204 'MVBITS' -- Move bits from one integer to another
=======================================================

_Description_:
     Moves LEN bits from positions FROMPOS through 'FROMPOS+LEN-1' of
     FROM to positions TOPOS through 'TOPOS+LEN-1' of TO.  The portion
     of argument TO not affected by the movement of bits is unchanged.
     The values of 'FROMPOS+LEN-1' and 'TOPOS+LEN-1' must be less than
     'BIT_SIZE(FROM)'.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental subroutine

_Syntax_:
     'CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)'

_Arguments_:
     FROM        The type shall be 'INTEGER'.
     FROMPOS     The type shall be 'INTEGER'.
     LEN         The type shall be 'INTEGER'.
     TO          The type shall be 'INTEGER', of the same kind as
                 FROM.
     TOPOS       The type shall be 'INTEGER'.

_Specific names_:
     Name           Argument       Return type    Standard
     'MVBITS(A)'    'INTEGER A'    'INTEGER'      Fortran 90 and
                                                  later
     'BMVBITS(A)'   'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'IMVBITS(A)'   'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JMVBITS(A)'   'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KMVBITS(A)'   'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note
     IOR::, *note IEOR::


File: gfortran.info,  Node: NEAREST,  Next: NEW_LINE,  Prev: MVBITS,  Up: Intrinsic Procedures

9.205 'NEAREST' -- Nearest representable number
===============================================

_Description_:
     'NEAREST(X, S)' returns the processor-representable number nearest
     to 'X' in the direction indicated by the sign of 'S'.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = NEAREST(X, S)'

_Arguments_:
     X           Shall be of type 'REAL'.
     S           Shall be of type 'REAL' and not equal to zero.

_Return value_:
     The return value is of the same type as 'X'.  If 'S' is positive,
     'NEAREST' returns the processor-representable number greater than
     'X' and nearest to it.  If 'S' is negative, 'NEAREST' returns the
     processor-representable number smaller than 'X' and nearest to it.

_Example_:
          program test_nearest
            real :: x, y
            x = nearest(42.0, 1.0)
            y = nearest(42.0, -1.0)
            write (*,"(3(G20.15))") x, y, x - y
          end program test_nearest


File: gfortran.info,  Node: NEW_LINE,  Next: NINT,  Prev: NEAREST,  Up: Intrinsic Procedures

9.206 'NEW_LINE' -- New line character
======================================

_Description_:
     'NEW_LINE(C)' returns the new-line character.

_Standard_:
     Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = NEW_LINE(C)'

_Arguments_:
     C           The argument shall be a scalar or array of the
                 type 'CHARACTER'.

_Return value_:
     Returns a CHARACTER scalar of length one with the new-line
     character of the same kind as parameter C.

_Example_:
          program newline
            implicit none
            write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
          end program newline


File: gfortran.info,  Node: NINT,  Next: NORM2,  Prev: NEW_LINE,  Up: Intrinsic Procedures

9.207 'NINT' -- Nearest whole number
====================================

_Description_:
     'NINT(A)' rounds its argument to the nearest whole number.

_Standard_:
     Fortran 77 and later, with KIND argument Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = NINT(A [, KIND])'

_Arguments_:
     A           The type of the argument shall be 'REAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     Returns A with the fractional portion of its magnitude eliminated
     by rounding to the nearest whole number and with its sign
     preserved, converted to an 'INTEGER' of the default kind.

_Example_:
          program test_nint
            real(4) x4
            real(8) x8
            x4 = 1.234E0_4
            x8 = 4.321_8
            print *, nint(x4), idnint(x8)
          end program test_nint

_Specific names_:
     Name           Argument       Return Type    Standard
     'NINT(A)'      'REAL(4) A'    'INTEGER'      Fortran 77 and
                                                  later
     'IDNINT(A)'    'REAL(8) A'    'INTEGER'      Fortran 77 and
                                                  later

_See also_:
     *note CEILING::, *note FLOOR::


File: gfortran.info,  Node: NORM2,  Next: NOT,  Prev: NINT,  Up: Intrinsic Procedures

9.208 'NORM2' -- Euclidean vector norms
=======================================

_Description_:
     Calculates the Euclidean vector norm (L_2 norm) of of ARRAY along
     dimension DIM.

_Standard_:
     Fortran 2008 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = NORM2(ARRAY[, DIM])'

_Arguments_:
     ARRAY       Shall be an array of type 'REAL'
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 with a value in the range from 1 to n, where n
                 equals the rank of ARRAY.

_Return value_:
     The result is of the same type as ARRAY.

     If DIM is absent, a scalar with the square root of the sum of all
     elements in ARRAY squared is returned.  Otherwise, an array of rank
     n-1, where n equals the rank of ARRAY, and a shape similar to that
     of ARRAY with dimension DIM dropped is returned.

_Example_:
          PROGRAM test_sum
            REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
            print *, NORM2(x)  ! = sqrt(55.) ~ 7.416
          END PROGRAM


File: gfortran.info,  Node: NOT,  Next: NULL,  Prev: NORM2,  Up: Intrinsic Procedures

9.209 'NOT' -- Logical negation
===============================

_Description_:
     'NOT' returns the bitwise Boolean inverse of I.

_Standard_:
     Fortran 90 and later, has overloads that are GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = NOT(I)'

_Arguments_:
     I           The type shall be 'INTEGER'.

_Return value_:
     The return type is 'INTEGER', of the same kind as the argument.

_Specific names_:
     Name           Argument       Return type    Standard
     'NOT(A)'       'INTEGER A'    'INTEGER'      Fortran 95 and
                                                  later
     'BNOT(A)'      'INTEGER(1)    'INTEGER(1)'   GNU extension
                    A'
     'INOT(A)'      'INTEGER(2)    'INTEGER(2)'   GNU extension
                    A'
     'JNOT(A)'      'INTEGER(4)    'INTEGER(4)'   GNU extension
                    A'
     'KNOT(A)'      'INTEGER(8)    'INTEGER(8)'   GNU extension
                    A'

_See also_:
     *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note
     IBSET::, *note IBCLR::


File: gfortran.info,  Node: NULL,  Next: NUM_IMAGES,  Prev: NOT,  Up: Intrinsic Procedures

9.210 'NULL' -- Function that returns an disassociated pointer
==============================================================

_Description_:
     Returns a disassociated pointer.

     If MOLD is present, a disassociated pointer of the same type is
     returned, otherwise the type is determined by context.

     In Fortran 95, MOLD is optional.  Please note that Fortran 2003
     includes cases where it is required.

_Standard_:
     Fortran 95 and later

_Class_:
     Transformational function

_Syntax_:
     'PTR => NULL([MOLD])'

_Arguments_:
     MOLD        (Optional) shall be a pointer of any association
                 status and of any type.

_Return value_:
     A disassociated pointer.

_Example_:
          REAL, POINTER, DIMENSION(:) :: VEC => NULL ()

_See also_:
     *note ASSOCIATED::


File: gfortran.info,  Node: NUM_IMAGES,  Next: OR,  Prev: NULL,  Up: Intrinsic Procedures

9.211 'NUM_IMAGES' -- Function that returns the number of images
================================================================

_Description_:
     Returns the number of images.

_Standard_:
     Fortran 2008 and later.  With DISTANCE or FAILED argument,
     Technical Specification (TS) 18508 or later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = NUM_IMAGES(DISTANCE, FAILED)'

_Arguments_:
     DISTANCE    (optional, intent(in)) Nonnegative scalar
                 integer
     FAILED      (optional, intent(in)) Scalar logical expression

_Return value_:
     Scalar default-kind integer.  If DISTANCE is not present or has
     value 0, the number of images in the current team is returned.  For
     values smaller or equal distance to the initial team, it returns
     the number of images index on the ancestor team which has a
     distance of DISTANCE from the invoking team.  If DISTANCE is larger
     than the distance to the initial team, the number of images of the
     initial team is returned.  If FAILED is not present the total
     number of images is returned; if it has the value '.TRUE.', the
     number of failed images is returned, otherwise, the number of
     images which do have not the failed status.

_Example_:
          INTEGER :: value[*]
          INTEGER :: i
          value = THIS_IMAGE()
          SYNC ALL
          IF (THIS_IMAGE() == 1) THEN
            DO i = 1, NUM_IMAGES()
              WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
            END DO
          END IF

_See also_:
     *note THIS_IMAGE::, *note IMAGE_INDEX::


File: gfortran.info,  Node: OR,  Next: PACK,  Prev: NUM_IMAGES,  Up: Intrinsic Procedures

9.212 'OR' -- Bitwise logical OR
================================

_Description_:
     Bitwise logical 'OR'.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  For integer arguments, programmers should consider
     the use of the *note IOR:: intrinsic defined by the Fortran
     standard.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = OR(I, J)'

_Arguments_:
     I           The type shall be either a scalar 'INTEGER' type
                 or a scalar 'LOGICAL' type or a
                 boz-literal-constant.
     J           The type shall be the same as the type of I or a
                 boz-literal-constant.  I and J shall not both be
                 boz-literal-constants.  If either I and J is a
                 boz-literal-constant, then the other argument
                 must be a scalar 'INTEGER'.

_Return value_:
     The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
     If the kind type parameters differ, then the smaller kind type is
     implicitly converted to larger kind, and the return has the larger
     kind.  A boz-literal-constant is converted to an 'INTEGER' with the
     kind type parameter of the other argument as-if a call to *note
     INT:: occurred.

_Example_:
          PROGRAM test_or
            LOGICAL :: T = .TRUE., F = .FALSE.
            INTEGER :: a, b
            DATA a / Z'F' /, b / Z'3' /

            WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
            WRITE (*,*) OR(a, b)
          END PROGRAM

_See also_:
     Fortran 95 elemental function: *note IOR::


File: gfortran.info,  Node: PACK,  Next: PARITY,  Prev: OR,  Up: Intrinsic Procedures

9.213 'PACK' -- Pack an array into an array of rank one
=======================================================

_Description_:
     Stores the elements of ARRAY in an array of rank one.

     The beginning of the resulting array is made up of elements whose
     MASK equals 'TRUE'.  Afterwards, positions are filled with elements
     taken from VECTOR.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = PACK(ARRAY, MASK[,VECTOR])'

_Arguments_:
     ARRAY       Shall be an array of any type.
     MASK        Shall be an array of type 'LOGICAL' and of the
                 same size as ARRAY.  Alternatively, it may be a
                 'LOGICAL' scalar.
     VECTOR      (Optional) shall be an array of the same type as
                 ARRAY and of rank one.  If present, the number
                 of elements in VECTOR shall be equal to or
                 greater than the number of true elements in
                 MASK.  If MASK is scalar, the number of elements
                 in VECTOR shall be equal to or greater than the
                 number of elements in ARRAY.

_Return value_:
     The result is an array of rank one and the same type as that of
     ARRAY.  If VECTOR is present, the result size is that of VECTOR,
     the number of 'TRUE' values in MASK otherwise.

_Example_:
     Gathering nonzero elements from an array:
          PROGRAM test_pack_1
            INTEGER :: m(6)
            m = (/ 1, 0, 0, 0, 5, 0 /)
            WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0)  ! "1 5"
          END PROGRAM

     Gathering nonzero elements from an array and appending elements
     from VECTOR:
          PROGRAM test_pack_2
            INTEGER :: m(4)
            m = (/ 1, 0, 0, 2 /)
            ! The following results in "1 2 3 4"
            WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /))
          END PROGRAM

_See also_:
     *note UNPACK::


File: gfortran.info,  Node: PARITY,  Next: PERROR,  Prev: PACK,  Up: Intrinsic Procedures

9.214 'PARITY' -- Reduction with exclusive OR
=============================================

_Description_:
     Calculates the parity, i.e.  the reduction using '.XOR.', of MASK
     along dimension DIM.

_Standard_:
     Fortran 2008 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = PARITY(MASK[, DIM])'

_Arguments_:
     LOGICAL     Shall be an array of type 'LOGICAL'
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 with a value in the range from 1 to n, where n
                 equals the rank of MASK.

_Return value_:
     The result is of the same type as MASK.

     If DIM is absent, a scalar with the parity of all elements in MASK
     is returned, i.e.  true if an odd number of elements is '.true.'
     and false otherwise.  If DIM is present, an array of rank n-1,
     where n equals the rank of ARRAY, and a shape similar to that of
     MASK with dimension DIM dropped is returned.

_Example_:
          PROGRAM test_sum
            LOGICAL :: x(2) = [ .true., .false. ]
            print *, PARITY(x) ! prints "T" (true).
          END PROGRAM


File: gfortran.info,  Node: PERROR,  Next: POPCNT,  Prev: PARITY,  Up: Intrinsic Procedures

9.215 'PERROR' -- Print system error message
============================================

_Description_:
     Prints (on the C 'stderr' stream) a newline-terminated error
     message corresponding to the last system error.  This is prefixed
     by STRING, a colon and a space.  See 'perror(3)'.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL PERROR(STRING)'

_Arguments_:
     STRING      A scalar of type 'CHARACTER' and of the default
                 kind.

_See also_:
     *note IERRNO::


File: gfortran.info,  Node: POPCNT,  Next: POPPAR,  Prev: PERROR,  Up: Intrinsic Procedures

9.216 'POPCNT' -- Number of bits set
====================================

_Description_:
     'POPCNT(I)' returns the number of bits set ('1' bits) in the binary
     representation of 'I'.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = POPCNT(I)'

_Arguments_:
     I           Shall be of type 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.

_Example_:
          program test_population
            print *, popcnt(127),       poppar(127)
            print *, popcnt(huge(0_4)), poppar(huge(0_4))
            print *, popcnt(huge(0_8)), poppar(huge(0_8))
          end program test_population
_See also_:
     *note POPPAR::, *note LEADZ::, *note TRAILZ::


File: gfortran.info,  Node: POPPAR,  Next: PRECISION,  Prev: POPCNT,  Up: Intrinsic Procedures

9.217 'POPPAR' -- Parity of the number of bits set
==================================================

_Description_:
     'POPPAR(I)' returns parity of the integer 'I', i.e.  the parity of
     the number of bits set ('1' bits) in the binary representation of
     'I'.  It is equal to 0 if 'I' has an even number of bits set, and 1
     for an odd number of '1' bits.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = POPPAR(I)'

_Arguments_:
     I           Shall be of type 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.

_Example_:
          program test_population
            print *, popcnt(127),       poppar(127)
            print *, popcnt(huge(0_4)), poppar(huge(0_4))
            print *, popcnt(huge(0_8)), poppar(huge(0_8))
          end program test_population
_See also_:
     *note POPCNT::, *note LEADZ::, *note TRAILZ::


File: gfortran.info,  Node: PRECISION,  Next: PRESENT,  Prev: POPPAR,  Up: Intrinsic Procedures

9.218 'PRECISION' -- Decimal precision of a real kind
=====================================================

_Description_:
     'PRECISION(X)' returns the decimal precision in the model of the
     type of 'X'.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = PRECISION(X)'

_Arguments_:
     X           Shall be of type 'REAL' or 'COMPLEX'.  It may be
                 scalar or valued.

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.

_Example_:
          program prec_and_range
            real(kind=4) :: x(2)
            complex(kind=8) :: y

            print *, precision(x), range(x)
            print *, precision(y), range(y)
          end program prec_and_range
_See also_:
     *note SELECTED_REAL_KIND::, *note RANGE::


File: gfortran.info,  Node: PRESENT,  Next: PRODUCT,  Prev: PRECISION,  Up: Intrinsic Procedures

9.219 'PRESENT' -- Determine whether an optional dummy argument is specified
============================================================================

_Description_:
     Determines whether an optional dummy argument is present.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = PRESENT(A)'

_Arguments_:
     A           May be of any type and may be a pointer, scalar
                 or array value, or a dummy procedure.  It shall
                 be the name of an optional dummy argument
                 accessible within the current subroutine or
                 function.

_Return value_:
     Returns either 'TRUE' if the optional argument A is present, or
     'FALSE' otherwise.

_Example_:
          PROGRAM test_present
            WRITE(*,*) f(), f(42)      ! "F T"
          CONTAINS
            LOGICAL FUNCTION f(x)
              INTEGER, INTENT(IN), OPTIONAL :: x
              f = PRESENT(x)
            END FUNCTION
          END PROGRAM


File: gfortran.info,  Node: PRODUCT,  Next: RADIX,  Prev: PRESENT,  Up: Intrinsic Procedures

9.220 'PRODUCT' -- Product of array elements
============================================

_Description_:
     Multiplies the elements of ARRAY along dimension DIM if the
     corresponding element in MASK is 'TRUE'.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = PRODUCT(ARRAY[, MASK])'
     'RESULT = PRODUCT(ARRAY, DIM[, MASK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER', 'REAL' or
                 'COMPLEX'.
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 with a value in the range from 1 to n, where n
                 equals the rank of ARRAY.
     MASK        (Optional) shall be of type 'LOGICAL' and either
                 be a scalar or an array of the same shape as
                 ARRAY.

_Return value_:
     The result is of the same type as ARRAY.

     If DIM is absent, a scalar with the product of all elements in
     ARRAY is returned.  Otherwise, an array of rank n-1, where n equals
     the rank of ARRAY, and a shape similar to that of ARRAY with
     dimension DIM dropped is returned.

_Example_:
          PROGRAM test_product
            INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
            print *, PRODUCT(x)                    ! all elements, product = 120
            print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
          END PROGRAM

_See also_:
     *note SUM::


File: gfortran.info,  Node: RADIX,  Next: RAN,  Prev: PRODUCT,  Up: Intrinsic Procedures

9.221 'RADIX' -- Base of a model number
=======================================

_Description_:
     'RADIX(X)' returns the base of the model representing the entity X.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = RADIX(X)'

_Arguments_:
     X           Shall be of type 'INTEGER' or 'REAL'

_Return value_:
     The return value is a scalar of type 'INTEGER' and of the default
     integer kind.

_Example_:
          program test_radix
            print *, "The radix for the default integer kind is", radix(0)
            print *, "The radix for the default real kind is", radix(0.0)
          end program test_radix
_See also_:
     *note SELECTED_REAL_KIND::


File: gfortran.info,  Node: RAN,  Next: RAND,  Prev: RADIX,  Up: Intrinsic Procedures

9.222 'RAN' -- Real pseudo-random number
========================================

_Description_:
     For compatibility with HP FORTRAN 77/iX, the 'RAN' intrinsic is
     provided as an alias for 'RAND'.  See *note RAND:: for complete
     documentation.

_Standard_:
     GNU extension

_Class_:
     Function

_See also_:
     *note RAND::, *note RANDOM_NUMBER::


File: gfortran.info,  Node: RAND,  Next: RANDOM_INIT,  Prev: RAN,  Up: Intrinsic Procedures

9.223 'RAND' -- Real pseudo-random number
=========================================

_Description_:
     'RAND(FLAG)' returns a pseudo-random number from a uniform
     distribution between 0 and 1.  If FLAG is 0, the next number in the
     current sequence is returned; if FLAG is 1, the generator is
     restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is
     used as a new seed with 'SRAND'.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  It implements a simple modulo generator as
     provided by 'g77'.  For new code, one should consider the use of
     *note RANDOM_NUMBER:: as it implements a superior algorithm.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = RAND(I)'

_Arguments_:
     I           Shall be a scalar 'INTEGER' of kind 4.

_Return value_:
     The return value is of 'REAL' type and the default kind.

_Example_:
          program test_rand
            integer,parameter :: seed = 86456

            call srand(seed)
            print *, rand(), rand(), rand(), rand()
            print *, rand(seed), rand(), rand(), rand()
          end program test_rand

_See also_:
     *note SRAND::, *note RANDOM_NUMBER::


File: gfortran.info,  Node: RANDOM_INIT,  Next: RANDOM_NUMBER,  Prev: RAND,  Up: Intrinsic Procedures

9.224 'RANDOM_INIT' -- Initialize a pseudo-random number generator
==================================================================

_Description_:
     Initializes the state of the pseudorandom number generator used by
     'RANDOM_NUMBER'.

_Standard_:
     Fortran 2018

_Class_:
     Subroutine

_Syntax_:
     'CALL RANDOM_INIT(REPEATABLE, IMAGE_DISTINCT)'

_Arguments_:
     REPEATABLE         Shall be a scalar with a 'LOGICAL' type, and it
                        is 'INTENT(IN)'.  If it is '.true.', the seed is
                        set to a processor-dependent value that is the
                        same each time 'RANDOM_INIT' is called from the
                        same image.  The term "same image" means a
                        single instance of program execution.  The
                        sequence of random numbers is different for
                        repeated execution of the program.  If it is
                        '.false.', the seed is set to a
                        processor-dependent value.
     IMAGE_DISTINCT     Shall be a scalar with a 'LOGICAL' type, and it
                        is 'INTENT(IN)'.  If it is '.true.', the seed is
                        set to a processor-dependent value that is
                        distinct from th seed set by a call to
                        'RANDOM_INIT' in another image.  If it is
                        '.false.', the seed is set value that does
                        depend which image called 'RANDOM_INIT'.

_Example_:
          program test_random_seed
            implicit none
            real x(3), y(3)
            call random_init(.true., .true.)
            call random_number(x)
            call random_init(.true., .true.)
            call random_number(y)
            ! x and y are the same sequence
            if (any(x /= y)) call abort
          end program test_random_seed

_See also_:
     *note RANDOM_NUMBER::, *note RANDOM_SEED::


File: gfortran.info,  Node: RANDOM_NUMBER,  Next: RANDOM_SEED,  Prev: RANDOM_INIT,  Up: Intrinsic Procedures

9.225 'RANDOM_NUMBER' -- Pseudo-random number
=============================================

_Description_:
     Returns a single pseudorandom number or an array of pseudorandom
     numbers from the uniform distribution over the range 0 \leq x < 1.

     The runtime-library implements the xoshiro256** pseudorandom number
     generator (PRNG). This generator has a period of 2^{256} - 1, and
     when using multiple threads up to 2^{128} threads can each generate
     2^{128} random numbers before any aliasing occurs.

     Note that in a multi-threaded program (e.g.  using OpenMP
     directives), each thread will have its own random number state.
     For details of the seeding procedure, see the documentation for the
     'RANDOM_SEED' intrinsic.

_Standard_:
     Fortran 90 and later

_Class_:
     Subroutine

_Syntax_:
     'RANDOM_NUMBER(HARVEST)'

_Arguments_:
     HARVEST     Shall be a scalar or an array of type 'REAL'.

_Example_:
          program test_random_number
            REAL :: r(5,5)
            CALL RANDOM_NUMBER(r)
          end program

_See also_:
     *note RANDOM_SEED::, *note RANDOM_INIT::


File: gfortran.info,  Node: RANDOM_SEED,  Next: RANGE,  Prev: RANDOM_NUMBER,  Up: Intrinsic Procedures

9.226 'RANDOM_SEED' -- Initialize a pseudo-random number sequence
=================================================================

_Description_:
     Restarts or queries the state of the pseudorandom number generator
     used by 'RANDOM_NUMBER'.

     If 'RANDOM_SEED' is called without arguments, it is seeded with
     random data retrieved from the operating system.

     As an extension to the Fortran standard, the GFortran
     'RANDOM_NUMBER' supports multiple threads.  Each thread in a
     multi-threaded program has its own seed.  When 'RANDOM_SEED' is
     called either without arguments or with the PUT argument, the given
     seed is copied into a master seed as well as the seed of the
     current thread.  When a new thread uses 'RANDOM_NUMBER' for the
     first time, the seed is copied from the master seed, and forwarded
     N * 2^{128} steps to guarantee that the random stream does not
     alias any other stream in the system, where N is the number of
     threads that have used 'RANDOM_NUMBER' so far during the program
     execution.

_Standard_:
     Fortran 90 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL RANDOM_SEED([SIZE, PUT, GET])'

_Arguments_:
     SIZE        (Optional) Shall be a scalar and of type default
                 'INTEGER', with 'INTENT(OUT)'.  It specifies the
                 minimum size of the arrays used with the PUT and
                 GET arguments.
     PUT         (Optional) Shall be an array of type default
                 'INTEGER' and rank one.  It is 'INTENT(IN)' and
                 the size of the array must be larger than or
                 equal to the number returned by the SIZE
                 argument.
     GET         (Optional) Shall be an array of type default
                 'INTEGER' and rank one.  It is 'INTENT(OUT)' and
                 the size of the array must be larger than or
                 equal to the number returned by the SIZE
                 argument.

_Example_:
          program test_random_seed
            implicit none
            integer, allocatable :: seed(:)
            integer :: n

            call random_seed(size = n)
            allocate(seed(n))
            call random_seed(get=seed)
            write (*, *) seed
          end program test_random_seed

_See also_:
     *note RANDOM_NUMBER::, *note RANDOM_INIT::


File: gfortran.info,  Node: RANGE,  Next: RANK,  Prev: RANDOM_SEED,  Up: Intrinsic Procedures

9.227 'RANGE' -- Decimal exponent range
=======================================

_Description_:
     'RANGE(X)' returns the decimal exponent range in the model of the
     type of 'X'.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = RANGE(X)'

_Arguments_:
     X           Shall be of type 'INTEGER', 'REAL' or 'COMPLEX'.

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.

_Example_:
     See 'PRECISION' for an example.
_See also_:
     *note SELECTED_REAL_KIND::, *note PRECISION::


File: gfortran.info,  Node: RANK,  Next: REAL,  Prev: RANGE,  Up: Intrinsic Procedures

9.228 'RANK' -- Rank of a data object
=====================================

_Description_:
     'RANK(A)' returns the rank of a scalar or array data object.

_Standard_:
     Technical Specification (TS) 29113

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = RANK(A)'

_Arguments_:
     A           can be of any type

_Return value_:
     The return value is of type 'INTEGER' and of the default integer
     kind.  For arrays, their rank is returned; for scalars zero is
     returned.

_Example_:
          program test_rank
            integer :: a
            real, allocatable :: b(:,:)

            print *, rank(a), rank(b) ! Prints:  0  2
          end program test_rank


File: gfortran.info,  Node: REAL,  Next: RENAME,  Prev: RANK,  Up: Intrinsic Procedures

9.229 'REAL' -- Convert to real type
====================================

_Description_:
     'REAL(A [, KIND])' converts its argument A to a real type.  The
     'REALPART' function is provided for compatibility with 'g77', and
     its use is strongly discouraged.

_Standard_:
     Fortran 77 and later, with KIND argument Fortran 90 and later, has
     GNU extensions

_Class_:
     Elemental function

_Syntax_:
     'RESULT = REAL(A [, KIND])'
     'RESULT = REALPART(Z)'

_Arguments_:
     A           Shall be 'INTEGER', 'REAL', or 'COMPLEX'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     These functions return a 'REAL' variable or array under the
     following rules:

     (A)
          'REAL(A)' is converted to a default real type if A is an
          integer or real variable.
     (B)
          'REAL(A)' is converted to a real type with the kind type
          parameter of A if A is a complex variable.
     (C)
          'REAL(A, KIND)' is converted to a real type with kind type
          parameter KIND if A is a complex, integer, or real variable.

_Example_:
          program test_real
            complex :: x = (1.0, 2.0)
            print *, real(x), real(x,8), realpart(x)
          end program test_real

_Specific names_:
     Name           Argument       Return type    Standard
     'FLOAT(A)'     'INTEGER(4)'   'REAL(4)'      GNU extension
     'DFLOAT(A)'    'INTEGER(4)'   'REAL(8)'      GNU extension
     'FLOATI(A)'    'INTEGER(2)'   'REAL(4)'      GNU extension
     'FLOATJ(A)'    'INTEGER(4)'   'REAL(4)'      GNU extension
     'FLOATK(A)'    'INTEGER(8)'   'REAL(4)'      GNU extension
     'SNGL(A)'      'INTEGER(8)'   'REAL(4)'      GNU extension

_See also_:
     *note DBLE::


File: gfortran.info,  Node: RENAME,  Next: REPEAT,  Prev: REAL,  Up: Intrinsic Procedures

9.230 'RENAME' -- Rename a file
===============================

_Description_:
     Renames a file from file PATH1 to PATH2.  A null character
     ('CHAR(0)') can be used to mark the end of the names in PATH1 and
     PATH2; otherwise, trailing blanks in the file names are ignored.
     If the STATUS argument is supplied, it contains 0 on success or a
     nonzero error code upon return; see 'rename(2)'.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL RENAME(PATH1, PATH2 [, STATUS])'
     'STATUS = RENAME(PATH1, PATH2)'

_Arguments_:
     PATH1       Shall be of default 'CHARACTER' type.
     PATH2       Shall be of default 'CHARACTER' type.
     STATUS      (Optional) Shall be of default 'INTEGER' type.

_See also_:
     *note LINK::


File: gfortran.info,  Node: REPEAT,  Next: RESHAPE,  Prev: RENAME,  Up: Intrinsic Procedures

9.231 'REPEAT' -- Repeated string concatenation
===============================================

_Description_:
     Concatenates NCOPIES copies of a string.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = REPEAT(STRING, NCOPIES)'

_Arguments_:
     STRING      Shall be scalar and of type 'CHARACTER'.
     NCOPIES     Shall be scalar and of type 'INTEGER'.

_Return value_:
     A new scalar of type 'CHARACTER' built up from NCOPIES copies of
     STRING.

_Example_:
          program test_repeat
            write(*,*) repeat("x", 5)   ! "xxxxx"
          end program


File: gfortran.info,  Node: RESHAPE,  Next: RRSPACING,  Prev: REPEAT,  Up: Intrinsic Procedures

9.232 'RESHAPE' -- Function to reshape an array
===============================================

_Description_:
     Reshapes SOURCE to correspond to SHAPE.  If necessary, the new
     array may be padded with elements from PAD or permuted as defined
     by ORDER.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])'

_Arguments_:
     SOURCE      Shall be an array of any type.
     SHAPE       Shall be of type 'INTEGER' and an array of rank
                 one.  Its values must be positive or zero.
     PAD         (Optional) shall be an array of the same type as
                 SOURCE.
     ORDER       (Optional) shall be of type 'INTEGER' and an
                 array of the same shape as SHAPE.  Its values
                 shall be a permutation of the numbers from 1 to
                 n, where n is the size of SHAPE.  If ORDER is
                 absent, the natural ordering shall be assumed.

_Return value_:
     The result is an array of shape SHAPE with the same type as SOURCE.

_Example_:
          PROGRAM test_reshape
            INTEGER, DIMENSION(4) :: x
            WRITE(*,*) SHAPE(x)                       ! prints "4"
            WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/)))    ! prints "2 2"
          END PROGRAM

_See also_:
     *note SHAPE::


File: gfortran.info,  Node: RRSPACING,  Next: RSHIFT,  Prev: RESHAPE,  Up: Intrinsic Procedures

9.233 'RRSPACING' -- Reciprocal of the relative spacing
=======================================================

_Description_:
     'RRSPACING(X)' returns the reciprocal of the relative spacing of
     model numbers near X.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = RRSPACING(X)'

_Arguments_:
     X           Shall be of type 'REAL'.

_Return value_:
     The return value is of the same type and kind as X.  The value
     returned is equal to 'ABS(FRACTION(X)) *
     FLOAT(RADIX(X))**DIGITS(X)'.

_See also_:
     *note SPACING::


File: gfortran.info,  Node: RSHIFT,  Next: SAME_TYPE_AS,  Prev: RRSPACING,  Up: Intrinsic Procedures

9.234 'RSHIFT' -- Right shift bits
==================================

_Description_:
     'RSHIFT' returns a value corresponding to I with all of the bits
     shifted right by SHIFT places.  SHIFT shall be nonnegative and less
     than or equal to 'BIT_SIZE(I)', otherwise the result value is
     undefined.  Bits shifted out from the right end are lost.  The fill
     is arithmetic: the bits shifted in from the left end are equal to
     the leftmost bit, which in two's complement representation is the
     sign bit.

