Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
@ignore
Copyright (C) 2005-2020 Free Software Foundation, Inc.
This is part of the GNU Fortran manual.   
For copying conditions, see the file gfortran.texi.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Funding Free Software'', the Front-Cover
Texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the gfdl(7) man page.


Some basic guidelines for editing this document:

  (1) The intrinsic procedures are to be listed in alphabetical order.
  (2) The generic name is to be used.
  (3) The specific names are included in the function index and in a
      table at the end of the node (See ABS entry).
  (4) Try to maintain the same style for each entry.


@end ignore

@tex
\gdef\acosd{\mathop{\rm acosd}\nolimits}
\gdef\asind{\mathop{\rm asind}\nolimits}
\gdef\atand{\mathop{\rm atand}\nolimits}
\gdef\acos{\mathop{\rm acos}\nolimits}
\gdef\asin{\mathop{\rm asin}\nolimits}
\gdef\atan{\mathop{\rm atan}\nolimits}
\gdef\acosh{\mathop{\rm acosh}\nolimits}
\gdef\asinh{\mathop{\rm asinh}\nolimits}
\gdef\atanh{\mathop{\rm atanh}\nolimits}
\gdef\cosd{\mathop{\rm cosd}\nolimits}
@end tex


@node Intrinsic Procedures
@chapter Intrinsic Procedures
@cindex intrinsic procedures

@menu
* Introduction:         Introduction to Intrinsics
* @code{ABORT}:         ABORT,     Abort the program     
* @code{ABS}:           ABS,       Absolute value     
* @code{ACCESS}:        ACCESS,    Checks file access modes
* @code{ACHAR}:         ACHAR,     Character in @acronym{ASCII} collating sequence
* @code{ACOS}:          ACOS,      Arccosine function
* @code{ACOSD}:         ACOSD,     Arccosine function, degrees
* @code{ACOSH}:         ACOSH,     Inverse hyperbolic cosine function
* @code{ADJUSTL}:       ADJUSTL,   Left adjust a string
* @code{ADJUSTR}:       ADJUSTR,   Right adjust a string
* @code{AIMAG}:         AIMAG,     Imaginary part of complex number
* @code{AINT}:          AINT,      Truncate to a whole number
* @code{ALARM}:         ALARM,     Set an alarm clock
* @code{ALL}:           ALL,       Determine if all values are true
* @code{ALLOCATED}:     ALLOCATED, Status of allocatable entity
* @code{AND}:           AND,       Bitwise logical AND
* @code{ANINT}:         ANINT,     Nearest whole number
* @code{ANY}:           ANY,       Determine if any values are true
* @code{ASIN}:          ASIN,      Arcsine function
* @code{ASIND}:         ASIND,     Arcsine function, degrees
* @code{ASINH}:         ASINH,     Inverse hyperbolic sine function
* @code{ASSOCIATED}:    ASSOCIATED, Status of a pointer or pointer/target pair
* @code{ATAN}:          ATAN,      Arctangent function
* @code{ATAND}:         ATAND,     Arctangent function, degrees
* @code{ATAN2}:         ATAN2,     Arctangent function
* @code{ATAN2D}:        ATAN2D,    Arctangent function, degrees
* @code{ATANH}:         ATANH,     Inverse hyperbolic tangent function
* @code{ATOMIC_ADD}:    ATOMIC_ADD, Atomic ADD operation
* @code{ATOMIC_AND}:    ATOMIC_AND, Atomic bitwise AND operation
* @code{ATOMIC_CAS}:    ATOMIC_CAS, Atomic compare and swap
* @code{ATOMIC_DEFINE}: ATOMIC_DEFINE, Setting a variable atomically
* @code{ATOMIC_FETCH_ADD}: ATOMIC_FETCH_ADD, Atomic ADD operation with prior fetch
* @code{ATOMIC_FETCH_AND}: ATOMIC_FETCH_AND, Atomic bitwise AND operation with prior fetch
* @code{ATOMIC_FETCH_OR}: ATOMIC_FETCH_OR, Atomic bitwise OR operation with prior fetch
* @code{ATOMIC_FETCH_XOR}: ATOMIC_FETCH_XOR, Atomic bitwise XOR operation with prior fetch
* @code{ATOMIC_OR}:     ATOMIC_OR, Atomic bitwise OR operation
* @code{ATOMIC_REF}:    ATOMIC_REF, Obtaining the value of a variable atomically
* @code{ATOMIC_XOR}:    ATOMIC_XOR, Atomic bitwise OR operation
* @code{BACKTRACE}:     BACKTRACE, Show a backtrace
* @code{BESSEL_J0}:     BESSEL_J0, Bessel function of the first kind of order 0
* @code{BESSEL_J1}:     BESSEL_J1, Bessel function of the first kind of order 1
* @code{BESSEL_JN}:     BESSEL_JN, Bessel function of the first kind
* @code{BESSEL_Y0}:     BESSEL_Y0, Bessel function of the second kind of order 0
* @code{BESSEL_Y1}:     BESSEL_Y1, Bessel function of the second kind of order 1
* @code{BESSEL_YN}:     BESSEL_YN, Bessel function of the second kind
* @code{BGE}:           BGE,       Bitwise greater than or equal to
* @code{BGT}:           BGT,       Bitwise greater than
* @code{BIT_SIZE}:      BIT_SIZE,  Bit size inquiry function
* @code{BLE}:           BLE,       Bitwise less than or equal to
* @code{BLT}:           BLT,       Bitwise less than
* @code{BTEST}:         BTEST,     Bit test function
* @code{C_ASSOCIATED}:  C_ASSOCIATED, Status of a C pointer
* @code{C_F_POINTER}:   C_F_POINTER, Convert C into Fortran pointer
* @code{C_F_PROCPOINTER}: C_F_PROCPOINTER, Convert C into Fortran procedure pointer
* @code{C_FUNLOC}:      C_FUNLOC,  Obtain the C address of a procedure
* @code{C_LOC}:         C_LOC,     Obtain the C address of an object
* @code{C_SIZEOF}:      C_SIZEOF,  Size in bytes of an expression
* @code{CEILING}:       CEILING,   Integer ceiling function
* @code{CHAR}:          CHAR,      Integer-to-character conversion function
* @code{CHDIR}:         CHDIR,     Change working directory
* @code{CHMOD}:         CHMOD,     Change access permissions of files
* @code{CMPLX}:         CMPLX,     Complex conversion function
* @code{CO_BROADCAST}:  CO_BROADCAST, Copy a value to all images the current set of images
* @code{CO_MAX}:        CO_MAX,    Maximal value on the current set of images
* @code{CO_MIN}:        CO_MIN,    Minimal value on the current set of images
* @code{CO_REDUCE}:     CO_REDUCE, Reduction of values on the current set of images
* @code{CO_SUM}:        CO_SUM,    Sum of values on the current set of images
* @code{COMMAND_ARGUMENT_COUNT}: COMMAND_ARGUMENT_COUNT, Get number of command line arguments
* @code{COMPILER_OPTIONS}: COMPILER_OPTIONS, Options passed to the compiler
* @code{COMPILER_VERSION}: COMPILER_VERSION, Compiler version string
* @code{COMPLEX}:       COMPLEX,   Complex conversion function
* @code{CONJG}:         CONJG,     Complex conjugate function
* @code{COS}:           COS,       Cosine function
* @code{COSD}:          COSD,      Cosine function, degrees
* @code{COSH}:          COSH,      Hyperbolic cosine function
* @code{COTAN}:         COTAN,     Cotangent function
* @code{COTAND}:        COTAND,    Cotangent function, degrees
* @code{COUNT}:         COUNT,     Count occurrences of TRUE in an array
* @code{CPU_TIME}:      CPU_TIME,  CPU time subroutine
* @code{CSHIFT}:        CSHIFT,    Circular shift elements of an array
* @code{CTIME}:         CTIME,     Subroutine (or function) to convert a time into a string
* @code{DATE_AND_TIME}: DATE_AND_TIME, Date and time subroutine
* @code{DBLE}:          DBLE,      Double precision conversion function
* @code{DCMPLX}:        DCMPLX,    Double complex conversion function
* @code{DIGITS}:        DIGITS,    Significant digits function
* @code{DIM}:           DIM,       Positive difference
* @code{DOT_PRODUCT}:   DOT_PRODUCT, Dot product function
* @code{DPROD}:         DPROD,     Double product function
* @code{DREAL}:         DREAL,     Double real part function
* @code{DSHIFTL}:       DSHIFTL,   Combined left shift
* @code{DSHIFTR}:       DSHIFTR,   Combined right shift
* @code{DTIME}:         DTIME,     Execution time subroutine (or function)
* @code{EOSHIFT}:       EOSHIFT,   End-off shift elements of an array
* @code{EPSILON}:       EPSILON,   Epsilon function
* @code{ERF}:           ERF,       Error function
* @code{ERFC}:          ERFC,      Complementary error function
* @code{ERFC_SCALED}:   ERFC_SCALED, Exponentially-scaled complementary error function
* @code{ETIME}:         ETIME,     Execution time subroutine (or function)
* @code{EVENT_QUERY}: EVENT_QUERY, Query whether a coarray event has occurred
* @code{EXECUTE_COMMAND_LINE}: EXECUTE_COMMAND_LINE, Execute a shell command
* @code{EXIT}:          EXIT,      Exit the program with status.
* @code{EXP}:           EXP,       Exponential function
* @code{EXPONENT}:      EXPONENT,  Exponent function
* @code{EXTENDS_TYPE_OF}: EXTENDS_TYPE_OF,  Query dynamic type for extension
* @code{FDATE}:         FDATE,     Subroutine (or function) to get the current time as a string
* @code{FGET}:          FGET,      Read a single character in stream mode from stdin
* @code{FGETC}:         FGETC,     Read a single character in stream mode
* @code{FINDLOC}:       FINDLOC,   Search an array for a value
* @code{FLOOR}:         FLOOR,     Integer floor function
* @code{FLUSH}:         FLUSH,     Flush I/O unit(s)
* @code{FNUM}:          FNUM,      File number function
* @code{FPUT}:          FPUT,      Write a single character in stream mode to stdout
* @code{FPUTC}:         FPUTC,     Write a single character in stream mode
* @code{FRACTION}:      FRACTION,  Fractional part of the model representation
* @code{FREE}:          FREE,      Memory de-allocation subroutine
* @code{FSEEK}:         FSEEK,     Low level file positioning subroutine
* @code{FSTAT}:         FSTAT,     Get file status
* @code{FTELL}:         FTELL,     Current stream position
* @code{GAMMA}:         GAMMA,     Gamma function
* @code{GERROR}:        GERROR,    Get last system error message
* @code{GETARG}:        GETARG,    Get command line arguments
* @code{GET_COMMAND}:   GET_COMMAND, Get the entire command line
* @code{GET_COMMAND_ARGUMENT}: GET_COMMAND_ARGUMENT, Get command line arguments
* @code{GETCWD}:        GETCWD,    Get current working directory
* @code{GETENV}:        GETENV,    Get an environmental variable
* @code{GET_ENVIRONMENT_VARIABLE}: GET_ENVIRONMENT_VARIABLE, Get an environmental variable
* @code{GETGID}:        GETGID,    Group ID function
* @code{GETLOG}:        GETLOG,    Get login name
* @code{GETPID}:        GETPID,    Process ID function
* @code{GETUID}:        GETUID,    User ID function
* @code{GMTIME}:        GMTIME,    Convert time to GMT info
* @code{HOSTNM}:        HOSTNM,    Get system host name
* @code{HUGE}:          HUGE,      Largest number of a kind
* @code{HYPOT}:         HYPOT,     Euclidean distance function
* @code{IACHAR}:        IACHAR,    Code in @acronym{ASCII} collating sequence
* @code{IALL}:          IALL,      Bitwise AND of array elements
* @code{IAND}:          IAND,      Bitwise logical and
* @code{IANY}:          IANY,      Bitwise OR of array elements
* @code{IARGC}:         IARGC,     Get the number of command line arguments
* @code{IBCLR}:         IBCLR,     Clear bit
* @code{IBITS}:         IBITS,     Bit extraction
* @code{IBSET}:         IBSET,     Set bit
* @code{ICHAR}:         ICHAR,     Character-to-integer conversion function
* @code{IDATE}:         IDATE,     Current local time (day/month/year)
* @code{IEOR}:          IEOR,      Bitwise logical exclusive or
* @code{IERRNO}:        IERRNO,    Function to get the last system error number
* @code{IMAGE_INDEX}:   IMAGE_INDEX, Cosubscript to image index conversion
* @code{INDEX}:         INDEX intrinsic, Position of a substring within a string
* @code{INT}:           INT,       Convert to integer type
* @code{INT2}:          INT2,      Convert to 16-bit integer type
* @code{INT8}:          INT8,      Convert to 64-bit integer type
* @code{IOR}:           IOR,       Bitwise logical or
* @code{IPARITY}:       IPARITY,   Bitwise XOR of array elements
* @code{IRAND}:         IRAND,     Integer pseudo-random number
* @code{IS_CONTIGUOUS}:  IS_CONTIGUOUS, Test whether an array is contiguous
* @code{IS_IOSTAT_END}:  IS_IOSTAT_END, Test for end-of-file value
* @code{IS_IOSTAT_EOR}:  IS_IOSTAT_EOR, Test for end-of-record value
* @code{ISATTY}:        ISATTY,    Whether a unit is a terminal device
* @code{ISHFT}:         ISHFT,     Shift bits
* @code{ISHFTC}:        ISHFTC,    Shift bits circularly
* @code{ISNAN}:         ISNAN,     Tests for a NaN
* @code{ITIME}:         ITIME,     Current local time (hour/minutes/seconds)
* @code{KILL}:          KILL,      Send a signal to a process
* @code{KIND}:          KIND,      Kind of an entity
* @code{LBOUND}:        LBOUND,    Lower dimension bounds of an array
* @code{LCOBOUND}:      LCOBOUND,  Lower codimension bounds of an array
* @code{LEADZ}:         LEADZ,     Number of leading zero bits of an integer
* @code{LEN}:           LEN,       Length of a character entity
* @code{LEN_TRIM}:      LEN_TRIM,  Length of a character entity without trailing blank characters
* @code{LGE}:           LGE,       Lexical greater than or equal
* @code{LGT}:           LGT,       Lexical greater than
* @code{LINK}:          LINK,      Create a hard link
* @code{LLE}:           LLE,       Lexical less than or equal
* @code{LLT}:           LLT,       Lexical less than
* @code{LNBLNK}:        LNBLNK,    Index of the last non-blank character in a string
* @code{LOC}:           LOC,       Returns the address of a variable
* @code{LOG}:           LOG,       Logarithm function
* @code{LOG10}:         LOG10,     Base 10 logarithm function 
* @code{LOG_GAMMA}:     LOG_GAMMA, Logarithm of the Gamma function
* @code{LOGICAL}:       LOGICAL,   Convert to logical type
* @code{LONG}:          LONG,      Convert to integer type
* @code{LSHIFT}:        LSHIFT,    Left shift bits
* @code{LSTAT}:         LSTAT,     Get file status
* @code{LTIME}:         LTIME,     Convert time to local time info
* @code{MALLOC}:        MALLOC,    Dynamic memory allocation function
* @code{MASKL}:         MASKL,     Left justified mask
* @code{MASKR}:         MASKR,     Right justified mask
* @code{MATMUL}:        MATMUL,    matrix multiplication
* @code{MAX}:           MAX,       Maximum value of an argument list
* @code{MAXEXPONENT}:   MAXEXPONENT, Maximum exponent of a real kind
* @code{MAXLOC}:        MAXLOC,    Location of the maximum value within an array
* @code{MAXVAL}:        MAXVAL,    Maximum value of an array
* @code{MCLOCK}:        MCLOCK,    Time function
* @code{MCLOCK8}:       MCLOCK8,   Time function (64-bit)
* @code{MERGE}:         MERGE,     Merge arrays
* @code{MERGE_BITS}:    MERGE_BITS, Merge of bits under mask
* @code{MIN}:           MIN,       Minimum value of an argument list
* @code{MINEXPONENT}:   MINEXPONENT, Minimum exponent of a real kind
* @code{MINLOC}:        MINLOC,    Location of the minimum value within an array
* @code{MINVAL}:        MINVAL,    Minimum value of an array
* @code{MOD}:           MOD,       Remainder function
* @code{MODULO}:        MODULO,    Modulo function
* @code{MOVE_ALLOC}:    MOVE_ALLOC, Move allocation from one object to another
* @code{MVBITS}:        MVBITS,    Move bits from one integer to another
* @code{NEAREST}:       NEAREST,   Nearest representable number
* @code{NEW_LINE}:      NEW_LINE,  New line character
* @code{NINT}:          NINT,      Nearest whole number
* @code{NORM2}:         NORM2,     Euclidean vector norm
* @code{NOT}:           NOT,       Logical negation
* @code{NULL}:          NULL,      Function that returns an disassociated pointer
* @code{NUM_IMAGES}:    NUM_IMAGES, Number of images
* @code{OR}:            OR,        Bitwise logical OR
* @code{PACK}:          PACK,      Pack an array into an array of rank one
* @code{PARITY}:        PARITY,    Reduction with exclusive OR
* @code{PERROR}:        PERROR,    Print system error message
* @code{POPCNT}:        POPCNT,    Number of bits set
* @code{POPPAR}:        POPPAR,    Parity of the number of bits set
* @code{PRECISION}:     PRECISION, Decimal precision of a real kind
* @code{PRESENT}:       PRESENT,   Determine whether an optional dummy argument is specified
* @code{PRODUCT}:       PRODUCT,   Product of array elements
* @code{RADIX}:         RADIX,     Base of a data model
* @code{RAN}:           RAN,       Real pseudo-random number
* @code{RAND}:          RAND,      Real pseudo-random number
* @code{RANDOM_INIT}:   RANDOM_INIT, Initialize pseudo-random number generator
* @code{RANDOM_NUMBER}: RANDOM_NUMBER, Pseudo-random number
* @code{RANDOM_SEED}:   RANDOM_SEED, Initialize a pseudo-random number sequence
* @code{RANGE}:         RANGE,     Decimal exponent range
* @code{RANK} :         RANK,      Rank of a data object
* @code{REAL}:          REAL,      Convert to real type 
* @code{RENAME}:        RENAME,    Rename a file
* @code{REPEAT}:        REPEAT,    Repeated string concatenation
* @code{RESHAPE}:       RESHAPE,   Function to reshape an array
* @code{RRSPACING}:     RRSPACING, Reciprocal of the relative spacing
* @code{RSHIFT}:        RSHIFT,    Right shift bits
* @code{SAME_TYPE_AS}:  SAME_TYPE_AS,  Query dynamic types for equality
* @code{SCALE}:         SCALE,     Scale a real value
* @code{SCAN}:          SCAN,      Scan a string for the presence of a set of characters
* @code{SECNDS}:        SECNDS,    Time function
* @code{SECOND}:        SECOND,    CPU time function
* @code{SELECTED_CHAR_KIND}: SELECTED_CHAR_KIND,  Choose character kind
* @code{SELECTED_INT_KIND}: SELECTED_INT_KIND,  Choose integer kind
* @code{SELECTED_REAL_KIND}: SELECTED_REAL_KIND,  Choose real kind
* @code{SET_EXPONENT}:  SET_EXPONENT, Set the exponent of the model
* @code{SHAPE}:         SHAPE,     Determine the shape of an array
* @code{SHIFTA}:        SHIFTA,    Right shift with fill
* @code{SHIFTL}:        SHIFTL,    Left shift
* @code{SHIFTR}:        SHIFTR,    Right shift
* @code{SIGN}:          SIGN,      Sign copying function
* @code{SIGNAL}:        SIGNAL,    Signal handling subroutine (or function)
* @code{SIN}:           SIN,       Sine function
* @code{SIND}:          SIND,      Sine function, degrees
* @code{SINH}:          SINH,      Hyperbolic sine function
* @code{SIZE}:          SIZE,      Function to determine the size of an array
* @code{SIZEOF}:        SIZEOF,    Determine the size in bytes of an expression
* @code{SLEEP}:         SLEEP,     Sleep for the specified number of seconds
* @code{SPACING}:       SPACING,   Smallest distance between two numbers of a given type
* @code{SPREAD}:        SPREAD,    Add a dimension to an array 
* @code{SQRT}:          SQRT,      Square-root function
* @code{SRAND}:         SRAND,     Reinitialize the random number generator
* @code{STAT}:          STAT,      Get file status
* @code{STORAGE_SIZE}:  STORAGE_SIZE, Storage size in bits
* @code{SUM}:           SUM,       Sum of array elements
* @code{SYMLNK}:        SYMLNK,    Create a symbolic link
* @code{SYSTEM}:        SYSTEM,    Execute a shell command
* @code{SYSTEM_CLOCK}:  SYSTEM_CLOCK, Time function
* @code{TAN}:           TAN,       Tangent function
* @code{TAND}:          TAND,      Tangent function, degrees
* @code{TANH}:          TANH,      Hyperbolic tangent function
* @code{THIS_IMAGE}:    THIS_IMAGE, Cosubscript index of this image
* @code{TIME}:          TIME,      Time function
* @code{TIME8}:         TIME8,     Time function (64-bit)
* @code{TINY}:          TINY,      Smallest positive number of a real kind
* @code{TRAILZ}:        TRAILZ,    Number of trailing zero bits of an integer
* @code{TRANSFER}:      TRANSFER,  Transfer bit patterns
* @code{TRANSPOSE}:     TRANSPOSE, Transpose an array of rank two
* @code{TRIM}:          TRIM,      Remove trailing blank characters of a string
* @code{TTYNAM}:        TTYNAM,    Get the name of a terminal device.
* @code{UBOUND}:        UBOUND,    Upper dimension bounds of an array
* @code{UCOBOUND}:      UCOBOUND,  Upper codimension bounds of an array
* @code{UMASK}:         UMASK,     Set the file creation mask
* @code{UNLINK}:        UNLINK,    Remove a file from the file system
* @code{UNPACK}:        UNPACK,    Unpack an array of rank one into an array
* @code{VERIFY}:        VERIFY,    Scan a string for the absence of a set of characters
* @code{XOR}:           XOR,       Bitwise logical exclusive or
@end menu

@node Introduction to Intrinsics
@section Introduction to intrinsic procedures

The intrinsic procedures provided by GNU Fortran include all of the
intrinsic procedures required by the Fortran 95 standard, a set of
intrinsic procedures for backwards compatibility with G77, and a
selection of intrinsic procedures from the Fortran 2003 and Fortran 2008
standards.  Any conflict between a description here and a description in
either the Fortran 95 standard, the Fortran 2003 standard or the Fortran
2008 standard is unintentional, and the standard(s) should be considered
authoritative.

The enumeration of the @code{KIND} type parameter is processor defined in
the Fortran 95 standard.  GNU Fortran defines the default integer type and
default real type by @code{INTEGER(KIND=4)} and @code{REAL(KIND=4)},
respectively.  The standard mandates that both data types shall have
another kind, which have more precision.  On typical target architectures
supported by @command{gfortran}, this kind type parameter is @code{KIND=8}.
Hence, @code{REAL(KIND=8)} and @code{DOUBLE PRECISION} are equivalent.
In the description of generic intrinsic procedures, the kind type parameter
will be specified by @code{KIND=*}, and in the description of specific
names for an intrinsic procedure the kind type parameter will be explicitly
given (e.g., @code{REAL(KIND=4)} or @code{REAL(KIND=8)}).  Finally, for
brevity the optional @code{KIND=} syntax will be omitted.

Many of the intrinsic procedures take one or more optional arguments.
This document follows the convention used in the Fortran 95 standard,
and denotes such arguments by square brackets.

GNU Fortran offers the @option{-std=f95} and @option{-std=gnu} options,
which can be used to restrict the set of intrinsic procedures to a 
given standard.  By default, @command{gfortran} sets the @option{-std=gnu}
option, and so all intrinsic procedures described here are accepted.  There
is one caveat.  For a select group of intrinsic procedures, @command{g77}
implemented both a function and a subroutine.  Both classes 
have been implemented in @command{gfortran} for backwards compatibility
with @command{g77}.  It is noted here that these functions and subroutines
cannot be intermixed in a given subprogram.  In the descriptions that follow,
the applicable standard for each intrinsic procedure is noted.



@node ABORT
@section @code{ABORT} --- Abort the program
@fnindex ABORT
@cindex program termination, with core dump
@cindex terminate program, with core dump
@cindex core, dump

@table @asis
@item @emph{Description}:
@code{ABORT} causes immediate termination of the program.  On operating
systems that support a core dump, @code{ABORT} will produce a core dump.
It will also print a backtrace, unless @code{-fno-backtrace} is given.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL ABORT}

@item @emph{Return value}:
Does not return.

@item @emph{Example}:
@smallexample
program test_abort
  integer :: i = 1, j = 2
  if (i /= j) call abort
end program test_abort
@end smallexample

@item @emph{See also}:
@ref{EXIT}, @gol
@ref{KILL}, @gol
@ref{BACKTRACE}
@end table



@node ABS
@section @code{ABS} --- Absolute value
@fnindex ABS
@fnindex CABS
@fnindex DABS
@fnindex IABS
@fnindex ZABS
@fnindex CDABS
@fnindex BABS
@fnindex IIABS
@fnindex JIABS
@fnindex KIABS
@cindex absolute value

@table @asis
@item @emph{Description}:
@code{ABS(A)} computes the absolute value of @code{A}.

@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ABS(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type of the argument shall be an @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and
kind as the argument except the return value is @code{REAL} for a
@code{COMPLEX} argument.

@item @emph{Example}:
@smallexample
program test_abs
  integer :: i = -1
  real :: x = -1.e0
  complex :: z = (-1.e0,0.e0)
  i = abs(i)
  x = abs(x)
  x = abs(z)
end program test_abs
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{ABS(A)}   @tab @code{REAL(4) A}    @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{CABS(A)}  @tab @code{COMPLEX(4) A} @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DABS(A)}  @tab @code{REAL(8) A}    @tab @code{REAL(8)}    @tab Fortran 77 and later
@item @code{IABS(A)}  @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{BABS(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IIABS(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JIABS(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KIABS(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@item @code{ZABS(A)}  @tab @code{COMPLEX(8) A} @tab @code{REAL(8)} @tab GNU extension
@item @code{CDABS(A)} @tab @code{COMPLEX(8) A} @tab @code{REAL(8)} @tab GNU extension
@end multitable
@end table



@node ACCESS
@section @code{ACCESS} --- Checks file access modes
@fnindex ACCESS
@cindex file system, access mode

@table @asis
@item @emph{Description}:
@code{ACCESS(NAME, MODE)} checks whether the file @var{NAME} 
exists, is readable, writable or executable. Except for the
executable check, @code{ACCESS} can be replaced by
Fortran 95's @code{INQUIRE}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = ACCESS(NAME, MODE)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab Scalar @code{CHARACTER} of default kind with the
file name. Tailing blank are ignored unless the character @code{achar(0)}
is present, then all characters up to and excluding @code{achar(0)} are
used as file name.
@item @var{MODE} @tab Scalar @code{CHARACTER} of default kind with the
file access mode, may be any concatenation of @code{"r"} (readable),
@code{"w"} (writable) and @code{"x"} (executable), or @code{" "} to check
for existence.
@end multitable

@item @emph{Return value}:
Returns a scalar @code{INTEGER}, which is @code{0} if the file is
accessible in the given mode; otherwise or if an invalid argument
has been given for @code{MODE} the value @code{1} is returned.