     This function has been superseded by the 'SHIFTA' intrinsic, which
     is standard in Fortran 2008 and later.

_Standard_:
     GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = RSHIFT(I, SHIFT)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     SHIFT       The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_See also_:
     *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::,
     *note SHIFTR::, *note SHIFTL::


File: gfortran.info,  Node: SAME_TYPE_AS,  Next: SCALE,  Prev: RSHIFT,  Up: Intrinsic Procedures

9.235 'SAME_TYPE_AS' -- Query dynamic types for equality
========================================================

_Description_:
     Query dynamic types for equality.

_Standard_:
     Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = SAME_TYPE_AS(A, B)'

_Arguments_:
     A           Shall be an object of extensible declared type
                 or unlimited polymorphic.
     B           Shall be an object of extensible declared type
                 or unlimited polymorphic.

_Return value_:
     The return value is a scalar of type default logical.  It is true
     if and only if the dynamic type of A is the same as the dynamic
     type of B.

_See also_:
     *note EXTENDS_TYPE_OF::


File: gfortran.info,  Node: SCALE,  Next: SCAN,  Prev: SAME_TYPE_AS,  Up: Intrinsic Procedures

9.236 'SCALE' -- Scale a real value
===================================

_Description_:
     'SCALE(X,I)' returns 'X * RADIX(X)**I'.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SCALE(X, I)'

_Arguments_:
     X           The type of the argument shall be a 'REAL'.
     I           The type of the argument shall be a 'INTEGER'.

_Return value_:
     The return value is of the same type and kind as X.  Its value is
     'X * RADIX(X)**I'.

_Example_:
          program test_scale
            real :: x = 178.1387e-4
            integer :: i = 5
            print *, scale(x,i), x*radix(x)**i
          end program test_scale


File: gfortran.info,  Node: SCAN,  Next: SECNDS,  Prev: SCALE,  Up: Intrinsic Procedures

9.237 'SCAN' -- Scan a string for the presence of a set of characters
=====================================================================

_Description_:
     Scans a STRING for any of the characters in a SET of characters.

     If BACK is either absent or equals 'FALSE', this function returns
     the position of the leftmost character of STRING that is in SET.
     If BACK equals 'TRUE', the rightmost position is returned.  If no
     character of SET is found in STRING, the result is zero.

_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SCAN(STRING, SET[, BACK [, KIND]])'

_Arguments_:
     STRING      Shall be of type 'CHARACTER'.
     SET         Shall be of type 'CHARACTER'.
     BACK        (Optional) shall be of type 'LOGICAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_Example_:
          PROGRAM test_scan
            WRITE(*,*) SCAN("FORTRAN", "AO")          ! 2, found 'O'
            WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.)  ! 6, found 'A'
            WRITE(*,*) SCAN("FORTRAN", "C++")         ! 0, found none
          END PROGRAM

_See also_:
     *note INDEX intrinsic::, *note VERIFY::


File: gfortran.info,  Node: SECNDS,  Next: SECOND,  Prev: SCAN,  Up: Intrinsic Procedures

9.238 'SECNDS' -- Time function
===============================

_Description_:
     'SECNDS(X)' gets the time in seconds from the real-time system
     clock.  X is a reference time, also in seconds.  If this is zero,
     the time in seconds from midnight is returned.  This function is
     non-standard and its use is discouraged.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = SECNDS (X)'

_Arguments_:
     T           Shall be of type 'REAL(4)'.
     X           Shall be of type 'REAL(4)'.

_Return value_:
     None

_Example_:
          program test_secnds
              integer :: i
              real(4) :: t1, t2
              print *, secnds (0.0)   ! seconds since midnight
              t1 = secnds (0.0)       ! reference time
              do i = 1, 10000000      ! do something
              end do
              t2 = secnds (t1)        ! elapsed time
              print *, "Something took ", t2, " seconds."
          end program test_secnds


File: gfortran.info,  Node: SECOND,  Next: SELECTED_CHAR_KIND,  Prev: SECNDS,  Up: Intrinsic Procedures

9.239 'SECOND' -- CPU time function
===================================

_Description_:
     Returns a 'REAL(4)' value representing the elapsed CPU time in
     seconds.  This provides the same functionality as the standard
     'CPU_TIME' intrinsic, and is only included for backwards
     compatibility.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL SECOND(TIME)'
     'TIME = SECOND()'

_Arguments_:
     TIME        Shall be of type 'REAL(4)'.

_Return value_:
     In either syntax, TIME is set to the process's current runtime in
     seconds.

_See also_:
     *note CPU_TIME::


File: gfortran.info,  Node: SELECTED_CHAR_KIND,  Next: SELECTED_INT_KIND,  Prev: SECOND,  Up: Intrinsic Procedures

9.240 'SELECTED_CHAR_KIND' -- Choose character kind
===================================================

_Description_:

     'SELECTED_CHAR_KIND(NAME)' returns the kind value for the character
     set named NAME, if a character set with such a name is supported,
     or -1 otherwise.  Currently, supported character sets include
     "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646"
     (Universal Character Set, UCS-4) which is commonly known as
     Unicode.

_Standard_:
     Fortran 2003 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = SELECTED_CHAR_KIND(NAME)'

_Arguments_:
     NAME        Shall be a scalar and of the default character
                 type.

_Example_:
          program character_kind
            use iso_fortran_env
            implicit none
            integer, parameter :: ascii = selected_char_kind ("ascii")
            integer, parameter :: ucs4  = selected_char_kind ('ISO_10646')

            character(kind=ascii, len=26) :: alphabet
            character(kind=ucs4,  len=30) :: hello_world

            alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
            hello_world = ucs4_'Hello World and Ni Hao -- ' &
                          // char (int (z'4F60'), ucs4)     &
                          // char (int (z'597D'), ucs4)

            write (*,*) alphabet

            open (output_unit, encoding='UTF-8')
            write (*,*) trim (hello_world)
          end program character_kind


File: gfortran.info,  Node: SELECTED_INT_KIND,  Next: SELECTED_REAL_KIND,  Prev: SELECTED_CHAR_KIND,  Up: Intrinsic Procedures

9.241 'SELECTED_INT_KIND' -- Choose integer kind
================================================

_Description_:
     'SELECTED_INT_KIND(R)' return the kind value of the smallest
     integer type that can represent all values ranging from -10^R
     (exclusive) to 10^R (exclusive).  If there is no integer kind that
     accommodates this range, 'SELECTED_INT_KIND' returns -1.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = SELECTED_INT_KIND(R)'

_Arguments_:
     R           Shall be a scalar and of type 'INTEGER'.

_Example_:
          program large_integers
            integer,parameter :: k5 = selected_int_kind(5)
            integer,parameter :: k15 = selected_int_kind(15)
            integer(kind=k5) :: i5
            integer(kind=k15) :: i15

            print *, huge(i5), huge(i15)

            ! The following inequalities are always true
            print *, huge(i5) >= 10_k5**5-1
            print *, huge(i15) >= 10_k15**15-1
          end program large_integers


File: gfortran.info,  Node: SELECTED_REAL_KIND,  Next: SET_EXPONENT,  Prev: SELECTED_INT_KIND,  Up: Intrinsic Procedures

9.242 'SELECTED_REAL_KIND' -- Choose real kind
==============================================

_Description_:
     'SELECTED_REAL_KIND(P,R)' returns the kind value of a real data
     type with decimal precision of at least 'P' digits, exponent range
     of at least 'R', and with a radix of 'RADIX'.

_Standard_:
     Fortran 90 and later, with 'RADIX' Fortran 2008 or later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = SELECTED_REAL_KIND([P, R, RADIX])'

_Arguments_:
     P           (Optional) shall be a scalar and of type
                 'INTEGER'.
     R           (Optional) shall be a scalar and of type
                 'INTEGER'.
     RADIX       (Optional) shall be a scalar and of type
                 'INTEGER'.
     Before Fortran 2008, at least one of the arguments R or P shall be
     present; since Fortran 2008, they are assumed to be zero if absent.

_Return value_:

     'SELECTED_REAL_KIND' returns the value of the kind type parameter
     of a real data type with decimal precision of at least 'P' digits,
     a decimal exponent range of at least 'R', and with the requested
     'RADIX'.  If the 'RADIX' parameter is absent, real kinds with any
     radix can be returned.  If more than one real data type meet the
     criteria, the kind of the data type with the smallest decimal
     precision is returned.  If no real data type matches the criteria,
     the result is
     -1 if the processor does not support a real data type with a
          precision greater than or equal to 'P', but the 'R' and
          'RADIX' requirements can be fulfilled
     -2 if the processor does not support a real type with an exponent
          range greater than or equal to 'R', but 'P' and 'RADIX' are
          fulfillable
     -3 if 'RADIX' but not 'P' and 'R' requirements
          are fulfillable
     -4 if 'RADIX' and either 'P' or 'R' requirements
          are fulfillable
     -5 if there is no real type with the given 'RADIX'

_Example_:
          program real_kinds
            integer,parameter :: p6 = selected_real_kind(6)
            integer,parameter :: p10r100 = selected_real_kind(10,100)
            integer,parameter :: r400 = selected_real_kind(r=400)
            real(kind=p6) :: x
            real(kind=p10r100) :: y
            real(kind=r400) :: z

            print *, precision(x), range(x)
            print *, precision(y), range(y)
            print *, precision(z), range(z)
          end program real_kinds
_See also_:
     *note PRECISION::, *note RANGE::, *note RADIX::


File: gfortran.info,  Node: SET_EXPONENT,  Next: SHAPE,  Prev: SELECTED_REAL_KIND,  Up: Intrinsic Procedures

9.243 'SET_EXPONENT' -- Set the exponent of the model
=====================================================

_Description_:
     'SET_EXPONENT(X, I)' returns the real number whose fractional part
     is that that of X and whose exponent part is I.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SET_EXPONENT(X, I)'

_Arguments_:
     X           Shall be of type 'REAL'.
     I           Shall be of type 'INTEGER'.

_Return value_:
     The return value is of the same type and kind as X.  The real
     number whose fractional part is that that of X and whose exponent
     part if I is returned; it is 'FRACTION(X) * RADIX(X)**I'.

_Example_:
          PROGRAM test_setexp
            REAL :: x = 178.1387e-4
            INTEGER :: i = 17
            PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
          END PROGRAM


File: gfortran.info,  Node: SHAPE,  Next: SHIFTA,  Prev: SET_EXPONENT,  Up: Intrinsic Procedures

9.244 'SHAPE' -- Determine the shape of an array
================================================

_Description_:
     Determines the shape of an array.

_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = SHAPE(SOURCE [, KIND])'

_Arguments_:
     SOURCE      Shall be an array or scalar of any type.  If
                 SOURCE is a pointer it must be associated and
                 allocatable arrays must be allocated.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     An 'INTEGER' array of rank one with as many elements as SOURCE has
     dimensions.  The elements of the resulting array correspond to the
     extend of SOURCE along the respective dimensions.  If SOURCE is a
     scalar, the result is the rank one array of size zero.  If KIND is
     absent, the return value has the default integer kind otherwise the
     specified kind.

_Example_:
          PROGRAM test_shape
            INTEGER, DIMENSION(-1:1, -1:2) :: A
            WRITE(*,*) SHAPE(A)             ! (/ 3, 4 /)
            WRITE(*,*) SIZE(SHAPE(42))      ! (/ /)
          END PROGRAM

_See also_:
     *note RESHAPE::, *note SIZE::


File: gfortran.info,  Node: SHIFTA,  Next: SHIFTL,  Prev: SHAPE,  Up: Intrinsic Procedures

9.245 'SHIFTA' -- Right shift with fill
=======================================

_Description_:
     'SHIFTA' returns a value corresponding to I with all of the bits
     shifted right by SHIFT places.  SHIFT that be nonnegative and less
     than or equal to 'BIT_SIZE(I)', otherwise the result value is
     undefined.  Bits shifted out from the right end are lost.  The fill
     is arithmetic: the bits shifted in from the left end are equal to
     the leftmost bit, which in two's complement representation is the
     sign bit.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SHIFTA(I, SHIFT)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     SHIFT       The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_See also_:
     *note SHIFTL::, *note SHIFTR::


File: gfortran.info,  Node: SHIFTL,  Next: SHIFTR,  Prev: SHIFTA,  Up: Intrinsic Procedures

9.246 'SHIFTL' -- Left shift
============================

_Description_:
     'SHIFTL' returns a value corresponding to I with all of the bits
     shifted left by SHIFT places.  SHIFT shall be nonnegative and less
     than or equal to 'BIT_SIZE(I)', otherwise the result value is
     undefined.  Bits shifted out from the left end are lost, and bits
     shifted in from the right end are set to 0.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SHIFTL(I, SHIFT)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     SHIFT       The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_See also_:
     *note SHIFTA::, *note SHIFTR::


File: gfortran.info,  Node: SHIFTR,  Next: SIGN,  Prev: SHIFTL,  Up: Intrinsic Procedures

9.247 'SHIFTR' -- Right shift
=============================

_Description_:
     'SHIFTR' returns a value corresponding to I with all of the bits
     shifted right by SHIFT places.  SHIFT shall be nonnegative and less
     than or equal to 'BIT_SIZE(I)', otherwise the result value is
     undefined.  Bits shifted out from the right end are lost, and bits
     shifted in from the left end are set to 0.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SHIFTR(I, SHIFT)'

_Arguments_:
     I           The type shall be 'INTEGER'.
     SHIFT       The type shall be 'INTEGER'.

_Return value_:
     The return value is of type 'INTEGER' and of the same kind as I.

_See also_:
     *note SHIFTA::, *note SHIFTL::


File: gfortran.info,  Node: SIGN,  Next: SIGNAL,  Prev: SHIFTR,  Up: Intrinsic Procedures

9.248 'SIGN' -- Sign copying function
=====================================

_Description_:
     'SIGN(A,B)' returns the value of A with the sign of B.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SIGN(A, B)'

_Arguments_:
     A           Shall be of type 'INTEGER' or 'REAL'
     B           Shall be of the same type and kind as A.

_Return value_:
     The kind of the return value is that of A and B.  If B\ge 0 then
     the result is 'ABS(A)', else it is '-ABS(A)'.

_Example_:
          program test_sign
            print *, sign(-12,1)
            print *, sign(-12,0)
            print *, sign(-12,-1)

            print *, sign(-12.,1.)
            print *, sign(-12.,0.)
            print *, sign(-12.,-1.)
          end program test_sign

_Specific names_:
     Name           Arguments      Return type    Standard
     'SIGN(A,B)'    'REAL(4) A,    'REAL(4)'      Fortran 77 and
                    B'                            later
     'ISIGN(A,B)'   'INTEGER(4)    'INTEGER(4)'   Fortran 77 and
                    A, B'                         later
     'DSIGN(A,B)'   'REAL(8) A,    'REAL(8)'      Fortran 77 and
                    B'                            later


File: gfortran.info,  Node: SIGNAL,  Next: SIN,  Prev: SIGN,  Up: Intrinsic Procedures

9.249 'SIGNAL' -- Signal handling subroutine (or function)
==========================================================

_Description_:
     'SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine
     HANDLER to be executed with a single integer argument when signal
     NUMBER occurs.  If HANDLER is an integer, it can be used to turn
     off handling of signal NUMBER or revert to its default action.  See
     'signal(2)'.

     If 'SIGNAL' is called as a subroutine and the STATUS argument is
     supplied, it is set to the value returned by 'signal(2)'.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL SIGNAL(NUMBER, HANDLER [, STATUS])'
     'STATUS = SIGNAL(NUMBER, HANDLER)'

_Arguments_:
     NUMBER      Shall be a scalar integer, with 'INTENT(IN)'
     HANDLER     Signal handler ('INTEGER FUNCTION' or
                 'SUBROUTINE') or dummy/global 'INTEGER' scalar.
                 'INTEGER'.  It is 'INTENT(IN)'.
     STATUS      (Optional) STATUS shall be a scalar integer.  It
                 has 'INTENT(OUT)'.

_Return value_:
     The 'SIGNAL' function returns the value returned by 'signal(2)'.

_Example_:
          program test_signal
            intrinsic signal
            external handler_print

            call signal (12, handler_print)
            call signal (10, 1)

            call sleep (30)
          end program test_signal


File: gfortran.info,  Node: SIN,  Next: SIND,  Prev: SIGNAL,  Up: Intrinsic Procedures

9.250 'SIN' -- Sine function
============================

_Description_:
     'SIN(X)' computes the sine of X.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SIN(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X.

_Example_:
          program test_sin
            real :: x = 0.0
            x = sin(x)
          end program test_sin

_Specific names_:
     Name           Argument       Return type    Standard
     'SIN(X)'       'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DSIN(X)'      'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later
     'CSIN(X)'      'COMPLEX(4)    'COMPLEX(4)'   Fortran 77 and
                    X'                            later
     'ZSIN(X)'      'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'
     'CDSIN(X)'     'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'

_See also_:
     Inverse function: *note ASIN:: Degrees function: *note SIND::


File: gfortran.info,  Node: SIND,  Next: SINH,  Prev: SIN,  Up: Intrinsic Procedures

9.251 'SIND' -- Sine function, degrees
======================================

_Description_:
     'SIND(X)' computes the sine of X in degrees.

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SIND(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X, and its value is in
     degrees.

_Example_:
          program test_sind
            real :: x = 0.0
            x = sind(x)
          end program test_sind

_Specific names_:
     Name           Argument       Return type    Standard
     'SIND(X)'      'REAL(4) X'    'REAL(4)'      GNU extension
     'DSIND(X)'     'REAL(8) X'    'REAL(8)'      GNU extension
     'CSIND(X)'     'COMPLEX(4)    'COMPLEX(4)'   GNU extension
                    X'
     'ZSIND(X)'     'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'
     'CDSIND(X)'    'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'

_See also_:
     Inverse function: *note ASIND:: Radians function: *note SIN::


File: gfortran.info,  Node: SINH,  Next: SIZE,  Prev: SIND,  Up: Intrinsic Procedures

9.252 'SINH' -- Hyperbolic sine function
========================================

_Description_:
     'SINH(X)' computes the hyperbolic sine of X.

_Standard_:
     Fortran 90 and later, for a complex argument Fortran 2008 or later,
     has a GNU extension

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SINH(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X.

_Example_:
          program test_sinh
            real(8) :: x = - 1.0_8
            x = sinh(x)
          end program test_sinh

_Specific names_:
     Name           Argument       Return type    Standard
     'DSINH(X)'     'REAL(8) X'    'REAL(8)'      Fortran 90 and
                                                  later

_See also_:
     *note ASINH::


File: gfortran.info,  Node: SIZE,  Next: SIZEOF,  Prev: SINH,  Up: Intrinsic Procedures

9.253 'SIZE' -- Determine the size of an array
==============================================

_Description_:
     Determine the extent of ARRAY along a specified dimension DIM, or
     the total number of elements in ARRAY if DIM is absent.

_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = SIZE(ARRAY[, DIM [, KIND]])'

_Arguments_:
     ARRAY       Shall be an array of any type.  If ARRAY is a
                 pointer it must be associated and allocatable
                 arrays must be allocated.
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 and its value shall be in the range from 1 to n,
                 where n equals the rank of ARRAY.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_Example_:
          PROGRAM test_size
            WRITE(*,*) SIZE((/ 1, 2 /))    ! 2
          END PROGRAM

_See also_:
     *note SHAPE::, *note RESHAPE::


File: gfortran.info,  Node: SIZEOF,  Next: SLEEP,  Prev: SIZE,  Up: Intrinsic Procedures

9.254 'SIZEOF' -- Size in bytes of an expression
================================================

_Description_:
     'SIZEOF(X)' calculates the number of bytes of storage the
     expression 'X' occupies.

_Standard_:
     GNU extension

_Class_:
     Inquiry function

_Syntax_:
     'N = SIZEOF(X)'

_Arguments_:
     X           The argument shall be of any type, rank or
                 shape.

_Return value_:
     The return value is of type integer and of the system-dependent
     kind C_SIZE_T (from the ISO_C_BINDING module).  Its value is the
     number of bytes occupied by the argument.  If the argument has the
     'POINTER' attribute, the number of bytes of the storage area
     pointed to is returned.  If the argument is of a derived type with
     'POINTER' or 'ALLOCATABLE' components, the return value does not
     account for the sizes of the data pointed to by these components.
     If the argument is polymorphic, the size according to the dynamic
     type is returned.  The argument may not be a procedure or procedure
     pointer.  Note that the code assumes for arrays that those are
     contiguous; for contiguous arrays, it returns the storage or an
     array element multiplied by the size of the array.

_Example_:
             integer :: i
             real :: r, s(5)
             print *, (sizeof(s)/sizeof(r) == 5)
             end
     The example will print '.TRUE.' unless you are using a platform
     where default 'REAL' variables are unusually padded.

_See also_:
     *note C_SIZEOF::, *note STORAGE_SIZE::


File: gfortran.info,  Node: SLEEP,  Next: SPACING,  Prev: SIZEOF,  Up: Intrinsic Procedures

9.255 'SLEEP' -- Sleep for the specified number of seconds
==========================================================

_Description_:
     Calling this subroutine causes the process to pause for SECONDS
     seconds.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL SLEEP(SECONDS)'

_Arguments_:
     SECONDS     The type shall be of default 'INTEGER'.

_Example_:
          program test_sleep
            call sleep(5)
          end


File: gfortran.info,  Node: SPACING,  Next: SPREAD,  Prev: SLEEP,  Up: Intrinsic Procedures

9.256 'SPACING' -- Smallest distance between two numbers of a given type
========================================================================

_Description_:
     Determines the distance between the argument X and the nearest
     adjacent number of the same type.

_Standard_:
     Fortran 90 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SPACING(X)'

_Arguments_:
     X           Shall be of type 'REAL'.

_Return value_:
     The result is of the same type as the input argument X.

_Example_:
          PROGRAM test_spacing
            INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
            INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)

            WRITE(*,*) spacing(1.0_SGL)      ! "1.1920929E-07"          on i686
            WRITE(*,*) spacing(1.0_DBL)      ! "2.220446049250313E-016" on i686
          END PROGRAM

_See also_:
     *note RRSPACING::


File: gfortran.info,  Node: SPREAD,  Next: SQRT,  Prev: SPACING,  Up: Intrinsic Procedures

9.257 'SPREAD' -- Add a dimension to an array
=============================================

_Description_:
     Replicates a SOURCE array NCOPIES times along a specified dimension
     DIM.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = SPREAD(SOURCE, DIM, NCOPIES)'

_Arguments_:
     SOURCE      Shall be a scalar or an array of any type and a
                 rank less than seven.
     DIM         Shall be a scalar of type 'INTEGER' with a value
                 in the range from 1 to n+1, where n equals the
                 rank of SOURCE.
     NCOPIES     Shall be a scalar of type 'INTEGER'.

_Return value_:
     The result is an array of the same type as SOURCE and has rank n+1
     where n equals the rank of SOURCE.

_Example_:
          PROGRAM test_spread
            INTEGER :: a = 1, b(2) = (/ 1, 2 /)
            WRITE(*,*) SPREAD(A, 1, 2)            ! "1 1"
            WRITE(*,*) SPREAD(B, 1, 2)            ! "1 1 2 2"
          END PROGRAM

_See also_:
     *note UNPACK::


File: gfortran.info,  Node: SQRT,  Next: SRAND,  Prev: SPREAD,  Up: Intrinsic Procedures

9.258 'SQRT' -- Square-root function
====================================

_Description_:
     'SQRT(X)' computes the square root of X.

_Standard_:
     Fortran 77 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = SQRT(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value is of type 'REAL' or 'COMPLEX'.  The kind type
     parameter is the same as X.

_Example_:
          program test_sqrt
            real(8) :: x = 2.0_8
            complex :: z = (1.0, 2.0)
            x = sqrt(x)
            z = sqrt(z)
          end program test_sqrt

_Specific names_:
     Name           Argument       Return type    Standard
     'SQRT(X)'      'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DSQRT(X)'     'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later
     'CSQRT(X)'     'COMPLEX(4)    'COMPLEX(4)'   Fortran 77 and
                    X'                            later
     'ZSQRT(X)'     'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'
     'CDSQRT(X)'    'COMPLEX(8)    'COMPLEX(8)'   GNU extension
                    X'


File: gfortran.info,  Node: SRAND,  Next: STAT,  Prev: SQRT,  Up: Intrinsic Procedures

9.259 'SRAND' -- Reinitialize the random number generator
=========================================================

_Description_:
     'SRAND' reinitializes the pseudo-random number generator called by
     'RAND' and 'IRAND'.  The new seed used by the generator is
     specified by the required argument SEED.

_Standard_:
     GNU extension

_Class_:
     Subroutine

_Syntax_:
     'CALL SRAND(SEED)'

_Arguments_:
     SEED        Shall be a scalar 'INTEGER(kind=4)'.

_Return value_:
     Does not return anything.

_Example_:
     See 'RAND' and 'IRAND' for examples.

_Notes_:
     The Fortran standard specifies the intrinsic subroutines
     'RANDOM_SEED' to initialize the pseudo-random number generator and
     'RANDOM_NUMBER' to generate pseudo-random numbers.  These
     subroutines should be used in new codes.

     Please note that in GNU Fortran, these two sets of intrinsics
     ('RAND', 'IRAND' and 'SRAND' on the one hand, 'RANDOM_NUMBER' and
     'RANDOM_SEED' on the other hand) access two independent
     pseudo-random number generators.

_See also_:
     *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::


File: gfortran.info,  Node: STAT,  Next: STORAGE_SIZE,  Prev: SRAND,  Up: Intrinsic Procedures

9.260 'STAT' -- Get file status
===============================

_Description_:
     This function returns information about a file.  No permissions are
     required on the file itself, but execute (search) permission is
     required on all of the directories in path that lead to the file.

     The elements that are obtained and stored in the array 'VALUES':
     'VALUES(1)' Device ID
     'VALUES(2)' Inode number
     'VALUES(3)' File mode
     'VALUES(4)' Number of links
     'VALUES(5)' Owner's uid
     'VALUES(6)' Owner's gid
     'VALUES(7)' ID of device containing directory entry for file
                 (0 if not available)
     'VALUES(8)' File size (bytes)
     'VALUES(9)' Last access time
     'VALUES(10)'Last modification time
     'VALUES(11)'Last file status change time
     'VALUES(12)'Preferred I/O block size (-1 if not available)
     'VALUES(13)'Number of blocks allocated (-1 if not available)

     Not all these elements are relevant on all systems.  If an element
     is not relevant, it is returned as 0.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL STAT(NAME, VALUES [, STATUS])'
     'STATUS = STAT(NAME, VALUES)'

_Arguments_:
     NAME        The type shall be 'CHARACTER', of the default
                 kind and a valid path within the file system.
     VALUES      The type shall be 'INTEGER(4), DIMENSION(13)'.
     STATUS      (Optional) status flag of type 'INTEGER(4)'.
                 Returns 0 on success and a system specific error
                 code otherwise.

_Example_:
          PROGRAM test_stat
            INTEGER, DIMENSION(13) :: buff
            INTEGER :: status

            CALL STAT("/etc/passwd", buff, status)

            IF (status == 0) THEN
              WRITE (*, FMT="('Device ID:',               T30, I19)") buff(1)
              WRITE (*, FMT="('Inode number:',            T30, I19)") buff(2)
              WRITE (*, FMT="('File mode (octal):',       T30, O19)") buff(3)
              WRITE (*, FMT="('Number of links:',         T30, I19)") buff(4)
              WRITE (*, FMT="('Owner''s uid:',            T30, I19)") buff(5)
              WRITE (*, FMT="('Owner''s gid:',            T30, I19)") buff(6)
              WRITE (*, FMT="('Device where located:',    T30, I19)") buff(7)
              WRITE (*, FMT="('File size:',               T30, I19)") buff(8)
              WRITE (*, FMT="('Last access time:',        T30, A19)") CTIME(buff(9))
              WRITE (*, FMT="('Last modification time',   T30, A19)") CTIME(buff(10))
              WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
              WRITE (*, FMT="('Preferred block size:',    T30, I19)") buff(12)
              WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
            END IF
          END PROGRAM

_See also_:
     To stat an open file: *note FSTAT:: To stat a link: *note LSTAT::


File: gfortran.info,  Node: STORAGE_SIZE,  Next: SUM,  Prev: STAT,  Up: Intrinsic Procedures

9.261 'STORAGE_SIZE' -- Storage size in bits
============================================

_Description_:
     Returns the storage size of argument A in bits.
_Standard_:
     Fortran 2008 and later
_Class_:
     Inquiry function
_Syntax_:
     'RESULT = STORAGE_SIZE(A [, KIND])'

_Arguments_:
     A           Shall be a scalar or array of any type.
     KIND        (Optional) shall be a scalar integer constant
                 expression.

_Return Value_:
     The result is a scalar integer with the kind type parameter
     specified by KIND (or default integer type if KIND is missing).
     The result value is the size expressed in bits for an element of an
     array that has the dynamic type and type parameters of A.

_See also_:
     *note C_SIZEOF::, *note SIZEOF::


File: gfortran.info,  Node: SUM,  Next: SYMLNK,  Prev: STORAGE_SIZE,  Up: Intrinsic Procedures

9.262 'SUM' -- Sum of array elements
====================================

_Description_:
     Adds the elements of ARRAY along dimension DIM if the corresponding
     element in MASK is 'TRUE'.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = SUM(ARRAY[, MASK])'
     'RESULT = SUM(ARRAY, DIM[, MASK])'

_Arguments_:
     ARRAY       Shall be an array of type 'INTEGER', 'REAL' or
                 'COMPLEX'.
     DIM         (Optional) shall be a scalar of type 'INTEGER'
                 with a value in the range from 1 to n, where n
                 equals the rank of ARRAY.
     MASK        (Optional) shall be of type 'LOGICAL' and either
                 be a scalar or an array of the same shape as
                 ARRAY.

_Return value_:
     The result is of the same type as ARRAY.

     If DIM is absent, a scalar with the sum of all elements in ARRAY is
     returned.  Otherwise, an array of rank n-1, where n equals the rank
     of ARRAY, and a shape similar to that of ARRAY with dimension DIM
     dropped is returned.

_Example_:
          PROGRAM test_sum
            INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
            print *, SUM(x)                        ! all elements, sum = 15
            print *, SUM(x, MASK=MOD(x, 2)==1)     ! odd elements, sum = 9
          END PROGRAM

_See also_:
     *note PRODUCT::


File: gfortran.info,  Node: SYMLNK,  Next: SYSTEM,  Prev: SUM,  Up: Intrinsic Procedures

9.263 'SYMLNK' -- Create a symbolic link
========================================

_Description_:
     Makes a symbolic link from file PATH1 to PATH2.  A null character
     ('CHAR(0)') can be used to mark the end of the names in PATH1 and
     PATH2; otherwise, trailing blanks in the file names are ignored.
     If the STATUS argument is supplied, it contains 0 on success or a
     nonzero error code upon return; see 'symlink(2)'.  If the system
     does not supply 'symlink(2)', 'ENOSYS' is returned.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL SYMLNK(PATH1, PATH2 [, STATUS])'
     'STATUS = SYMLNK(PATH1, PATH2)'

_Arguments_:
     PATH1       Shall be of default 'CHARACTER' type.
     PATH2       Shall be of default 'CHARACTER' type.
     STATUS      (Optional) Shall be of default 'INTEGER' type.