@item @emph{Example}:
@smallexample
program access_test
  implicit none
  character(len=*), parameter :: file  = 'test.dat'
  character(len=*), parameter :: file2 = 'test.dat  '//achar(0)
  if(access(file,' ') == 0) print *, trim(file),' is exists'
  if(access(file,'r') == 0) print *, trim(file),' is readable'
  if(access(file,'w') == 0) print *, trim(file),' is writable'
  if(access(file,'x') == 0) print *, trim(file),' is executable'
  if(access(file2,'rwx') == 0) &
    print *, trim(file2),' is readable, writable and executable'
end program access_test
@end smallexample
@end table



@node ACHAR
@section @code{ACHAR} --- Character in @acronym{ASCII} collating sequence 
@fnindex ACHAR
@cindex @acronym{ASCII} collating sequence
@cindex collating sequence, @acronym{ASCII}

@table @asis
@item @emph{Description}:
@code{ACHAR(I)} returns the character located at position @code{I}
in the @acronym{ASCII} collating sequence.

@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ACHAR(I [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I}    @tab The type shall be @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{CHARACTER} with a length of one.
If the @var{KIND} argument is present, the return value is of the
specified kind and of the default kind otherwise.

@item @emph{Example}:
@smallexample
program test_achar
  character c
  c = achar(32)
end program test_achar
@end smallexample

@item @emph{Note}:
See @ref{ICHAR} for a discussion of converting between numerical values
and formatted string representations.

@item @emph{See also}:
@ref{CHAR}, @gol
@ref{IACHAR}, @gol
@ref{ICHAR}
@end table



@node ACOS
@section @code{ACOS} --- Arccosine function 
@fnindex ACOS
@fnindex DACOS
@cindex trigonometric function, cosine, inverse
@cindex cosine, inverse

@table @asis
@item @emph{Description}:
@code{ACOS(X)} computes the arccosine of @var{X} (inverse of @code{COS(X)}).

@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ACOS(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall either be @code{REAL} with a magnitude that is
less than or equal to one - or the type shall be @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real part of the result is in radians and lies in the range
@math{0 \leq \Re \acos(x) \leq \pi}.

@item @emph{Example}:
@smallexample
program test_acos
  real(8) :: x = 0.866_8
  x = acos(x)
end program test_acos
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument         @tab Return type     @tab Standard
@item @code{ACOS(X)}  @tab @code{REAL(4) X} @tab @code{REAL(4)}  @tab Fortran 77 and later
@item @code{DACOS(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}  @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{COS} @gol
Degrees function: @gol
@ref{ACOSD}
@end table



@node ACOSD
@section @code{ACOSD} --- Arccosine function, degrees
@fnindex ACOSD
@fnindex DACOSD
@cindex trigonometric function, cosine, inverse, degrees
@cindex cosine, inverse, degrees

@table @asis
@item @emph{Description}:
@code{ACOSD(X)} computes the arccosine of @var{X} in degrees (inverse of
@code{COSD(X)}).

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ACOSD(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall either be @code{REAL} with a magnitude that is
less than or equal to one - or the type shall be @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real part of the result is in degrees and lies in the range
@math{0 \leq \Re \acos(x) \leq 180}.

@item @emph{Example}:
@smallexample
program test_acosd
  real(8) :: x = 0.866_8
  x = acosd(x)
end program test_acosd
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument         @tab Return type     @tab Standard
@item @code{ACOSD(X)}  @tab @code{REAL(4) X} @tab @code{REAL(4)}  @tab GNU extension
@item @code{DACOSD(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}  @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{COSD} @gol
Radians function: @gol
@ref{ACOS} @gol
@end table



@node ACOSH
@section @code{ACOSH} --- Inverse hyperbolic cosine function
@fnindex ACOSH
@fnindex DACOSH
@cindex area hyperbolic cosine
@cindex inverse hyperbolic cosine
@cindex hyperbolic function, cosine, inverse
@cindex cosine, hyperbolic, inverse

@table @asis
@item @emph{Description}:
@code{ACOSH(X)} computes the inverse hyperbolic cosine of @var{X}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ACOSH(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has the same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians and lies between
@math{ 0 \leq \Im \acosh(x) \leq \pi}.

@item @emph{Example}:
@smallexample
PROGRAM test_acosh
  REAL(8), DIMENSION(3) :: x = (/ 1.0, 2.0, 3.0 /)
  WRITE (*,*) ACOSH(x)
END PROGRAM
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument          @tab Return type       @tab Standard
@item @code{DACOSH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{COSH}
@end table



@node ADJUSTL
@section @code{ADJUSTL} --- Left adjust a string 
@fnindex ADJUSTL
@cindex string, adjust left
@cindex adjust string

@table @asis
@item @emph{Description}:
@code{ADJUSTL(STRING)} will left adjust a string by removing leading spaces.
Spaces are inserted at the end of the string as needed.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ADJUSTL(STRING)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab The type shall be @code{CHARACTER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{CHARACTER} and of the same kind as
@var{STRING} where leading spaces are removed and the same number of
spaces are inserted on the end of @var{STRING}.

@item @emph{Example}:
@smallexample
program test_adjustl
  character(len=20) :: str = '   gfortran'
  str = adjustl(str)
  print *, str
end program test_adjustl
@end smallexample

@item @emph{See also}:
@ref{ADJUSTR}, @gol
@ref{TRIM}
@end table



@node ADJUSTR
@section @code{ADJUSTR} --- Right adjust a string 
@fnindex ADJUSTR
@cindex string, adjust right
@cindex adjust string

@table @asis
@item @emph{Description}:
@code{ADJUSTR(STRING)} will right adjust a string by removing trailing spaces.
Spaces are inserted at the start of the string as needed.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ADJUSTR(STRING)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STR} @tab The type shall be @code{CHARACTER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{CHARACTER} and of the same kind as
@var{STRING} where trailing spaces are removed and the same number of
spaces are inserted at the start of @var{STRING}.

@item @emph{Example}:
@smallexample
program test_adjustr
  character(len=20) :: str = 'gfortran'
  str = adjustr(str)
  print *, str
end program test_adjustr
@end smallexample

@item @emph{See also}:
@ref{ADJUSTL}, @gol
@ref{TRIM}
@end table



@node AIMAG
@section @code{AIMAG} --- Imaginary part of complex number  
@fnindex AIMAG
@fnindex DIMAG
@fnindex IMAG
@fnindex IMAGPART
@cindex complex numbers, imaginary part

@table @asis
@item @emph{Description}:
@code{AIMAG(Z)} yields the imaginary part of complex argument @code{Z}.
The @code{IMAG(Z)} and @code{IMAGPART(Z)} intrinsic functions are provided
for compatibility with @command{g77}, and their use in new code is 
strongly discouraged.

@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = AIMAG(Z)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{Z} @tab The type of the argument shall be @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} with the
kind type parameter of the argument.

@item @emph{Example}:
@smallexample
program test_aimag
  complex(4) z4
  complex(8) z8
  z4 = cmplx(1.e0_4, 0.e0_4)
  z8 = cmplx(0.e0_8, 1.e0_8)
  print *, aimag(z4), dimag(z8)
end program test_aimag
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name               @tab Argument            @tab Return type     @tab Standard
@item @code{AIMAG(Z)}    @tab @code{COMPLEX Z}    @tab @code{REAL}     @tab Fortran 77 and later
@item @code{DIMAG(Z)}    @tab @code{COMPLEX(8) Z} @tab @code{REAL(8)}  @tab GNU extension
@item @code{IMAG(Z)}     @tab @code{COMPLEX Z}    @tab @code{REAL}     @tab GNU extension
@item @code{IMAGPART(Z)} @tab @code{COMPLEX Z}    @tab @code{REAL}     @tab GNU extension
@end multitable
@end table



@node AINT
@section @code{AINT} --- Truncate to a whole number
@fnindex AINT
@fnindex DINT
@cindex floor
@cindex rounding, floor

@table @asis
@item @emph{Description}:
@code{AINT(A [, KIND])} truncates its argument to a whole number.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = AINT(A [, KIND])} 

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab The type of the argument shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} with the kind type parameter of the
argument if the optional @var{KIND} is absent; otherwise, the kind
type parameter will be given by @var{KIND}.  If the magnitude of 
@var{X} is less than one, @code{AINT(X)} returns zero.  If the
magnitude is equal to or greater than one then it returns the largest
whole number that does not exceed its magnitude.  The sign is the same
as the sign of @var{X}. 

@item @emph{Example}:
@smallexample
program test_aint
  real(4) x4
  real(8) x8
  x4 = 1.234E0_4
  x8 = 4.321_8
  print *, aint(x4), dint(x8)
  x8 = aint(x4,8)
end program test_aint
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name           @tab Argument         @tab Return type      @tab Standard
@item @code{AINT(A)} @tab @code{REAL(4) A} @tab @code{REAL(4)}   @tab Fortran 77 and later
@item @code{DINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)}   @tab Fortran 77 and later
@end multitable
@end table



@node ALARM
@section @code{ALARM} --- Execute a routine after a given delay
@fnindex ALARM
@cindex delayed execution

@table @asis
@item @emph{Description}:
@code{ALARM(SECONDS, HANDLER [, STATUS])} causes external subroutine @var{HANDLER}
to be executed after a delay of @var{SECONDS} by using @code{alarm(2)} to
set up a signal and @code{signal(2)} to catch it. If @var{STATUS} is
supplied, it will be returned with the number of seconds remaining until
any previously scheduled alarm was due to be delivered, or zero if there
was no previously scheduled alarm.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL ALARM(SECONDS, HANDLER [, STATUS])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SECONDS} @tab The type of the argument shall be a scalar
@code{INTEGER}. It is @code{INTENT(IN)}.
@item @var{HANDLER} @tab Signal handler (@code{INTEGER FUNCTION} or
@code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar. The scalar 
values may be either @code{SIG_IGN=1} to ignore the alarm generated 
or @code{SIG_DFL=0} to set the default action. It is @code{INTENT(IN)}.
@item @var{STATUS}  @tab (Optional) @var{STATUS} shall be a scalar
variable of the default @code{INTEGER} kind. It is @code{INTENT(OUT)}.
@end multitable

@item @emph{Example}:
@smallexample
program test_alarm
  external handler_print
  integer i
  call alarm (3, handler_print, i)
  print *, i
  call sleep(10)
end program test_alarm
@end smallexample
This will cause the external routine @var{handler_print} to be called
after 3 seconds.
@end table



@node ALL
@section @code{ALL} --- All values in @var{MASK} along @var{DIM} are true 
@fnindex ALL
@cindex array, apply condition
@cindex array, condition testing

@table @asis
@item @emph{Description}:
@code{ALL(MASK [, DIM])} determines if all the values are true in @var{MASK}
in the array along dimension @var{DIM}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = ALL(MASK [, DIM])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab The type of the argument shall be @code{LOGICAL} and
it shall not be scalar.
@item @var{DIM}  @tab (Optional) @var{DIM} shall be a scalar integer
with a value that lies between one and the rank of @var{MASK}.
@end multitable

@item @emph{Return value}:
@code{ALL(MASK)} returns a scalar value of type @code{LOGICAL} where
the kind type parameter is the same as the kind type parameter of
@var{MASK}.  If @var{DIM} is present, then @code{ALL(MASK, DIM)} returns
an array with the rank of @var{MASK} minus 1.  The shape is determined from
the shape of @var{MASK} where the @var{DIM} dimension is elided. 

@table @asis
@item (A)
@code{ALL(MASK)} is true if all elements of @var{MASK} are true.
It also is true if @var{MASK} has zero size; otherwise, it is false.
@item (B)
If the rank of @var{MASK} is one, then @code{ALL(MASK,DIM)} is equivalent
to @code{ALL(MASK)}.  If the rank is greater than one, then @code{ALL(MASK,DIM)}
is determined by applying @code{ALL} to the array sections.
@end table

@item @emph{Example}:
@smallexample
program test_all
  logical l
  l = all((/.true., .true., .true./))
  print *, l
  call section
  contains
    subroutine section
      integer a(2,3), b(2,3)
      a = 1
      b = 1
      b(2,2) = 2
      print *, all(a .eq. b, 1)
      print *, all(a .eq. b, 2)
    end subroutine section
end program test_all
@end smallexample
@end table



@node ALLOCATED
@section @code{ALLOCATED} --- Status of an allocatable entity
@fnindex ALLOCATED
@cindex allocation, status

@table @asis
@item @emph{Description}:
@code{ALLOCATED(ARRAY)} and @code{ALLOCATED(SCALAR)} check the allocation
status of @var{ARRAY} and @var{SCALAR}, respectively.

@item @emph{Standard}:
Fortran 90 and later.  Note, the @code{SCALAR=} keyword and allocatable
scalar entities are available in Fortran 2003 and later.

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = ALLOCATED(ARRAY)}
@item @code{RESULT = ALLOCATED(SCALAR)} 
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY}    @tab The argument shall be an @code{ALLOCATABLE} array.
@item @var{SCALAR}   @tab The argument shall be an @code{ALLOCATABLE} scalar.
@end multitable

@item @emph{Return value}:
The return value is a scalar @code{LOGICAL} with the default logical
kind type parameter.  If the argument is allocated, then the result is
@code{.TRUE.}; otherwise, it returns @code{.FALSE.} 

@item @emph{Example}:
@smallexample
program test_allocated
  integer :: i = 4
  real(4), allocatable :: x(:)
  if (.not. allocated(x)) allocate(x(i))
end program test_allocated
@end smallexample
@end table



@node AND
@section @code{AND} --- Bitwise logical AND
@fnindex AND
@cindex bitwise logical and
@cindex logical and, bitwise

@table @asis
@item @emph{Description}:
Bitwise logical @code{AND}.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  For integer arguments, programmers should consider
the use of the @ref{IAND} intrinsic defined by the Fortran standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = AND(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be either a scalar @code{INTEGER}
type or a scalar @code{LOGICAL} type or a boz-literal-constant.
@item @var{J} @tab The type shall be the same as the type of @var{I} or
a boz-literal-constant. @var{I} and @var{J} shall not both be
boz-literal-constants.  If either @var{I} or @var{J} is a
boz-literal-constant, then the other argument must be a scalar @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return type is either a scalar @code{INTEGER} or a scalar
@code{LOGICAL}.  If the kind type parameters differ, then the
smaller kind type is implicitly converted to larger kind, and the 
return has the larger kind.  A boz-literal-constant is 
converted to an @code{INTEGER} with the kind type parameter of
the other argument as-if a call to @ref{INT} occurred.

@item @emph{Example}:
@smallexample
PROGRAM test_and
  LOGICAL :: T = .TRUE., F = .FALSE.
  INTEGER :: a, b
  DATA a / Z'F' /, b / Z'3' /

  WRITE (*,*) AND(T, T), AND(T, F), AND(F, T), AND(F, F)
  WRITE (*,*) AND(a, b)
END PROGRAM
@end smallexample

@item @emph{See also}:
Fortran 95 elemental function: @gol
@ref{IAND}
@end table



@node ANINT
@section @code{ANINT} --- Nearest whole number
@fnindex ANINT
@fnindex DNINT
@cindex ceiling
@cindex rounding, ceiling

@table @asis
@item @emph{Description}:
@code{ANINT(A [, KIND])} rounds its argument to the nearest whole number.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ANINT(A [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab The type of the argument shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type real with the kind type parameter of the
argument if the optional @var{KIND} is absent; otherwise, the kind
type parameter will be given by @var{KIND}.  If @var{A} is greater than
zero, @code{ANINT(A)} returns @code{AINT(X+0.5)}.  If @var{A} is
less than or equal to zero then it returns @code{AINT(X-0.5)}.

@item @emph{Example}:
@smallexample
program test_anint
  real(4) x4
  real(8) x8
  x4 = 1.234E0_4
  x8 = 4.321_8
  print *, anint(x4), dnint(x8)
  x8 = anint(x4,8)
end program test_anint
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument         @tab Return type      @tab Standard
@item @code{AINT(A)}  @tab @code{REAL(4) A} @tab @code{REAL(4)}   @tab Fortran 77 and later
@item @code{DNINT(A)} @tab @code{REAL(8) A} @tab @code{REAL(8)}   @tab Fortran 77 and later
@end multitable
@end table



@node ANY
@section @code{ANY} --- Any value in @var{MASK} along @var{DIM} is true 
@fnindex ANY
@cindex array, apply condition
@cindex array, condition testing

@table @asis
@item @emph{Description}:
@code{ANY(MASK [, DIM])} determines if any of the values in the logical array
@var{MASK} along dimension @var{DIM} are @code{.TRUE.}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = ANY(MASK [, DIM])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab The type of the argument shall be @code{LOGICAL} and
it shall not be scalar.
@item @var{DIM}  @tab (Optional) @var{DIM} shall be a scalar integer
with a value that lies between one and the rank of @var{MASK}.
@end multitable

@item @emph{Return value}:
@code{ANY(MASK)} returns a scalar value of type @code{LOGICAL} where
the kind type parameter is the same as the kind type parameter of
@var{MASK}.  If @var{DIM} is present, then @code{ANY(MASK, DIM)} returns
an array with the rank of @var{MASK} minus 1.  The shape is determined from
the shape of @var{MASK} where the @var{DIM} dimension is elided. 

@table @asis
@item (A)
@code{ANY(MASK)} is true if any element of @var{MASK} is true;
otherwise, it is false.  It also is false if @var{MASK} has zero size.
@item (B)
If the rank of @var{MASK} is one, then @code{ANY(MASK,DIM)} is equivalent
to @code{ANY(MASK)}.  If the rank is greater than one, then @code{ANY(MASK,DIM)}
is determined by applying @code{ANY} to the array sections.
@end table

@item @emph{Example}:
@smallexample
program test_any
  logical l
  l = any((/.true., .true., .true./))
  print *, l
  call section
  contains
    subroutine section
      integer a(2,3), b(2,3)
      a = 1
      b = 1
      b(2,2) = 2
      print *, any(a .eq. b, 1)
      print *, any(a .eq. b, 2)
    end subroutine section
end program test_any
@end smallexample
@end table



@node ASIN
@section @code{ASIN} --- Arcsine function 
@fnindex ASIN
@fnindex DASIN
@cindex trigonometric function, sine, inverse
@cindex sine, inverse

@table @asis
@item @emph{Description}:
@code{ASIN(X)} computes the arcsine of its @var{X} (inverse of @code{SIN(X)}).

@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ASIN(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be either @code{REAL} and a magnitude that is
less than or equal to one - or be @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real part of the result is in radians and lies in the range
@math{-\pi/2 \leq \Re \asin(x) \leq \pi/2}.

@item @emph{Example}:
@smallexample
program test_asin
  real(8) :: x = 0.866_8
  x = asin(x)
end program test_asin
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{ASIN(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DASIN(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{SIN} @gol
Degrees function: @gol
@ref{ASIND}
@end table



@node ASIND
@section @code{ASIND} --- Arcsine function, degrees
@fnindex ASIND
@fnindex DASIND
@cindex trigonometric function, sine, inverse, degrees
@cindex sine, inverse, degrees

@table @asis
@item @emph{Description}:
@code{ASIND(X)} computes the arcsine of its @var{X} in degrees (inverse of
@code{SIND(X)}).

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ASIND(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be either @code{REAL} and a magnitude that is
less than or equal to one - or be @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real part of the result is in degrees and lies in the range
@math{-90 \leq \Re \asin(x) \leq 90}.

@item @emph{Example}:
@smallexample
program test_asind
  real(8) :: x = 0.866_8
  x = asind(x)
end program test_asind
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{ASIND(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab GNU extension
@item @code{DASIND(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{SIND} @gol
Radians function: @gol
@ref{ASIN}
@end table



@node ASINH
@section @code{ASINH} --- Inverse hyperbolic sine function
@fnindex ASINH
@fnindex DASINH
@cindex area hyperbolic sine
@cindex inverse hyperbolic sine
@cindex hyperbolic function, sine, inverse
@cindex sine, hyperbolic, inverse

@table @asis
@item @emph{Description}:
@code{ASINH(X)} computes the inverse hyperbolic sine of @var{X}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ASINH(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as  @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians and lies between
@math{-\pi/2 \leq \Im \asinh(x) \leq \pi/2}.

@item @emph{Example}:
@smallexample
PROGRAM test_asinh
  REAL(8), DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
  WRITE (*,*) ASINH(x)
END PROGRAM
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument          @tab Return type       @tab Standard
@item @code{DASINH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension.
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{SINH}
@end table



@node ASSOCIATED
@section @code{ASSOCIATED} --- Status of a pointer or pointer/target pair 
@fnindex ASSOCIATED
@cindex pointer, status
@cindex association status

@table @asis
@item @emph{Description}:
@code{ASSOCIATED(POINTER [, TARGET])} determines the status of the pointer
@var{POINTER} or if @var{POINTER} is associated with the target @var{TARGET}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = ASSOCIATED(POINTER [, TARGET])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{POINTER} @tab @var{POINTER} shall have the @code{POINTER} attribute
and it can be of any type.
@item @var{TARGET} @tab (Optional) @var{TARGET} shall be a pointer or
a target.  It must have the same type, kind type parameter, and
array rank as @var{POINTER}.
@end multitable
The association status of neither @var{POINTER} nor @var{TARGET} shall be
undefined.

@item @emph{Return value}:
@code{ASSOCIATED(POINTER)} returns a scalar value of type @code{LOGICAL(4)}.
There are several cases:
@table @asis
@item (A) When the optional @var{TARGET} is not present then
@code{ASSOCIATED(POINTER)} is true if @var{POINTER} is associated with a target; otherwise, it returns false.
@item (B) If @var{TARGET} is present and a scalar target, the result is true if
@var{TARGET} is not a zero-sized storage sequence and the target associated with @var{POINTER} occupies the same storage units.  If @var{POINTER} is
disassociated, the result is false.
@item (C) If @var{TARGET} is present and an array target, the result is true if
@var{TARGET} and @var{POINTER} have the same shape, are not zero-sized arrays,
are arrays whose elements are not zero-sized storage sequences, and
@var{TARGET} and @var{POINTER} occupy the same storage units in array element
order.
As in case(B), the result is false, if @var{POINTER} is disassociated.
@item (D) If @var{TARGET} is present and an scalar pointer, the result is true
if @var{TARGET} is associated with @var{POINTER}, the target associated with
@var{TARGET} are not zero-sized storage sequences and occupy the same storage
units.
The result is false, if either @var{TARGET} or @var{POINTER} is disassociated.
@item (E) If @var{TARGET} is present and an array pointer, the result is true if
target associated with @var{POINTER} and the target associated with @var{TARGET}
have the same shape, are not zero-sized arrays, are arrays whose elements are
not zero-sized storage sequences, and @var{TARGET} and @var{POINTER} occupy
the same storage units in array element order.
The result is false, if either @var{TARGET} or @var{POINTER} is disassociated.
@end table

@item @emph{Example}:
@smallexample
program test_associated
   implicit none
   real, target  :: tgt(2) = (/1., 2./)
   real, pointer :: ptr(:)
   ptr => tgt
   if (associated(ptr)     .eqv. .false.) call abort
   if (associated(ptr,tgt) .eqv. .false.) call abort
end program test_associated
@end smallexample

@item @emph{See also}:
@ref{NULL}
@end table



@node ATAN
@section @code{ATAN} --- Arctangent function 
@fnindex ATAN
@fnindex DATAN
@cindex trigonometric function, tangent, inverse
@cindex tangent, inverse

@table @asis
@item @emph{Description}:
@code{ATAN(X)} computes the arctangent of @var{X}.

@item @emph{Standard}:
Fortran 77 and later, for a complex argument and for two arguments
Fortran 2008 or later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = ATAN(X)}
@item @code{RESULT = ATAN(Y, X)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX};
if @var{Y} is present, @var{X} shall be REAL.
@item @var{Y} @tab The type and kind type parameter shall be the same as @var{X}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
If @var{Y} is present, the result is identical to @code{ATAN2(Y,X)}.
Otherwise, it the arcus tangent of @var{X}, where the real part of
the result is in radians and lies in the range
@math{-\pi/2 \leq \Re \atan(x) \leq \pi/2}.

@item @emph{Example}:
@smallexample
program test_atan
  real(8) :: x = 2.866_8
  x = atan(x)
end program test_atan
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{ATAN(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DATAN(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{TAN} @gol
Degrees function: @gol
@ref{ATAND}
@end table



@node ATAND
@section @code{ATAND} --- Arctangent function, degrees
@fnindex ATAND
@fnindex DATAND
@cindex trigonometric function, tangent, inverse, degrees
@cindex tangent, inverse, degrees

@table @asis
@item @emph{Description}:
@code{ATAND(X)} computes the arctangent of @var{X} in degrees (inverse of
@ref{TAND}).

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = ATAND(X)}
@item @code{RESULT = ATAND(Y, X)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX};
if @var{Y} is present, @var{X} shall be REAL.
@item @var{Y} @tab The type and kind type parameter shall be the same as @var{X}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
If @var{Y} is present, the result is identical to @code{ATAND2(Y,X)}.
Otherwise, it is the arcus tangent of @var{X}, where the real part of
the result is in degrees and lies in the range
@math{-90 \leq \Re \atand(x) \leq 90}.

@item @emph{Example}:
@smallexample
program test_atand
  real(8) :: x = 2.866_8
  x = atand(x)
end program test_atand
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{ATAND(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab GNU extension
@item @code{DATAND(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{TAND} @gol
Radians function: @gol
@ref{ATAN}
@end table



@node ATAN2
@section @code{ATAN2} --- Arctangent function 
@fnindex ATAN2
@fnindex DATAN2
@cindex trigonometric function, tangent, inverse
@cindex tangent, inverse

@table @asis
@item @emph{Description}:
@code{ATAN2(Y, X)} computes the principal value of the argument
function of the complex number @math{X + i Y}.  This function can
be used to transform from Cartesian into polar coordinates and
allows to determine the angle in the correct quadrant.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ATAN2(Y, X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{Y} @tab The type shall be @code{REAL}.
@item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}.
If @var{Y} is zero, then @var{X} must be nonzero.
@end multitable

@item @emph{Return value}:
The return value has the same type and kind type parameter as @var{Y}. It
is the principal value of the complex number @math{X + i Y}.  If @var{X}
is nonzero, then it lies in the range @math{-\pi \le \atan (x) \leq \pi}.
The sign is positive if @var{Y} is positive.  If @var{Y} is zero, then
the return value is zero if @var{X} is strictly positive, @math{\pi} if
@var{X} is negative and @var{Y} is positive zero (or the processor does
not handle signed zeros), and @math{-\pi} if @var{X} is negative and
@var{Y} is negative zero.  Finally, if @var{X} is zero, then the
magnitude of the result is @math{\pi/2}.

@item @emph{Example}:
@smallexample
program test_atan2
  real(4) :: x = 1.e0_4, y = 0.5e0_4
  x = atan2(y,x)
end program test_atan2
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                @tab Argument            @tab Return type    @tab Standard
@item @code{ATAN2(X, Y)}  @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DATAN2(X, Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
Alias: @gol
@ref{ATAN} @gol
Degrees function: @gol
@ref{ATAN2D}
@end table



@node ATAN2D
@section @code{ATAN2D} --- Arctangent function, degrees
@fnindex ATAN2D
@fnindex DATAN2D
@cindex trigonometric function, tangent, inverse, degrees
@cindex tangent, inverse, degrees

@table @asis
@item @emph{Description}:
@code{ATAN2D(Y, X)} computes the principal value of the argument
function of the complex number @math{X + i Y} in degrees.  This function can
be used to transform from Cartesian into polar coordinates and
allows to determine the angle in the correct quadrant.