_See also_:
     *note LINK::, *note UNLINK::


File: gfortran.info,  Node: SYSTEM,  Next: SYSTEM_CLOCK,  Prev: SYMLNK,  Up: Intrinsic Procedures

9.264 'SYSTEM' -- Execute a shell command
=========================================

_Description_:
     Passes the command COMMAND to a shell (see 'system(3)').  If
     argument STATUS is present, it contains the value returned by
     'system(3)', which is presumably 0 if the shell command succeeded.
     Note that which shell is used to invoke the command is
     system-dependent and environment-dependent.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

     Note that the 'system' function need not be thread-safe.  It is the
     responsibility of the user to ensure that 'system' is not called
     concurrently.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL SYSTEM(COMMAND [, STATUS])'
     'STATUS = SYSTEM(COMMAND)'

_Arguments_:
     COMMAND     Shall be of default 'CHARACTER' type.
     STATUS      (Optional) Shall be of default 'INTEGER' type.

_See also_:
     *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008
     standard and should considered in new code for future portability.


File: gfortran.info,  Node: SYSTEM_CLOCK,  Next: TAN,  Prev: SYSTEM,  Up: Intrinsic Procedures

9.265 'SYSTEM_CLOCK' -- Time function
=====================================

_Description_:
     Determines the COUNT of a processor clock since an unspecified time
     in the past modulo COUNT_MAX, COUNT_RATE determines the number of
     clock ticks per second.  If the platform supports a monotonic
     clock, that clock is used and can, depending on the platform clock
     implementation, provide up to nanosecond resolution.  If a
     monotonic clock is not available, the implementation falls back to
     a realtime clock.

     COUNT_RATE is system dependent and can vary depending on the kind
     of the arguments.  For KIND=4 arguments (and smaller integer
     kinds), COUNT represents milliseconds, while for KIND=8 arguments
     (and larger integer kinds), COUNT typically represents micro- or
     nanoseconds depending on resolution of the underlying platform
     clock.  COUNT_MAX usually equals 'HUGE(COUNT_MAX)'.  Note that the
     millisecond resolution of the KIND=4 version implies that the COUNT
     will wrap around in roughly 25 days.  In order to avoid issues with
     the wrap around and for more precise timing, please use the KIND=8
     version.

     If there is no clock, or querying the clock fails, COUNT is set to
     '-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero.

     When running on a platform using the GNU C library (glibc) version
     2.16 or older, or a derivative thereof, the high resolution
     monotonic clock is available only when linking with the RT library.
     This can be done explicitly by adding the '-lrt' flag when linking
     the application, but is also done implicitly when using OpenMP.

     On the Windows platform, the version with KIND=4 arguments uses the
     'GetTickCount' function, whereas the KIND=8 version uses
     'QueryPerformanceCounter' and 'QueryPerformanceCounterFrequency'.
     For more information, and potential caveats, please see the
     platform documentation.

_Standard_:
     Fortran 90 and later

_Class_:
     Subroutine

_Syntax_:
     'CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])'

_Arguments_:
     COUNT          (Optional) shall be a scalar of type
                    'INTEGER' with 'INTENT(OUT)'.
     COUNT_RATE     (Optional) shall be a scalar of type
                    'INTEGER' or 'REAL', with 'INTENT(OUT)'.
     COUNT_MAX      (Optional) shall be a scalar of type
                    'INTEGER' with 'INTENT(OUT)'.

_Example_:
          PROGRAM test_system_clock
            INTEGER :: count, count_rate, count_max
            CALL SYSTEM_CLOCK(count, count_rate, count_max)
            WRITE(*,*) count, count_rate, count_max
          END PROGRAM

_See also_:
     *note DATE_AND_TIME::, *note CPU_TIME::


File: gfortran.info,  Node: TAN,  Next: TAND,  Prev: SYSTEM_CLOCK,  Up: Intrinsic Procedures

9.266 'TAN' -- Tangent function
===============================

_Description_:
     'TAN(X)' computes the tangent of X.

_Standard_:
     Fortran 77 and later, for a complex argument Fortran 2008 or later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = TAN(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X, and its value is in
     radians.

_Example_:
          program test_tan
            real(8) :: x = 0.165_8
            x = tan(x)
          end program test_tan

_Specific names_:
     Name           Argument       Return type    Standard
     'TAN(X)'       'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DTAN(X)'      'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     Inverse function: *note ATAN:: Degrees function: *note TAND::


File: gfortran.info,  Node: TAND,  Next: TANH,  Prev: TAN,  Up: Intrinsic Procedures

9.267 'TAND' -- Tangent function, degrees
=========================================

_Description_:
     'TAND(X)' computes the tangent of X in degrees.

     This function is for compatibility only and should be avoided in
     favor of standard constructs wherever possible.

_Standard_:
     GNU extension, enabled with '-fdec-math'.

_Class_:
     Elemental function

_Syntax_:
     'RESULT = TAND(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X, and its value is in
     degrees.

_Example_:
          program test_tand
            real(8) :: x = 0.165_8
            x = tand(x)
          end program test_tand

_Specific names_:
     Name           Argument       Return type    Standard
     'TAND(X)'      'REAL(4) X'    'REAL(4)'      GNU extension
     'DTAND(X)'     'REAL(8) X'    'REAL(8)'      GNU extension

_See also_:
     Inverse function: *note ATAND:: Radians function: *note TAN::


File: gfortran.info,  Node: TANH,  Next: THIS_IMAGE,  Prev: TAND,  Up: Intrinsic Procedures

9.268 'TANH' -- Hyperbolic tangent function
===========================================

_Description_:
     'TANH(X)' computes the hyperbolic tangent of X.

_Standard_:
     Fortran 77 and later, for a complex argument Fortran 2008 or later

_Class_:
     Elemental function

_Syntax_:
     'X = TANH(X)'

_Arguments_:
     X           The type shall be 'REAL' or 'COMPLEX'.

_Return value_:
     The return value has same type and kind as X.  If X is complex, the
     imaginary part of the result is in radians.  If X is 'REAL', the
     return value lies in the range - 1 \leq tanh(x) \leq 1 .

_Example_:
          program test_tanh
            real(8) :: x = 2.1_8
            x = tanh(x)
          end program test_tanh

_Specific names_:
     Name           Argument       Return type    Standard
     'TANH(X)'      'REAL(4) X'    'REAL(4)'      Fortran 77 and
                                                  later
     'DTANH(X)'     'REAL(8) X'    'REAL(8)'      Fortran 77 and
                                                  later

_See also_:
     *note ATANH::


File: gfortran.info,  Node: THIS_IMAGE,  Next: TIME,  Prev: TANH,  Up: Intrinsic Procedures

9.269 'THIS_IMAGE' -- Function that returns the cosubscript index of this image
===============================================================================

_Description_:
     Returns the cosubscript for this image.

_Standard_:
     Fortran 2008 and later.  With DISTANCE argument, Technical
     Specification (TS) 18508 or later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = THIS_IMAGE()'
     'RESULT = THIS_IMAGE(DISTANCE)'
     'RESULT = THIS_IMAGE(COARRAY [, DIM])'

_Arguments_:
     DISTANCE    (optional, intent(in)) Nonnegative scalar
                 integer (not permitted together with COARRAY).
     COARRAY     Coarray of any type (optional; if DIM present,
                 required).
     DIM         default integer scalar (optional).  If present,
                 DIM shall be between one and the corank of
                 COARRAY.

_Return value_:
     Default integer.  If COARRAY is not present, it is scalar; if
     DISTANCE is not present or has value 0, its value is the image
     index on the invoking image for the current team, for values
     smaller or equal distance to the initial team, it returns the image
     index on the ancestor team which has a distance of DISTANCE from
     the invoking team.  If DISTANCE is larger than the distance to the
     initial team, the image index of the initial team is returned.
     Otherwise when the COARRAY is present, if DIM is not present, a
     rank-1 array with corank elements is returned, containing the
     cosubscripts for COARRAY specifying the invoking image.  If DIM is
     present, a scalar is returned, with the value of the DIM element of
     'THIS_IMAGE(COARRAY)'.

_Example_:
          INTEGER :: value[*]
          INTEGER :: i
          value = THIS_IMAGE()
          SYNC ALL
          IF (THIS_IMAGE() == 1) THEN
            DO i = 1, NUM_IMAGES()
              WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
            END DO
          END IF

          ! Check whether the current image is the initial image
          IF (THIS_IMAGE(HUGE(1)) /= THIS_IMAGE())
            error stop "something is rotten here"

_See also_:
     *note NUM_IMAGES::, *note IMAGE_INDEX::


File: gfortran.info,  Node: TIME,  Next: TIME8,  Prev: THIS_IMAGE,  Up: Intrinsic Procedures

9.270 'TIME' -- Time function
=============================

_Description_:
     Returns the current time encoded as an integer (in the manner of
     the function 'time(3)' in the C standard library).  This value is
     suitable for passing to *note CTIME::, *note GMTIME::, and *note
     LTIME::.

     This intrinsic is not fully portable, such as to systems with
     32-bit 'INTEGER' types but supporting times wider than 32 bits.
     Therefore, the values returned by this intrinsic might be, or
     become, negative, or numerically less than previous values, during
     a single run of the compiled program.

     See *note TIME8::, for information on a similar intrinsic that
     might be portable to more GNU Fortran implementations, though to
     fewer Fortran compilers.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = TIME()'

_Return value_:
     The return value is a scalar of type 'INTEGER(4)'.

_See also_:
     *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note
     LTIME::, *note MCLOCK::, *note TIME8::


File: gfortran.info,  Node: TIME8,  Next: TINY,  Prev: TIME,  Up: Intrinsic Procedures

9.271 'TIME8' -- Time function (64-bit)
=======================================

_Description_:
     Returns the current time encoded as an integer (in the manner of
     the function 'time(3)' in the C standard library).  This value is
     suitable for passing to *note CTIME::, *note GMTIME::, and *note
     LTIME::.

     _Warning:_ this intrinsic does not increase the range of the timing
     values over that returned by 'time(3)'.  On a system with a 32-bit
     'time(3)', 'TIME8' will return a 32-bit value, even though it is
     converted to a 64-bit 'INTEGER(8)' value.  That means overflows of
     the 32-bit value can still occur.  Therefore, the values returned
     by this intrinsic might be or become negative or numerically less
     than previous values during a single run of the compiled program.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = TIME8()'

_Return value_:
     The return value is a scalar of type 'INTEGER(8)'.

_See also_:
     *note DATE_AND_TIME::, *note CTIME::, *note GMTIME::, *note
     LTIME::, *note MCLOCK8::, *note TIME::


File: gfortran.info,  Node: TINY,  Next: TRAILZ,  Prev: TIME8,  Up: Intrinsic Procedures

9.272 'TINY' -- Smallest positive number of a real kind
=======================================================

_Description_:
     'TINY(X)' returns the smallest positive (non zero) number in the
     model of the type of 'X'.

_Standard_:
     Fortran 90 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = TINY(X)'

_Arguments_:
     X           Shall be of type 'REAL'.

_Return value_:
     The return value is of the same type and kind as X

_Example_:
     See 'HUGE' for an example.


File: gfortran.info,  Node: TRAILZ,  Next: TRANSFER,  Prev: TINY,  Up: Intrinsic Procedures

9.273 'TRAILZ' -- Number of trailing zero bits of an integer
============================================================

_Description_:
     'TRAILZ' returns the number of trailing zero bits of an integer.

_Standard_:
     Fortran 2008 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = TRAILZ(I)'

_Arguments_:
     I           Shall be of type 'INTEGER'.

_Return value_:
     The type of the return value is the default 'INTEGER'.  If all the
     bits of 'I' are zero, the result value is 'BIT_SIZE(I)'.

_Example_:
          PROGRAM test_trailz
            WRITE (*,*) TRAILZ(8)  ! prints 3
          END PROGRAM

_See also_:
     *note BIT_SIZE::, *note LEADZ::, *note POPPAR::, *note POPCNT::


File: gfortran.info,  Node: TRANSFER,  Next: TRANSPOSE,  Prev: TRAILZ,  Up: Intrinsic Procedures

9.274 'TRANSFER' -- Transfer bit patterns
=========================================

_Description_:
     Interprets the bitwise representation of SOURCE in memory as if it
     is the representation of a variable or array of the same type and
     type parameters as MOLD.

     This is approximately equivalent to the C concept of _casting_ one
     type to another.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = TRANSFER(SOURCE, MOLD[, SIZE])'

_Arguments_:
     SOURCE      Shall be a scalar or an array of any type.
     MOLD        Shall be a scalar or an array of any type.
     SIZE        (Optional) shall be a scalar of type 'INTEGER'.

_Return value_:
     The result has the same type as MOLD, with the bit level
     representation of SOURCE.  If SIZE is present, the result is a
     one-dimensional array of length SIZE.  If SIZE is absent but MOLD
     is an array (of any size or shape), the result is a one-
     dimensional array of the minimum length needed to contain the
     entirety of the bitwise representation of SOURCE.  If SIZE is
     absent and MOLD is a scalar, the result is a scalar.

     If the bitwise representation of the result is longer than that of
     SOURCE, then the leading bits of the result correspond to those of
     SOURCE and any trailing bits are filled arbitrarily.

     When the resulting bit representation does not correspond to a
     valid representation of a variable of the same type as MOLD, the
     results are undefined, and subsequent operations on the result
     cannot be guaranteed to produce sensible behavior.  For example, it
     is possible to create 'LOGICAL' variables for which 'VAR' and
     '.NOT.VAR' both appear to be true.

_Example_:
          PROGRAM test_transfer
            integer :: x = 2143289344
            print *, transfer(x, 1.0)    ! prints "NaN" on i686
          END PROGRAM


File: gfortran.info,  Node: TRANSPOSE,  Next: TRIM,  Prev: TRANSFER,  Up: Intrinsic Procedures

9.275 'TRANSPOSE' -- Transpose an array of rank two
===================================================

_Description_:
     Transpose an array of rank two.  Element (i, j) of the result has
     the value 'MATRIX(j, i)', for all i, j.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = TRANSPOSE(MATRIX)'

_Arguments_:
     MATRIX      Shall be an array of any type and have a rank of
                 two.

_Return value_:
     The result has the same type as MATRIX, and has shape '(/ m, n /)'
     if MATRIX has shape '(/ n, m /)'.


File: gfortran.info,  Node: TRIM,  Next: TTYNAM,  Prev: TRANSPOSE,  Up: Intrinsic Procedures

9.276 'TRIM' -- Remove trailing blank characters of a string
============================================================

_Description_:
     Removes trailing blank characters of a string.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = TRIM(STRING)'

_Arguments_:
     STRING      Shall be a scalar of type 'CHARACTER'.

_Return value_:
     A scalar of type 'CHARACTER' which length is that of STRING less
     the number of trailing blanks.

_Example_:
          PROGRAM test_trim
            CHARACTER(len=10), PARAMETER :: s = "GFORTRAN  "
            WRITE(*,*) LEN(s), LEN(TRIM(s))  ! "10 8", with/without trailing blanks
          END PROGRAM

_See also_:
     *note ADJUSTL::, *note ADJUSTR::


File: gfortran.info,  Node: TTYNAM,  Next: UBOUND,  Prev: TRIM,  Up: Intrinsic Procedures

9.277 'TTYNAM' -- Get the name of a terminal device.
====================================================

_Description_:
     Get the name of a terminal device.  For more information, see
     'ttyname(3)'.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL TTYNAM(UNIT, NAME)'
     'NAME = TTYNAM(UNIT)'

_Arguments_:
     UNIT        Shall be a scalar 'INTEGER'.
     NAME        Shall be of type 'CHARACTER'.

_Example_:
          PROGRAM test_ttynam
            INTEGER :: unit
            DO unit = 1, 10
              IF (isatty(unit=unit)) write(*,*) ttynam(unit)
            END DO
          END PROGRAM

_See also_:
     *note ISATTY::


File: gfortran.info,  Node: UBOUND,  Next: UCOBOUND,  Prev: TTYNAM,  Up: Intrinsic Procedures

9.278 'UBOUND' -- Upper dimension bounds of an array
====================================================

_Description_:
     Returns the upper bounds of an array, or a single upper bound along
     the DIM dimension.
_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = UBOUND(ARRAY [, DIM [, KIND]])'

_Arguments_:
     ARRAY       Shall be an array, of any type.
     DIM         (Optional) Shall be a scalar 'INTEGER'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.  If DIM is
     absent, the result is an array of the upper bounds of ARRAY.  If
     DIM is present, the result is a scalar corresponding to the upper
     bound of the array along that dimension.  If ARRAY is an expression
     rather than a whole array or array structure component, or if it
     has a zero extent along the relevant dimension, the upper bound is
     taken to be the number of elements along the relevant dimension.

_See also_:
     *note LBOUND::, *note LCOBOUND::


File: gfortran.info,  Node: UCOBOUND,  Next: UMASK,  Prev: UBOUND,  Up: Intrinsic Procedures

9.279 'UCOBOUND' -- Upper codimension bounds of an array
========================================================

_Description_:
     Returns the upper cobounds of a coarray, or a single upper cobound
     along the DIM codimension.
_Standard_:
     Fortran 2008 and later

_Class_:
     Inquiry function

_Syntax_:
     'RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])'

_Arguments_:
     ARRAY       Shall be an coarray, of any type.
     DIM         (Optional) Shall be a scalar 'INTEGER'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.  If DIM is
     absent, the result is an array of the lower cobounds of COARRAY.
     If DIM is present, the result is a scalar corresponding to the
     lower cobound of the array along that codimension.

_See also_:
     *note LCOBOUND::, *note LBOUND::


File: gfortran.info,  Node: UMASK,  Next: UNLINK,  Prev: UCOBOUND,  Up: Intrinsic Procedures

9.280 'UMASK' -- Set the file creation mask
===========================================

_Description_:
     Sets the file creation mask to MASK.  If called as a function, it
     returns the old value.  If called as a subroutine and argument OLD
     if it is supplied, it is set to the old value.  See 'umask(2)'.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL UMASK(MASK [, OLD])'
     'OLD = UMASK(MASK)'

_Arguments_:
     MASK        Shall be a scalar of type 'INTEGER'.
     OLD         (Optional) Shall be a scalar of type 'INTEGER'.


File: gfortran.info,  Node: UNLINK,  Next: UNPACK,  Prev: UMASK,  Up: Intrinsic Procedures

9.281 'UNLINK' -- Remove a file from the file system
====================================================

_Description_:
     Unlinks the file PATH.  A null character ('CHAR(0)') can be used to
     mark the end of the name in PATH; otherwise, trailing blanks in the
     file name are ignored.  If the STATUS argument is supplied, it
     contains 0 on success or a nonzero error code upon return; see
     'unlink(2)'.

     This intrinsic is provided in both subroutine and function forms;
     however, only one form can be used in any given program unit.

_Standard_:
     GNU extension

_Class_:
     Subroutine, function

_Syntax_:
     'CALL UNLINK(PATH [, STATUS])'
     'STATUS = UNLINK(PATH)'

_Arguments_:
     PATH        Shall be of default 'CHARACTER' type.
     STATUS      (Optional) Shall be of default 'INTEGER' type.

_See also_:
     *note LINK::, *note SYMLNK::


File: gfortran.info,  Node: UNPACK,  Next: VERIFY,  Prev: UNLINK,  Up: Intrinsic Procedures

9.282 'UNPACK' -- Unpack an array of rank one into an array
===========================================================

_Description_:
     Store the elements of VECTOR in an array of higher rank.

_Standard_:
     Fortran 90 and later

_Class_:
     Transformational function

_Syntax_:
     'RESULT = UNPACK(VECTOR, MASK, FIELD)'

_Arguments_:
     VECTOR      Shall be an array of any type and rank one.  It
                 shall have at least as many elements as MASK has
                 'TRUE' values.
     MASK        Shall be an array of type 'LOGICAL'.
     FIELD       Shall be of the same type as VECTOR and have the
                 same shape as MASK.

_Return value_:
     The resulting array corresponds to FIELD with 'TRUE' elements of
     MASK replaced by values from VECTOR in array element order.

_Example_:
          PROGRAM test_unpack
            integer :: vector(2)  = (/1,1/)
            logical :: mask(4)  = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
            integer :: field(2,2) = 0, unity(2,2)

            ! result: unity matrix
            unity = unpack(vector, reshape(mask, (/2,2/)), field)
          END PROGRAM

_See also_:
     *note PACK::, *note SPREAD::


File: gfortran.info,  Node: VERIFY,  Next: XOR,  Prev: UNPACK,  Up: Intrinsic Procedures

9.283 'VERIFY' -- Scan a string for characters not a given set
==============================================================

_Description_:
     Verifies that all the characters in STRING belong to the set of
     characters in SET.

     If BACK is either absent or equals 'FALSE', this function returns
     the position of the leftmost character of STRING that is not in
     SET.  If BACK equals 'TRUE', the rightmost position is returned.
     If all characters of STRING are found in SET, the result is zero.

_Standard_:
     Fortran 90 and later, with KIND argument Fortran 2003 and later

_Class_:
     Elemental function

_Syntax_:
     'RESULT = VERIFY(STRING, SET[, BACK [, KIND]])'

_Arguments_:
     STRING      Shall be of type 'CHARACTER'.
     SET         Shall be of type 'CHARACTER'.
     BACK        (Optional) shall be of type 'LOGICAL'.
     KIND        (Optional) An 'INTEGER' initialization
                 expression indicating the kind parameter of the
                 result.

_Return value_:
     The return value is of type 'INTEGER' and of kind KIND.  If KIND is
     absent, the return value is of default integer kind.

_Example_:
          PROGRAM test_verify
            WRITE(*,*) VERIFY("FORTRAN", "AO")           ! 1, found 'F'
            WRITE(*,*) VERIFY("FORTRAN", "FOO")          ! 3, found 'R'
            WRITE(*,*) VERIFY("FORTRAN", "C++")          ! 1, found 'F'
            WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.)  ! 7, found 'N'
            WRITE(*,*) VERIFY("FORTRAN", "FORTRAN")      ! 0' found none
          END PROGRAM

_See also_:
     *note SCAN::, *note INDEX intrinsic::


File: gfortran.info,  Node: XOR,  Prev: VERIFY,  Up: Intrinsic Procedures

9.284 'XOR' -- Bitwise logical exclusive OR
===========================================

_Description_:
     Bitwise logical exclusive or.

     This intrinsic routine is provided for backwards compatibility with
     GNU Fortran 77.  For integer arguments, programmers should consider
     the use of the *note IEOR:: intrinsic and for logical arguments the
     '.NEQV.' operator, which are both defined by the Fortran standard.

_Standard_:
     GNU extension

_Class_:
     Function

_Syntax_:
     'RESULT = XOR(I, J)'

_Arguments_:
     I           The type shall be either a scalar 'INTEGER' type
                 or a scalar 'LOGICAL' type or a
                 boz-literal-constant.
     J           The type shall be the same as the type of I or a
                 boz-literal-constant.  I and J shall not both be
                 boz-literal-constants.  If either I and J is a
                 boz-literal-constant, then the other argument
                 must be a scalar 'INTEGER'.

_Return value_:
     The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'.
     If the kind type parameters differ, then the smaller kind type is
     implicitly converted to larger kind, and the return has the larger
     kind.  A boz-literal-constant is converted to an 'INTEGER' with the
     kind type parameter of the other argument as-if a call to *note
     INT:: occurred.

_Example_:
          PROGRAM test_xor
            LOGICAL :: T = .TRUE., F = .FALSE.
            INTEGER :: a, b
            DATA a / Z'F' /, b / Z'3' /

            WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
            WRITE (*,*) XOR(a, b)
          END PROGRAM

_See also_:
     Fortran 95 elemental function: *note IEOR::


File: gfortran.info,  Node: Intrinsic Modules,  Next: Contributing,  Prev: Intrinsic Procedures,  Up: Top

10 Intrinsic Modules
********************

* Menu:

* ISO_FORTRAN_ENV::
* ISO_C_BINDING::
* IEEE modules::
* OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
* OpenACC Module OPENACC::


File: gfortran.info,  Node: ISO_FORTRAN_ENV,  Next: ISO_C_BINDING,  Up: Intrinsic Modules

10.1 'ISO_FORTRAN_ENV'
======================

_Standard_:
     Fortran 2003 and later, except when otherwise noted

   The 'ISO_FORTRAN_ENV' module provides the following scalar
default-integer named constants:

'ATOMIC_INT_KIND':
     Default-kind integer constant to be used as kind parameter when
     defining integer variables used in atomic operations.  (Fortran
     2008 or later.)

'ATOMIC_LOGICAL_KIND':
     Default-kind integer constant to be used as kind parameter when
     defining logical variables used in atomic operations.  (Fortran
     2008 or later.)

'CHARACTER_KINDS':
     Default-kind integer constant array of rank one containing the
     supported kind parameters of the 'CHARACTER' type.  (Fortran 2008
     or later.)

'CHARACTER_STORAGE_SIZE':
     Size in bits of the character storage unit.

'ERROR_UNIT':
     Identifies the preconnected unit used for error reporting.

'FILE_STORAGE_SIZE':
     Size in bits of the file-storage unit.

'INPUT_UNIT':
     Identifies the preconnected unit identified by the asterisk ('*')
     in 'READ' statement.

'INT8', 'INT16', 'INT32', 'INT64':
     Kind type parameters to specify an INTEGER type with a storage size
     of 16, 32, and 64 bits.  It is negative if a target platform does
     not support the particular kind.  (Fortran 2008 or later.)

'INTEGER_KINDS':
     Default-kind integer constant array of rank one containing the
     supported kind parameters of the 'INTEGER' type.  (Fortran 2008 or
     later.)

'IOSTAT_END':
     The value assigned to the variable passed to the 'IOSTAT='
     specifier of an input/output statement if an end-of-file condition
     occurred.

'IOSTAT_EOR':
     The value assigned to the variable passed to the 'IOSTAT='
     specifier of an input/output statement if an end-of-record
     condition occurred.

'IOSTAT_INQUIRE_INTERNAL_UNIT':
     Scalar default-integer constant, used by 'INQUIRE' for the
     'IOSTAT=' specifier to denote an that a unit number identifies an
     internal unit.  (Fortran 2008 or later.)

'NUMERIC_STORAGE_SIZE':
     The size in bits of the numeric storage unit.

'LOGICAL_KINDS':
     Default-kind integer constant array of rank one containing the
     supported kind parameters of the 'LOGICAL' type.  (Fortran 2008 or
     later.)

'OUTPUT_UNIT':
     Identifies the preconnected unit identified by the asterisk ('*')
     in 'WRITE' statement.

'REAL32', 'REAL64', 'REAL128':
     Kind type parameters to specify a REAL type with a storage size of
     32, 64, and 128 bits.  It is negative if a target platform does not
     support the particular kind.  (Fortran 2008 or later.)

'REAL_KINDS':
     Default-kind integer constant array of rank one containing the
     supported kind parameters of the 'REAL' type.  (Fortran 2008 or
     later.)

'STAT_LOCKED':
     Scalar default-integer constant used as STAT= return value by
     'LOCK' to denote that the lock variable is locked by the executing
     image.  (Fortran 2008 or later.)

'STAT_LOCKED_OTHER_IMAGE':
     Scalar default-integer constant used as STAT= return value by
     'UNLOCK' to denote that the lock variable is locked by another
     image.  (Fortran 2008 or later.)

'STAT_STOPPED_IMAGE':
     Positive, scalar default-integer constant used as STAT= return
     value if the argument in the statement requires synchronisation
     with an image, which has initiated the termination of the
     execution.  (Fortran 2008 or later.)

'STAT_FAILED_IMAGE':
     Positive, scalar default-integer constant used as STAT= return
     value if the argument in the statement requires communication with
     an image, which has is in the failed state.  (TS 18508 or later.)

'STAT_UNLOCKED':
     Scalar default-integer constant used as STAT= return value by
     'UNLOCK' to denote that the lock variable is unlocked.  (Fortran
     2008 or later.)

   The module provides the following derived type:

'LOCK_TYPE':
     Derived type with private components to be use with the 'LOCK' and
     'UNLOCK' statement.  A variable of its type has to be always
     declared as coarray and may not appear in a variable-definition
     context.  (Fortran 2008 or later.)

   The module also provides the following intrinsic procedures: *note
COMPILER_OPTIONS:: and *note COMPILER_VERSION::.


File: gfortran.info,  Node: ISO_C_BINDING,  Next: IEEE modules,  Prev: ISO_FORTRAN_ENV,  Up: Intrinsic Modules

10.2 'ISO_C_BINDING'
====================

_Standard_:
     Fortran 2003 and later, GNU extensions

   The following intrinsic procedures are provided by the module; their
definition can be found in the section Intrinsic Procedures of this
manual.

'C_ASSOCIATED'
'C_F_POINTER'
'C_F_PROCPOINTER'
'C_FUNLOC'
'C_LOC'
'C_SIZEOF'

   The 'ISO_C_BINDING' module provides the following named constants of
type default integer, which can be used as KIND type parameters.

   In addition to the integer named constants required by the Fortran
2003 standard and 'C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an
extension named constants for the 128-bit integer types supported by the
C compiler: 'C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'.
Furthermore, if '__float128' is supported in C, the named constants
'C_FLOAT128, C_FLOAT128_COMPLEX' are defined.

Fortran     Named constant            C type                    Extension
Type
'INTEGER'   'C_INT'                   'int'
'INTEGER'   'C_SHORT'                 'short int'
'INTEGER'   'C_LONG'                  'long int'
'INTEGER'   'C_LONG_LONG'             'long long int'
'INTEGER'   'C_SIGNED_CHAR'           'signed char'/'unsigned
                                      char'
'INTEGER'   'C_SIZE_T'                'size_t'
'INTEGER'   'C_INT8_T'                'int8_t'
'INTEGER'   'C_INT16_T'               'int16_t'
'INTEGER'   'C_INT32_T'               'int32_t'
'INTEGER'   'C_INT64_T'               'int64_t'
'INTEGER'   'C_INT128_T'              'int128_t'                Ext.
'INTEGER'   'C_INT_LEAST8_T'          'int_least8_t'
'INTEGER'   'C_INT_LEAST16_T'         'int_least16_t'
'INTEGER'   'C_INT_LEAST32_T'         'int_least32_t'
'INTEGER'   'C_INT_LEAST64_T'         'int_least64_t'
'INTEGER'   'C_INT_LEAST128_T'        'int_least128_t'          Ext.
'INTEGER'   'C_INT_FAST8_T'           'int_fast8_t'
'INTEGER'   'C_INT_FAST16_T'          'int_fast16_t'
'INTEGER'   'C_INT_FAST32_T'          'int_fast32_t'
'INTEGER'   'C_INT_FAST64_T'          'int_fast64_t'
'INTEGER'   'C_INT_FAST128_T'         'int_fast128_t'           Ext.
'INTEGER'   'C_INTMAX_T'              'intmax_t'
'INTEGER'   'C_INTPTR_T'              'intptr_t'
'INTEGER'   'C_PTRDIFF_T'             'ptrdiff_t'               TS 29113
'REAL'      'C_FLOAT'                 'float'
'REAL'      'C_DOUBLE'                'double'
'REAL'      'C_LONG_DOUBLE'           'long double'
'REAL'      'C_FLOAT128'              '__float128'              Ext.
'COMPLEX'   'C_FLOAT_COMPLEX'         'float _Complex'
'COMPLEX'   'C_DOUBLE_COMPLEX'        'double _Complex'
'COMPLEX'   'C_LONG_DOUBLE_COMPLEX'   'long double _Complex'
'REAL'      'C_FLOAT128_COMPLEX'      '__float128 _Complex'     Ext.
'LOGICAL'   'C_BOOL'                  '_Bool'
'CHARACTER' 'C_CHAR'                  'char'

   Additionally, the following parameters of type
'CHARACTER(KIND=C_CHAR)' are defined.