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ATAN2D(Y, X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{Y} @tab The type shall be @code{REAL}.
@item @var{X} @tab The type and kind type parameter shall be the same as @var{Y}.
If @var{Y} is zero, then @var{X} must be nonzero.
@end multitable

@item @emph{Return value}:
The return value has the same type and kind type parameter as @var{Y}. It
is the principal value of the complex number @math{X + i Y}.  If @var{X}
is nonzero, then it lies in the range @math{-180 \le \atan (x) \leq 180}.
The sign is positive if @var{Y} is positive.  If @var{Y} is zero, then
the return value is zero if @var{X} is strictly positive, @math{180} if
@var{X} is negative and @var{Y} is positive zero (or the processor does
not handle signed zeros), and @math{-180} if @var{X} is negative and
@var{Y} is negative zero.  Finally, if @var{X} is zero, then the
magnitude of the result is @math{90}.

@item @emph{Example}:
@smallexample
program test_atan2d
  real(4) :: x = 1.e0_4, y = 0.5e0_4
  x = atan2d(y,x)
end program test_atan2d
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                @tab Argument            @tab Return type    @tab Standard
@item @code{ATAN2D(X, Y)}  @tab @code{REAL(4) X, Y} @tab @code{REAL(4)} @tab GNU extension
@item @code{DATAN2D(X, Y)} @tab @code{REAL(8) X, Y} @tab @code{REAL(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
Alias: @gol
@ref{ATAND} @gol
Radians function: @gol
@ref{ATAN2}
@end table



@node ATANH
@section @code{ATANH} --- Inverse hyperbolic tangent function
@fnindex ATANH
@fnindex DATANH
@cindex area hyperbolic tangent
@cindex inverse hyperbolic tangent
@cindex hyperbolic function, tangent, inverse
@cindex tangent, hyperbolic, inverse

@table @asis
@item @emph{Description}:
@code{ATANH(X)} computes the inverse hyperbolic tangent of @var{X}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ATANH(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians and lies between
@math{-\pi/2 \leq \Im \atanh(x) \leq \pi/2}.

@item @emph{Example}:
@smallexample
PROGRAM test_atanh
  REAL, DIMENSION(3) :: x = (/ -1.0, 0.0, 1.0 /)
  WRITE (*,*) ATANH(x)
END PROGRAM
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument          @tab Return type       @tab Standard
@item @code{DATANH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{TANH}
@end table



@node ATOMIC_ADD
@section @code{ATOMIC_ADD} --- Atomic ADD operation
@fnindex ATOMIC_ADD
@cindex Atomic subroutine, add

@table @asis
@item @emph{Description}:
@code{ATOMIC_ADD(ATOM, VALUE)} atomically adds the value of @var{VAR} to the
variable @var{ATOM}. When @var{STAT} is present and the invocation was
successful, it is assigned the value 0. If it is present and the invocation
has failed, it is assigned a positive value; in particular, for a coindexed
@var{ATOM}, if the remote image has stopped, it is assigned the value of
@code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image has
failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_ADD (ATOM, VALUE [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*]
  call atomic_add (atom[1], this_image())
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_FETCH_ADD}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_AND}, @gol
@ref{ATOMIC_OR}, @gol
@ref{ATOMIC_XOR}
@end table




@node ATOMIC_AND
@section @code{ATOMIC_AND} --- Atomic bitwise AND operation
@fnindex ATOMIC_AND
@cindex Atomic subroutine, AND

@table @asis
@item @emph{Description}:
@code{ATOMIC_AND(ATOM, VALUE)} atomically defines @var{ATOM} with the bitwise
AND between the values of @var{ATOM} and @var{VALUE}. When @var{STAT} is present
and the invocation was successful, it is assigned the value 0. If it is present
and the invocation has failed, it is assigned a positive value; in particular,
for a coindexed @var{ATOM}, if the remote image has stopped, it is assigned the
value of @code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote
image has failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_AND (ATOM, VALUE [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*]
  call atomic_and (atom[1], int(b'10100011101'))
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_FETCH_AND}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_ADD}, @gol
@ref{ATOMIC_OR}, @gol
@ref{ATOMIC_XOR}
@end table



@node ATOMIC_CAS
@section @code{ATOMIC_CAS} --- Atomic compare and swap
@fnindex ATOMIC_DEFINE
@cindex Atomic subroutine, compare and swap

@table @asis
@item @emph{Description}:
@code{ATOMIC_CAS} compares the variable @var{ATOM} with the value of
@var{COMPARE}; if the value is the same, @var{ATOM} is set to the value
of @var{NEW}. Additionally, @var{OLD} is set to the value of @var{ATOM}
that was used for the comparison.  When @var{STAT} is present and the invocation
was successful, it is assigned the value 0. If it is present and the invocation
has failed, it is assigned a positive value; in particular, for a coindexed
@var{ATOM}, if the remote image has stopped, it is assigned the value of
@code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image has
failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_CAS (ATOM, OLD, COMPARE, NEW [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}    @tab Scalar coarray or coindexed variable of either integer
type with @code{ATOMIC_INT_KIND} kind or logical type with
@code{ATOMIC_LOGICAL_KIND} kind.
@item @var{OLD}     @tab Scalar of the same type and kind as @var{ATOM}.
@item @var{COMPARE} @tab Scalar variable of the same type and kind as
@var{ATOM}.
@item @var{NEW}     @tab Scalar variable of the same type as @var{ATOM}. If kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{STAT}    @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  logical(atomic_logical_kind) :: atom[*], prev
  call atomic_cas (atom[1], prev, .false., .true.))
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_REF}, @gol
@ref{ISO_FORTRAN_ENV}
@end table



@node ATOMIC_DEFINE
@section @code{ATOMIC_DEFINE} --- Setting a variable atomically
@fnindex ATOMIC_DEFINE
@cindex Atomic subroutine, define

@table @asis
@item @emph{Description}:
@code{ATOMIC_DEFINE(ATOM, VALUE)} defines the variable @var{ATOM} with the value
@var{VALUE} atomically. When @var{STAT} is present and the invocation was
successful, it is assigned the value 0. If it is present and the invocation
has failed, it is assigned a positive value; in particular, for a coindexed
@var{ATOM}, if the remote image has stopped, it is assigned the value of
@code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image has
failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
Fortran 2008 and later; with @var{STAT}, TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_DEFINE (ATOM, VALUE [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of either integer
type with @code{ATOMIC_INT_KIND} kind or logical type with
@code{ATOMIC_LOGICAL_KIND} kind.

@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*]
  call atomic_define (atom[1], this_image())
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_REF}, @gol
@ref{ATOMIC_CAS}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_ADD}, @gol
@ref{ATOMIC_AND}, @gol
@ref{ATOMIC_OR}, @gol
@ref{ATOMIC_XOR}
@end table



@node ATOMIC_FETCH_ADD
@section @code{ATOMIC_FETCH_ADD} --- Atomic ADD operation with prior fetch
@fnindex ATOMIC_FETCH_ADD
@cindex Atomic subroutine, ADD with fetch

@table @asis
@item @emph{Description}:
@code{ATOMIC_FETCH_ADD(ATOM, VALUE, OLD)} atomically stores the value of
@var{ATOM} in @var{OLD} and adds the value of @var{VAR} to the
variable @var{ATOM}. When @var{STAT} is present and the invocation was
successful, it is assigned the value 0. If it is present and the invocation
has failed, it is assigned a positive value; in particular, for a coindexed
@var{ATOM}, if the remote image has stopped, it is assigned the value of
@code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image has
failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_FETCH_ADD (ATOM, VALUE, old [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@code{ATOMIC_LOGICAL_KIND} kind.

@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{OLD}    @tab Scalar of the same type and kind as @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*], old
  call atomic_add (atom[1], this_image(), old)
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_ADD}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_FETCH_AND}, @gol
@ref{ATOMIC_FETCH_OR}, @gol
@ref{ATOMIC_FETCH_XOR}
@end table



@node ATOMIC_FETCH_AND
@section @code{ATOMIC_FETCH_AND} --- Atomic bitwise AND operation with prior fetch
@fnindex ATOMIC_FETCH_AND
@cindex Atomic subroutine, AND with fetch

@table @asis
@item @emph{Description}:
@code{ATOMIC_AND(ATOM, VALUE)} atomically stores the value of @var{ATOM} in
@var{OLD} and defines @var{ATOM} with the bitwise AND between the values of
@var{ATOM} and @var{VALUE}. When @var{STAT} is present and the invocation was
successful, it is assigned the value 0. If it is present and the invocation has
failed, it is assigned a positive value; in particular, for a coindexed
@var{ATOM}, if the remote image has stopped, it is assigned the value of
@code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image has
failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_FETCH_AND (ATOM, VALUE, OLD [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{OLD}    @tab Scalar of the same type and kind as @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*], old
  call atomic_fetch_and (atom[1], int(b'10100011101'), old)
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_AND}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_FETCH_ADD}, @gol
@ref{ATOMIC_FETCH_OR}, @gol
@ref{ATOMIC_FETCH_XOR}
@end table



@node ATOMIC_FETCH_OR
@section @code{ATOMIC_FETCH_OR} --- Atomic bitwise OR operation with prior fetch
@fnindex ATOMIC_FETCH_OR
@cindex Atomic subroutine, OR with fetch

@table @asis
@item @emph{Description}:
@code{ATOMIC_OR(ATOM, VALUE)} atomically stores the value of @var{ATOM} in
@var{OLD} and defines @var{ATOM} with the bitwise OR between the values of
@var{ATOM} and @var{VALUE}. When @var{STAT} is present and the invocation was
successful, it is assigned the value 0. If it is present and the invocation has
failed, it is assigned a positive value; in particular, for a coindexed
@var{ATOM}, if the remote image has stopped, it is assigned the value of
@code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image has
failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_FETCH_OR (ATOM, VALUE, OLD [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{OLD}    @tab Scalar of the same type and kind as @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*], old
  call atomic_fetch_or (atom[1], int(b'10100011101'), old)
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_OR}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_FETCH_ADD}, @gol
@ref{ATOMIC_FETCH_AND}, @gol
@ref{ATOMIC_FETCH_XOR}
@end table



@node ATOMIC_FETCH_XOR
@section @code{ATOMIC_FETCH_XOR} --- Atomic bitwise XOR operation with prior fetch
@fnindex ATOMIC_FETCH_XOR
@cindex Atomic subroutine, XOR with fetch

@table @asis
@item @emph{Description}:
@code{ATOMIC_XOR(ATOM, VALUE)} atomically stores the value of @var{ATOM} in
@var{OLD} and defines @var{ATOM} with the bitwise XOR between the values of
@var{ATOM} and @var{VALUE}. When @var{STAT} is present and the invocation was
successful, it is assigned the value 0. If it is present and the invocation has
failed, it is assigned a positive value; in particular, for a coindexed
@var{ATOM}, if the remote image has stopped, it is assigned the value of
@code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image has
failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_FETCH_XOR (ATOM, VALUE, OLD [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{OLD}    @tab Scalar of the same type and kind as @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*], old
  call atomic_fetch_xor (atom[1], int(b'10100011101'), old)
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_XOR}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_FETCH_ADD}, @gol
@ref{ATOMIC_FETCH_AND}, @gol
@ref{ATOMIC_FETCH_OR}
@end table



@node ATOMIC_OR
@section @code{ATOMIC_OR} --- Atomic bitwise OR operation
@fnindex ATOMIC_OR
@cindex Atomic subroutine, OR

@table @asis
@item @emph{Description}:
@code{ATOMIC_OR(ATOM, VALUE)} atomically defines @var{ATOM} with the bitwise
AND between the values of @var{ATOM} and @var{VALUE}. When @var{STAT} is present
and the invocation was successful, it is assigned the value 0. If it is present
and the invocation has failed, it is assigned a positive value; in particular,
for a coindexed @var{ATOM}, if the remote image has stopped, it is assigned the
value of @code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote
image has failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_OR (ATOM, VALUE [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*]
  call atomic_or (atom[1], int(b'10100011101'))
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_FETCH_OR}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_ADD}, @gol
@ref{ATOMIC_OR}, @gol
@ref{ATOMIC_XOR}
@end table



@node ATOMIC_REF
@section @code{ATOMIC_REF} --- Obtaining the value of a variable atomically
@fnindex ATOMIC_REF
@cindex Atomic subroutine, reference

@table @asis
@item @emph{Description}:
@code{ATOMIC_DEFINE(ATOM, VALUE)} atomically assigns the value of the
variable @var{ATOM} to @var{VALUE}. When @var{STAT} is present and the
invocation was successful, it is assigned the value 0. If it is present and the
invocation has failed, it is assigned a positive value; in particular, for a
coindexed @var{ATOM}, if the remote image has stopped, it is assigned the value
of @code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote image
has failed, the value @code{STAT_FAILED_IMAGE}.


@item @emph{Standard}:
Fortran 2008 and later; with @var{STAT}, TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_REF(VALUE, ATOM [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of either integer
type with @code{ATOMIC_INT_KIND} kind or logical type with
@code{ATOMIC_LOGICAL_KIND} kind.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  logical(atomic_logical_kind) :: atom[*]
  logical :: val
  call atomic_ref (atom, .false.)
  ! ...
  call atomic_ref (atom, val)
  if (val) then
    print *, "Obtained"
  end if
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_CAS}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_FETCH_ADD}, @gol
@ref{ATOMIC_FETCH_AND}, @gol
@ref{ATOMIC_FETCH_OR}, @gol
@ref{ATOMIC_FETCH_XOR}
@end table


@node ATOMIC_XOR
@section @code{ATOMIC_XOR} --- Atomic bitwise OR operation
@fnindex ATOMIC_XOR
@cindex Atomic subroutine, XOR

@table @asis
@item @emph{Description}:
@code{ATOMIC_AND(ATOM, VALUE)} atomically defines @var{ATOM} with the bitwise
XOR between the values of @var{ATOM} and @var{VALUE}. When @var{STAT} is present
and the invocation was successful, it is assigned the value 0. If it is present
and the invocation has failed, it is assigned a positive value; in particular,
for a coindexed @var{ATOM}, if the remote image has stopped, it is assigned the
value of @code{ISO_FORTRAN_ENV}'s @code{STAT_STOPPED_IMAGE} and if the remote
image has failed, the value @code{STAT_FAILED_IMAGE}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
Atomic subroutine

@item @emph{Syntax}:
@code{CALL ATOMIC_XOR (ATOM, VALUE [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ATOM}   @tab Scalar coarray or coindexed variable of integer
type with @code{ATOMIC_INT_KIND} kind.
@item @var{VALUE}  @tab Scalar of the same type as @var{ATOM}. If the kind
is different, the value is converted to the kind of @var{ATOM}.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  integer(atomic_int_kind) :: atom[*]
  call atomic_xor (atom[1], int(b'10100011101'))
end program atomic
@end smallexample

@item @emph{See also}:
@ref{ATOMIC_DEFINE}, @gol
@ref{ATOMIC_FETCH_XOR}, @gol
@ref{ISO_FORTRAN_ENV}, @gol
@ref{ATOMIC_ADD}, @gol
@ref{ATOMIC_OR}, @gol
@ref{ATOMIC_XOR}
@end table


@node BACKTRACE
@section @code{BACKTRACE} --- Show a backtrace
@fnindex BACKTRACE
@cindex backtrace

@table @asis
@item @emph{Description}:
@code{BACKTRACE} shows a backtrace at an arbitrary place in user code. Program
execution continues normally afterwards. The backtrace information is printed
to the unit corresponding to @code{ERROR_UNIT} in @code{ISO_FORTRAN_ENV}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL BACKTRACE}

@item @emph{Arguments}:
None

@item @emph{See also}:
@ref{ABORT}
@end table



@node BESSEL_J0
@section @code{BESSEL_J0} --- Bessel function of the first kind of order 0
@fnindex BESSEL_J0
@fnindex BESJ0
@fnindex DBESJ0
@cindex Bessel function, first kind

@table @asis
@item @emph{Description}:
@code{BESSEL_J0(X)} computes the Bessel function of the first kind of
order 0 of @var{X}. This function is available under the name
@code{BESJ0} as a GNU extension.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BESSEL_J0(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} and lies in the
range @math{ - 0.4027... \leq Bessel (0,x) \leq 1}. It has the same
kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_besj0
  real(8) :: x = 0.0_8
  x = bessel_j0(x)
end program test_besj0
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{DBESJ0(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}   @tab GNU extension
@end multitable
@end table



@node BESSEL_J1
@section @code{BESSEL_J1} --- Bessel function of the first kind of order 1
@fnindex BESSEL_J1
@fnindex BESJ1
@fnindex DBESJ1
@cindex Bessel function, first kind

@table @asis
@item @emph{Description}:
@code{BESSEL_J1(X)} computes the Bessel function of the first kind of
order 1 of @var{X}. This function is available under the name
@code{BESJ1} as a GNU extension.

@item @emph{Standard}:
Fortran 2008

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BESSEL_J1(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} and lies in the
range @math{ - 0.5818... \leq Bessel (0,x) \leq 0.5818 }. It has the same
kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_besj1
  real(8) :: x = 1.0_8
  x = bessel_j1(x)
end program test_besj1
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument          @tab Return type       @tab Standard
@item @code{DBESJ1(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable
@end table



@node BESSEL_JN
@section @code{BESSEL_JN} --- Bessel function of the first kind
@fnindex BESSEL_JN
@fnindex BESJN
@fnindex DBESJN
@cindex Bessel function, first kind

@table @asis
@item @emph{Description}:
@code{BESSEL_JN(N, X)} computes the Bessel function of the first kind of
order @var{N} of @var{X}. This function is available under the name
@code{BESJN} as a GNU extension.  If @var{N} and @var{X} are arrays,
their ranks and shapes shall conform.  

@code{BESSEL_JN(N1, N2, X)} returns an array with the Bessel functions
of the first kind of the orders @var{N1} to @var{N2}.

@item @emph{Standard}:
Fortran 2008 and later, negative @var{N} is allowed as GNU extension

@item @emph{Class}:
Elemental function, except for the transformational function
@code{BESSEL_JN(N1, N2, X)}

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = BESSEL_JN(N, X)}
@item @code{RESULT = BESSEL_JN(N1, N2, X)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{N} @tab Shall be a scalar or an array of type  @code{INTEGER}.
@item @var{N1} @tab Shall be a non-negative scalar of type  @code{INTEGER}.
@item @var{N2} @tab Shall be a non-negative scalar of type  @code{INTEGER}.
@item @var{X} @tab Shall be a scalar or an array of type  @code{REAL};
for @code{BESSEL_JN(N1, N2, X)} it shall be scalar.
@end multitable

@item @emph{Return value}:
The return value is a scalar of type @code{REAL}. It has the same
kind as @var{X}.

@item @emph{Note}:
The transformational function uses a recurrence algorithm which might,
for some values of @var{X}, lead to different results than calls to
the elemental function.

@item @emph{Example}:
@smallexample
program test_besjn
  real(8) :: x = 1.0_8
  x = bessel_jn(5,x)
end program test_besjn
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                @tab Argument            @tab Return type       @tab Standard
@item @code{DBESJN(N, X)} @tab @code{INTEGER N}    @tab @code{REAL(8)}    @tab GNU extension
@item                     @tab @code{REAL(8) X}    @tab                   @tab
@end multitable
@end table



@node BESSEL_Y0
@section @code{BESSEL_Y0} --- Bessel function of the second kind of order 0
@fnindex BESSEL_Y0
@fnindex BESY0
@fnindex DBESY0
@cindex Bessel function, second kind

@table @asis
@item @emph{Description}:
@code{BESSEL_Y0(X)} computes the Bessel function of the second kind of
order 0 of @var{X}. This function is available under the name
@code{BESY0} as a GNU extension.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BESSEL_Y0(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL}. It has the same kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_besy0
  real(8) :: x = 0.0_8
  x = bessel_y0(x)
end program test_besy0
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{DBESY0(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable
@end table



@node BESSEL_Y1
@section @code{BESSEL_Y1} --- Bessel function of the second kind of order 1
@fnindex BESSEL_Y1
@fnindex BESY1
@fnindex DBESY1
@cindex Bessel function, second kind

@table @asis
@item @emph{Description}:
@code{BESSEL_Y1(X)} computes the Bessel function of the second kind of
order 1 of @var{X}. This function is available under the name
@code{BESY1} as a GNU extension.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BESSEL_Y1(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL}. It has the same kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_besy1
  real(8) :: x = 1.0_8
  x = bessel_y1(x)
end program test_besy1
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{DBESY1(X)}@tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable
@end table



@node BESSEL_YN
@section @code{BESSEL_YN} --- Bessel function of the second kind
@fnindex BESSEL_YN
@fnindex BESYN
@fnindex DBESYN
@cindex Bessel function, second kind

@table @asis
@item @emph{Description}:
@code{BESSEL_YN(N, X)} computes the Bessel function of the second kind of
order @var{N} of @var{X}. This function is available under the name
@code{BESYN} as a GNU extension.  If @var{N} and @var{X} are arrays,
their ranks and shapes shall conform.  

@code{BESSEL_YN(N1, N2, X)} returns an array with the Bessel functions
of the first kind of the orders @var{N1} to @var{N2}.

@item @emph{Standard}:
Fortran 2008 and later, negative @var{N} is allowed as GNU extension

@item @emph{Class}:
Elemental function, except for the transformational function
@code{BESSEL_YN(N1, N2, X)}

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = BESSEL_YN(N, X)}
@item @code{RESULT = BESSEL_YN(N1, N2, X)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{N} @tab Shall be a scalar or an array of type  @code{INTEGER} .
@item @var{N1} @tab Shall be a non-negative scalar of type  @code{INTEGER}.
@item @var{N2} @tab Shall be a non-negative scalar of type  @code{INTEGER}.
@item @var{X} @tab Shall be a scalar or an array of type  @code{REAL};
for @code{BESSEL_YN(N1, N2, X)} it shall be scalar.
@end multitable

@item @emph{Return value}:
The return value is a scalar of type @code{REAL}. It has the same
kind as @var{X}.

@item @emph{Note}:
The transformational function uses a recurrence algorithm which might,
for some values of @var{X}, lead to different results than calls to
the elemental function.

@item @emph{Example}:
@smallexample
program test_besyn
  real(8) :: x = 1.0_8
  x = bessel_yn(5,x)
end program test_besyn
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name               @tab Argument            @tab Return type     @tab Standard
@item @code{DBESYN(N,X)} @tab @code{INTEGER N} @tab @code{REAL(8)}  @tab GNU extension
@item                    @tab @code{REAL(8) X} @tab                 @tab 
@end multitable
@end table



@node BGE
@section @code{BGE} --- Bitwise greater than or equal to
@fnindex BGE
@cindex bitwise comparison

@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise greater than or equal to
another.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BGE(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.

@item @emph{See also}:
@ref{BGT}, @gol
@ref{BLE}, @gol
@ref{BLT}
@end table



@node BGT
@section @code{BGT} --- Bitwise greater than
@fnindex BGT
@cindex bitwise comparison

@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise greater than another.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BGT(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.

@item @emph{See also}:
@ref{BGE}, @gol
@ref{BLE}, @gol
@ref{BLT}
@end table



@node BIT_SIZE
@section @code{BIT_SIZE} --- Bit size inquiry function
@fnindex BIT_SIZE
@cindex bits, number of
@cindex size of a variable, in bits

@table @asis
@item @emph{Description}:
@code{BIT_SIZE(I)} returns the number of bits (integer precision plus sign bit)
represented by the type of @var{I}.  The result of @code{BIT_SIZE(I)} is
independent of the actual value of @var{I}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = BIT_SIZE(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER}

@item @emph{Example}:
@smallexample
program test_bit_size
    integer :: i = 123
    integer :: size
    size = bit_size(i)
    print *, size
end program test_bit_size
@end smallexample
@end table



@node BLE
@section @code{BLE} --- Bitwise less than or equal to
@fnindex BLE
@cindex bitwise comparison

@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise less than or equal to
another.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BLE(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.

@item @emph{See also}:
@ref{BGT}, @gol
@ref{BGE}, @gol
@ref{BLT}
@end table



@node BLT
@section @code{BLT} --- Bitwise less than
@fnindex BLT
@cindex bitwise comparison

@table @asis
@item @emph{Description}:
Determines whether an integral is a bitwise less than another.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BLT(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of @code{INTEGER} type.
@item @var{J} @tab Shall be of @code{INTEGER} type, and of the same kind
as @var{I}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{LOGICAL} and of the default kind.

@item @emph{See also}:
@ref{BGE}, @gol
@ref{BGT}, @gol
@ref{BLE}
@end table



@node BTEST
@section @code{BTEST} --- Bit test function
@fnindex BTEST
@fnindex BBTEST
@fnindex BITEST
@fnindex BJTEST
@fnindex BKTEST
@cindex bits, testing

@table @asis
@item @emph{Description}:
@code{BTEST(I,POS)} returns logical @code{.TRUE.} if the bit at @var{POS}
in @var{I} is set.  The counting of the bits starts at 0.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = BTEST(I, POS)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{LOGICAL}

@item @emph{Example}:
@smallexample
program test_btest
    integer :: i = 32768 + 1024 + 64
    integer :: pos
    logical :: bool
    do pos=0,16
        bool = btest(i, pos) 
        print *, pos, bool
    end do
end program test_btest
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name           @tab Argument         @tab Return type             @tab Standard
@item @code{BTEST(I,POS)} @tab @code{INTEGER I,POS} @tab @code{LOGICAL} @tab Fortran 95 and later
@item @code{BBTEST(I,POS)} @tab @code{INTEGER(1) I,POS} @tab @code{LOGICAL(1)} @tab GNU extension
@item @code{BITEST(I,POS)} @tab @code{INTEGER(2) I,POS} @tab @code{LOGICAL(2)} @tab GNU extension
@item @code{BJTEST(I,POS)} @tab @code{INTEGER(4) I,POS} @tab @code{LOGICAL(4)} @tab GNU extension
@item @code{BKTEST(I,POS)} @tab @code{INTEGER(8) I,POS} @tab @code{LOGICAL(8)} @tab GNU extension
@end multitable
@end table

@node C_ASSOCIATED
@section @code{C_ASSOCIATED} --- Status of a C pointer
@fnindex C_ASSOCIATED
@cindex association status, C pointer
@cindex pointer, C association status

@table @asis
@item @emph{Description}:
@code{C_ASSOCIATED(c_ptr_1[, c_ptr_2])} determines the status of the C pointer
@var{c_ptr_1} or if @var{c_ptr_1} is associated with the target @var{c_ptr_2}.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = C_ASSOCIATED(c_ptr_1[, c_ptr_2])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{c_ptr_1} @tab Scalar of the type @code{C_PTR} or @code{C_FUNPTR}.
@item @var{c_ptr_2} @tab (Optional) Scalar of the same type as @var{c_ptr_1}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{LOGICAL}; it is @code{.false.} if either
@var{c_ptr_1} is a C NULL pointer or if @var{c_ptr1} and @var{c_ptr_2}
point to different addresses.