Name           C definition                     Value
'C_NULL_CHAR'  null character                   ''\0''
'C_ALERT'      alert                            ''\a''
'C_BACKSPACE'  backspace                        ''\b''
'C_FORM_FEED'  form feed                        ''\f''
'C_NEW_LINE'   new line                         ''\n''
'C_CARRIAGE_RETURN'carriage return              ''\r''
'C_HORIZONTAL_TAB'horizontal tab                ''\t''
'C_VERTICAL_TAB'vertical tab                    ''\v''

   Moreover, the following two named constants are defined:

Name           Type
'C_NULL_PTR'   'C_PTR'
'C_NULL_FUNPTR''C_FUNPTR'

   Both are equivalent to the value 'NULL' in C.


File: gfortran.info,  Node: IEEE modules,  Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS,  Prev: ISO_C_BINDING,  Up: Intrinsic Modules

10.3 IEEE modules: 'IEEE_EXCEPTIONS', 'IEEE_ARITHMETIC', and 'IEEE_FEATURES'
============================================================================

_Standard_:
     Fortran 2003 and later

   The 'IEEE_EXCEPTIONS', 'IEEE_ARITHMETIC', and 'IEEE_FEATURES'
intrinsic modules provide support for exceptions and IEEE arithmetic, as
defined in Fortran 2003 and later standards, and the IEC 60559:1989
standard (_Binary floating-point arithmetic for microprocessor
systems_).  These modules are only provided on the following supported
platforms:

   * i386 and x86_64 processors
   * platforms which use the GNU C Library (glibc)
   * platforms with support for SysV/386 routines for floating point
     interface (including Solaris and BSDs)
   * platforms with the AIX OS

   For full compliance with the Fortran standards, code using the
'IEEE_EXCEPTIONS' or 'IEEE_ARITHMETIC' modules should be compiled with
the following options: '-fno-unsafe-math-optimizations -frounding-math
-fsignaling-nans'.


File: gfortran.info,  Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS,  Next: OpenACC Module OPENACC,  Prev: IEEE modules,  Up: Intrinsic Modules

10.4 OpenMP Modules 'OMP_LIB' and 'OMP_LIB_KINDS'
=================================================

_Standard_:
     OpenMP Application Program Interface v4.5

   The OpenMP Fortran runtime library routines are provided both in a
form of two Fortran 90 modules, named 'OMP_LIB' and 'OMP_LIB_KINDS', and
in a form of a Fortran 'include' file named 'omp_lib.h'.  The procedures
provided by 'OMP_LIB' can be found in the *note Introduction:
(libgomp)Top. manual, the named constants defined in the modules are
listed below.

   For details refer to the actual OpenMP Application Program Interface
v4.5 (http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf).  And for
the 'pause'-related constants to the OpenMP 5.0 specification.

   'OMP_LIB_KINDS' provides the following scalar default-integer named
constants:

'omp_lock_kind'
'omp_lock_hint_kind'
'omp_nest_lock_kind'
'omp_pause_resource_kind'
'omp_proc_bind_kind'
'omp_sched_kind'

   'OMP_LIB' provides the scalar default-integer named constant
'openmp_version' with a value of the form YYYYMM, where 'yyyy' is the
year and MM the month of the OpenMP version; for OpenMP v4.5 the value
is '201511'.

   The following scalar integer named constants of the kind
'omp_sched_kind':

'omp_sched_static'
'omp_sched_dynamic'
'omp_sched_guided'
'omp_sched_auto'

   And the following scalar integer named constants of the kind
'omp_proc_bind_kind':

'omp_proc_bind_false'
'omp_proc_bind_true'
'omp_proc_bind_master'
'omp_proc_bind_close'
'omp_proc_bind_spread'

   The following scalar integer named constants are of the kind
'omp_lock_hint_kind':

'omp_lock_hint_none'
'omp_lock_hint_uncontended'
'omp_lock_hint_contended'
'omp_lock_hint_nonspeculative'
'omp_lock_hint_speculative'

   And the following two scalar integer named constants are of the kind
'omp_pause_resource_kind':

'omp_pause_soft'
'omp_pause_hard'


File: gfortran.info,  Node: OpenACC Module OPENACC,  Prev: OpenMP Modules OMP_LIB and OMP_LIB_KINDS,  Up: Intrinsic Modules

10.5 OpenACC Module 'OPENACC'
=============================

_Standard_:
     OpenACC Application Programming Interface v2.6

   The OpenACC Fortran runtime library routines are provided both in a
form of a Fortran 90 module, named 'OPENACC', and in form of a Fortran
'include' file named 'openacc_lib.h'.  The procedures provided by
'OPENACC' can be found in the *note Introduction: (libgomp)Top. manual,
the named constants defined in the modules are listed below.

   For details refer to the actual OpenACC Application Programming
Interface v2.6 (http://www.openacc.org/).

   'OPENACC' provides the scalar default-integer named constant
'openacc_version' with a value of the form YYYYMM, where 'yyyy' is the
year and MM the month of the OpenACC version; for OpenACC v2.6 the value
is '201711'.


File: gfortran.info,  Node: Contributing,  Next: Copying,  Prev: Intrinsic Modules,  Up: Top

Contributing
************

Free software is only possible if people contribute to efforts to create
it.  We're always in need of more people helping out with ideas and
comments, writing documentation and contributing code.

   If you want to contribute to GNU Fortran, have a look at the long
lists of projects you can take on.  Some of these projects are small,
some of them are large; some are completely orthogonal to the rest of
what is happening on GNU Fortran, but others are "mainstream" projects
in need of enthusiastic hackers.  All of these projects are important!
We will eventually get around to the things here, but they are also
things doable by someone who is willing and able.

* Menu:

* Contributors::
* Projects::
* Proposed Extensions::


File: gfortran.info,  Node: Contributors,  Next: Projects,  Up: Contributing

Contributors to GNU Fortran
===========================

Most of the parser was hand-crafted by _Andy Vaught_, who is also the
initiator of the whole project.  Thanks Andy!  Most of the interface
with GCC was written by _Paul Brook_.

   The following individuals have contributed code and/or ideas and
significant help to the GNU Fortran project (in alphabetical order):

   - Janne Blomqvist
   - Steven Bosscher
   - Paul Brook
   - Tobias Burnus
   - François-Xavier Coudert
   - Bud Davis
   - Jerry DeLisle
   - Erik Edelmann
   - Bernhard Fischer
   - Daniel Franke
   - Richard Guenther
   - Richard Henderson
   - Katherine Holcomb
   - Jakub Jelinek
   - Niels Kristian Bech Jensen
   - Steven Johnson
   - Steven G. Kargl
   - Thomas Koenig
   - Asher Langton
   - H. J. Lu
   - Toon Moene
   - Brooks Moses
   - Andrew Pinski
   - Tim Prince
   - Christopher D. Rickett
   - Richard Sandiford
   - Tobias Schlüter
   - Roger Sayle
   - Paul Thomas
   - Andy Vaught
   - Feng Wang
   - Janus Weil
   - Daniel Kraft

   The following people have contributed bug reports, smaller or larger
patches, and much needed feedback and encouragement for the GNU Fortran
project:

   - Bill Clodius
   - Dominique d'Humières
   - Kate Hedstrom
   - Erik Schnetter
   - Joost VandeVondele

   Many other individuals have helped debug, test and improve the GNU
Fortran compiler over the past few years, and we welcome you to do the
same!  If you already have done so, and you would like to see your name
listed in the list above, please contact us.


File: gfortran.info,  Node: Projects,  Next: Proposed Extensions,  Prev: Contributors,  Up: Contributing

Projects
========

_Help build the test suite_
     Solicit more code for donation to the test suite: the more
     extensive the testsuite, the smaller the risk of breaking things in
     the future!  We can keep code private on request.

_Bug hunting/squishing_
     Find bugs and write more test cases!  Test cases are especially
     very welcome, because it allows us to concentrate on fixing bugs
     instead of isolating them.  Going through the bugzilla database at
     <https://gcc.gnu.org/bugzilla/> to reduce testcases posted there
     and add more information (for example, for which version does the
     testcase work, for which versions does it fail?)  is also very
     helpful.


File: gfortran.info,  Node: Proposed Extensions,  Prev: Projects,  Up: Contributing

Proposed Extensions
===================

Here's a list of proposed extensions for the GNU Fortran compiler, in no
particular order.  Most of these are necessary to be fully compatible
with existing Fortran compilers, but they are not part of the official
J3 Fortran 95 standard.

Compiler extensions:
--------------------

   * User-specified alignment rules for structures.

   * Automatically extend single precision constants to double.

   * Compile code that conserves memory by dynamically allocating common
     and module storage either on stack or heap.

   * Compile flag to generate code for array conformance checking
     (suggest -CC).

   * User control of symbol names (underscores, etc).

   * Compile setting for maximum size of stack frame size before
     spilling parts to static or heap.

   * Flag to force local variables into static space.

   * Flag to force local variables onto stack.

Environment Options
-------------------

   * Pluggable library modules for random numbers, linear algebra.  LA
     should use BLAS calling conventions.

   * Environment variables controlling actions on arithmetic exceptions
     like overflow, underflow, precision loss--Generate NaN, abort,
     default.  action.

   * Set precision for fp units that support it (i387).

   * Variable for setting fp rounding mode.

   * Variable to fill uninitialized variables with a user-defined bit
     pattern.

   * Environment variable controlling filename that is opened for that
     unit number.

   * Environment variable to clear/trash memory being freed.

   * Environment variable to control tracing of allocations and frees.

   * Environment variable to display allocated memory at normal program
     end.

   * Environment variable for filename for * IO-unit.

   * Environment variable for temporary file directory.

   * Environment variable forcing standard output to be line buffered
     (Unix).


File: gfortran.info,  Node: Copying,  Next: GNU Free Documentation License,  Prev: Contributing,  Up: Top

GNU General Public License
**************************

                        Version 3, 29 June 2007

     Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

     Everyone is permitted to copy and distribute verbatim copies of this
     license document, but changing it is not allowed.

Preamble
========

The GNU General Public License is a free, copyleft license for software
and other kinds of works.

   The licenses for most software and other practical works are designed
to take away your freedom to share and change the works.  By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program-to make sure it remains free
software for all its users.  We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors.  You can apply it to
your programs, too.

   When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

   To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights.  Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

   For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received.  You must make sure that they, too, receive
or can get the source code.  And you must show them these terms so they
know their rights.

   Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

   For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software.  For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

   Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so.  This is fundamentally incompatible with the aim of
protecting users' freedom to change the software.  The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable.  Therefore, we
have designed this version of the GPL to prohibit the practice for those
products.  If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

   Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary.  To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

   The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS
====================

  0. Definitions.

     "This License" refers to version 3 of the GNU General Public
     License.

     "Copyright" also means copyright-like laws that apply to other
     kinds of works, such as semiconductor masks.

     "The Program" refers to any copyrightable work licensed under this
     License.  Each licensee is addressed as "you".  "Licensees" and
     "recipients" may be individuals or organizations.

     To "modify" a work means to copy from or adapt all or part of the
     work in a fashion requiring copyright permission, other than the
     making of an exact copy.  The resulting work is called a "modified
     version" of the earlier work or a work "based on" the earlier work.

     A "covered work" means either the unmodified Program or a work
     based on the Program.

     To "propagate" a work means to do anything with it that, without
     permission, would make you directly or secondarily liable for
     infringement under applicable copyright law, except executing it on
     a computer or modifying a private copy.  Propagation includes
     copying, distribution (with or without modification), making
     available to the public, and in some countries other activities as
     well.

     To "convey" a work means any kind of propagation that enables other
     parties to make or receive copies.  Mere interaction with a user
     through a computer network, with no transfer of a copy, is not
     conveying.

     An interactive user interface displays "Appropriate Legal Notices"
     to the extent that it includes a convenient and prominently visible
     feature that (1) displays an appropriate copyright notice, and (2)
     tells the user that there is no warranty for the work (except to
     the extent that warranties are provided), that licensees may convey
     the work under this License, and how to view a copy of this
     License.  If the interface presents a list of user commands or
     options, such as a menu, a prominent item in the list meets this
     criterion.

  1. Source Code.

     The "source code" for a work means the preferred form of the work
     for making modifications to it.  "Object code" means any non-source
     form of a work.

     A "Standard Interface" means an interface that either is an
     official standard defined by a recognized standards body, or, in
     the case of interfaces specified for a particular programming
     language, one that is widely used among developers working in that
     language.

     The "System Libraries" of an executable work include anything,
     other than the work as a whole, that (a) is included in the normal
     form of packaging a Major Component, but which is not part of that
     Major Component, and (b) serves only to enable use of the work with
     that Major Component, or to implement a Standard Interface for
     which an implementation is available to the public in source code
     form.  A "Major Component", in this context, means a major
     essential component (kernel, window system, and so on) of the
     specific operating system (if any) on which the executable work
     runs, or a compiler used to produce the work, or an object code
     interpreter used to run it.

     The "Corresponding Source" for a work in object code form means all
     the source code needed to generate, install, and (for an executable
     work) run the object code and to modify the work, including scripts
     to control those activities.  However, it does not include the
     work's System Libraries, or general-purpose tools or generally
     available free programs which are used unmodified in performing
     those activities but which are not part of the work.  For example,
     Corresponding Source includes interface definition files associated
     with source files for the work, and the source code for shared
     libraries and dynamically linked subprograms that the work is
     specifically designed to require, such as by intimate data
     communication or control flow between those subprograms and other
     parts of the work.

     The Corresponding Source need not include anything that users can
     regenerate automatically from other parts of the Corresponding
     Source.

     The Corresponding Source for a work in source code form is that
     same work.

  2. Basic Permissions.

     All rights granted under this License are granted for the term of
     copyright on the Program, and are irrevocable provided the stated
     conditions are met.  This License explicitly affirms your unlimited
     permission to run the unmodified Program.  The output from running
     a covered work is covered by this License only if the output, given
     its content, constitutes a covered work.  This License acknowledges
     your rights of fair use or other equivalent, as provided by
     copyright law.

     You may make, run and propagate covered works that you do not
     convey, without conditions so long as your license otherwise
     remains in force.  You may convey covered works to others for the
     sole purpose of having them make modifications exclusively for you,
     or provide you with facilities for running those works, provided
     that you comply with the terms of this License in conveying all
     material for which you do not control copyright.  Those thus making
     or running the covered works for you must do so exclusively on your
     behalf, under your direction and control, on terms that prohibit
     them from making any copies of your copyrighted material outside
     their relationship with you.

     Conveying under any other circumstances is permitted solely under
     the conditions stated below.  Sublicensing is not allowed; section
     10 makes it unnecessary.

  3. Protecting Users' Legal Rights From Anti-Circumvention Law.

     No covered work shall be deemed part of an effective technological
     measure under any applicable law fulfilling obligations under
     article 11 of the WIPO copyright treaty adopted on 20 December
     1996, or similar laws prohibiting or restricting circumvention of
     such measures.

     When you convey a covered work, you waive any legal power to forbid
     circumvention of technological measures to the extent such
     circumvention is effected by exercising rights under this License
     with respect to the covered work, and you disclaim any intention to
     limit operation or modification of the work as a means of
     enforcing, against the work's users, your or third parties' legal
     rights to forbid circumvention of technological measures.

  4. Conveying Verbatim Copies.

     You may convey verbatim copies of the Program's source code as you
     receive it, in any medium, provided that you conspicuously and
     appropriately publish on each copy an appropriate copyright notice;
     keep intact all notices stating that this License and any
     non-permissive terms added in accord with section 7 apply to the
     code; keep intact all notices of the absence of any warranty; and
     give all recipients a copy of this License along with the Program.

     You may charge any price or no price for each copy that you convey,
     and you may offer support or warranty protection for a fee.

  5. Conveying Modified Source Versions.

     You may convey a work based on the Program, or the modifications to
     produce it from the Program, in the form of source code under the
     terms of section 4, provided that you also meet all of these
     conditions:

       a. The work must carry prominent notices stating that you
          modified it, and giving a relevant date.

       b. The work must carry prominent notices stating that it is
          released under this License and any conditions added under
          section 7.  This requirement modifies the requirement in
          section 4 to "keep intact all notices".

       c. You must license the entire work, as a whole, under this
          License to anyone who comes into possession of a copy.  This
          License will therefore apply, along with any applicable
          section 7 additional terms, to the whole of the work, and all
          its parts, regardless of how they are packaged.  This License
          gives no permission to license the work in any other way, but
          it does not invalidate such permission if you have separately
          received it.

       d. If the work has interactive user interfaces, each must display
          Appropriate Legal Notices; however, if the Program has
          interactive interfaces that do not display Appropriate Legal
          Notices, your work need not make them do so.

     A compilation of a covered work with other separate and independent
     works, which are not by their nature extensions of the covered
     work, and which are not combined with it such as to form a larger
     program, in or on a volume of a storage or distribution medium, is
     called an "aggregate" if the compilation and its resulting
     copyright are not used to limit the access or legal rights of the
     compilation's users beyond what the individual works permit.
     Inclusion of a covered work in an aggregate does not cause this
     License to apply to the other parts of the aggregate.

  6. Conveying Non-Source Forms.

     You may convey a covered work in object code form under the terms
     of sections 4 and 5, provided that you also convey the
     machine-readable Corresponding Source under the terms of this
     License, in one of these ways:

       a. Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by the
          Corresponding Source fixed on a durable physical medium
          customarily used for software interchange.

       b. Convey the object code in, or embodied in, a physical product
          (including a physical distribution medium), accompanied by a
          written offer, valid for at least three years and valid for as
          long as you offer spare parts or customer support for that
          product model, to give anyone who possesses the object code
          either (1) a copy of the Corresponding Source for all the
          software in the product that is covered by this License, on a
          durable physical medium customarily used for software
          interchange, for a price no more than your reasonable cost of
          physically performing this conveying of source, or (2) access
          to copy the Corresponding Source from a network server at no
          charge.

       c. Convey individual copies of the object code with a copy of the
          written offer to provide the Corresponding Source.  This
          alternative is allowed only occasionally and noncommercially,
          and only if you received the object code with such an offer,
          in accord with subsection 6b.

       d. Convey the object code by offering access from a designated
          place (gratis or for a charge), and offer equivalent access to
          the Corresponding Source in the same way through the same
          place at no further charge.  You need not require recipients
          to copy the Corresponding Source along with the object code.
          If the place to copy the object code is a network server, the
          Corresponding Source may be on a different server (operated by
          you or a third party) that supports equivalent copying
          facilities, provided you maintain clear directions next to the
          object code saying where to find the Corresponding Source.
          Regardless of what server hosts the Corresponding Source, you
          remain obligated to ensure that it is available for as long as
          needed to satisfy these requirements.

       e. Convey the object code using peer-to-peer transmission,
          provided you inform other peers where the object code and
          Corresponding Source of the work are being offered to the
          general public at no charge under subsection 6d.

     A separable portion of the object code, whose source code is
     excluded from the Corresponding Source as a System Library, need
     not be included in conveying the object code work.

     A "User Product" is either (1) a "consumer product", which means
     any tangible personal property which is normally used for personal,
     family, or household purposes, or (2) anything designed or sold for
     incorporation into a dwelling.  In determining whether a product is
     a consumer product, doubtful cases shall be resolved in favor of
     coverage.  For a particular product received by a particular user,
     "normally used" refers to a typical or common use of that class of
     product, regardless of the status of the particular user or of the
     way in which the particular user actually uses, or expects or is
     expected to use, the product.  A product is a consumer product
     regardless of whether the product has substantial commercial,
     industrial or non-consumer uses, unless such uses represent the
     only significant mode of use of the product.

     "Installation Information" for a User Product means any methods,
     procedures, authorization keys, or other information required to
     install and execute modified versions of a covered work in that
     User Product from a modified version of its Corresponding Source.
     The information must suffice to ensure that the continued
     functioning of the modified object code is in no case prevented or
     interfered with solely because modification has been made.

     If you convey an object code work under this section in, or with,
     or specifically for use in, a User Product, and the conveying
     occurs as part of a transaction in which the right of possession
     and use of the User Product is transferred to the recipient in
     perpetuity or for a fixed term (regardless of how the transaction
     is characterized), the Corresponding Source conveyed under this
     section must be accompanied by the Installation Information.  But
     this requirement does not apply if neither you nor any third party
     retains the ability to install modified object code on the User
     Product (for example, the work has been installed in ROM).

     The requirement to provide Installation Information does not
     include a requirement to continue to provide support service,
     warranty, or updates for a work that has been modified or installed
     by the recipient, or for the User Product in which it has been
     modified or installed.  Access to a network may be denied when the
     modification itself materially and adversely affects the operation
     of the network or violates the rules and protocols for
     communication across the network.

     Corresponding Source conveyed, and Installation Information
     provided, in accord with this section must be in a format that is
     publicly documented (and with an implementation available to the
     public in source code form), and must require no special password
     or key for unpacking, reading or copying.

  7. Additional Terms.

     "Additional permissions" are terms that supplement the terms of
     this License by making exceptions from one or more of its
     conditions.  Additional permissions that are applicable to the
     entire Program shall be treated as though they were included in
     this License, to the extent that they are valid under applicable
     law.  If additional permissions apply only to part of the Program,
     that part may be used separately under those permissions, but the
     entire Program remains governed by this License without regard to
     the additional permissions.

     When you convey a copy of a covered work, you may at your option
     remove any additional permissions from that copy, or from any part
     of it.  (Additional permissions may be written to require their own
     removal in certain cases when you modify the work.)  You may place
     additional permissions on material, added by you to a covered work,
     for which you have or can give appropriate copyright permission.

     Notwithstanding any other provision of this License, for material
     you add to a covered work, you may (if authorized by the copyright
     holders of that material) supplement the terms of this License with
     terms:

       a. Disclaiming warranty or limiting liability differently from
          the terms of sections 15 and 16 of this License; or

       b. Requiring preservation of specified reasonable legal notices
          or author attributions in that material or in the Appropriate
          Legal Notices displayed by works containing it; or

       c. Prohibiting misrepresentation of the origin of that material,
          or requiring that modified versions of such material be marked
          in reasonable ways as different from the original version; or

       d. Limiting the use for publicity purposes of names of licensors
          or authors of the material; or

       e. Declining to grant rights under trademark law for use of some
          trade names, trademarks, or service marks; or

       f. Requiring indemnification of licensors and authors of that
          material by anyone who conveys the material (or modified
          versions of it) with contractual assumptions of liability to
          the recipient, for any liability that these contractual
          assumptions directly impose on those licensors and authors.

     All other non-permissive additional terms are considered "further
     restrictions" within the meaning of section 10.  If the Program as
     you received it, or any part of it, contains a notice stating that
     it is governed by this License along with a term that is a further
     restriction, you may remove that term.  If a license document
     contains a further restriction but permits relicensing or conveying
     under this License, you may add to a covered work material governed
     by the terms of that license document, provided that the further
     restriction does not survive such relicensing or conveying.

     If you add terms to a covered work in accord with this section, you
     must place, in the relevant source files, a statement of the
     additional terms that apply to those files, or a notice indicating
     where to find the applicable terms.

     Additional terms, permissive or non-permissive, may be stated in
     the form of a separately written license, or stated as exceptions;
     the above requirements apply either way.

  8. Termination.

     You may not propagate or modify a covered work except as expressly
     provided under this License.  Any attempt otherwise to propagate or
     modify it is void, and will automatically terminate your rights
     under this License (including any patent licenses granted under the
     third paragraph of section 11).

     However, if you cease all violation of this License, then your
     license from a particular copyright holder is reinstated (a)
     provisionally, unless and until the copyright holder explicitly and
     finally terminates your license, and (b) permanently, if the
     copyright holder fails to notify you of the violation by some
     reasonable means prior to 60 days after the cessation.

     Moreover, your license from a particular copyright holder is
     reinstated permanently if the copyright holder notifies you of the
     violation by some reasonable means, this is the first time you have
     received notice of violation of this License (for any work) from
     that copyright holder, and you cure the violation prior to 30 days
     after your receipt of the notice.

     Termination of your rights under this section does not terminate
     the licenses of parties who have received copies or rights from you
     under this License.  If your rights have been terminated and not
     permanently reinstated, you do not qualify to receive new licenses
     for the same material under section 10.

  9. Acceptance Not Required for Having Copies.

     You are not required to accept this License in order to receive or
     run a copy of the Program.  Ancillary propagation of a covered work
     occurring solely as a consequence of using peer-to-peer
     transmission to receive a copy likewise does not require
     acceptance.  However, nothing other than this License grants you
     permission to propagate or modify any covered work.  These actions
     infringe copyright if you do not accept this License.  Therefore,
     by modifying or propagating a covered work, you indicate your
     acceptance of this License to do so.

  10. Automatic Licensing of Downstream Recipients.

     Each time you convey a covered work, the recipient automatically
     receives a license from the original licensors, to run, modify and
     propagate that work, subject to this License.  You are not
     responsible for enforcing compliance by third parties with this
     License.

     An "entity transaction" is a transaction transferring control of an
     organization, or substantially all assets of one, or subdividing an
     organization, or merging organizations.  If propagation of a
     covered work results from an entity transaction, each party to that
     transaction who receives a copy of the work also receives whatever
     licenses to the work the party's predecessor in interest had or
     could give under the previous paragraph, plus a right to possession
     of the Corresponding Source of the work from the predecessor in
     interest, if the predecessor has it or can get it with reasonable
     efforts.

     You may not impose any further restrictions on the exercise of the
     rights granted or affirmed under this License.  For example, you
     may not impose a license fee, royalty, or other charge for exercise
     of rights granted under this License, and you may not initiate
     litigation (including a cross-claim or counterclaim in a lawsuit)
     alleging that any patent claim is infringed by making, using,
     selling, offering for sale, or importing the Program or any portion
     of it.

  11. Patents.

     A "contributor" is a copyright holder who authorizes use under this
     License of the Program or a work on which the Program is based.
     The work thus licensed is called the contributor's "contributor
     version".

     A contributor's "essential patent claims" are all patent claims
     owned or controlled by the contributor, whether already acquired or
     hereafter acquired, that would be infringed by some manner,
     permitted by this License, of making, using, or selling its
     contributor version, but do not include claims that would be
     infringed only as a consequence of further modification of the
     contributor version.  For purposes of this definition, "control"
     includes the right to grant patent sublicenses in a manner
     consistent with the requirements of this License.

     Each contributor grants you a non-exclusive, worldwide,
     royalty-free patent license under the contributor's essential
     patent claims, to make, use, sell, offer for sale, import and
     otherwise run, modify and propagate the contents of its contributor
     version.

     In the following three paragraphs, a "patent license" is any
     express agreement or commitment, however denominated, not to
     enforce a patent (such as an express permission to practice a
     patent or covenant not to sue for patent infringement).  To "grant"
     such a patent license to a party means to make such an agreement or
     commitment not to enforce a patent against the party.

     If you convey a covered work, knowingly relying on a patent
     license, and the Corresponding Source of the work is not available
     for anyone to copy, free of charge and under the terms of this
     License, through a publicly available network server or other
     readily accessible means, then you must either (1) cause the
     Corresponding Source to be so available, or (2) arrange to deprive
     yourself of the benefit of the patent license for this particular
     work, or (3) arrange, in a manner consistent with the requirements
     of this License, to extend the patent license to downstream
     recipients.  "Knowingly relying" means you have actual knowledge
     that, but for the patent license, your conveying the covered work
     in a country, or your recipient's use of the covered work in a
     country, would infringe one or more identifiable patents in that
     country that you have reason to believe are valid.

     If, pursuant to or in connection with a single transaction or
     arrangement, you convey, or propagate by procuring conveyance of, a
     covered work, and grant a patent license to some of the parties
     receiving the covered work authorizing them to use, propagate,
     modify or convey a specific copy of the covered work, then the
     patent license you grant is automatically extended to all
     recipients of the covered work and works based on it.

     A patent license is "discriminatory" if it does not include within
     the scope of its coverage, prohibits the exercise of, or is
     conditioned on the non-exercise of one or more of the rights that
     are specifically granted under this License.  You may not convey a
     covered work if you are a party to an arrangement with a third
     party that is in the business of distributing software, under which
     you make payment to the third party based on the extent of your
     activity of conveying the work, and under which the third party
     grants, to any of the parties who would receive the covered work
     from you, a discriminatory patent license (a) in connection with
     copies of the covered work conveyed by you (or copies made from
     those copies), or (b) primarily for and in connection with specific
     products or compilations that contain the covered work, unless you
     entered into that arrangement, or that patent license was granted,
     prior to 28 March 2007.

     Nothing in this License shall be construed as excluding or limiting
     any implied license or other defenses to infringement that may
     otherwise be available to you under applicable patent law.

  12. No Surrender of Others' Freedom.

     If conditions are imposed on you (whether by court order, agreement
     or otherwise) that contradict the conditions of this License, they
     do not excuse you from the conditions of this License.  If you
     cannot convey a covered work so as to satisfy simultaneously your
     obligations under this License and any other pertinent obligations,
     then as a consequence you may not convey it at all.  For example,
     if you agree to terms that obligate you to collect a royalty for
     further conveying from those to whom you convey the Program, the
     only way you could satisfy both those terms and this License would
     be to refrain entirely from conveying the Program.

  13. Use with the GNU Affero General Public License.

     Notwithstanding any other provision of this License, you have
     permission to link or combine any covered work with a work licensed
     under version 3 of the GNU Affero General Public License into a
     single combined work, and to convey the resulting work.  The terms
     of this License will continue to apply to the part which is the
     covered work, but the special requirements of the GNU Affero
     General Public License, section 13, concerning interaction through
     a network will apply to the combination as such.

  14. Revised Versions of this License.

     The Free Software Foundation may publish revised and/or new
     versions of the GNU General Public License from time to time.  Such
     new versions will be similar in spirit to the present version, but
     may differ in detail to address new problems or concerns.

     Each version is given a distinguishing version number.  If the
     Program specifies that a certain numbered version of the GNU
     General Public License "or any later version" applies to it, you
     have the option of following the terms and conditions either of
     that numbered version or of any later version published by the Free
     Software Foundation.  If the Program does not specify a version
     number of the GNU General Public License, you may choose any
     version ever published by the Free Software Foundation.

     If the Program specifies that a proxy can decide which future
     versions of the GNU General Public License can be used, that
     proxy's public statement of acceptance of a version permanently
     authorizes you to choose that version for the Program.

     Later license versions may give you additional or different
     permissions.  However, no additional obligations are imposed on any
     author or copyright holder as a result of your choosing to follow a
     later version.

  15. Disclaimer of Warranty.

     THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
     APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
     COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
     WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
     INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
     RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
     SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
     NECESSARY SERVICING, REPAIR OR CORRECTION.

  16. Limitation of Liability.

     IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
     WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
     AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
     DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
     CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
     THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
     BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
     PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
     PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
     THE POSSIBILITY OF SUCH DAMAGES.

  17. Interpretation of Sections 15 and 16.

     If the disclaimer of warranty and limitation of liability provided
     above cannot be given local legal effect according to their terms,
     reviewing courts shall apply local law that most closely
     approximates an absolute waiver of all civil liability in
     connection with the Program, unless a warranty or assumption of
     liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
===========================

How to Apply These Terms to Your New Programs
=============================================

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

   To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

     ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
     Copyright (C) YEAR NAME OF AUTHOR

     This program is free software: you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation, either version 3 of the License, or (at
     your option) any later version.

     This program is distributed in the hope that it will be useful, but
     WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     General Public License for more details.

     You should have received a copy of the GNU General Public License
     along with this program.  If not, see <http://www.gnu.org/licenses/>.

   Also add information on how to contact you by electronic and paper
mail.

   If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

     PROGRAM Copyright (C) YEAR NAME OF AUTHOR
     This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
     This is free software, and you are welcome to redistribute it
     under certain conditions; type 'show c' for details.

   The hypothetical commands 'show w' and 'show c' should show the
appropriate parts of the General Public License.  Of course, your
program's commands might be different; for a GUI interface, you would
use an "about box".

   You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  For more information on this, and how to apply and follow
the GNU GPL, see <http://www.gnu.org/licenses/>.

   The GNU General Public License does not permit incorporating your
program into proprietary programs.  If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library.  If this is what you want to do, use the
GNU Lesser General Public License instead of this License.  But first,
please read <https://www.gnu.org/licenses/why-not-lgpl.html>.


File: gfortran.info,  Node: GNU Free Documentation License,  Next: Funding,  Prev: Copying,  Up: Top

GNU Free Documentation License
******************************

                     Version 1.3, 3 November 2008

     Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
     <http://fsf.org/>

     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.

  0. PREAMBLE

     The purpose of this License is to make a manual, textbook, or other
     functional and useful document "free" in the sense of freedom: to
     assure everyone the effective freedom to copy and redistribute it,
     with or without modifying it, either commercially or
     noncommercially.  Secondarily, this License preserves for the
     author and publisher a way to get credit for their work, while not
     being considered responsible for modifications made by others.

     This License is a kind of "copyleft", which means that derivative
     works of the document must themselves be free in the same sense.
     It complements the GNU General Public License, which is a copyleft
     license designed for free software.

     We have designed this License in order to use it for manuals for
     free software, because free software needs free documentation: a
     free program should come with manuals providing the same freedoms
     that the software does.  But this License is not limited to
     software manuals; it can be used for any textual work, regardless
     of subject matter or whether it is published as a printed book.  We
     recommend this License principally for works whose purpose is
     instruction or reference.

  1. APPLICABILITY AND DEFINITIONS

     This License applies to any manual or other work, in any medium,
     that contains a notice placed by the copyright holder saying it can
     be distributed under the terms of this License.  Such a notice
     grants a world-wide, royalty-free license, unlimited in duration,
     to use that work under the conditions stated herein.  The
     "Document", below, refers to any such manual or work.  Any member
     of the public is a licensee, and is addressed as "you".  You accept
     the license if you copy, modify or distribute the work in a way
     requiring permission under copyright law.

     A "Modified Version" of the Document means any work containing the
     Document or a portion of it, either copied verbatim, or with
     modifications and/or translated into another language.

     A "Secondary Section" is a named appendix or a front-matter section
     of the Document that deals exclusively with the relationship of the
     publishers or authors of the Document to the Document's overall
     subject (or to related matters) and contains nothing that could
     fall directly within that overall subject.  (Thus, if the Document
     is in part a textbook of mathematics, a Secondary Section may not
     explain any mathematics.)  The relationship could be a matter of
     historical connection with the subject or with related matters, or
     of legal, commercial, philosophical, ethical or political position
     regarding them.

     The "Invariant Sections" are certain Secondary Sections whose
     titles are designated, as being those of Invariant Sections, in the
     notice that says that the Document is released under this License.
     If a section does not fit the above definition of Secondary then it
     is not allowed to be designated as Invariant.  The Document may
     contain zero Invariant Sections.  If the Document does not identify
     any Invariant Sections then there are none.

     The "Cover Texts" are certain short passages of text that are
     listed, as Front-Cover Texts or Back-Cover Texts, in the notice
     that says that the Document is released under this License.  A
     Front-Cover Text may be at most 5 words, and a Back-Cover Text may
     be at most 25 words.

     A "Transparent" copy of the Document means a machine-readable copy,
     represented in a format whose specification is available to the
     general public, that is suitable for revising the document
     straightforwardly with generic text editors or (for images composed
     of pixels) generic paint programs or (for drawings) some widely
     available drawing editor, and that is suitable for input to text
     formatters or for automatic translation to a variety of formats
     suitable for input to text formatters.  A copy made in an otherwise
     Transparent file format whose markup, or absence of markup, has
     been arranged to thwart or discourage subsequent modification by
     readers is not Transparent.  An image format is not Transparent if
     used for any substantial amount of text.  A copy that is not
     "Transparent" is called "Opaque".

     Examples of suitable formats for Transparent copies include plain
     ASCII without markup, Texinfo input format, LaTeX input format,
     SGML or XML using a publicly available DTD, and standard-conforming
     simple HTML, PostScript or PDF designed for human modification.
     Examples of transparent image formats include PNG, XCF and JPG.
     Opaque formats include proprietary formats that can be read and
     edited only by proprietary word processors, SGML or XML for which
     the DTD and/or processing tools are not generally available, and
     the machine-generated HTML, PostScript or PDF produced by some word
     processors for output purposes only.

     The "Title Page" means, for a printed book, the title page itself,
     plus such following pages as are needed to hold, legibly, the
     material this License requires to appear in the title page.  For
     works in formats which do not have any title page as such, "Title
     Page" means the text near the most prominent appearance of the
     work's title, preceding the beginning of the body of the text.

     The "publisher" means any person or entity that distributes copies
     of the Document to the public.

     A section "Entitled XYZ" means a named subunit of the Document
     whose title either is precisely XYZ or contains XYZ in parentheses
     following text that translates XYZ in another language.  (Here XYZ
     stands for a specific section name mentioned below, such as
     "Acknowledgements", "Dedications", "Endorsements", or "History".)
     To "Preserve the Title" of such a section when you modify the
     Document means that it remains a section "Entitled XYZ" according
     to this definition.

     The Document may include Warranty Disclaimers next to the notice
     which states that this License applies to the Document.  These
     Warranty Disclaimers are considered to be included by reference in
     this License, but only as regards disclaiming warranties: any other
     implication that these Warranty Disclaimers may have is void and
     has no effect on the meaning of this License.

  2. VERBATIM COPYING

     You may copy and distribute the Document in any medium, either
     commercially or noncommercially, provided that this License, the
     copyright notices, and the license notice saying this License
     applies to the Document are reproduced in all copies, and that you
     add no other conditions whatsoever to those of this License.  You
     may not use technical measures to obstruct or control the reading
     or further copying of the copies you make or distribute.  However,
     you may accept compensation in exchange for copies.  If you
     distribute a large enough number of copies you must also follow the
     conditions in section 3.

     You may also lend copies, under the same conditions stated above,
     and you may publicly display copies.

  3. COPYING IN QUANTITY

     If you publish printed copies (or copies in media that commonly
     have printed covers) of the Document, numbering more than 100, and
     the Document's license notice requires Cover Texts, you must
     enclose the copies in covers that carry, clearly and legibly, all
     these Cover Texts: Front-Cover Texts on the front cover, and
     Back-Cover Texts on the back cover.  Both covers must also clearly
     and legibly identify you as the publisher of these copies.  The
     front cover must present the full title with all words of the title
     equally prominent and visible.  You may add other material on the
     covers in addition.  Copying with changes limited to the covers, as
     long as they preserve the title of the Document and satisfy these
     conditions, can be treated as verbatim copying in other respects.

     If the required texts for either cover are too voluminous to fit
     legibly, you should put the first ones listed (as many as fit
     reasonably) on the actual cover, and continue the rest onto
     adjacent pages.

     If you publish or distribute Opaque copies of the Document
     numbering more than 100, you must either include a machine-readable
     Transparent copy along with each Opaque copy, or state in or with
     each Opaque copy a computer-network location from which the general
     network-using public has access to download using public-standard
     network protocols a complete Transparent copy of the Document, free
     of added material.  If you use the latter option, you must take
     reasonably prudent steps, when you begin distribution of Opaque
     copies in quantity, to ensure that this Transparent copy will
     remain thus accessible at the stated location until at least one
     year after the last time you distribute an Opaque copy (directly or
     through your agents or retailers) of that edition to the public.

     It is requested, but not required, that you contact the authors of
     the Document well before redistributing any large number of copies,
     to give them a chance to provide you with an updated version of the
     Document.

  4. MODIFICATIONS

     You may copy and distribute a Modified Version of the Document
     under the conditions of sections 2 and 3 above, provided that you
     release the Modified Version under precisely this License, with the
     Modified Version filling the role of the Document, thus licensing
     distribution and modification of the Modified Version to whoever
     possesses a copy of it.  In addition, you must do these things in
     the Modified Version:

       A. Use in the Title Page (and on the covers, if any) a title
          distinct from that of the Document, and from those of previous
          versions (which should, if there were any, be listed in the
          History section of the Document).  You may use the same title
          as a previous version if the original publisher of that
          version gives permission.

       B. List on the Title Page, as authors, one or more persons or
          entities responsible for authorship of the modifications in
          the Modified Version, together with at least five of the
          principal authors of the Document (all of its principal
          authors, if it has fewer than five), unless they release you
          from this requirement.

       C. State on the Title page the name of the publisher of the
          Modified Version, as the publisher.

       D. Preserve all the copyright notices of the Document.

       E. Add an appropriate copyright notice for your modifications
          adjacent to the other copyright notices.

       F. Include, immediately after the copyright notices, a license
          notice giving the public permission to use the Modified
          Version under the terms of this License, in the form shown in
          the Addendum below.

       G. Preserve in that license notice the full lists of Invariant
          Sections and required Cover Texts given in the Document's
          license notice.

       H. Include an unaltered copy of this License.

       I. Preserve the section Entitled "History", Preserve its Title,
          and add to it an item stating at least the title, year, new
          authors, and publisher of the Modified Version as given on the
          Title Page.  If there is no section Entitled "History" in the
          Document, create one stating the title, year, authors, and
          publisher of the Document as given on its Title Page, then add
          an item describing the Modified Version as stated in the
          previous sentence.

       J. Preserve the network location, if any, given in the Document
          for public access to a Transparent copy of the Document, and
          likewise the network locations given in the Document for
          previous versions it was based on.  These may be placed in the
          "History" section.  You may omit a network location for a work
          that was published at least four years before the Document
          itself, or if the original publisher of the version it refers
          to gives permission.

       K. For any section Entitled "Acknowledgements" or "Dedications",
          Preserve the Title of the section, and preserve in the section
          all the substance and tone of each of the contributor
          acknowledgements and/or dedications given therein.

       L. Preserve all the Invariant Sections of the Document, unaltered
          in their text and in their titles.  Section numbers or the
          equivalent are not considered part of the section titles.

       M. Delete any section Entitled "Endorsements".  Such a section
          may not be included in the Modified Version.

       N. Do not retitle any existing section to be Entitled
          "Endorsements" or to conflict in title with any Invariant
          Section.

       O. Preserve any Warranty Disclaimers.

     If the Modified Version includes new front-matter sections or
     appendices that qualify as Secondary Sections and contain no
     material copied from the Document, you may at your option designate
     some or all of these sections as invariant.  To do this, add their
     titles to the list of Invariant Sections in the Modified Version's
     license notice.  These titles must be distinct from any other
     section titles.

     You may add a section Entitled "Endorsements", provided it contains
     nothing but endorsements of your Modified Version by various
     parties--for example, statements of peer review or that the text
     has been approved by an organization as the authoritative
     definition of a standard.

     You may add a passage of up to five words as a Front-Cover Text,
     and a passage of up to 25 words as a Back-Cover Text, to the end of
     the list of Cover Texts in the Modified Version.  Only one passage
     of Front-Cover Text and one of Back-Cover Text may be added by (or
     through arrangements made by) any one entity.  If the Document
     already includes a cover text for the same cover, previously added
     by you or by arrangement made by the same entity you are acting on
     behalf of, you may not add another; but you may replace the old
     one, on explicit permission from the previous publisher that added
     the old one.

     The author(s) and publisher(s) of the Document do not by this
     License give permission to use their names for publicity for or to
     assert or imply endorsement of any Modified Version.

  5. COMBINING DOCUMENTS

     You may combine the Document with other documents released under
     this License, under the terms defined in section 4 above for
     modified versions, provided that you include in the combination all
     of the Invariant Sections of all of the original documents,
     unmodified, and list them all as Invariant Sections of your
     combined work in its license notice, and that you preserve all
     their Warranty Disclaimers.

     The combined work need only contain one copy of this License, and
     multiple identical Invariant Sections may be replaced with a single
     copy.  If there are multiple Invariant Sections with the same name
     but different contents, make the title of each such section unique
     by adding at the end of it, in parentheses, the name of the
     original author or publisher of that section if known, or else a
     unique number.  Make the same adjustment to the section titles in
     the list of Invariant Sections in the license notice of the
     combined work.

     In the combination, you must combine any sections Entitled
     "History" in the various original documents, forming one section
     Entitled "History"; likewise combine any sections Entitled
     "Acknowledgements", and any sections Entitled "Dedications".  You
     must delete all sections Entitled "Endorsements."

  6. COLLECTIONS OF DOCUMENTS

     You may make a collection consisting of the Document and other
     documents released under this License, and replace the individual
     copies of this License in the various documents with a single copy
     that is included in the collection, provided that you follow the
     rules of this License for verbatim copying of each of the documents
     in all other respects.

     You may extract a single document from such a collection, and
     distribute it individually under this License, provided you insert
     a copy of this License into the extracted document, and follow this
     License in all other respects regarding verbatim copying of that
     document.

  7. AGGREGATION WITH INDEPENDENT WORKS

     A compilation of the Document or its derivatives with other
     separate and independent documents or works, in or on a volume of a
     storage or distribution medium, is called an "aggregate" if the
     copyright resulting from the compilation is not used to limit the
     legal rights of the compilation's users beyond what the individual
     works permit.  When the Document is included in an aggregate, this
     License does not apply to the other works in the aggregate which
     are not themselves derivative works of the Document.

     If the Cover Text requirement of section 3 is applicable to these
     copies of the Document, then if the Document is less than one half
     of the entire aggregate, the Document's Cover Texts may be placed
     on covers that bracket the Document within the aggregate, or the
     electronic equivalent of covers if the Document is in electronic
     form.  Otherwise they must appear on printed covers that bracket
     the whole aggregate.

  8. TRANSLATION

     Translation is considered a kind of modification, so you may
     distribute translations of the Document under the terms of section
     4.  Replacing Invariant Sections with translations requires special
     permission from their copyright holders, but you may include
     translations of some or all Invariant Sections in addition to the
     original versions of these Invariant Sections.  You may include a
     translation of this License, and all the license notices in the
     Document, and any Warranty Disclaimers, provided that you also
     include the original English version of this License and the
     original versions of those notices and disclaimers.  In case of a
     disagreement between the translation and the original version of
     this License or a notice or disclaimer, the original version will
     prevail.

     If a section in the Document is Entitled "Acknowledgements",
     "Dedications", or "History", the requirement (section 4) to
     Preserve its Title (section 1) will typically require changing the
     actual title.

  9. TERMINATION

     You may not copy, modify, sublicense, or distribute the Document
     except as expressly provided under this License.  Any attempt
     otherwise to copy, modify, sublicense, or distribute it is void,
     and will automatically terminate your rights under this License.

     However, if you cease all violation of this License, then your
     license from a particular copyright holder is reinstated (a)
     provisionally, unless and until the copyright holder explicitly and
     finally terminates your license, and (b) permanently, if the
     copyright holder fails to notify you of the violation by some
     reasonable means prior to 60 days after the cessation.

     Moreover, your license from a particular copyright holder is
     reinstated permanently if the copyright holder notifies you of the
     violation by some reasonable means, this is the first time you have
     received notice of violation of this License (for any work) from
     that copyright holder, and you cure the violation prior to 30 days
     after your receipt of the notice.

     Termination of your rights under this section does not terminate
     the licenses of parties who have received copies or rights from you
     under this License.  If your rights have been terminated and not
     permanently reinstated, receipt of a copy of some or all of the
     same material does not give you any rights to use it.

  10. FUTURE REVISIONS OF THIS LICENSE

     The Free Software Foundation may publish new, revised versions of
     the GNU Free Documentation License from time to time.  Such new
     versions will be similar in spirit to the present version, but may
     differ in detail to address new problems or concerns.  See
     <http://www.gnu.org/copyleft/>.

     Each version of the License is given a distinguishing version
     number.  If the Document specifies that a particular numbered
     version of this License "or any later version" applies to it, you
     have the option of following the terms and conditions either of
     that specified version or of any later version that has been
     published (not as a draft) by the Free Software Foundation.  If the
     Document does not specify a version number of this License, you may
     choose any version ever published (not as a draft) by the Free
     Software Foundation.  If the Document specifies that a proxy can
     decide which future versions of this License can be used, that
     proxy's public statement of acceptance of a version permanently
     authorizes you to choose that version for the Document.

  11. RELICENSING

     "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
     World Wide Web server that publishes copyrightable works and also
     provides prominent facilities for anybody to edit those works.  A
     public wiki that anybody can edit is an example of such a server.
     A "Massive Multiauthor Collaboration" (or "MMC") contained in the
     site means any set of copyrightable works thus published on the MMC
     site.

     "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
     license published by Creative Commons Corporation, a not-for-profit
     corporation with a principal place of business in San Francisco,
     California, as well as future copyleft versions of that license
     published by that same organization.

     "Incorporate" means to publish or republish a Document, in whole or
     in part, as part of another Document.

     An MMC is "eligible for relicensing" if it is licensed under this
     License, and if all works that were first published under this
     License somewhere other than this MMC, and subsequently
     incorporated in whole or in part into the MMC, (1) had no cover
     texts or invariant sections, and (2) were thus incorporated prior
     to November 1, 2008.

     The operator of an MMC Site may republish an MMC contained in the
     site under CC-BY-SA on the same site at any time before August 1,
     2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents
====================================================

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:

       Copyright (C)  YEAR  YOUR NAME.
       Permission is granted to copy, distribute and/or modify this document
       under the terms of the GNU Free Documentation License, Version 1.3
       or any later version published by the Free Software Foundation;
       with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
       Texts.  A copy of the license is included in the section entitled ``GNU
       Free Documentation License''.

   If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the "with...Texts."  line with this:

         with the Invariant Sections being LIST THEIR TITLES, with
         the Front-Cover Texts being LIST, and with the Back-Cover Texts
         being LIST.

   If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

   If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit
their use in free software.


File: gfortran.info,  Node: Funding,  Next: Option Index,  Prev: GNU Free Documentation License,  Up: Top

Funding Free Software
*********************

If you want to have more free software a few years from now, it makes
sense for you to help encourage people to contribute funds for its
development.  The most effective approach known is to encourage
commercial redistributors to donate.

   Users of free software systems can boost the pace of development by
encouraging for-a-fee distributors to donate part of their selling price
to free software developers--the Free Software Foundation, and others.

   The way to convince distributors to do this is to demand it and
expect it from them.  So when you compare distributors, judge them
partly by how much they give to free software development.  Show
distributors they must compete to be the one who gives the most.

   To make this approach work, you must insist on numbers that you can
compare, such as, "We will donate ten dollars to the Frobnitz project
for each disk sold."  Don't be satisfied with a vague promise, such as
"A portion of the profits are donated," since it doesn't give a basis
for comparison.

   Even a precise fraction "of the profits from this disk" is not very
meaningful, since creative accounting and unrelated business decisions
can greatly alter what fraction of the sales price counts as profit.  If
the price you pay is $50, ten percent of the profit is probably less
than a dollar; it might be a few cents, or nothing at all.

   Some redistributors do development work themselves.  This is useful
too; but to keep everyone honest, you need to inquire how much they do,
and what kind.  Some kinds of development make much more long-term
difference than others.  For example, maintaining a separate version of
a program contributes very little; maintaining the standard version of a
program for the whole community contributes much.  Easy new ports
contribute little, since someone else would surely do them; difficult
ports such as adding a new CPU to the GNU Compiler Collection contribute
more; major new features or packages contribute the most.

   By establishing the idea that supporting further development is "the
proper thing to do" when distributing free software for a fee, we can
assure a steady flow of resources into making more free software.

     Copyright (C) 1994 Free Software Foundation, Inc.
     Verbatim copying and redistribution of this section is permitted
     without royalty; alteration is not permitted.


File: gfortran.info,  Node: Option Index,  Next: Keyword Index,  Prev: Funding,  Up: Top

Option Index
************

'gfortran''s command line options are indexed here without any initial
'-' or '--'.  Where an option has both positive and negative forms (such
as -foption and -fno-option), relevant entries in the manual are indexed
under the most appropriate form; it may sometimes be useful to look up
both forms.

[index]
* Menu:

* A-PREDICATE=ANSWER:                    Preprocessing Options.
                                                              (line 119)
* allow-invalid-boz:                     Fortran Dialect Options.
                                                              (line  40)
* APREDICATE=ANSWER:                     Preprocessing Options.
                                                              (line 113)
* backslash:                             Fortran Dialect Options.
                                                              (line 112)
* C:                                     Preprocessing Options.
                                                              (line 122)
* c-prototypes:                          Interoperability Options.
                                                              (line   7)
* c-prototypes-external:                 Interoperability Options.
                                                              (line  25)
* CC:                                    Preprocessing Options.
                                                              (line 137)
* cpp:                                   Preprocessing Options.
                                                              (line  12)
* dD:                                    Preprocessing Options.
                                                              (line  35)
* dI:                                    Preprocessing Options.
                                                              (line  51)
* dM:                                    Preprocessing Options.
                                                              (line  26)
* dN:                                    Preprocessing Options.
                                                              (line  41)
* DNAME:                                 Preprocessing Options.
                                                              (line 151)
* DNAME=DEFINITION:                      Preprocessing Options.
                                                              (line 154)
* dU:                                    Preprocessing Options.
                                                              (line  44)
* faggressive-function-elimination:      Code Gen Options.    (line 435)
* falign-commons:                        Code Gen Options.    (line 408)
* fall-intrinsics:                       Fortran Dialect Options.
                                                              (line  17)
* fallow-argument-mismatch:              Fortran Dialect Options.
                                                              (line  26)
* fblas-matmul-limit:                    Code Gen Options.    (line 337)
* fbounds-check:                         Code Gen Options.    (line 205)
* fcheck:                                Code Gen Options.    (line 144)
* fcheck-array-temporaries:              Code Gen Options.    (line 239)
* fcoarray:                              Code Gen Options.    (line 130)
* fconvert=CONVERSION:                   Runtime Options.     (line  10)
* fcray-pointer:                         Fortran Dialect Options.
                                                              (line 167)
* fd-lines-as-code:                      Fortran Dialect Options.
                                                              (line  47)
* fd-lines-as-comments:                  Fortran Dialect Options.
                                                              (line  47)
* fdec:                                  Fortran Dialect Options.
                                                              (line  54)
* fdec-blank-format-item:                Fortran Dialect Options.
                                                              (line 102)
* fdec-char-conversions:                 Fortran Dialect Options.
                                                              (line  69)
* fdec-format-defaults:                  Fortran Dialect Options.
                                                              (line  98)
* fdec-include:                          Fortran Dialect Options.
                                                              (line  93)
* fdec-intrinsic-ints:                   Fortran Dialect Options.
                                                              (line  79)
* fdec-math:                             Fortran Dialect Options.
                                                              (line  84)
* fdec-static:                           Fortran Dialect Options.
                                                              (line  89)
* fdec-structure:                        Fortran Dialect Options.
                                                              (line  73)
* fdefault-double-8:                     Fortran Dialect Options.
                                                              (line 234)
* fdefault-integer-8:                    Fortran Dialect Options.
                                                              (line 198)
* fdefault-real-10:                      Fortran Dialect Options.
                                                              (line 214)
* fdefault-real-16:                      Fortran Dialect Options.
                                                              (line 224)
* fdefault-real-8:                       Fortran Dialect Options.
                                                              (line 204)
* fdollar-ok:                            Fortran Dialect Options.
                                                              (line 106)
* fdump-fortran-global:                  Debugging Options.   (line  33)
* fdump-fortran-optimized:               Debugging Options.   (line  18)
* fdump-fortran-original:                Debugging Options.   (line  10)
* fdump-parse-tree:                      Debugging Options.   (line  25)
* fexternal-blas:                        Code Gen Options.    (line 329)
* ff2c:                                  Code Gen Options.    (line  28)
* ffixed-form:                           Fortran Dialect Options.
                                                              (line  11)
* ffixed-line-length-N:                  Fortran Dialect Options.
                                                              (line 129)
* ffpe-summary=LIST:                     Debugging Options.   (line  73)
* ffpe-trap=LIST:                        Debugging Options.   (line  40)
* ffree-form:                            Fortran Dialect Options.
                                                              (line  11)
* ffree-line-length-N:                   Fortran Dialect Options.
                                                              (line 151)
* fimplicit-none:                        Fortran Dialect Options.
                                                              (line 162)
* finit-character:                       Code Gen Options.    (line 372)
* finit-derived:                         Code Gen Options.    (line 372)
* finit-integer:                         Code Gen Options.    (line 372)
* finit-local-zero:                      Code Gen Options.    (line 372)
* finit-logical:                         Code Gen Options.    (line 372)
* finit-real:                            Code Gen Options.    (line 372)
* finline-arg-packing:                   Code Gen Options.    (line 304)
* finline-matmul-limit:                  Code Gen Options.    (line 348)
* finteger-4-integer-8:                  Fortran Dialect Options.
                                                              (line 242)
* fintrinsic-modules-path DIR:           Directory Options.   (line  36)
* fmax-array-constructor:                Code Gen Options.    (line 242)
* fmax-errors=N:                         Error and Warning Options.
                                                              (line  27)
* fmax-identifier-length=N:              Fortran Dialect Options.
                                                              (line 158)
* fmax-stack-var-size:                   Code Gen Options.    (line 260)
* fmax-subrecord-length=LENGTH:          Runtime Options.     (line  29)
* fmodule-private:                       Fortran Dialect Options.
                                                              (line 124)
* fno-automatic:                         Code Gen Options.    (line  15)
* fno-backtrace:                         Debugging Options.   (line  86)
* fno-protect-parens:                    Code Gen Options.    (line 420)
* fno-underscoring:                      Code Gen Options.    (line  57)
* fopenacc:                              Fortran Dialect Options.
                                                              (line 171)
* fopenmp:                               Fortran Dialect Options.
                                                              (line 178)
* fpack-derived:                         Code Gen Options.    (line 282)
* fpad-source:                           Fortran Dialect Options.
                                                              (line 143)
* fpp:                                   Preprocessing Options.
                                                              (line  12)
* frange-check:                          Fortran Dialect Options.
                                                              (line 186)
* freal-4-real-10:                       Fortran Dialect Options.
                                                              (line 257)
* freal-4-real-16:                       Fortran Dialect Options.
                                                              (line 257)
* freal-4-real-8:                        Fortran Dialect Options.
                                                              (line 257)
* freal-8-real-10:                       Fortran Dialect Options.
                                                              (line 257)
* freal-8-real-16:                       Fortran Dialect Options.
                                                              (line 257)
* freal-8-real-4:                        Fortran Dialect Options.
                                                              (line 257)
* frealloc-lhs:                          Code Gen Options.    (line 429)
* frecord-marker=LENGTH:                 Runtime Options.     (line  21)
* frecursive:                            Code Gen Options.    (line 362)
* frepack-arrays:                        Code Gen Options.    (line 288)
* frontend-loop-interchange:             Code Gen Options.    (line 456)
* frontend-optimize:                     Code Gen Options.    (line 443)
* fsecond-underscore:                    Code Gen Options.    (line 113)
* fshort-enums:                          Code Gen Options.    (line 298)
* fshort-enums <1>:                      Fortran 2003 status. (line  92)
* fsign-zero:                            Runtime Options.     (line  34)
* fstack-arrays:                         Code Gen Options.    (line 274)
* fsyntax-only:                          Error and Warning Options.
                                                              (line  33)
* ftest-forall-temp:                     Fortran Dialect Options.
                                                              (line 287)
* fworking-directory:                    Preprocessing Options.
                                                              (line  55)
* H:                                     Preprocessing Options.
                                                              (line 174)
* IDIR:                                  Directory Options.   (line  14)
* idirafter DIR:                         Preprocessing Options.
                                                              (line  69)
* imultilib DIR:                         Preprocessing Options.
                                                              (line  76)
* iprefix PREFIX:                        Preprocessing Options.
                                                              (line  80)
* iquote DIR:                            Preprocessing Options.
                                                              (line  89)
* isysroot DIR:                          Preprocessing Options.
                                                              (line  85)
* isystem DIR:                           Preprocessing Options.
                                                              (line  96)
* JDIR:                                  Directory Options.   (line  29)
* MDIR:                                  Directory Options.   (line  29)
* nostdinc:                              Preprocessing Options.
                                                              (line 104)
* P:                                     Preprocessing Options.
                                                              (line 179)
* pedantic:                              Error and Warning Options.
                                                              (line  39)
* pedantic-errors:                       Error and Warning Options.
                                                              (line  58)
* static-libgfortran:                    Link Options.        (line  11)
* std=STD option:                        Fortran Dialect Options.
                                                              (line 268)
* tail-call-workaround:                  Code Gen Options.    (line 209)
* UNAME:                                 Preprocessing Options.
                                                              (line 185)
* undef:                                 Preprocessing Options.
                                                              (line 109)
* Waliasing:                             Error and Warning Options.
                                                              (line  71)
* Walign-commons:                        Error and Warning Options.
                                                              (line 228)
* Wall:                                  Error and Warning Options.
                                                              (line  62)
* Wampersand:                            Error and Warning Options.
                                                              (line  88)
* Warray-temporaries:                    Error and Warning Options.
                                                              (line  96)
* Wc-binding-type:                       Error and Warning Options.
                                                              (line 101)
* Wcharacter-truncation:                 Error and Warning Options.
                                                              (line 108)
* Wcompare-reals:                        Error and Warning Options.
                                                              (line 256)
* Wconversion:                           Error and Warning Options.
                                                              (line 117)
* Wconversion-extra:                     Error and Warning Options.
                                                              (line 121)
* Wdo-subscript:                         Error and Warning Options.
                                                              (line 268)
* Werror:                                Error and Warning Options.
                                                              (line 280)
* Wextra:                                Error and Warning Options.
                                                              (line 125)
* Wfrontend-loop-interchange:            Error and Warning Options.
                                                              (line 130)
* Wfunction-elimination:                 Error and Warning Options.
                                                              (line 234)
* Wimplicit-interface:                   Error and Warning Options.
                                                              (line 134)
* Wimplicit-procedure:                   Error and Warning Options.
                                                              (line 140)
* Winteger-division:                     Error and Warning Options.
                                                              (line 144)
* Wintrinsic-shadow:                     Error and Warning Options.
                                                              (line 206)
* Wintrinsics-std:                       Error and Warning Options.
                                                              (line 148)
* Wline-truncation:                      Error and Warning Options.
                                                              (line 111)
* Woverwrite-recursive:                  Error and Warning Options.
                                                              (line 155)
* Wpedantic:                             Error and Warning Options.
                                                              (line  39)
* Wreal-q-constant:                      Error and Warning Options.
                                                              (line 162)
* Wrealloc-lhs:                          Error and Warning Options.
                                                              (line 239)
* Wrealloc-lhs-all:                      Error and Warning Options.
                                                              (line 251)
* Wsurprising:                           Error and Warning Options.
                                                              (line 166)
* Wtabs:                                 Error and Warning Options.
                                                              (line 188)
* Wtargt-lifetime:                       Error and Warning Options.
                                                              (line 260)
* Wundefined-do-loop:                    Error and Warning Options.
                                                              (line 196)
* Wunderflow:                            Error and Warning Options.
                                                              (line 201)
* Wunused-dummy-argument:                Error and Warning Options.
                                                              (line 217)
* Wunused-parameter:                     Error and Warning Options.
                                                              (line 221)
* Wuse-without-only:                     Error and Warning Options.
                                                              (line 213)
* Wzerotrip:                             Error and Warning Options.
                                                              (line 264)