@item @emph{Example}:
@smallexample
subroutine association_test(a,b)
  use iso_c_binding, only: c_associated, c_loc, c_ptr
  implicit none
  real, pointer :: a
  type(c_ptr) :: b
  if(c_associated(b, c_loc(a))) &
     stop 'b and a do not point to same target'
end subroutine association_test
@end smallexample

@item @emph{See also}:
@ref{C_LOC}, @gol
@ref{C_FUNLOC}
@end table


@node C_F_POINTER
@section @code{C_F_POINTER} --- Convert C into Fortran pointer
@fnindex C_F_POINTER
@cindex pointer, convert C to Fortran

@table @asis
@item @emph{Description}:
@code{C_F_POINTER(CPTR, FPTR[, SHAPE])} assigns the target of the C pointer
@var{CPTR} to the Fortran pointer @var{FPTR} and specifies its shape.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL C_F_POINTER(CPTR, FPTR[, SHAPE])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{CPTR}  @tab scalar of the type @code{C_PTR}. It is
@code{INTENT(IN)}.
@item @var{FPTR}  @tab pointer interoperable with @var{cptr}. It is
@code{INTENT(OUT)}.
@item @var{SHAPE} @tab (Optional) Rank-one array of type @code{INTEGER}
with @code{INTENT(IN)}. It shall be present
if and only if @var{fptr} is an array. The size
must be equal to the rank of @var{fptr}.
@end multitable

@item @emph{Example}:
@smallexample
program main
  use iso_c_binding
  implicit none
  interface
    subroutine my_routine(p) bind(c,name='myC_func')
      import :: c_ptr
      type(c_ptr), intent(out) :: p
    end subroutine
  end interface
  type(c_ptr) :: cptr
  real,pointer :: a(:)
  call my_routine(cptr)
  call c_f_pointer(cptr, a, [12])
end program main
@end smallexample

@item @emph{See also}:
@ref{C_LOC}, @gol
@ref{C_F_PROCPOINTER}
@end table


@node C_F_PROCPOINTER
@section @code{C_F_PROCPOINTER} --- Convert C into Fortran procedure pointer
@fnindex C_F_PROCPOINTER
@cindex pointer, C address of pointers

@table @asis
@item @emph{Description}:
@code{C_F_PROCPOINTER(CPTR, FPTR)} Assign the target of the C function pointer
@var{CPTR} to the Fortran procedure pointer @var{FPTR}.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL C_F_PROCPOINTER(cptr, fptr)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{CPTR}  @tab scalar of the type @code{C_FUNPTR}. It is
@code{INTENT(IN)}.
@item @var{FPTR}  @tab procedure pointer interoperable with @var{cptr}. It is
@code{INTENT(OUT)}.
@end multitable

@item @emph{Example}:
@smallexample
program main
  use iso_c_binding
  implicit none
  abstract interface
    function func(a)
      import :: c_float
      real(c_float), intent(in) :: a
      real(c_float) :: func
    end function
  end interface
  interface
     function getIterFunc() bind(c,name="getIterFunc")
       import :: c_funptr
       type(c_funptr) :: getIterFunc
     end function
  end interface
  type(c_funptr) :: cfunptr
  procedure(func), pointer :: myFunc
  cfunptr = getIterFunc()
  call c_f_procpointer(cfunptr, myFunc)
end program main
@end smallexample

@item @emph{See also}:
@ref{C_LOC}, @gol
@ref{C_F_POINTER}
@end table


@node C_FUNLOC
@section @code{C_FUNLOC} --- Obtain the C address of a procedure
@fnindex C_FUNLOC
@cindex pointer, C address of procedures

@table @asis
@item @emph{Description}:
@code{C_FUNLOC(x)} determines the C address of the argument.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = C_FUNLOC(x)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{x} @tab Interoperable function or pointer to such function.
@end multitable

@item @emph{Return value}:
The return value is of type @code{C_FUNPTR} and contains the C address
of the argument.

@item @emph{Example}:
@smallexample
module x
  use iso_c_binding
  implicit none
contains
  subroutine sub(a) bind(c)
    real(c_float) :: a
    a = sqrt(a)+5.0
  end subroutine sub
end module x
program main
  use iso_c_binding
  use x
  implicit none
  interface
    subroutine my_routine(p) bind(c,name='myC_func')
      import :: c_funptr
      type(c_funptr), intent(in) :: p
    end subroutine
  end interface
  call my_routine(c_funloc(sub))
end program main
@end smallexample

@item @emph{See also}:
@ref{C_ASSOCIATED}, @gol
@ref{C_LOC}, @gol
@ref{C_F_POINTER}, @gol
@ref{C_F_PROCPOINTER}
@end table


@node C_LOC
@section @code{C_LOC} --- Obtain the C address of an object
@fnindex C_LOC
@cindex procedure pointer, convert C to Fortran

@table @asis
@item @emph{Description}:
@code{C_LOC(X)} determines the C address of the argument.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = C_LOC(X)}

@item @emph{Arguments}:
@multitable @columnfractions .10 .75
@item @var{X} @tab  Shall have either the POINTER or TARGET attribute. It shall not be a coindexed object. It shall either be a variable with interoperable type and kind type parameters, or be a scalar, nonpolymorphic variable with no length type parameters.

@end multitable

@item @emph{Return value}:
The return value is of type @code{C_PTR} and contains the C address
of the argument.

@item @emph{Example}:
@smallexample
subroutine association_test(a,b)
  use iso_c_binding, only: c_associated, c_loc, c_ptr
  implicit none
  real, pointer :: a
  type(c_ptr) :: b
  if(c_associated(b, c_loc(a))) &
     stop 'b and a do not point to same target'
end subroutine association_test
@end smallexample

@item @emph{See also}:
@ref{C_ASSOCIATED}, @gol
@ref{C_FUNLOC}, @gol
@ref{C_F_POINTER}, @gol
@ref{C_F_PROCPOINTER}
@end table


@node C_SIZEOF
@section @code{C_SIZEOF} --- Size in bytes of an expression
@fnindex C_SIZEOF
@cindex expression size
@cindex size of an expression

@table @asis
@item @emph{Description}:
@code{C_SIZEOF(X)} calculates the number of bytes of storage the
expression @code{X} occupies.

@item @emph{Standard}:
Fortran 2008

@item @emph{Class}:
Inquiry function of the module @code{ISO_C_BINDING}

@item @emph{Syntax}:
@code{N = C_SIZEOF(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The argument shall be an interoperable data entity.
@end multitable

@item @emph{Return value}:
The return value is of type integer and of the system-dependent kind
@code{C_SIZE_T} (from the @code{ISO_C_BINDING} module). Its value is the
number of bytes occupied by the argument.  If the argument has the
@code{POINTER} attribute, the number of bytes of the storage area pointed
to is returned.  If the argument is of a derived type with @code{POINTER}
or @code{ALLOCATABLE} components, the return value does not account for
the sizes of the data pointed to by these components.

@item @emph{Example}:
@smallexample
   use iso_c_binding
   integer(c_int) :: i
   real(c_float) :: r, s(5)
   print *, (c_sizeof(s)/c_sizeof(r) == 5)
   end
@end smallexample
The example will print @code{T} unless you are using a platform
where default @code{REAL} variables are unusually padded.

@item @emph{See also}:
@ref{SIZEOF}, @gol
@ref{STORAGE_SIZE}
@end table


@node CEILING
@section @code{CEILING} --- Integer ceiling function
@fnindex CEILING
@cindex ceiling
@cindex rounding, ceiling

@table @asis
@item @emph{Description}:
@code{CEILING(A)} returns the least integer greater than or equal to @var{A}.

@item @emph{Standard}:
Fortran 95 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = CEILING(A [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER(KIND)} if @var{KIND} is present
and a default-kind @code{INTEGER} otherwise.

@item @emph{Example}:
@smallexample
program test_ceiling
    real :: x = 63.29
    real :: y = -63.59
    print *, ceiling(x) ! returns 64
    print *, ceiling(y) ! returns -63
end program test_ceiling
@end smallexample

@item @emph{See also}:
@ref{FLOOR}, @gol
@ref{NINT}
@end table



@node CHAR
@section @code{CHAR} --- Character conversion function
@fnindex CHAR
@cindex conversion, to character

@table @asis
@item @emph{Description}:
@code{CHAR(I [, KIND])} returns the character represented by the integer @var{I}.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = CHAR(I [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{CHARACTER(1)}

@item @emph{Example}:
@smallexample
program test_char
    integer :: i = 74
    character(1) :: c
    c = char(i)
    print *, i, c ! returns 'J'
end program test_char
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .18 .18 .24 .25
@item Name           @tab Argument         @tab Return type             @tab Standard
@item @code{CHAR(I)} @tab @code{INTEGER I} @tab @code{CHARACTER(LEN=1)} @tab Fortran 77 and later
@end multitable

@item @emph{Note}:
See @ref{ICHAR} for a discussion of converting between numerical values
and formatted string representations.

@item @emph{See also}:
@ref{ACHAR}, @gol
@ref{IACHAR}, @gol
@ref{ICHAR}

@end table



@node CHDIR
@section @code{CHDIR} --- Change working directory
@fnindex CHDIR
@cindex system, working directory

@table @asis
@item @emph{Description}:
Change current working directory to a specified path.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL CHDIR(NAME [, STATUS])}
@item @code{STATUS = CHDIR(NAME)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME}   @tab The type shall be @code{CHARACTER} of default
kind and shall specify a valid path within the file system.
@item @var{STATUS} @tab (Optional) @code{INTEGER} status flag of the default
kind.  Returns 0 on success, and a system specific and nonzero error code
otherwise.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_chdir
  CHARACTER(len=255) :: path
  CALL getcwd(path)
  WRITE(*,*) TRIM(path)
  CALL chdir("/tmp")
  CALL getcwd(path)
  WRITE(*,*) TRIM(path)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{GETCWD}
@end table



@node CHMOD
@section @code{CHMOD} --- Change access permissions of files
@fnindex CHMOD
@cindex file system, change access mode

@table @asis
@item @emph{Description}:
@code{CHMOD} changes the permissions of a file.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL CHMOD(NAME, MODE[, STATUS])}
@item @code{STATUS = CHMOD(NAME, MODE)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70

@item @var{NAME} @tab Scalar @code{CHARACTER} of default kind with the
file name. Trailing blanks are ignored unless the character
@code{achar(0)} is present, then all characters up to and excluding
@code{achar(0)} are used as the file name.

@item @var{MODE} @tab Scalar @code{CHARACTER} of default kind giving the
file permission. @var{MODE} uses the same syntax as the @code{chmod} utility
as defined by the POSIX standard. The argument shall either be a string of
a nonnegative octal number or a symbolic mode.

@item @var{STATUS} @tab (optional) scalar @code{INTEGER}, which is
@code{0} on success and nonzero otherwise.
@end multitable

@item @emph{Return value}:
In either syntax, @var{STATUS} is set to @code{0} on success and nonzero
otherwise.

@item @emph{Example}:
@code{CHMOD} as subroutine
@smallexample
program chmod_test
  implicit none
  integer :: status
  call chmod('test.dat','u+x',status)
  print *, 'Status: ', status
end program chmod_test
@end smallexample
@code{CHMOD} as function:
@smallexample
program chmod_test
  implicit none
  integer :: status
  status = chmod('test.dat','u+x')
  print *, 'Status: ', status
end program chmod_test
@end smallexample

@end table



@node CMPLX
@section @code{CMPLX} --- Complex conversion function
@fnindex CMPLX
@cindex complex numbers, conversion to
@cindex conversion, to complex

@table @asis
@item @emph{Description}:
@code{CMPLX(X [, Y [, KIND]])} returns a complex number where @var{X} is converted to
the real component.  If @var{Y} is present it is converted to the imaginary
component.  If @var{Y} is not present then the imaginary component is set to
0.0.  If @var{X} is complex then @var{Y} must not be present.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = CMPLX(X [, Y [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER}, @code{REAL},
or @code{COMPLEX}.
@item @var{Y} @tab (Optional; only allowed if @var{X} is not
@code{COMPLEX}.)  May be @code{INTEGER} or @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of @code{COMPLEX} type, with a kind equal to
@var{KIND} if it is specified.  If @var{KIND} is not specified, the
result is of the default @code{COMPLEX} kind, regardless of the kinds of
@var{X} and @var{Y}. 

@item @emph{Example}:
@smallexample
program test_cmplx
    integer :: i = 42
    real :: x = 3.14
    complex :: z
    z = cmplx(i, x)
    print *, z, cmplx(x)
end program test_cmplx
@end smallexample

@item @emph{See also}:
@ref{COMPLEX}
@end table



@node CO_BROADCAST
@section @code{CO_BROADCAST} --- Copy a value to all images the current set of images
@fnindex CO_BROADCAST
@cindex Collectives, value broadcasting

@table @asis
@item @emph{Description}:
@code{CO_BROADCAST} copies the value of argument @var{A} on the image with
image index @code{SOURCE_IMAGE} to all images in the current team.  @var{A}
becomes defined as if by intrinsic assignment.  If the execution was
successful and @var{STAT} is present, it is assigned the value zero.  If the
execution failed, @var{STAT} gets assigned a nonzero value and, if present,
@var{ERRMSG} gets assigned a value describing the occurred error.

@item @emph{Standard}:
Technical Specification (TS) 18508 or later

@item @emph{Class}:
Collective subroutine

@item @emph{Syntax}:
@code{CALL CO_BROADCAST(A, SOURCE_IMAGE [, STAT, ERRMSG])}

@item @emph{Arguments}:
@multitable @columnfractions .20 .65
@item @var{A}            @tab INTENT(INOUT) argument; shall have the same
dynamic type and type parameters on all images of the current team. If it
is an array, it shall have the same shape on all images.
@item @var{SOURCE_IMAGE} @tab a scalar integer expression.
It shall have the same the same value on all images and refer to an
image of the current team.
@item @var{STAT}         @tab (optional) a scalar integer variable
@item @var{ERRMSG}       @tab (optional) a scalar character variable
@end multitable

@item @emph{Example}:
@smallexample
program test
  integer :: val(3)
  if (this_image() == 1) then
    val = [1, 5, 3]
  end if
  call co_broadcast (val, source_image=1)
  print *, this_image, ":", val
end program test
@end smallexample

@item @emph{See also}:
@ref{CO_MAX}, @gol
@ref{CO_MIN}, @gol
@ref{CO_SUM}, @gol
@ref{CO_REDUCE}
@end table



@node CO_MAX
@section @code{CO_MAX} --- Maximal value on the current set of images
@fnindex CO_MAX
@cindex Collectives, maximal value

@table @asis
@item @emph{Description}:
@code{CO_MAX} determines element-wise the maximal value of @var{A} on all
images of the current team.  If @var{RESULT_IMAGE} is present, the maximum
values are returned in @var{A} on the specified image only and the value
of @var{A} on the other images become undefined.  If @var{RESULT_IMAGE} is
not present, the value is returned on all images.  If the execution was
successful and @var{STAT} is present, it is assigned the value zero.  If the
execution failed, @var{STAT} gets assigned a nonzero value and, if present,
@var{ERRMSG} gets assigned a value describing the occurred error.