File: gfortran.info,  Node: Keyword Index,  Prev: Option Index,  Up: Top

Keyword Index
*************

[index]
* Menu:

* $:                                     Fortran Dialect Options.
                                                              (line 106)
* %LOC:                                  Argument list functions.
                                                              (line   6)
* %REF:                                  Argument list functions.
                                                              (line   6)
* %VAL:                                  Argument list functions.
                                                              (line   6)
* &:                                     Error and Warning Options.
                                                              (line  88)
* [...]:                                 Fortran 2003 status. (line  78)
* _gfortran_set_args:                    _gfortran_set_args.  (line   6)
* _gfortran_set_convert:                 _gfortran_set_convert.
                                                              (line   6)
* _gfortran_set_fpe:                     _gfortran_set_fpe.   (line   6)
* _gfortran_set_max_subrecord_length:    _gfortran_set_max_subrecord_length.
                                                              (line   6)
* _gfortran_set_options:                 _gfortran_set_options.
                                                              (line   6)
* _gfortran_set_record_marker:           _gfortran_set_record_marker.
                                                              (line   6)
* ABORT:                                 ABORT.               (line   6)
* ABS:                                   ABS.                 (line   6)
* absolute value:                        ABS.                 (line   6)
* ACCESS:                                ACCESS.              (line   6)
* ACCESS='STREAM' I/O:                   Fortran 2003 status. (line 102)
* ACHAR:                                 ACHAR.               (line   6)
* ACOS:                                  ACOS.                (line   6)
* ACOSD:                                 ACOSD.               (line   6)
* ACOSH:                                 ACOSH.               (line   6)
* adjust string:                         ADJUSTL.             (line   6)
* adjust string <1>:                     ADJUSTR.             (line   6)
* ADJUSTL:                               ADJUSTL.             (line   6)
* ADJUSTR:                               ADJUSTR.             (line   6)
* AIMAG:                                 AIMAG.               (line   6)
* AINT:                                  AINT.                (line   6)
* ALARM:                                 ALARM.               (line   6)
* ALGAMA:                                LOG_GAMMA.           (line   6)
* aliasing:                              Error and Warning Options.
                                                              (line  71)
* alignment of COMMON blocks:            Error and Warning Options.
                                                              (line 228)
* alignment of COMMON blocks <1>:        Code Gen Options.    (line 408)
* ALL:                                   ALL.                 (line   6)
* all warnings:                          Error and Warning Options.
                                                              (line  62)
* ALLOCATABLE components of derived types: Fortran 2003 status.
                                                              (line 100)
* ALLOCATABLE dummy arguments:           Fortran 2003 status. (line  98)
* ALLOCATABLE function results:          Fortran 2003 status. (line  99)
* ALLOCATED:                             ALLOCATED.           (line   6)
* allocation, moving:                    MOVE_ALLOC.          (line   6)
* allocation, status:                    ALLOCATED.           (line   6)
* ALOG:                                  LOG.                 (line   6)
* ALOG10:                                LOG10.               (line   6)
* AMAX0:                                 MAX.                 (line   6)
* AMAX1:                                 MAX.                 (line   6)
* AMIN0:                                 MIN.                 (line   6)
* AMIN1:                                 MIN.                 (line   6)
* AMOD:                                  MOD.                 (line   6)
* AND:                                   AND.                 (line   6)
* ANINT:                                 ANINT.               (line   6)
* ANY:                                   ANY.                 (line   6)
* area hyperbolic cosine:                ACOSH.               (line   6)
* area hyperbolic sine:                  ASINH.               (line   6)
* area hyperbolic tangent:               ATANH.               (line   6)
* argument list functions:               Argument list functions.
                                                              (line   6)
* arguments, to program:                 COMMAND_ARGUMENT_COUNT.
                                                              (line   6)
* arguments, to program <1>:             GETARG.              (line   6)
* arguments, to program <2>:             GET_COMMAND.         (line   6)
* arguments, to program <3>:             GET_COMMAND_ARGUMENT.
                                                              (line   6)
* arguments, to program <4>:             IARGC.               (line   6)
* array, add elements:                   SUM.                 (line   6)
* array, AND:                            IALL.                (line   6)
* array, apply condition:                ALL.                 (line   6)
* array, apply condition <1>:            ANY.                 (line   6)
* array, bounds checking:                Code Gen Options.    (line 144)
* array, change dimensions:              RESHAPE.             (line   6)
* array, combine arrays:                 MERGE.               (line   6)
* array, condition testing:              ALL.                 (line   6)
* array, condition testing <1>:          ANY.                 (line   6)
* array, conditionally add elements:     SUM.                 (line   6)
* array, conditionally count elements:   COUNT.               (line   6)
* array, conditionally multiply elements: PRODUCT.            (line   6)
* array, constructors:                   Fortran 2003 status. (line  78)
* array, contiguity:                     IS_CONTIGUOUS.       (line   6)
* array, count elements:                 SIZE.                (line   6)
* array, duplicate dimensions:           SPREAD.              (line   6)
* array, duplicate elements:             SPREAD.              (line   6)
* array, element counting:               COUNT.               (line   6)
* array, gather elements:                PACK.                (line   6)
* array, increase dimension:             SPREAD.              (line   6)
* array, increase dimension <1>:         UNPACK.              (line   6)
* array, indices of type real:           Real array indices.  (line   6)
* array, location of maximum element:    MAXLOC.              (line   6)
* array, location of minimum element:    MINLOC.              (line   6)
* array, lower bound:                    LBOUND.              (line   6)
* array, maximum value:                  MAXVAL.              (line   6)
* array, merge arrays:                   MERGE.               (line   6)
* array, minimum value:                  MINVAL.              (line   6)
* array, multiply elements:              PRODUCT.             (line   6)
* array, number of elements:             COUNT.               (line   6)
* array, number of elements <1>:         SIZE.                (line   6)
* array, OR:                             IANY.                (line   6)
* array, packing:                        PACK.                (line   6)
* array, parity:                         IPARITY.             (line   6)
* array, permutation:                    CSHIFT.              (line   6)
* array, product:                        PRODUCT.             (line   6)
* array, reduce dimension:               PACK.                (line   6)
* array, rotate:                         CSHIFT.              (line   6)
* array, scatter elements:               UNPACK.              (line   6)
* array, shape:                          SHAPE.               (line   6)
* array, shift:                          EOSHIFT.             (line   6)
* array, shift circularly:               CSHIFT.              (line   6)
* array, size:                           SIZE.                (line   6)
* array, sum:                            SUM.                 (line   6)
* array, transmogrify:                   RESHAPE.             (line   6)
* array, transpose:                      TRANSPOSE.           (line   6)
* array, unpacking:                      UNPACK.              (line   6)
* array, upper bound:                    UBOUND.              (line   6)
* array, XOR:                            IPARITY.             (line   6)
* ASCII collating sequence:              ACHAR.               (line   6)
* ASCII collating sequence <1>:          IACHAR.              (line   6)
* ASIN:                                  ASIN.                (line   6)
* ASIND:                                 ASIND.               (line   6)
* ASINH:                                 ASINH.               (line   6)
* ASSOCIATED:                            ASSOCIATED.          (line   6)
* association status:                    ASSOCIATED.          (line   6)
* association status, C pointer:         C_ASSOCIATED.        (line   6)
* asynchronous I/O:                      Asynchronous I/O.    (line   6)
* ATAN:                                  ATAN.                (line   6)
* ATAN2:                                 ATAN2.               (line   6)
* ATAN2D:                                ATAN2D.              (line   6)
* ATAND:                                 ATAND.               (line   6)
* ATANH:                                 ATANH.               (line   6)
* Atomic subroutine, add:                ATOMIC_ADD.          (line   6)
* Atomic subroutine, ADD with fetch:     ATOMIC_FETCH_ADD.    (line   6)
* Atomic subroutine, AND:                ATOMIC_AND.          (line   6)
* Atomic subroutine, AND with fetch:     ATOMIC_FETCH_AND.    (line   6)
* Atomic subroutine, compare and swap:   ATOMIC_CAS.          (line   6)
* Atomic subroutine, define:             ATOMIC_DEFINE.       (line   6)
* Atomic subroutine, OR:                 ATOMIC_OR.           (line   6)
* Atomic subroutine, OR with fetch:      ATOMIC_FETCH_OR.     (line   6)
* Atomic subroutine, reference:          ATOMIC_REF.          (line   6)
* Atomic subroutine, XOR:                ATOMIC_XOR.          (line   6)
* Atomic subroutine, XOR with fetch:     ATOMIC_FETCH_XOR.    (line   6)
* ATOMIC_ADD:                            ATOMIC_ADD.          (line   6)
* ATOMIC_AND:                            ATOMIC_AND.          (line   6)
* ATOMIC_DEFINE:                         ATOMIC_CAS.          (line   6)
* ATOMIC_DEFINE <1>:                     ATOMIC_DEFINE.       (line   6)
* ATOMIC_FETCH_ADD:                      ATOMIC_FETCH_ADD.    (line   6)
* ATOMIC_FETCH_AND:                      ATOMIC_FETCH_AND.    (line   6)
* ATOMIC_FETCH_OR:                       ATOMIC_FETCH_OR.     (line   6)
* ATOMIC_FETCH_XOR:                      ATOMIC_FETCH_XOR.    (line   6)
* ATOMIC_OR:                             ATOMIC_OR.           (line   6)
* ATOMIC_REF:                            ATOMIC_REF.          (line   6)
* ATOMIC_XOR:                            ATOMIC_XOR.          (line   6)
* Authors:                               Contributors.        (line   6)
* AUTOMATIC:                             AUTOMATIC and STATIC attributes.
                                                              (line   6)
* BABS:                                  ABS.                 (line   6)
* backslash:                             Fortran Dialect Options.
                                                              (line 112)
* BACKSPACE:                             Read/Write after EOF marker.
                                                              (line   6)
* BACKTRACE:                             BACKTRACE.           (line   6)
* backtrace:                             Debugging Options.   (line  86)
* backtrace <1>:                         BACKTRACE.           (line   6)
* base 10 logarithm function:            LOG10.               (line   6)
* BBCLR:                                 IBCLR.               (line   6)
* BBITS:                                 IBITS.               (line   6)
* BBSET:                                 IBSET.               (line   6)
* BBTEST:                                BTEST.               (line   6)
* BESJ0:                                 BESSEL_J0.           (line   6)
* BESJ1:                                 BESSEL_J1.           (line   6)
* BESJN:                                 BESSEL_JN.           (line   6)
* Bessel function, first kind:           BESSEL_J0.           (line   6)
* Bessel function, first kind <1>:       BESSEL_J1.           (line   6)
* Bessel function, first kind <2>:       BESSEL_JN.           (line   6)
* Bessel function, second kind:          BESSEL_Y0.           (line   6)
* Bessel function, second kind <1>:      BESSEL_Y1.           (line   6)
* Bessel function, second kind <2>:      BESSEL_YN.           (line   6)
* BESSEL_J0:                             BESSEL_J0.           (line   6)
* BESSEL_J1:                             BESSEL_J1.           (line   6)
* BESSEL_JN:                             BESSEL_JN.           (line   6)
* BESSEL_Y0:                             BESSEL_Y0.           (line   6)
* BESSEL_Y1:                             BESSEL_Y1.           (line   6)
* BESSEL_YN:                             BESSEL_YN.           (line   6)
* BESY0:                                 BESSEL_Y0.           (line   6)
* BESY1:                                 BESSEL_Y1.           (line   6)
* BESYN:                                 BESSEL_YN.           (line   6)
* BGE:                                   BGE.                 (line   6)
* BGT:                                   BGT.                 (line   6)
* BIAND:                                 IAND.                (line   6)
* BIEOR:                                 IEOR.                (line   6)
* binary representation:                 POPCNT.              (line   6)
* binary representation <1>:             POPPAR.              (line   6)
* BIOR:                                  IOR.                 (line   6)
* bit intrinsics checking:               Code Gen Options.    (line 144)
* BITEST:                                BTEST.               (line   6)
* bits set:                              POPCNT.              (line   6)
* bits, AND of array elements:           IALL.                (line   6)
* bits, clear:                           IBCLR.               (line   6)
* bits, extract:                         IBITS.               (line   6)
* bits, get:                             IBITS.               (line   6)
* bits, merge:                           MERGE_BITS.          (line   6)
* bits, move:                            MVBITS.              (line   6)
* bits, move <1>:                        TRANSFER.            (line   6)
* bits, negate:                          NOT.                 (line   6)
* bits, number of:                       BIT_SIZE.            (line   6)
* bits, OR of array elements:            IANY.                (line   6)
* bits, set:                             IBSET.               (line   6)
* bits, shift:                           ISHFT.               (line   6)
* bits, shift circular:                  ISHFTC.              (line   6)
* bits, shift left:                      LSHIFT.              (line   6)
* bits, shift left <1>:                  SHIFTL.              (line   6)
* bits, shift right:                     RSHIFT.              (line   6)
* bits, shift right <1>:                 SHIFTA.              (line   6)
* bits, shift right <2>:                 SHIFTR.              (line   6)
* bits, testing:                         BTEST.               (line   6)
* bits, unset:                           IBCLR.               (line   6)
* bits, XOR of array elements:           IPARITY.             (line   6)
* bitwise comparison:                    BGE.                 (line   6)
* bitwise comparison <1>:                BGT.                 (line   6)
* bitwise comparison <2>:                BLE.                 (line   6)
* bitwise comparison <3>:                BLT.                 (line   6)
* bitwise logical and:                   AND.                 (line   6)
* bitwise logical and <1>:               IAND.                (line   6)
* bitwise logical exclusive or:          IEOR.                (line   6)
* bitwise logical exclusive or <1>:      XOR.                 (line   6)
* bitwise logical not:                   NOT.                 (line   6)
* bitwise logical or:                    IOR.                 (line   6)
* bitwise logical or <1>:                OR.                  (line   6)
* BIT_SIZE:                              BIT_SIZE.            (line   6)
* BJTEST:                                BTEST.               (line   6)
* BKTEST:                                BTEST.               (line   6)
* BLE:                                   BLE.                 (line   6)
* BLT:                                   BLT.                 (line   6)
* BMOD:                                  MOD.                 (line   6)
* BMVBITS:                               MVBITS.              (line   6)
* BNOT:                                  NOT.                 (line   6)
* bounds checking:                       Code Gen Options.    (line 144)
* BOZ literal constants:                 BOZ literal constants.
                                                              (line   6)
* BSHFT:                                 ISHFT.               (line   6)
* BSHFTC:                                ISHFTC.              (line   6)
* BTEST:                                 BTEST.               (line   6)
* CABS:                                  ABS.                 (line   6)
* calling convention:                    Code Gen Options.    (line  28)
* CARRIAGECONTROL:                       Extended I/O specifiers.
                                                              (line   6)
* CCOS:                                  COS.                 (line   6)
* CCOSD:                                 COSD.                (line   6)
* CDABS:                                 ABS.                 (line   6)
* CDCOS:                                 COS.                 (line   6)
* CDCOSD:                                COSD.                (line   6)
* CDEXP:                                 EXP.                 (line   6)
* CDLOG:                                 LOG.                 (line   6)
* CDSIN:                                 SIN.                 (line   6)
* CDSIND:                                SIND.                (line   6)
* CDSQRT:                                SQRT.                (line   6)
* CEILING:                               CEILING.             (line   6)
* ceiling:                               ANINT.               (line   6)
* ceiling <1>:                           CEILING.             (line   6)
* CEXP:                                  EXP.                 (line   6)
* CHAR:                                  CHAR.                (line   6)
* character kind:                        SELECTED_CHAR_KIND.  (line   6)
* character set:                         Fortran Dialect Options.
                                                              (line 106)
* CHDIR:                                 CHDIR.               (line   6)
* checking array temporaries:            Code Gen Options.    (line 144)
* checking subscripts:                   Code Gen Options.    (line 144)
* CHMOD:                                 CHMOD.               (line   6)
* clock ticks:                           MCLOCK.              (line   6)
* clock ticks <1>:                       MCLOCK8.             (line   6)
* clock ticks <2>:                       SYSTEM_CLOCK.        (line   6)
* CLOG:                                  LOG.                 (line   6)
* CMPLX:                                 CMPLX.               (line   6)
* coarray, IMAGE_INDEX:                  IMAGE_INDEX.         (line   6)
* coarray, lower bound:                  LCOBOUND.            (line   6)
* coarray, NUM_IMAGES:                   NUM_IMAGES.          (line   6)
* coarray, THIS_IMAGE:                   THIS_IMAGE.          (line   6)
* coarray, upper bound:                  UCOBOUND.            (line   6)
* Coarray, _gfortran_caf_atomic_cas:     _gfortran_caf_atomic_cas.
                                                              (line   6)
* Coarray, _gfortran_caf_atomic_define:  _gfortran_caf_atomic_define.
                                                              (line   6)
* Coarray, _gfortran_caf_atomic_op:      _gfortran_caf_atomic_op.
                                                              (line   6)
* Coarray, _gfortran_caf_atomic_ref:     _gfortran_caf_atomic_ref.
                                                              (line   6)
* Coarray, _gfortran_caf_co_broadcast:   _gfortran_caf_co_broadcast.
                                                              (line   6)
* Coarray, _gfortran_caf_co_max:         _gfortran_caf_co_max.
                                                              (line   6)
* Coarray, _gfortran_caf_co_min:         _gfortran_caf_co_min.
                                                              (line   6)
* Coarray, _gfortran_caf_co_reduce:      _gfortran_caf_co_reduce.
                                                              (line   6)
* Coarray, _gfortran_caf_co_sum:         _gfortran_caf_co_sum.
                                                              (line   6)
* Coarray, _gfortran_caf_deregister:     _gfortran_caf_deregister.
                                                              (line   6)
* Coarray, _gfortran_caf_error_stop:     _gfortran_caf_error_stop.
                                                              (line   6)
* Coarray, _gfortran_caf_error_stop_str: _gfortran_caf_error_stop_str.
                                                              (line   6)
* Coarray, _gfortran_caf_event_post:     _gfortran_caf_event_post.
                                                              (line   6)
* Coarray, _gfortran_caf_event_query:    _gfortran_caf_event_query.
                                                              (line   6)
* Coarray, _gfortran_caf_event_wait:     _gfortran_caf_event_wait.
                                                              (line   6)
* Coarray, _gfortran_caf_failed_images:  _gfortran_caf_failed_images.
                                                              (line   6)
* Coarray, _gfortran_caf_fail_image:     _gfortran_caf_fail_image.
                                                              (line   6)
* Coarray, _gfortran_caf_finish:         _gfortran_caf_finish.
                                                              (line   6)
* Coarray, _gfortran_caf_get:            _gfortran_caf_get.   (line   6)
* Coarray, _gfortran_caf_get_by_ref:     _gfortran_caf_get_by_ref.
                                                              (line   6)
* Coarray, _gfortran_caf_image_status:   _gfortran_caf_image_status.
                                                              (line   6)
* Coarray, _gfortran_caf_init:           _gfortran_caf_init.  (line   6)
* Coarray, _gfortran_caf_is_present:     _gfortran_caf_is_present.
                                                              (line   6)
* Coarray, _gfortran_caf_lock:           _gfortran_caf_lock.  (line   6)
* Coarray, _gfortran_caf_num_images:     _gfortran_caf_num_images.
                                                              (line   6)
* Coarray, _gfortran_caf_register:       _gfortran_caf_register.
                                                              (line   6)
* Coarray, _gfortran_caf_send:           _gfortran_caf_send.  (line   6)
* Coarray, _gfortran_caf_sendget:        _gfortran_caf_sendget.
                                                              (line   6)
* Coarray, _gfortran_caf_sendget_by_ref: _gfortran_caf_sendget_by_ref.
                                                              (line   6)
* Coarray, _gfortran_caf_send_by_ref:    _gfortran_caf_send_by_ref.
                                                              (line   6)
* Coarray, _gfortran_caf_stopped_images: _gfortran_caf_stopped_images.
                                                              (line   6)
* Coarray, _gfortran_caf_sync_all:       _gfortran_caf_sync_all.
                                                              (line   6)
* Coarray, _gfortran_caf_sync_images:    _gfortran_caf_sync_images.
                                                              (line   6)
* Coarray, _gfortran_caf_sync_memory:    _gfortran_caf_sync_memory.
                                                              (line   6)
* Coarray, _gfortran_caf_this_image:     _gfortran_caf_this_image.
                                                              (line   6)
* Coarray, _gfortran_caf_unlock:         _gfortran_caf_unlock.
                                                              (line   6)
* coarrays:                              Code Gen Options.    (line 130)
* Coarrays:                              Coarray Programming. (line   6)
* code generation, conventions:          Code Gen Options.    (line   6)
* collating sequence, ASCII:             ACHAR.               (line   6)
* collating sequence, ASCII <1>:         IACHAR.              (line   6)
* Collectives, generic reduction:        CO_REDUCE.           (line   6)
* Collectives, maximal value:            CO_MAX.              (line   6)
* Collectives, minimal value:            CO_MIN.              (line   6)
* Collectives, sum of values:            CO_SUM.              (line   6)
* Collectives, value broadcasting:       CO_BROADCAST.        (line   6)
* command line:                          EXECUTE_COMMAND_LINE.
                                                              (line   6)
* command options:                       Invoking GNU Fortran.
                                                              (line   6)
* command-line arguments:                COMMAND_ARGUMENT_COUNT.
                                                              (line   6)
* command-line arguments <1>:            GETARG.              (line   6)
* command-line arguments <2>:            GET_COMMAND.         (line   6)
* command-line arguments <3>:            GET_COMMAND_ARGUMENT.
                                                              (line   6)
* command-line arguments <4>:            IARGC.               (line   6)
* command-line arguments, number of:     COMMAND_ARGUMENT_COUNT.
                                                              (line   6)
* command-line arguments, number of <1>: IARGC.               (line   6)
* COMMAND_ARGUMENT_COUNT:                COMMAND_ARGUMENT_COUNT.
                                                              (line   6)
* COMMON:                                Volatile COMMON blocks.
                                                              (line   6)
* compiler flags inquiry function:       COMPILER_OPTIONS.    (line   6)
* compiler, name and version:            COMPILER_VERSION.    (line   6)
* COMPILER_OPTIONS:                      COMPILER_OPTIONS.    (line   6)
* COMPILER_VERSION:                      COMPILER_VERSION.    (line   6)
* COMPLEX:                               COMPLEX.             (line   6)
* complex conjugate:                     CONJG.               (line   6)
* Complex function:                      Alternate complex function syntax.
                                                              (line   6)
* complex numbers, conversion to:        CMPLX.               (line   6)
* complex numbers, conversion to <1>:    COMPLEX.             (line   6)
* complex numbers, conversion to <2>:    DCMPLX.              (line   6)
* complex numbers, imaginary part:       AIMAG.               (line   6)
* complex numbers, real part:            DREAL.               (line   6)
* complex numbers, real part <1>:        REAL.                (line   6)
* Conditional compilation:               Preprocessing and conditional compilation.
                                                              (line   6)
* CONJG:                                 CONJG.               (line   6)
* consistency, durability:               Data consistency and durability.
                                                              (line   6)
* Contributing:                          Contributing.        (line   6)
* Contributors:                          Contributors.        (line   6)
* conversion:                            Error and Warning Options.
                                                              (line 117)
* conversion <1>:                        Error and Warning Options.
                                                              (line 121)
* conversion, to character:              Character conversion.
                                                              (line   6)
* conversion, to character <1>:          CHAR.                (line   6)
* conversion, to complex:                CMPLX.               (line   6)
* conversion, to complex <1>:            COMPLEX.             (line   6)
* conversion, to complex <2>:            DCMPLX.              (line   6)
* conversion, to integer:                Implicitly convert LOGICAL and INTEGER values.
                                                              (line   6)
* conversion, to integer <1>:            IACHAR.              (line   6)
* conversion, to integer <2>:            ICHAR.               (line   6)
* conversion, to integer <3>:            INT.                 (line   6)
* conversion, to integer <4>:            INT2.                (line   6)
* conversion, to integer <5>:            INT8.                (line   6)
* conversion, to integer <6>:            LONG.                (line   6)
* conversion, to logical:                Implicitly convert LOGICAL and INTEGER values.
                                                              (line   6)
* conversion, to logical <1>:            LOGICAL.             (line   6)
* conversion, to real:                   DBLE.                (line   6)
* conversion, to real <1>:               REAL.                (line   6)
* conversion, to string:                 CTIME.               (line   6)
* CONVERT specifier:                     CONVERT specifier.   (line   6)
* core, dump:                            ABORT.               (line   6)
* COS:                                   COS.                 (line   6)
* COSD:                                  COSD.                (line   6)
* COSH:                                  COSH.                (line   6)
* cosine:                                COS.                 (line   6)
* cosine, degrees:                       COSD.                (line   6)
* cosine, hyperbolic:                    COSH.                (line   6)
* cosine, hyperbolic, inverse:           ACOSH.               (line   6)
* cosine, inverse:                       ACOS.                (line   6)
* cosine, inverse, degrees:              ACOSD.               (line   6)
* COTAN:                                 COTAN.               (line   6)
* COTAND:                                COTAND.              (line   6)
* cotangent:                             COTAN.               (line   6)
* cotangent, degrees:                    COTAND.              (line   6)
* COUNT:                                 COUNT.               (line   6)
* CO_BROADCAST:                          CO_BROADCAST.        (line   6)
* CO_MAX:                                CO_MAX.              (line   6)
* CO_MIN:                                CO_MIN.              (line   6)
* CO_REDUCE:                             CO_REDUCE.           (line   6)
* CO_SUM:                                CO_SUM.              (line   6)
* CPP:                                   Preprocessing and conditional compilation.
                                                              (line   6)
* CPP <1>:                               Preprocessing Options.
                                                              (line   6)
* CPU_TIME:                              CPU_TIME.            (line   6)
* Credits:                               Contributors.        (line   6)
* CSHIFT:                                CSHIFT.              (line   6)
* CSIN:                                  SIN.                 (line   6)
* CSIND:                                 SIND.                (line   6)
* CSQRT:                                 SQRT.                (line   6)
* CTIME:                                 CTIME.               (line   6)
* current date:                          DATE_AND_TIME.       (line   6)
* current date <1>:                      FDATE.               (line   6)
* current date <2>:                      IDATE.               (line   6)
* current time:                          DATE_AND_TIME.       (line   6)
* current time <1>:                      FDATE.               (line   6)
* current time <2>:                      ITIME.               (line   6)
* current time <3>:                      TIME.                (line   6)
* current time <4>:                      TIME8.               (line   6)
* C_ASSOCIATED:                          C_ASSOCIATED.        (line   6)
* C_FUNLOC:                              C_FUNLOC.            (line   6)
* C_F_POINTER:                           C_F_POINTER.         (line   6)
* C_F_PROCPOINTER:                       C_F_PROCPOINTER.     (line   6)
* C_LOC:                                 C_LOC.               (line   6)
* C_SIZEOF:                              C_SIZEOF.            (line   6)
* DABS:                                  ABS.                 (line   6)
* DACOS:                                 ACOS.                (line   6)
* DACOSD:                                ACOSD.               (line   6)
* DACOSH:                                ACOSH.               (line   6)
* DASIN:                                 ASIN.                (line   6)
* DASIND:                                ASIND.               (line   6)
* DASINH:                                ASINH.               (line   6)
* DATAN:                                 ATAN.                (line   6)
* DATAN2:                                ATAN2.               (line   6)
* DATAN2D:                               ATAN2D.              (line   6)
* DATAND:                                ATAND.               (line   6)
* DATANH:                                ATANH.               (line   6)
* date, current:                         DATE_AND_TIME.       (line   6)
* date, current <1>:                     FDATE.               (line   6)
* date, current <2>:                     IDATE.               (line   6)
* DATE_AND_TIME:                         DATE_AND_TIME.       (line   6)
* DBESJ0:                                BESSEL_J0.           (line   6)
* DBESJ1:                                BESSEL_J1.           (line   6)
* DBESJN:                                BESSEL_JN.           (line   6)
* DBESY0:                                BESSEL_Y0.           (line   6)
* DBESY1:                                BESSEL_Y1.           (line   6)
* DBESYN:                                BESSEL_YN.           (line   6)
* DBLE:                                  DBLE.                (line   6)
* DCMPLX:                                DCMPLX.              (line   6)
* DCONJG:                                CONJG.               (line   6)
* DCOS:                                  COS.                 (line   6)
* DCOSD:                                 COSD.                (line   6)
* DCOSH:                                 COSH.                (line   6)
* DCOTAN:                                COTAN.               (line   6)
* DCOTAND:                               COTAND.              (line   6)
* DDIM:                                  DIM.                 (line   6)
* debugging information options:         Debugging Options.   (line   6)
* debugging, preprocessor:               Preprocessing Options.
                                                              (line  26)
* debugging, preprocessor <1>:           Preprocessing Options.
                                                              (line  35)
* debugging, preprocessor <2>:           Preprocessing Options.
                                                              (line  41)
* debugging, preprocessor <3>:           Preprocessing Options.
                                                              (line  44)
* debugging, preprocessor <4>:           Preprocessing Options.
                                                              (line  51)
* DECODE:                                ENCODE and DECODE statements.
                                                              (line   6)
* delayed execution:                     ALARM.               (line   6)
* delayed execution <1>:                 SLEEP.               (line   6)
* DEXP:                                  EXP.                 (line   6)
* DFLOAT:                                REAL.                (line   6)
* DGAMMA:                                GAMMA.               (line   6)
* dialect options:                       Fortran Dialect Options.
                                                              (line   6)
* DIGITS:                                DIGITS.              (line   6)
* DIM:                                   DIM.                 (line   6)
* DIMAG:                                 AIMAG.               (line   6)
* DINT:                                  AINT.                (line   6)
* directive, INCLUDE:                    Directory Options.   (line   6)
* directory, options:                    Directory Options.   (line   6)
* directory, search paths for inclusion: Directory Options.   (line  14)
* division, modulo:                      MODULO.              (line   6)
* division, remainder:                   MOD.                 (line   6)
* DLGAMA:                                LOG_GAMMA.           (line   6)
* DLOG:                                  LOG.                 (line   6)
* DLOG10:                                LOG10.               (line   6)
* DMAX1:                                 MAX.                 (line   6)
* DMIN1:                                 MIN.                 (line   6)
* DMOD:                                  MOD.                 (line   6)
* DNINT:                                 ANINT.               (line   6)
* dot product:                           DOT_PRODUCT.         (line   6)
* DOT_PRODUCT:                           DOT_PRODUCT.         (line   6)
* DPROD:                                 DPROD.               (line   6)
* DREAL:                                 DREAL.               (line   6)
* DSHIFTL:                               DSHIFTL.             (line   6)
* DSHIFTR:                               DSHIFTR.             (line   6)
* DSIGN:                                 SIGN.                (line   6)
* DSIN:                                  SIN.                 (line   6)
* DSIND:                                 SIND.                (line   6)
* DSINH:                                 SINH.                (line   6)
* DSQRT:                                 SQRT.                (line   6)
* DTAN:                                  TAN.                 (line   6)
* DTAND:                                 TAND.                (line   6)
* DTANH:                                 TANH.                (line   6)
* DTIME:                                 DTIME.               (line   6)
* dummy argument, unused:                Error and Warning Options.
                                                              (line 217)
* elapsed time:                          DTIME.               (line   6)
* elapsed time <1>:                      SECNDS.              (line   6)
* elapsed time <2>:                      SECOND.              (line   6)
* Elimination of functions with identical argument lists: Code Gen Options.
                                                              (line 435)
* ENCODE:                                ENCODE and DECODE statements.
                                                              (line   6)
* ENUM statement:                        Fortran 2003 status. (line  92)
* ENUMERATOR statement:                  Fortran 2003 status. (line  92)
* environment variable:                  Environment Variables.
                                                              (line   6)
* environment variable <1>:              Runtime.             (line   6)
* environment variable <2>:              GETENV.              (line   6)
* environment variable <3>:              GET_ENVIRONMENT_VARIABLE.
                                                              (line   6)
* EOF:                                   Read/Write after EOF marker.
                                                              (line   6)
* EOSHIFT:                               EOSHIFT.             (line   6)
* EPSILON:                               EPSILON.             (line   6)
* ERF:                                   ERF.                 (line   6)
* ERFC:                                  ERFC.                (line   6)
* ERFC_SCALED:                           ERFC_SCALED.         (line   6)
* error function:                        ERF.                 (line   6)
* error function, complementary:         ERFC.                (line   6)
* error function, complementary, exponentially-scaled: ERFC_SCALED.
                                                              (line   6)
* errors, limiting:                      Error and Warning Options.
                                                              (line  27)
* escape characters:                     Fortran Dialect Options.
                                                              (line 112)
* ETIME:                                 ETIME.               (line   6)
* Euclidean distance:                    HYPOT.               (line   6)
* Euclidean vector norm:                 NORM2.               (line   6)
* Events, EVENT_QUERY:                   EVENT_QUERY.         (line   6)
* EVENT_QUERY:                           EVENT_QUERY.         (line   6)
* EXECUTE_COMMAND_LINE:                  EXECUTE_COMMAND_LINE.
                                                              (line   6)
* EXIT:                                  EXIT.                (line   6)
* EXP:                                   EXP.                 (line   6)
* EXPONENT:                              EXPONENT.            (line   6)
* exponent:                              Default exponents.   (line   6)
* exponential function:                  EXP.                 (line   6)
* exponential function, inverse:         LOG.                 (line   6)
* exponential function, inverse <1>:     LOG10.               (line   6)
* expression size:                       C_SIZEOF.            (line   6)
* expression size <1>:                   SIZEOF.              (line   6)
* EXTENDS_TYPE_OF:                       EXTENDS_TYPE_OF.     (line   6)
* extensions:                            Extensions.          (line   6)
* extensions, implemented:               Extensions implemented in GNU Fortran.
                                                              (line   6)
* extensions, not implemented:           Extensions not implemented in GNU Fortran.
                                                              (line   6)
* extra warnings:                        Error and Warning Options.
                                                              (line 125)
* f2c calling convention:                Code Gen Options.    (line  28)
* f2c calling convention <1>:            Code Gen Options.    (line 113)
* Factorial function:                    GAMMA.               (line   6)
* FDATE:                                 FDATE.               (line   6)
* FDL, GNU Free Documentation License:   GNU Free Documentation License.
                                                              (line   6)
* FGET:                                  FGET.                (line   6)
* FGETC:                                 FGETC.               (line   6)
* file format, fixed:                    Fortran Dialect Options.
                                                              (line  11)
* file format, fixed <1>:                Fortran Dialect Options.
                                                              (line 129)
* file format, free:                     Fortran Dialect Options.
                                                              (line  11)
* file format, free <1>:                 Fortran Dialect Options.
                                                              (line 151)
* file operation, file number:           FNUM.                (line   6)
* file operation, flush:                 FLUSH.               (line   6)
* file operation, position:              FSEEK.               (line   6)
* file operation, position <1>:          FTELL.               (line   6)
* file operation, read character:        FGET.                (line   6)
* file operation, read character <1>:    FGETC.               (line   6)
* file operation, seek:                  FSEEK.               (line   6)
* file operation, write character:       FPUT.                (line   6)
* file operation, write character <1>:   FPUTC.               (line   6)
* file system, access mode:              ACCESS.              (line   6)
* file system, change access mode:       CHMOD.               (line   6)
* file system, create link:              LINK.                (line   6)
* file system, create link <1>:          SYMLNK.              (line   6)
* file system, file creation mask:       UMASK.               (line   6)
* file system, file status:              FSTAT.               (line   6)
* file system, file status <1>:          LSTAT.               (line   6)
* file system, file status <2>:          STAT.                (line   6)
* file system, hard link:                LINK.                (line   6)
* file system, remove file:              UNLINK.              (line   6)
* file system, rename file:              RENAME.              (line   6)
* file system, soft link:                SYMLNK.              (line   6)
* file, symbolic link:                   File operations on symbolic links.
                                                              (line   6)
* file, unformatted sequential:          File format of unformatted sequential files.
                                                              (line   6)
* FINDLOC:                               FINDLOC.             (line   6)
* findloc:                               FINDLOC.             (line   6)
* flags inquiry function:                COMPILER_OPTIONS.    (line   6)
* FLOAT:                                 REAL.                (line   6)
* FLOATI:                                REAL.                (line   6)
* floating point, exponent:              EXPONENT.            (line   6)
* floating point, fraction:              FRACTION.            (line   6)
* floating point, nearest different:     NEAREST.             (line   6)
* floating point, relative spacing:      RRSPACING.           (line   6)
* floating point, relative spacing <1>:  SPACING.             (line   6)
* floating point, scale:                 SCALE.               (line   6)
* floating point, set exponent:          SET_EXPONENT.        (line   6)
* FLOATJ:                                REAL.                (line   6)
* FLOATK:                                REAL.                (line   6)
* FLOOR:                                 FLOOR.               (line   6)
* floor:                                 AINT.                (line   6)
* floor <1>:                             FLOOR.               (line   6)
* FLUSH:                                 FLUSH.               (line   6)
* FLUSH statement:                       Fortran 2003 status. (line  88)
* FNUM:                                  FNUM.                (line   6)
* form feed whitespace:                  Form feed as whitespace.
                                                              (line   6)
* FORMAT:                                Variable FORMAT expressions.
                                                              (line   6)
* Fortran 77:                            GNU Fortran and G77. (line   6)
* FPP:                                   Preprocessing and conditional compilation.
                                                              (line   6)
* FPUT:                                  FPUT.                (line   6)
* FPUTC:                                 FPUTC.               (line   6)
* FRACTION:                              FRACTION.            (line   6)
* FREE:                                  FREE.                (line   6)
* Front-end optimization:                Code Gen Options.    (line 443)
* FSEEK:                                 FSEEK.               (line   6)
* FSTAT:                                 FSTAT.               (line   6)
* FTELL:                                 FTELL.               (line   6)
* function elimination:                  Error and Warning Options.
                                                              (line 234)
* g77:                                   GNU Fortran and G77. (line   6)
* g77 calling convention:                Code Gen Options.    (line  28)
* g77 calling convention <1>:            Code Gen Options.    (line 113)
* GAMMA:                                 GAMMA.               (line   6)
* Gamma function:                        GAMMA.               (line   6)
* Gamma function, logarithm of:          LOG_GAMMA.           (line   6)
* GCC:                                   GNU Fortran and GCC. (line   6)
* Generating C prototypes from external procedures: Interoperability Options.
                                                              (line  25)
* Generating C prototypes from Fortran BIND(C) enteties: Interoperability Options.
                                                              (line   7)
* GERROR:                                GERROR.              (line   6)
* GETARG:                                GETARG.              (line   6)
* GETCWD:                                GETCWD.              (line   6)
* GETENV:                                GETENV.              (line   6)
* GETGID:                                GETGID.              (line   6)
* GETLOG:                                GETLOG.              (line   6)
* GETPID:                                GETPID.              (line   6)
* GETUID:                                GETUID.              (line   6)
* GET_COMMAND:                           GET_COMMAND.         (line   6)
* GET_COMMAND_ARGUMENT:                  GET_COMMAND_ARGUMENT.
                                                              (line   6)
* GET_ENVIRONMENT_VARIABLE:              GET_ENVIRONMENT_VARIABLE.
                                                              (line   6)
* GMTIME:                                GMTIME.              (line   6)
* GNU Compiler Collection:               GNU Fortran and GCC. (line   6)
* GNU Fortran command options:           Invoking GNU Fortran.
                                                              (line   6)
* Hollerith constants:                   Hollerith constants support.
                                                              (line   6)
* HOSTNM:                                HOSTNM.              (line   6)
* HUGE:                                  HUGE.                (line   6)
* hyperbolic cosine:                     COSH.                (line   6)
* hyperbolic function, cosine:           COSH.                (line   6)
* hyperbolic function, cosine, inverse:  ACOSH.               (line   6)
* hyperbolic function, sine:             SINH.                (line   6)
* hyperbolic function, sine, inverse:    ASINH.               (line   6)
* hyperbolic function, tangent:          TANH.                (line   6)
* hyperbolic function, tangent, inverse: ATANH.               (line   6)
* hyperbolic sine:                       SINH.                (line   6)
* hyperbolic tangent:                    TANH.                (line   6)
* HYPOT:                                 HYPOT.               (line   6)
* I/O item lists:                        I/O item lists.      (line   6)
* I/O specifiers:                        Extended I/O specifiers.
                                                              (line   6)
* IABS:                                  ABS.                 (line   6)
* IACHAR:                                IACHAR.              (line   6)
* IALL:                                  IALL.                (line   6)
* IAND:                                  IAND.                (line   6)
* IANY:                                  IANY.                (line   6)
* IARGC:                                 IARGC.               (line   6)
* IBCLR:                                 IBCLR.               (line   6)
* IBITS:                                 IBITS.               (line   6)
* IBSET:                                 IBSET.               (line   6)
* ICHAR:                                 ICHAR.               (line   6)
* IDATE:                                 IDATE.               (line   6)
* IDIM:                                  DIM.                 (line   6)
* IDINT:                                 INT.                 (line   6)
* IDNINT:                                NINT.                (line   6)
* IEEE, ISNAN:                           ISNAN.               (line   6)
* IEOR:                                  IEOR.                (line   6)
* IERRNO:                                IERRNO.              (line   6)
* IFIX:                                  INT.                 (line   6)
* IIABS:                                 ABS.                 (line   6)
* IIAND:                                 IAND.                (line   6)
* IIBCLR:                                IBCLR.               (line   6)
* IIBITS:                                IBITS.               (line   6)
* IIBSET:                                IBSET.               (line   6)
* IIEOR:                                 IEOR.                (line   6)
* IIOR:                                  IOR.                 (line   6)
* IISHFT:                                ISHFT.               (line   6)
* IISHFTC:                               ISHFTC.              (line   6)
* IMAG:                                  AIMAG.               (line   6)
* images, cosubscript to image index conversion: IMAGE_INDEX. (line   6)
* images, index of this image:           THIS_IMAGE.          (line   6)
* images, number of:                     NUM_IMAGES.          (line   6)
* IMAGE_INDEX:                           IMAGE_INDEX.         (line   6)
* IMAGPART:                              AIMAG.               (line   6)
* IMOD:                                  MOD.                 (line   6)
* IMPORT statement:                      Fortran 2003 status. (line 119)
* IMVBITS:                               MVBITS.              (line   6)
* INCLUDE directive:                     Directory Options.   (line   6)
* inclusion, directory search paths for: Directory Options.   (line  14)
* INDEX:                                 INDEX intrinsic.     (line   6)
* INOT:                                  NOT.                 (line   6)
* input/output, asynchronous:            Asynchronous I/O.    (line   6)
* INT:                                   INT.                 (line   6)
* INT2:                                  INT2.                (line   6)
* INT8:                                  INT8.                (line   6)
* integer kind:                          SELECTED_INT_KIND.   (line   6)
* Interoperability:                      Mixed-Language Programming.
                                                              (line   6)
* intrinsic:                             Error and Warning Options.
                                                              (line 206)
* intrinsic <1>:                         Error and Warning Options.
                                                              (line 213)
* intrinsic Modules:                     Intrinsic Modules.   (line   6)
* intrinsic procedures:                  Intrinsic Procedures.
                                                              (line   6)
* intrinsics, integer:                   Type variants for integer intrinsics.
                                                              (line   6)
* intrinsics, math:                      Extended math intrinsics.
                                                              (line   6)
* intrinsics, trigonometric functions:   Extended math intrinsics.
                                                              (line   6)
* Introduction:                          Top.                 (line   6)
* inverse hyperbolic cosine:             ACOSH.               (line   6)
* inverse hyperbolic sine:               ASINH.               (line   6)
* inverse hyperbolic tangent:            ATANH.               (line   6)
* IOMSG= specifier:                      Fortran 2003 status. (line  90)
* IOR:                                   IOR.                 (line   6)
* IOSTAT, end of file:                   IS_IOSTAT_END.       (line   6)
* IOSTAT, end of record:                 IS_IOSTAT_EOR.       (line   6)
* IPARITY:                               IPARITY.             (line   6)
* IRAND:                                 IRAND.               (line   6)
* ISATTY:                                ISATTY.              (line   6)
* ISHFT:                                 ISHFT.               (line   6)
* ISHFTC:                                ISHFTC.              (line   6)
* ISIGN:                                 SIGN.                (line   6)
* ISNAN:                                 ISNAN.               (line   6)
* ISO_FORTRAN_ENV statement:             Fortran 2003 status. (line 127)
* IS_IOSTAT_END:                         IS_IOSTAT_END.       (line   6)
* IS_IOSTAT_EOR:                         IS_CONTIGUOUS.       (line   6)
* IS_IOSTAT_EOR <1>:                     IS_IOSTAT_EOR.       (line   6)
* ITIME:                                 ITIME.               (line   6)
* JIABS:                                 ABS.                 (line   6)
* JIAND:                                 IAND.                (line   6)
* JIBCLR:                                IBCLR.               (line   6)
* JIBITS:                                IBITS.               (line   6)
* JIBSET:                                IBSET.               (line   6)
* JIEOR:                                 IEOR.                (line   6)
* JIOR:                                  IOR.                 (line   6)
* JISHFT:                                ISHFT.               (line   6)
* JISHFTC:                               ISHFTC.              (line   6)
* JMOD:                                  MOD.                 (line   6)
* JMVBITS:                               MVBITS.              (line   6)
* JNOT:                                  NOT.                 (line   6)
* KIABS:                                 ABS.                 (line   6)
* KIAND:                                 IAND.                (line   6)
* KIBCLR:                                IBCLR.               (line   6)
* KIBITS:                                IBITS.               (line   6)
* KIBSET:                                IBSET.               (line   6)
* KIEOR:                                 IEOR.                (line   6)
* KILL:                                  KILL.                (line   6)
* kind:                                  KIND Type Parameters.
                                                              (line   6)
* KIND:                                  KIND.                (line   6)
* kind <1>:                              KIND.                (line   6)
* kind, character:                       SELECTED_CHAR_KIND.  (line   6)
* kind, integer:                         SELECTED_INT_KIND.   (line   6)
* kind, old-style:                       Old-style kind specifications.
                                                              (line   6)
* kind, real:                            SELECTED_REAL_KIND.  (line   6)
* KIOR:                                  IOR.                 (line   6)
* KISHFT:                                ISHFT.               (line   6)
* KISHFTC:                               ISHFTC.              (line   6)
* KMOD:                                  MOD.                 (line   6)
* KMVBITS:                               MVBITS.              (line   6)
* KNOT:                                  NOT.                 (line   6)
* L2 vector norm:                        NORM2.               (line   6)
* language, dialect options:             Fortran Dialect Options.
                                                              (line   6)
* LBOUND:                                LBOUND.              (line   6)
* LCOBOUND:                              LCOBOUND.            (line   6)
* LEADZ:                                 LEADZ.               (line   6)
* left shift, combined:                  DSHIFTL.             (line   6)
* LEN:                                   LEN.                 (line   6)
* LEN_TRIM:                              LEN_TRIM.            (line   6)
* lexical comparison of strings:         LGE.                 (line   6)
* lexical comparison of strings <1>:     LGT.                 (line   6)
* lexical comparison of strings <2>:     LLE.                 (line   6)
* lexical comparison of strings <3>:     LLT.                 (line   6)
* LGAMMA:                                LOG_GAMMA.           (line   6)
* LGE:                                   LGE.                 (line   6)
* LGT:                                   LGT.                 (line   6)
* libf2c calling convention:             Code Gen Options.    (line  28)
* libf2c calling convention <1>:         Code Gen Options.    (line 113)
* libgfortran initialization, set_args:  _gfortran_set_args.  (line   6)
* libgfortran initialization, set_convert: _gfortran_set_convert.
                                                              (line   6)
* libgfortran initialization, set_fpe:   _gfortran_set_fpe.   (line   6)
* libgfortran initialization, set_max_subrecord_length: _gfortran_set_max_subrecord_length.
                                                              (line   6)
* libgfortran initialization, set_options: _gfortran_set_options.
                                                              (line   6)
* libgfortran initialization, set_record_marker: _gfortran_set_record_marker.
                                                              (line   6)
* limits, largest number:                HUGE.                (line   6)
* limits, smallest number:               TINY.                (line   6)
* LINK:                                  LINK.                (line   6)
* linking, static:                       Link Options.        (line   6)
* LLE:                                   LLE.                 (line   6)
* LLT:                                   LLT.                 (line   6)
* LNBLNK:                                LNBLNK.              (line   6)
* LOC:                                   %LOC as an rvalue.   (line   6)
* LOC <1>:                               LOC.                 (line   6)
* location of a variable in memory:      LOC.                 (line   6)
* LOG:                                   LOG.                 (line   6)
* LOG10:                                 LOG10.               (line   6)
* logarithm function:                    LOG.                 (line   6)
* logarithm function with base 10:       LOG10.               (line   6)
* logarithm function, inverse:           EXP.                 (line   6)
* LOGICAL:                               LOGICAL.             (line   6)
* logical and, bitwise:                  AND.                 (line   6)
* logical and, bitwise <1>:              IAND.                (line   6)
* logical exclusive or, bitwise:         IEOR.                (line   6)
* logical exclusive or, bitwise <1>:     XOR.                 (line   6)
* logical not, bitwise:                  NOT.                 (line   6)
* logical or, bitwise:                   IOR.                 (line   6)
* logical or, bitwise <1>:               OR.                  (line   6)
* logical, bitwise:                      Bitwise logical operators.
                                                              (line   6)
* logical, variable representation:      Internal representation of LOGICAL variables.
                                                              (line   6)
* login name:                            GETLOG.              (line   6)
* LOG_GAMMA:                             LOG_GAMMA.           (line   6)
* LONG:                                  LONG.                (line   6)
* loop interchange, Fortran:             Code Gen Options.    (line 456)
* loop interchange, warning:             Error and Warning Options.
                                                              (line 130)
* LSHIFT:                                LSHIFT.              (line   6)
* LSTAT:                                 LSTAT.               (line   6)
* LTIME:                                 LTIME.               (line   6)
* MALLOC:                                MALLOC.              (line   6)
* MAP:                                   UNION and MAP.       (line   6)
* mask, left justified:                  MASKL.               (line   6)
* mask, right justified:                 MASKR.               (line   6)
* MASKL:                                 MASKL.               (line   6)
* MASKR:                                 MASKR.               (line   6)
* MATMUL:                                MATMUL.              (line   6)
* matrix multiplication:                 MATMUL.              (line   6)
* matrix, transpose:                     TRANSPOSE.           (line   6)
* MAX:                                   MAX.                 (line   6)
* MAX, MIN, NaN:                         MAX and MIN intrinsics with REAL NaN arguments.
                                                              (line   6)
* MAX0:                                  MAX.                 (line   6)
* MAX1:                                  MAX.                 (line   6)
* MAXEXPONENT:                           MAXEXPONENT.         (line   6)
* maximum value:                         MAX.                 (line   6)
* maximum value <1>:                     MAXVAL.              (line   6)
* MAXLOC:                                MAXLOC.              (line   6)
* MAXVAL:                                MAXVAL.              (line   6)
* MCLOCK:                                MCLOCK.              (line   6)
* MCLOCK8:                               MCLOCK8.             (line   6)
* memory checking:                       Code Gen Options.    (line 144)
* MERGE:                                 MERGE.               (line   6)
* MERGE_BITS:                            MERGE_BITS.          (line   6)
* messages, error:                       Error and Warning Options.
                                                              (line   6)
* messages, warning:                     Error and Warning Options.
                                                              (line   6)
* MIN:                                   MIN.                 (line   6)
* MIN0:                                  MIN.                 (line   6)
* MIN1:                                  MIN.                 (line   6)
* MINEXPONENT:                           MINEXPONENT.         (line   6)
* minimum value:                         MIN.                 (line   6)
* minimum value <1>:                     MINVAL.              (line   6)
* MINLOC:                                MINLOC.              (line   6)
* MINVAL:                                MINVAL.              (line   6)
* Mixed-language programming:            Mixed-Language Programming.
                                                              (line   6)
* MOD:                                   MOD.                 (line   6)
* model representation, base:            RADIX.               (line   6)
* model representation, epsilon:         EPSILON.             (line   6)
* model representation, largest number:  HUGE.                (line   6)
* model representation, maximum exponent: MAXEXPONENT.        (line   6)
* model representation, minimum exponent: MINEXPONENT.        (line   6)
* model representation, precision:       PRECISION.           (line   6)
* model representation, radix:           RADIX.               (line   6)
* model representation, range:           RANGE.               (line   6)
* model representation, significant digits: DIGITS.           (line   6)
* model representation, smallest number: TINY.                (line   6)
* module entities:                       Fortran Dialect Options.
                                                              (line 124)
* module search path:                    Directory Options.   (line  14)
* module search path <1>:                Directory Options.   (line  29)
* module search path <2>:                Directory Options.   (line  36)
* MODULO:                                MODULO.              (line   6)
* modulo:                                MODULO.              (line   6)
* MOVE_ALLOC:                            MOVE_ALLOC.          (line   6)
* moving allocation:                     MOVE_ALLOC.          (line   6)
* multiply array elements:               PRODUCT.             (line   6)
* MVBITS:                                MVBITS.              (line   6)
* NAME:                                  OPEN( ... NAME=).    (line   6)
* Namelist:                              Extensions to namelist.
                                                              (line   6)
* natural logarithm function:            LOG.                 (line   6)
* NEAREST:                               NEAREST.             (line   6)
* newline:                               NEW_LINE.            (line   6)
* NEW_LINE:                              NEW_LINE.            (line   6)
* NINT:                                  NINT.                (line   6)
* norm, Euclidean:                       NORM2.               (line   6)
* NORM2:                                 NORM2.               (line   6)
* NOSHARED:                              Extended I/O specifiers.
                                                              (line   6)
* NOT:                                   NOT.                 (line   6)
* NULL:                                  NULL.                (line   6)
* NUM_IMAGES:                            NUM_IMAGES.          (line   6)
* open, action:                          Files opened without an explicit ACTION= specifier.
                                                              (line   6)
* OpenACC:                               Fortran Dialect Options.
                                                              (line 171)
* OpenACC <1>:                           OpenACC.             (line   6)
* OpenMP:                                Fortran Dialect Options.
                                                              (line 178)
* OpenMP <1>:                            OpenMP.              (line   6)
* operators, unary:                      Unary operators.     (line   6)
* operators, xor:                        .XOR. operator.      (line   6)
* options inquiry function:              COMPILER_OPTIONS.    (line   6)
* options, code generation:              Code Gen Options.    (line   6)
* options, debugging:                    Debugging Options.   (line   6)
* options, dialect:                      Fortran Dialect Options.
                                                              (line   6)
* options, directory search:             Directory Options.   (line   6)
* options, errors:                       Error and Warning Options.
                                                              (line   6)
* options, Fortran dialect:              Fortran Dialect Options.
                                                              (line  11)
* options, gfortran command:             Invoking GNU Fortran.
                                                              (line   6)
* options, linking:                      Link Options.        (line   6)
* options, negative forms:               Invoking GNU Fortran.
                                                              (line  13)
* options, preprocessor:                 Preprocessing Options.
                                                              (line   6)
* options, real kind type promotion:     Fortran Dialect Options.
                                                              (line 257)
* options, run-time:                     Code Gen Options.    (line   6)
* options, runtime:                      Runtime Options.     (line   6)
* options, warnings:                     Error and Warning Options.
                                                              (line   6)
* OR:                                    OR.                  (line   6)
* output, newline:                       NEW_LINE.            (line   6)
* PACK:                                  PACK.                (line   6)
* PARAMETER:                             Legacy PARAMETER statements.
                                                              (line   6)
* PARITY:                                PARITY.              (line   6)
* Parity:                                PARITY.              (line   6)
* parity:                                POPPAR.              (line   6)
* paths, search:                         Directory Options.   (line  14)
* paths, search <1>:                     Directory Options.   (line  29)
* paths, search <2>:                     Directory Options.   (line  36)
* PERROR:                                PERROR.              (line   6)
* pointer checking:                      Code Gen Options.    (line 144)
* pointer, C address of pointers:        C_F_PROCPOINTER.     (line   6)
* pointer, C address of procedures:      C_FUNLOC.            (line   6)
* pointer, C association status:         C_ASSOCIATED.        (line   6)
* pointer, convert C to Fortran:         C_F_POINTER.         (line   6)
* pointer, Cray:                         Cray pointers.       (line   6)
* pointer, cray:                         FREE.                (line   6)
* pointer, cray <1>:                     MALLOC.              (line   6)
* pointer, disassociated:                NULL.                (line   6)
* pointer, status:                       ASSOCIATED.          (line   6)
* pointer, status <1>:                   NULL.                (line   6)
* POPCNT:                                POPCNT.              (line   6)
* POPPAR:                                POPPAR.              (line   6)
* positive difference:                   DIM.                 (line   6)
* PRECISION:                             PRECISION.           (line   6)
* Preprocessing:                         Preprocessing and conditional compilation.
                                                              (line   6)
* preprocessing, assertion:              Preprocessing Options.
                                                              (line 113)
* preprocessing, assertion <1>:          Preprocessing Options.
                                                              (line 119)
* preprocessing, define macros:          Preprocessing Options.
                                                              (line 151)
* preprocessing, define macros <1>:      Preprocessing Options.
                                                              (line 154)
* preprocessing, include path:           Preprocessing Options.
                                                              (line  69)
* preprocessing, include path <1>:       Preprocessing Options.
                                                              (line  76)
* preprocessing, include path <2>:       Preprocessing Options.
                                                              (line  80)
* preprocessing, include path <3>:       Preprocessing Options.
                                                              (line  85)
* preprocessing, include path <4>:       Preprocessing Options.
                                                              (line  89)
* preprocessing, include path <5>:       Preprocessing Options.
                                                              (line  96)
* preprocessing, keep comments:          Preprocessing Options.
                                                              (line 122)
* preprocessing, keep comments <1>:      Preprocessing Options.
                                                              (line 137)
* preprocessing, no linemarkers:         Preprocessing Options.
                                                              (line 179)
* preprocessing, undefine macros:        Preprocessing Options.
                                                              (line 185)
* preprocessor:                          Preprocessing Options.
                                                              (line   6)
* preprocessor, debugging:               Preprocessing Options.
                                                              (line  26)
* preprocessor, debugging <1>:           Preprocessing Options.
                                                              (line  35)
* preprocessor, debugging <2>:           Preprocessing Options.
                                                              (line  41)
* preprocessor, debugging <3>:           Preprocessing Options.
                                                              (line  44)
* preprocessor, debugging <4>:           Preprocessing Options.
                                                              (line  51)
* preprocessor, disable:                 Preprocessing Options.
                                                              (line  12)
* preprocessor, enable:                  Preprocessing Options.
                                                              (line  12)
* preprocessor, include file handling:   Preprocessing and conditional compilation.
                                                              (line   6)
* preprocessor, working directory:       Preprocessing Options.
                                                              (line  55)
* PRESENT:                               PRESENT.             (line   6)
* private:                               Fortran Dialect Options.
                                                              (line 124)
* procedure pointer, convert C to Fortran: C_LOC.             (line   6)
* process ID:                            GETPID.              (line   6)
* PRODUCT:                               PRODUCT.             (line   6)
* product, double-precision:             DPROD.               (line   6)
* product, matrix:                       MATMUL.              (line   6)
* product, vector:                       DOT_PRODUCT.         (line   6)
* program termination:                   EXIT.                (line   6)
* program termination, with core dump:   ABORT.               (line   6)
* PROTECTED statement:                   Fortran 2003 status. (line 113)
* Q edit descriptor:                     Q edit descriptor.   (line   6)
* Q exponent-letter:                     Q exponent-letter.   (line   6)
* RADIX:                                 RADIX.               (line   6)
* radix, real:                           SELECTED_REAL_KIND.  (line   6)
* RAN:                                   RAN.                 (line   6)
* RAND:                                  RAND.                (line   6)
* random number generation:              IRAND.               (line   6)
* random number generation <1>:          RAN.                 (line   6)
* random number generation <2>:          RAND.                (line   6)
* random number generation <3>:          RANDOM_NUMBER.       (line   6)
* random number generation, initialization: RANDOM_INIT.      (line   6)
* random number generation, seeding:     RANDOM_SEED.         (line   6)
* random number generation, seeding <1>: SRAND.               (line   6)
* RANDOM_INIT:                           RANDOM_INIT.         (line   6)
* RANDOM_NUMBER:                         RANDOM_NUMBER.       (line   6)
* RANDOM_SEED:                           RANDOM_SEED.         (line   6)
* RANGE:                                 RANGE.               (line   6)
* range checking:                        Code Gen Options.    (line 144)
* RANK:                                  RANK.                (line   6)
* rank:                                  RANK.                (line   6)
* re-association of parenthesized expressions: Code Gen Options.
                                                              (line 420)
* read character, stream mode:           FGET.                (line   6)
* read character, stream mode <1>:       FGETC.               (line   6)
* READONLY:                              Extended I/O specifiers.
                                                              (line   6)
* REAL:                                  REAL.                (line   6)
* real kind:                             SELECTED_REAL_KIND.  (line   6)
* real number, exponent:                 EXPONENT.            (line   6)
* real number, fraction:                 FRACTION.            (line   6)
* real number, nearest different:        NEAREST.             (line   6)
* real number, relative spacing:         RRSPACING.           (line   6)
* real number, relative spacing <1>:     SPACING.             (line   6)
* real number, scale:                    SCALE.               (line   6)
* real number, set exponent:             SET_EXPONENT.        (line   6)
* Reallocate the LHS in assignments:     Code Gen Options.    (line 429)
* Reallocate the LHS in assignments, notification: Error and Warning Options.
                                                              (line 239)
* REALPART:                              REAL.                (line   6)
* RECORD:                                STRUCTURE and RECORD.
                                                              (line   6)
* record marker:                         File format of unformatted sequential files.
                                                              (line   6)
* Reduction, XOR:                        PARITY.              (line   6)
* remainder:                             MOD.                 (line   6)
* RENAME:                                RENAME.              (line   6)
* repacking arrays:                      Code Gen Options.    (line 288)
* REPEAT:                                REPEAT.              (line   6)
* RESHAPE:                               RESHAPE.             (line   6)
* REWIND:                                Read/Write after EOF marker.
                                                              (line   6)
* right shift, combined:                 DSHIFTR.             (line   6)
* root:                                  SQRT.                (line   6)
* rounding, ceiling:                     ANINT.               (line   6)
* rounding, ceiling <1>:                 CEILING.             (line   6)
* rounding, floor:                       AINT.                (line   6)
* rounding, floor <1>:                   FLOOR.               (line   6)
* rounding, nearest whole number:        NINT.                (line   6)
* RRSPACING:                             RRSPACING.           (line   6)
* RSHIFT:                                RSHIFT.              (line   6)
* run-time checking:                     Code Gen Options.    (line 144)
* SAME_TYPE_AS:                          SAME_TYPE_AS.        (line   6)
* SAVE statement:                        Code Gen Options.    (line  15)
* SCALE:                                 SCALE.               (line   6)
* SCAN:                                  SCAN.                (line   6)
* search path:                           Directory Options.   (line   6)
* search paths, for included files:      Directory Options.   (line  14)
* SECNDS:                                SECNDS.              (line   6)
* SECOND:                                SECOND.              (line   6)
* seeding a random number generator:     RANDOM_SEED.         (line   6)
* seeding a random number generator <1>: SRAND.               (line   6)
* SELECTED_CHAR_KIND:                    SELECTED_CHAR_KIND.  (line   6)
* SELECTED_INT_KIND:                     SELECTED_INT_KIND.   (line   6)
* SELECTED_REAL_KIND:                    SELECTED_REAL_KIND.  (line   6)
* sequential, unformatted:               File format of unformatted sequential files.
                                                              (line   6)
* SET_EXPONENT:                          SET_EXPONENT.        (line   6)
* SHAPE:                                 SHAPE.               (line   6)
* SHARE:                                 Extended I/O specifiers.
                                                              (line   6)
* SHARED:                                Extended I/O specifiers.
                                                              (line   6)
* shift, left:                           DSHIFTL.             (line   6)
* shift, left <1>:                       SHIFTL.              (line   6)
* shift, right:                          DSHIFTR.             (line   6)
* shift, right <1>:                      SHIFTR.              (line   6)
* shift, right with fill:                SHIFTA.              (line   6)
* SHIFTA:                                SHIFTA.              (line   6)
* SHIFTL:                                SHIFTL.              (line   6)
* SHIFTR:                                SHIFTR.              (line   6)
* SHORT:                                 INT2.                (line   6)
* SIGN:                                  SIGN.                (line   6)
* sign copying:                          SIGN.                (line   6)
* SIGNAL:                                SIGNAL.              (line   6)
* SIN:                                   SIN.                 (line   6)
* SIND:                                  SIND.                (line   6)
* sine:                                  SIN.                 (line   6)
* sine, degrees:                         SIND.                (line   6)
* sine, hyperbolic:                      SINH.                (line   6)
* sine, hyperbolic, inverse:             ASINH.               (line   6)
* sine, inverse:                         ASIN.                (line   6)
* sine, inverse, degrees:                ASIND.               (line   6)
* SINH:                                  SINH.                (line   6)
* SIZE:                                  SIZE.                (line   6)
* size of a variable, in bits:           BIT_SIZE.            (line   6)
* size of an expression:                 C_SIZEOF.            (line   6)
* size of an expression <1>:             SIZEOF.              (line   6)
* SIZEOF:                                SIZEOF.              (line   6)
* SLEEP:                                 SLEEP.               (line   6)
* SNGL:                                  REAL.                (line   6)
* SPACING:                               SPACING.             (line   6)
* SPREAD:                                SPREAD.              (line   6)
* SQRT:                                  SQRT.                (line   6)
* square-root:                           SQRT.                (line   6)
* SRAND:                                 SRAND.               (line   6)
* Standards:                             Standards.           (line   6)
* STAT:                                  STAT.                (line   6)
* statement, ENUM:                       Fortran 2003 status. (line  92)
* statement, ENUMERATOR:                 Fortran 2003 status. (line  92)
* statement, FLUSH:                      Fortran 2003 status. (line  88)
* statement, IMPORT:                     Fortran 2003 status. (line 119)
* statement, ISO_FORTRAN_ENV:            Fortran 2003 status. (line 127)
* statement, PROTECTED:                  Fortran 2003 status. (line 113)
* statement, SAVE:                       Code Gen Options.    (line  15)
* statement, USE, INTRINSIC:             Fortran 2003 status. (line 127)
* statement, VALUE:                      Fortran 2003 status. (line 115)
* statement, VOLATILE:                   Fortran 2003 status. (line 117)
* STATIC:                                AUTOMATIC and STATIC attributes.
                                                              (line   6)
* storage size:                          STORAGE_SIZE.        (line   6)
* STORAGE_SIZE:                          STORAGE_SIZE.        (line   6)
* STREAM I/O:                            Fortran 2003 status. (line 102)
* stream mode, read character:           FGET.                (line   6)
* stream mode, read character <1>:       FGETC.               (line   6)
* stream mode, write character:          FPUT.                (line   6)
* stream mode, write character <1>:      FPUTC.               (line   6)
* string, adjust left:                   ADJUSTL.             (line   6)
* string, adjust right:                  ADJUSTR.             (line   6)
* string, comparison:                    LGE.                 (line   6)
* string, comparison <1>:                LGT.                 (line   6)
* string, comparison <2>:                LLE.                 (line   6)
* string, comparison <3>:                LLT.                 (line   6)
* string, concatenate:                   REPEAT.              (line   6)
* string, find missing set:              VERIFY.              (line   6)
* string, find non-blank character:      LNBLNK.              (line   6)
* string, find subset:                   SCAN.                (line   6)
* string, find substring:                INDEX intrinsic.     (line   6)
* string, length:                        LEN.                 (line   6)
* string, length, without trailing whitespace: LEN_TRIM.      (line   6)
* string, remove trailing whitespace:    TRIM.                (line   6)
* string, repeat:                        REPEAT.              (line   6)
* strings, varying length:               Varying Length Character Strings.
                                                              (line   6)
* STRUCTURE:                             STRUCTURE and RECORD.
                                                              (line   6)
* structure packing:                     Code Gen Options.    (line 282)
* subrecord:                             File format of unformatted sequential files.
                                                              (line   6)
* subscript checking:                    Code Gen Options.    (line 144)
* substring position:                    INDEX intrinsic.     (line   6)
* SUM:                                   SUM.                 (line   6)
* sum array elements:                    SUM.                 (line   6)
* suppressing warnings:                  Error and Warning Options.
                                                              (line   6)
* symbol names:                          Fortran Dialect Options.
                                                              (line 106)
* symbol names, transforming:            Code Gen Options.    (line  57)
* symbol names, transforming <1>:        Code Gen Options.    (line 113)
* symbol names, underscores:             Code Gen Options.    (line  57)
* symbol names, underscores <1>:         Code Gen Options.    (line 113)
* SYMLNK:                                SYMLNK.              (line   6)
* syntax checking:                       Error and Warning Options.
                                                              (line  33)
* SYSTEM:                                SYSTEM.              (line   6)
* system, error handling:                GERROR.              (line   6)
* system, error handling <1>:            IERRNO.              (line   6)
* system, error handling <2>:            PERROR.              (line   6)
* system, group ID:                      GETGID.              (line   6)
* system, host name:                     HOSTNM.              (line   6)
* system, login name:                    GETLOG.              (line   6)
* system, process ID:                    GETPID.              (line   6)
* system, signal handling:               SIGNAL.              (line   6)
* system, system call:                   EXECUTE_COMMAND_LINE.
                                                              (line   6)
* system, system call <1>:               SYSTEM.              (line   6)
* system, terminal:                      ISATTY.              (line   6)
* system, terminal <1>:                  TTYNAM.              (line   6)
* system, user ID:                       GETUID.              (line   6)
* system, working directory:             CHDIR.               (line   6)
* system, working directory <1>:         GETCWD.              (line   6)
* SYSTEM_CLOCK:                          SYSTEM_CLOCK.        (line   6)
* tabulators:                            Error and Warning Options.
                                                              (line 188)
* TAN:                                   TAN.                 (line   6)
* TAND:                                  TAND.                (line   6)
* tangent:                               TAN.                 (line   6)
* tangent, degrees:                      TAND.                (line   6)
* tangent, hyperbolic:                   TANH.                (line   6)
* tangent, hyperbolic, inverse:          ATANH.               (line   6)
* tangent, inverse:                      ATAN.                (line   6)
* tangent, inverse <1>:                  ATAN2.               (line   6)
* tangent, inverse, degrees:             ATAND.               (line   6)
* tangent, inverse, degrees <1>:         ATAN2D.              (line   6)
* TANH:                                  TANH.                (line   6)
* terminate program:                     EXIT.                (line   6)
* terminate program, with core dump:     ABORT.               (line   6)
* THIS_IMAGE:                            THIS_IMAGE.          (line   6)
* thread-safety, threads:                Thread-safety of the runtime library.
                                                              (line   6)
* TIME:                                  TIME.                (line   6)
* time, clock ticks:                     MCLOCK.              (line   6)
* time, clock ticks <1>:                 MCLOCK8.             (line   6)
* time, clock ticks <2>:                 SYSTEM_CLOCK.        (line   6)
* time, conversion to GMT info:          GMTIME.              (line   6)
* time, conversion to local time info:   LTIME.               (line   6)
* time, conversion to string:            CTIME.               (line   6)
* time, current:                         DATE_AND_TIME.       (line   6)
* time, current <1>:                     FDATE.               (line   6)
* time, current <2>:                     ITIME.               (line   6)
* time, current <3>:                     TIME.                (line   6)
* time, current <4>:                     TIME8.               (line   6)
* time, elapsed:                         CPU_TIME.            (line   6)
* time, elapsed <1>:                     DTIME.               (line   6)
* time, elapsed <2>:                     ETIME.               (line   6)
* time, elapsed <3>:                     SECNDS.              (line   6)
* time, elapsed <4>:                     SECOND.              (line   6)
* TIME8:                                 TIME8.               (line   6)
* TINY:                                  TINY.                (line   6)
* TR 15581:                              Fortran 2003 status. (line  97)
* trace:                                 Debugging Options.   (line  86)
* TRAILZ:                                TRAILZ.              (line   6)
* TRANSFER:                              TRANSFER.            (line   6)
* transforming symbol names:             Code Gen Options.    (line  57)
* transforming symbol names <1>:         Code Gen Options.    (line 113)
* TRANSPOSE:                             TRANSPOSE.           (line   6)
* transpose:                             TRANSPOSE.           (line   6)
* trigonometric function, cosine:        COS.                 (line   6)
* trigonometric function, cosine, degrees: COSD.              (line   6)
* trigonometric function, cosine, inverse: ACOS.              (line   6)
* trigonometric function, cosine, inverse, degrees: ACOSD.    (line   6)
* trigonometric function, cotangent:     COTAN.               (line   6)
* trigonometric function, cotangent, degrees: COTAND.         (line   6)
* trigonometric function, sine:          SIN.                 (line   6)
* trigonometric function, sine, degrees: SIND.                (line   6)
* trigonometric function, sine, inverse: ASIN.                (line   6)
* trigonometric function, sine, inverse, degrees: ASIND.      (line   6)
* trigonometric function, tangent:       TAN.                 (line   6)
* trigonometric function, tangent, degrees: TAND.             (line   6)
* trigonometric function, tangent, inverse: ATAN.             (line   6)
* trigonometric function, tangent, inverse <1>: ATAN2.        (line   6)
* trigonometric function, tangent, inverse, degrees: ATAND.   (line   6)
* trigonometric function, tangent, inverse, degrees <1>: ATAN2D.
                                                              (line   6)
* TRIM:                                  TRIM.                (line   6)
* TTYNAM:                                TTYNAM.              (line   6)
* type alias print:                      TYPE as an alias for PRINT.
                                                              (line   6)
* type cast:                             TRANSFER.            (line   6)
* UBOUND:                                UBOUND.              (line   6)
* UCOBOUND:                              UCOBOUND.            (line   6)
* UMASK:                                 UMASK.               (line   6)
* underflow:                             Error and Warning Options.
                                                              (line 201)
* underscore:                            Code Gen Options.    (line  57)
* underscore <1>:                        Code Gen Options.    (line 113)
* unformatted sequential:                File format of unformatted sequential files.
                                                              (line   6)
* UNION:                                 UNION and MAP.       (line   6)
* UNLINK:                                UNLINK.              (line   6)
* UNPACK:                                UNPACK.              (line   6)
* unused dummy argument:                 Error and Warning Options.
                                                              (line 217)
* unused parameter:                      Error and Warning Options.
                                                              (line 221)
* USE, INTRINSIC statement:              Fortran 2003 status. (line 127)
* user id:                               GETUID.              (line   6)
* VALUE statement:                       Fortran 2003 status. (line 115)
* variable attributes:                   AUTOMATIC and STATIC attributes.
                                                              (line   6)
* Varying length character strings:      Varying Length Character Strings.
                                                              (line   6)
* Varying length strings:                Varying Length Character Strings.
                                                              (line   6)
* vector product:                        DOT_PRODUCT.         (line   6)
* VERIFY:                                VERIFY.              (line   6)
* version of the compiler:               COMPILER_VERSION.    (line   6)
* VOLATILE:                              Volatile COMMON blocks.
                                                              (line   6)
* VOLATILE statement:                    Fortran 2003 status. (line 117)
* warning, C binding type:               Error and Warning Options.
                                                              (line 101)
* warnings, aliasing:                    Error and Warning Options.
                                                              (line  71)
* warnings, alignment of COMMON blocks:  Error and Warning Options.
                                                              (line 228)
* warnings, all:                         Error and Warning Options.
                                                              (line  62)
* warnings, ampersand:                   Error and Warning Options.
                                                              (line  88)
* warnings, array temporaries:           Error and Warning Options.
                                                              (line  96)
* warnings, character truncation:        Error and Warning Options.
                                                              (line 108)
* warnings, conversion:                  Error and Warning Options.
                                                              (line 117)
* warnings, conversion <1>:              Error and Warning Options.
                                                              (line 121)
* warnings, division of integers:        Error and Warning Options.
                                                              (line 144)
* warnings, extra:                       Error and Warning Options.
                                                              (line 125)
* warnings, function elimination:        Error and Warning Options.
                                                              (line 234)
* warnings, implicit interface:          Error and Warning Options.
                                                              (line 134)
* warnings, implicit procedure:          Error and Warning Options.
                                                              (line 140)
* warnings, integer division:            Error and Warning Options.
                                                              (line 144)
* warnings, intrinsic:                   Error and Warning Options.
                                                              (line 206)
* warnings, intrinsics of other standards: Error and Warning Options.
                                                              (line 148)
* warnings, line truncation:             Error and Warning Options.
                                                              (line 111)
* warnings, loop interchange:            Error and Warning Options.
                                                              (line 130)
* warnings, non-standard intrinsics:     Error and Warning Options.
                                                              (line 148)
* warnings, overwrite recursive:         Error and Warning Options.
                                                              (line 155)
* warnings, q exponent-letter:           Error and Warning Options.
                                                              (line 162)
* warnings, suppressing:                 Error and Warning Options.
                                                              (line   6)
* warnings, suspicious code:             Error and Warning Options.
                                                              (line 166)
* warnings, tabs:                        Error and Warning Options.
                                                              (line 188)
* warnings, to errors:                   Error and Warning Options.
                                                              (line 280)
* warnings, undefined do loop:           Error and Warning Options.
                                                              (line 196)
* warnings, underflow:                   Error and Warning Options.
                                                              (line 201)
* warnings, unused dummy argument:       Error and Warning Options.
                                                              (line 217)
* warnings, unused parameter:            Error and Warning Options.
                                                              (line 221)
* warnings, use statements:              Error and Warning Options.
                                                              (line 213)
* write character, stream mode:          FPUT.                (line   6)
* write character, stream mode <1>:      FPUTC.               (line   6)
* XOR:                                   XOR.                 (line   6)
* XOR reduction:                         PARITY.              (line   6)
* ZABS:                                  ABS.                 (line   6)
* ZCOS:                                  COS.                 (line   6)
* ZCOSD:                                 COSD.                (line   6)
* zero bits:                             LEADZ.               (line   6)
* zero bits <1>:                         TRAILZ.              (line   6)
* ZEXP:                                  EXP.                 (line   6)
* ZLOG:                                  LOG.                 (line   6)
* ZSIN:                                  SIN.                 (line   6)
* ZSIND:                                 SIND.                (line   6)
* ZSQRT:                                 SQRT.                (line   6)