@item @emph{Standard}:
Technical Specification (TS) 18508 or later

@item @emph{Class}:
Collective subroutine

@item @emph{Syntax}:
@code{CALL CO_MAX(A [, RESULT_IMAGE, STAT, ERRMSG])}

@item @emph{Arguments}:
@multitable @columnfractions .20 .65
@item @var{A}            @tab shall be an integer, real or character variable,
which has the same type and type parameters on all images of the team.
@item @var{RESULT_IMAGE} @tab (optional) a scalar integer expression; if
present, it shall have the same the same value on all images and refer to an
image of the current team.
@item @var{STAT}         @tab (optional) a scalar integer variable
@item @var{ERRMSG}       @tab (optional) a scalar character variable
@end multitable

@item @emph{Example}:
@smallexample
program test
  integer :: val
  val = this_image ()
  call co_max (val, result_image=1)
  if (this_image() == 1) then
    write(*,*) "Maximal value", val  ! prints num_images()
  end if
end program test
@end smallexample

@item @emph{See also}:
@ref{CO_MIN}, @gol
@ref{CO_SUM}, @gol
@ref{CO_REDUCE}, @gol
@ref{CO_BROADCAST}
@end table



@node CO_MIN
@section @code{CO_MIN} --- Minimal value on the current set of images
@fnindex CO_MIN
@cindex Collectives, minimal value

@table @asis
@item @emph{Description}:
@code{CO_MIN} determines element-wise the minimal value of @var{A} on all
images of the current team.  If @var{RESULT_IMAGE} is present, the minimal
values are returned in @var{A} on the specified image only and the value
of @var{A} on the other images become undefined.  If @var{RESULT_IMAGE} is
not present, the value is returned on all images.  If the execution was
successful and @var{STAT} is present, it is assigned the value zero.  If the
execution failed, @var{STAT} gets assigned a nonzero value and, if present,
@var{ERRMSG} gets assigned a value describing the occurred error.

@item @emph{Standard}:
Technical Specification (TS) 18508 or later

@item @emph{Class}:
Collective subroutine

@item @emph{Syntax}:
@code{CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])}

@item @emph{Arguments}:
@multitable @columnfractions .20 .65
@item @var{A}            @tab shall be an integer, real or character variable,
which has the same type and type parameters on all images of the team.
@item @var{RESULT_IMAGE} @tab (optional) a scalar integer expression; if
present, it shall have the same the same value on all images and refer to an
image of the current team.
@item @var{STAT}         @tab (optional) a scalar integer variable
@item @var{ERRMSG}       @tab (optional) a scalar character variable
@end multitable

@item @emph{Example}:
@smallexample
program test
  integer :: val
  val = this_image ()
  call co_min (val, result_image=1)
  if (this_image() == 1) then
    write(*,*) "Minimal value", val  ! prints 1
  end if
end program test
@end smallexample

@item @emph{See also}:
@ref{CO_MAX}, @gol
@ref{CO_SUM}, @gol
@ref{CO_REDUCE}, @gol
@ref{CO_BROADCAST}
@end table



@node CO_REDUCE
@section @code{CO_REDUCE} --- Reduction of values on the current set of images
@fnindex CO_REDUCE
@cindex Collectives, generic reduction

@table @asis
@item @emph{Description}:
@code{CO_REDUCE} determines element-wise the reduction of the value of @var{A}
on all images of the current team.  The pure function passed as @var{OPERATOR}
is used to pairwise reduce the values of @var{A} by passing either the value
of @var{A} of different images or the result values of such a reduction as
argument.  If @var{A} is an array, the deduction is done element wise. If
@var{RESULT_IMAGE} is present, the result values are returned in @var{A} on
the specified image only and the value of @var{A} on the other images become
undefined.  If @var{RESULT_IMAGE} is not present, the value is returned on all
images.  If the execution was successful and @var{STAT} is present, it is
assigned the value zero.  If the execution failed, @var{STAT} gets assigned
a nonzero value and, if present, @var{ERRMSG} gets assigned a value describing
the occurred error.

@item @emph{Standard}:
Technical Specification (TS) 18508 or later

@item @emph{Class}:
Collective subroutine

@item @emph{Syntax}:
@code{CALL CO_REDUCE(A, OPERATOR, [, RESULT_IMAGE, STAT, ERRMSG])}

@item @emph{Arguments}:
@multitable @columnfractions .20 .65
@item @var{A}            @tab is an @code{INTENT(INOUT)} argument and shall be
nonpolymorphic. If it is allocatable, it shall be allocated; if it is a pointer,
it shall be associated.  @var{A} shall have the same type and type parameters on
all images of the team; if it is an array, it shall have the same shape on all
images.
@item @var{OPERATOR}     @tab pure function with two scalar nonallocatable
arguments, which shall be nonpolymorphic and have the same type and type
parameters as @var{A}.  The function shall return a nonallocatable scalar of
the same type and type parameters as @var{A}.  The function shall be the same on
all images and with regards to the arguments mathematically commutative and
associative.  Note that @var{OPERATOR} may not be an elemental function, unless
it is an intrisic function.
@item @var{RESULT_IMAGE} @tab (optional) a scalar integer expression; if
present, it shall have the same the same value on all images and refer to an
image of the current team.
@item @var{STAT}         @tab (optional) a scalar integer variable
@item @var{ERRMSG}       @tab (optional) a scalar character variable
@end multitable

@item @emph{Example}:
@smallexample
program test
  integer :: val
  val = this_image ()
  call co_reduce (val, result_image=1, operator=myprod)
  if (this_image() == 1) then
    write(*,*) "Product value", val  ! prints num_images() factorial
  end if
contains
  pure function myprod(a, b)
    integer, value :: a, b
    integer :: myprod
    myprod = a * b
  end function myprod
end program test
@end smallexample

@item @emph{Note}:
While the rules permit in principle an intrinsic function, none of the
intrinsics in the standard fulfill the criteria of having a specific
function, which takes two arguments of the same type and returning that
type as result.

@item @emph{See also}:
@ref{CO_MIN}, @gol
@ref{CO_MAX}, @gol
@ref{CO_SUM}, @gol
@ref{CO_BROADCAST}
@end table



@node CO_SUM
@section @code{CO_SUM} --- Sum of values on the current set of images
@fnindex CO_SUM
@cindex Collectives, sum of values

@table @asis
@item @emph{Description}:
@code{CO_SUM} sums up the values of each element of @var{A} on all
images of the current team.  If @var{RESULT_IMAGE} is present, the summed-up
values are returned in @var{A} on the specified image only and the value
of @var{A} on the other images become undefined.  If @var{RESULT_IMAGE} is
not present, the value is returned on all images.  If the execution was
successful and @var{STAT} is present, it is assigned the value zero.  If the
execution failed, @var{STAT} gets assigned a nonzero value and, if present,
@var{ERRMSG} gets assigned a value describing the occurred error.

@item @emph{Standard}:
Technical Specification (TS) 18508 or later

@item @emph{Class}:
Collective subroutine

@item @emph{Syntax}:
@code{CALL CO_MIN(A [, RESULT_IMAGE, STAT, ERRMSG])}

@item @emph{Arguments}:
@multitable @columnfractions .20 .65
@item @var{A}            @tab shall be an integer, real or complex variable,
which has the same type and type parameters on all images of the team.
@item @var{RESULT_IMAGE} @tab (optional) a scalar integer expression; if
present, it shall have the same the same value on all images and refer to an
image of the current team.
@item @var{STAT}         @tab (optional) a scalar integer variable
@item @var{ERRMSG}       @tab (optional) a scalar character variable
@end multitable

@item @emph{Example}:
@smallexample
program test
  integer :: val
  val = this_image ()
  call co_sum (val, result_image=1)
  if (this_image() == 1) then
    write(*,*) "The sum is ", val ! prints (n**2 + n)/2,
                                  ! with n = num_images()
  end if
end program test
@end smallexample

@item @emph{See also}:
@ref{CO_MAX}, @gol
@ref{CO_MIN}, @gol
@ref{CO_REDUCE}, @gol
@ref{CO_BROADCAST}
@end table



@node COMMAND_ARGUMENT_COUNT
@section @code{COMMAND_ARGUMENT_COUNT} --- Get number of command line arguments
@fnindex COMMAND_ARGUMENT_COUNT
@cindex command-line arguments
@cindex command-line arguments, number of
@cindex arguments, to program

@table @asis
@item @emph{Description}:
@code{COMMAND_ARGUMENT_COUNT} returns the number of arguments passed on the
command line when the containing program was invoked.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = COMMAND_ARGUMENT_COUNT()}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item None
@end multitable

@item @emph{Return value}:
The return value is an @code{INTEGER} of default kind.

@item @emph{Example}:
@smallexample
program test_command_argument_count
    integer :: count
    count = command_argument_count()
    print *, count
end program test_command_argument_count
@end smallexample

@item @emph{See also}:
@ref{GET_COMMAND}, @gol
@ref{GET_COMMAND_ARGUMENT}
@end table



@node COMPILER_OPTIONS
@section @code{COMPILER_OPTIONS} --- Options passed to the compiler
@fnindex COMPILER_OPTIONS
@cindex flags inquiry function
@cindex options inquiry function
@cindex compiler flags inquiry function

@table @asis
@item @emph{Description}:
@code{COMPILER_OPTIONS} returns a string with the options used for
compiling.

@item @emph{Standard}:
Fortran 2008

@item @emph{Class}:
Inquiry function of the module @code{ISO_FORTRAN_ENV}

@item @emph{Syntax}:
@code{STR = COMPILER_OPTIONS()}

@item @emph{Arguments}:
None

@item @emph{Return value}:
The return value is a default-kind string with system-dependent length.
It contains the compiler flags used to compile the file, which called
the @code{COMPILER_OPTIONS} intrinsic.

@item @emph{Example}:
@smallexample
   use iso_fortran_env
   print '(4a)', 'This file was compiled by ', &
                 compiler_version(), ' using the options ', &
                 compiler_options()
   end
@end smallexample

@item @emph{See also}:
@ref{COMPILER_VERSION}, @gol
@ref{ISO_FORTRAN_ENV}
@end table



@node COMPILER_VERSION
@section @code{COMPILER_VERSION} --- Compiler version string
@fnindex COMPILER_VERSION
@cindex compiler, name and version
@cindex version of the compiler

@table @asis
@item @emph{Description}:
@code{COMPILER_VERSION} returns a string with the name and the
version of the compiler.

@item @emph{Standard}:
Fortran 2008

@item @emph{Class}:
Inquiry function of the module @code{ISO_FORTRAN_ENV}

@item @emph{Syntax}:
@code{STR = COMPILER_VERSION()}

@item @emph{Arguments}:
None

@item @emph{Return value}:
The return value is a default-kind string with system-dependent length.
It contains the name of the compiler and its version number.

@item @emph{Example}:
@smallexample
   use iso_fortran_env
   print '(4a)', 'This file was compiled by ', &
                 compiler_version(), ' using the options ', &
                 compiler_options()
   end
@end smallexample

@item @emph{See also}:
@ref{COMPILER_OPTIONS}, @gol
@ref{ISO_FORTRAN_ENV}
@end table



@node COMPLEX
@section @code{COMPLEX} --- Complex conversion function
@fnindex COMPLEX
@cindex complex numbers, conversion to
@cindex conversion, to complex

@table @asis
@item @emph{Description}:
@code{COMPLEX(X, Y)} returns a complex number where @var{X} is converted
to the real component and @var{Y} is converted to the imaginary
component.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = COMPLEX(X, Y)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER} or @code{REAL}.
@item @var{Y} @tab The type may be @code{INTEGER} or @code{REAL}.
@end multitable

@item @emph{Return value}:
If @var{X} and @var{Y} are both of @code{INTEGER} type, then the return
value is of default @code{COMPLEX} type.

If @var{X} and @var{Y} are of @code{REAL} type, or one is of @code{REAL}
type and one is of @code{INTEGER} type, then the return value is of
@code{COMPLEX} type with a kind equal to that of the @code{REAL}
argument with the highest precision.

@item @emph{Example}:
@smallexample
program test_complex
    integer :: i = 42
    real :: x = 3.14
    print *, complex(i, x)
end program test_complex
@end smallexample

@item @emph{See also}:
@ref{CMPLX}
@end table



@node CONJG
@section @code{CONJG} --- Complex conjugate function
@fnindex CONJG
@fnindex DCONJG
@cindex complex conjugate

@table @asis
@item @emph{Description}:
@code{CONJG(Z)} returns the conjugate of @var{Z}.  If @var{Z} is @code{(x, y)}
then the result is @code{(x, -y)}

@item @emph{Standard}:
Fortran 77 and later, has an overload that is a GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{Z = CONJG(Z)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{Z} @tab The type shall be @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{COMPLEX}.

@item @emph{Example}:
@smallexample
program test_conjg
    complex :: z = (2.0, 3.0)
    complex(8) :: dz = (2.71_8, -3.14_8)
    z= conjg(z)
    print *, z
    dz = dconjg(dz)
    print *, dz
end program test_conjg
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument             @tab Return type       @tab Standard
@item @code{DCONJG(Z)} @tab @code{COMPLEX(8) Z}  @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable
@end table



@node COS
@section @code{COS} --- Cosine function
@fnindex COS
@fnindex DCOS
@fnindex CCOS
@fnindex ZCOS
@fnindex CDCOS
@cindex trigonometric function, cosine
@cindex cosine

@table @asis
@item @emph{Description}:
@code{COS(X)} computes the cosine of @var{X}.

@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = COS(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}. The real part
of the result is in radians. If @var{X} is of the type @code{REAL},
the return value lies in the range @math{ -1 \leq \cos (x) \leq 1}.

@item @emph{Example}:
@smallexample
program test_cos
  real :: x = 0.0
  x = cos(x)
end program test_cos
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{COS(X)}   @tab @code{REAL(4) X}    @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DCOS(X)}  @tab @code