Tag Table:
Node: Top1950
Node: Introduction3367
Node: About GNU Fortran4116
Node: GNU Fortran and GCC8117
Node: Preprocessing and conditional compilation10231
Node: GNU Fortran and G7712320
Node: Project Status12893
Node: Standards15470
Node: Varying Length Character Strings16695
Node: Invoking GNU Fortran17447
Node: Option Summary19281
Node: Fortran Dialect Options23458
Node: Preprocessing Options37423
Node: Error and Warning Options45664
Node: Debugging Options57594
Node: Directory Options62366
Node: Link Options63801
Node: Runtime Options64427
Node: Code Gen Options66334
Node: Interoperability Options87463
Node: Environment Variables89541
Node: Runtime90154
Node: TMPDIR91325
Node: GFORTRAN_STDIN_UNIT91995
Node: GFORTRAN_STDOUT_UNIT92377
Node: GFORTRAN_STDERR_UNIT92778
Node: GFORTRAN_UNBUFFERED_ALL93180
Node: GFORTRAN_UNBUFFERED_PRECONNECTED93711
Node: GFORTRAN_SHOW_LOCUS94355
Node: GFORTRAN_OPTIONAL_PLUS94851
Node: GFORTRAN_LIST_SEPARATOR95329
Node: GFORTRAN_CONVERT_UNIT95937
Node: GFORTRAN_ERROR_BACKTRACE98792
Node: GFORTRAN_FORMATTED_BUFFER_SIZE99388
Node: GFORTRAN_UNFORMATTED_BUFFER_SIZE99836
Node: Fortran standards status100265
Node: Fortran 2003 status100517
Node: Fortran 2008 status105672
Node: Fortran 2018 status111050
Node: Compiler Characteristics113408
Node: KIND Type Parameters114191
Node: Internal representation of LOGICAL variables115619
Node: Evaluation of logical expressions116476
Node: MAX and MIN intrinsics with REAL NaN arguments117327
Node: Thread-safety of the runtime library118148
Node: Data consistency and durability120553
Node: Files opened without an explicit ACTION= specifier123666
Node: File operations on symbolic links124357
Node: File format of unformatted sequential files125477
Node: Asynchronous I/O127849
Node: Extensions128549
Node: Extensions implemented in GNU Fortran129154
Node: Old-style kind specifications131128
Node: Old-style variable initialization132230
Node: Extensions to namelist133542
Node: X format descriptor without count field135845
Node: Commas in FORMAT specifications136372
Node: Missing period in FORMAT specifications137123
Node: Default widths for F, G and I format descriptors137719
Node: I/O item lists138424
Node: Q exponent-letter138818
Node: BOZ literal constants139416
Node: Real array indices140993
Node: Unary operators141292
Node: Implicitly convert LOGICAL and INTEGER values141706
Node: Hollerith constants support142665
Node: Character conversion144889
Node: Cray pointers145783
Node: CONVERT specifier151284
Node: OpenMP153279
Node: OpenACC155537
Node: Argument list functions156677
Node: Read/Write after EOF marker158320
Node: STRUCTURE and RECORD158923
Node: UNION and MAP164010
Node: Type variants for integer intrinsics166978
Node: AUTOMATIC and STATIC attributes168873
Node: Extended math intrinsics170407
Node: Form feed as whitespace172203
Node: TYPE as an alias for PRINT172749
Node: %LOC as an rvalue173214
Node: .XOR. operator173861
Node: Bitwise logical operators174261
Node: Extended I/O specifiers175762
Node: Legacy PARAMETER statements179482
Node: Default exponents180087
Node: Extensions not implemented in GNU Fortran180439
Node: ENCODE and DECODE statements181406
Node: Variable FORMAT expressions182737
Node: Alternate complex function syntax183842
Node: Volatile COMMON blocks184392
Node: OPEN( ... NAME=)184894
Node: Q edit descriptor185322
Node: Mixed-Language Programming186274
Node: Interoperability with C186854
Node: Intrinsic Types188188
Node: Derived Types and struct189184
Node: Interoperable Global Variables190542
Node: Interoperable Subroutines and Functions191817
Node: Working with Pointers195611
Node: Further Interoperability of Fortran with C200087
Node: GNU Fortran Compiler Directives203659
Node: ATTRIBUTES directive204035
Node: UNROLL directive207223
Node: BUILTIN directive207756
Node: IVDEP directive208598
Node: VECTOR directive209417
Node: NOVECTOR directive209815
Node: Non-Fortran Main Program210200
Node: _gfortran_set_args212388
Node: _gfortran_set_options213326
Node: _gfortran_set_convert216972
Node: _gfortran_set_record_marker217840
Node: _gfortran_set_fpe218650
Node: _gfortran_set_max_subrecord_length219848
Node: Naming and argument-passing conventions220771
Node: Naming conventions221490
Node: Argument passing conventions222962
Node: Coarray Programming228267
Node: Type and enum ABI Documentation228514
Node: caf_token_t228812
Node: caf_register_t229048
Node: caf_deregister_t230259
Node: caf_reference_t230761
Node: caf_team_t235085
Node: Function ABI Documentation235384
Node: _gfortran_caf_init237834
Node: _gfortran_caf_finish239260
Node: _gfortran_caf_this_image240199
Node: _gfortran_caf_num_images240954
Node: _gfortran_caf_image_status242065
Node: _gfortran_caf_failed_images243185
Node: _gfortran_caf_stopped_images244355
Node: _gfortran_caf_register245528
Node: _gfortran_caf_deregister249710
Node: _gfortran_caf_is_present251316
Node: _gfortran_caf_send252395
Node: _gfortran_caf_get255585
Node: _gfortran_caf_sendget258666
Node: _gfortran_caf_send_by_ref262577
Node: _gfortran_caf_get_by_ref266186
Node: _gfortran_caf_sendget_by_ref269705
Node: _gfortran_caf_lock274001
Node: _gfortran_caf_unlock275787
Node: _gfortran_caf_event_post277268
Node: _gfortran_caf_event_wait278717
Node: _gfortran_caf_event_query280824
Node: _gfortran_caf_sync_all282155
Node: _gfortran_caf_sync_images283083
Node: _gfortran_caf_sync_memory284618
Node: _gfortran_caf_error_stop285610
Node: _gfortran_caf_error_stop_str286214
Node: _gfortran_caf_fail_image286919
Node: _gfortran_caf_atomic_define287455
Node: _gfortran_caf_atomic_ref288770
Node: _gfortran_caf_atomic_cas290074
Node: _gfortran_caf_atomic_op291835
Node: _gfortran_caf_co_broadcast293937
Node: _gfortran_caf_co_max295042
Node: _gfortran_caf_co_min296668
Node: _gfortran_caf_co_sum298288
Node: _gfortran_caf_co_reduce299828
Node: Intrinsic Procedures302472
Node: Introduction to Intrinsics319731
Node: ABORT322081
Node: ABS322826
Node: ACCESS324776
Node: ACHAR326676
Node: ACOS327880
Node: ACOSD329166
Node: ACOSH330478
Node: ADJUSTL331474
Node: ADJUSTR332416
Node: AIMAG333366
Node: AINT334795
Node: ALARM336401
Node: ALL338033
Node: ALLOCATED339957
Node: AND341096
Node: ANINT342831
Node: ANY344328
Node: ASIN346254
Node: ASIND347529
Node: ASINH348827
Node: ASSOCIATED349833
Node: ATAN352844
Node: ATAND354317
Node: ATAN2355810
Node: ATAN2D357673
Node: ATANH359647
Node: ATOMIC_ADD360653
Node: ATOMIC_AND362185
Node: ATOMIC_CAS363773
Node: ATOMIC_DEFINE365632
Node: ATOMIC_FETCH_ADD367351
Node: ATOMIC_FETCH_AND369151
Node: ATOMIC_FETCH_OR370941
Node: ATOMIC_FETCH_XOR372718
Node: ATOMIC_OR374501
Node: ATOMIC_REF376086
Node: ATOMIC_XOR377982
Node: BACKTRACE379567
Node: BESSEL_J0380147
Node: BESSEL_J1381163
Node: BESSEL_JN382180
Node: BESSEL_Y0384005
Node: BESSEL_Y1384960
Node: BESSEL_YN385915
Node: BGE387746
Node: BGT388438
Node: BIT_SIZE389088
Node: BLE389910
Node: BLT390592
Node: BTEST391230
Node: C_ASSOCIATED392717
Node: C_F_POINTER393928
Node: C_F_PROCPOINTER395363
Node: C_FUNLOC396870
Node: C_LOC398241
Node: C_SIZEOF399520
Node: CEILING400928
Node: CHAR401936
Node: CHDIR403205
Node: CHMOD404379
Node: CMPLX406294
Node: CO_BROADCAST407737
Node: CO_MAX409558
Node: CO_MIN411465
Node: CO_REDUCE413358
Node: CO_SUM416929
Node: COMMAND_ARGUMENT_COUNT418909
Node: COMPILER_OPTIONS419826
Node: COMPILER_VERSION420851
Node: COMPLEX421814
Node: CONJG422953
Node: COS423947
Node: COSD425402
Node: COSH426851
Node: COTAN428034
Node: COTAND429173
Node: COUNT430352
Node: CPU_TIME432377
Node: CSHIFT433734
Node: CTIME435394
Node: DATE_AND_TIME436902
Node: DBLE439382
Node: DCMPLX440177
Node: DIGITS441359
Node: DIM442326
Node: DOT_PRODUCT443785
Node: DPROD445428
Node: DREAL446355
Node: DSHIFTL447021
Node: DSHIFTR448354
Node: DTIME449688
Node: EOSHIFT452503
Node: EPSILON454576
Node: ERF455303
Node: ERFC456084
Node: ERFC_SCALED456894
Node: ETIME457587
Node: EVENT_QUERY459826
Node: EXECUTE_COMMAND_LINE461415
Node: EXIT464195
Node: EXP465073
Node: EXPONENT466326
Node: EXTENDS_TYPE_OF467090
Node: FDATE467948
Node: FGET469434
Node: FGETC471261
Node: FINDLOC473071
Node: FLOOR475564
Node: FLUSH476555
Node: FNUM478434
Node: FPUT479159
Node: FPUTC480793
Node: FRACTION482574
Node: FREE483478
Node: FSEEK484321
Node: FSTAT486627
Node: FTELL487713
Node: GAMMA488695
Node: GERROR489685
Node: GETARG490407
Node: GET_COMMAND492178
Node: GET_COMMAND_ARGUMENT493552
Node: GETCWD495599
Node: GETENV496579
Node: GET_ENVIRONMENT_VARIABLE498011
Node: GETGID500174
Node: GETLOG500711
Node: GETPID501573
Node: GETUID502303
Node: GMTIME502819
Node: HOSTNM504579
Node: HUGE505500
Node: HYPOT506222
Node: IACHAR507048
Node: IALL508216
Node: IAND509701
Node: IANY511483
Node: IARGC512977
Node: IBCLR513996
Node: IBITS515244
Node: IBSET516748
Node: ICHAR517991
Node: IDATE520161
Node: IEOR521461
Node: IERRNO523136
Node: IMAGE_INDEX523684
Node: INDEX intrinsic524706
Node: INT526232
Node: INT2528076
Node: INT8528844
Node: IOR529559
Node: IPARITY531210
Node: IRAND532758
Node: IS_CONTIGUOUS534117
Node: IS_IOSTAT_END535283
Node: IS_IOSTAT_EOR536390
Node: ISATTY537519
Node: ISHFT538302
Node: ISHFTC539871
Node: ISNAN541678
Node: ITIME542445
Node: KILL543743
Node: KIND544879
Node: LBOUND545777
Node: LCOBOUND547115
Node: LEADZ548250
Node: LEN549111
Node: LEN_TRIM550407
Node: LGE551395
Node: LGT552908
Node: LINK554386
Node: LLE555425
Node: LLT556925
Node: LNBLNK558396
Node: LOC559174
Node: LOG559906
Node: LOG10561441
Node: LOG_GAMMA562431
Node: LOGICAL563533
Node: LONG564345
Node: LSHIFT565103
Node: LSTAT566212
Node: LTIME567411
Node: MALLOC569093
Node: MASKL570555
Node: MASKR571322
Node: MATMUL572092
Node: MAX573252
Node: MAXEXPONENT574787
Node: MAXLOC575604
Node: MAXVAL578221
Node: MCLOCK579871
Node: MCLOCK8580894
Node: MERGE582124
Node: MERGE_BITS582876
Node: MIN583915
Node: MINEXPONENT585453
Node: MINLOC586084
Node: MINVAL588732
Node: MOD590385
Node: MODULO592710
Node: MOVE_ALLOC594175
Node: MVBITS595208
Node: NEAREST596860
Node: NEW_LINE597960
Node: NINT598733
Node: NORM2600154
Node: NOT601296
Node: NULL602466
Node: NUM_IMAGES603374
Node: OR605075
Node: PACK606798
Node: PARITY608842
Node: PERROR610063
Node: POPCNT610688
Node: POPPAR611559
Node: PRECISION612612
Node: PRESENT613544
Node: PRODUCT614656
Node: RADIX616190
Node: RAN617001
Node: RAND617457
Node: RANDOM_INIT618790
Node: RANDOM_NUMBER620856
Node: RANDOM_SEED622103
Node: RANGE624573
Node: RANK625253
Node: REAL626034
Node: RENAME627975
Node: REPEAT628997
Node: RESHAPE629725
Node: RRSPACING631192
Node: RSHIFT631885
Node: SAME_TYPE_AS633053
Node: SCALE633885
Node: SCAN634666
Node: SECNDS636224
Node: SECOND637316
Node: SELECTED_CHAR_KIND638192
Node: SELECTED_INT_KIND639787
Node: SELECTED_REAL_KIND640964
Node: SET_EXPONENT643640
Node: SHAPE644637
Node: SHIFTA646061
Node: SHIFTL647052
Node: SHIFTR647912
Node: SIGN648773
Node: SIGNAL650114
Node: SIN651620
Node: SIND652884
Node: SINH654213
Node: SIZE655131
Node: SIZEOF656450
Node: SLEEP658105
Node: SPACING658666
Node: SPREAD659680
Node: SQRT660831
Node: SRAND662163
Node: STAT663397
Node: STORAGE_SIZE666564
Node: SUM667443
Node: SYMLNK668935
Node: SYSTEM670070
Node: SYSTEM_CLOCK671325
Node: TAN674173
Node: TAND675244
Node: TANH676328
Node: THIS_IMAGE677503
Node: TIME679803
Node: TIME8680974
Node: TINY682173
Node: TRAILZ682774
Node: TRANSFER683592
Node: TRANSPOSE685628
Node: TRIM686318
Node: TTYNAM687176
Node: UBOUND688094
Node: UCOBOUND689484
Node: UMASK690621
Node: UNLINK691303
Node: UNPACK692283
Node: VERIFY693578
Node: XOR695307
Node: Intrinsic Modules697117
Node: ISO_FORTRAN_ENV697406
Node: ISO_C_BINDING701809
Node: IEEE modules705515
Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS706658
Node: OpenACC Module OPENACC708674
Node: Contributing709601
Node: Contributors710455
Node: Projects712086
Node: Proposed Extensions712893
Node: Copying714903
Node: GNU Free Documentation License752448
Node: Funding777572
Node: Option Index780098
Node: Keyword Index799159

End Tag Table


Local Variables:
coding: utf-8
End: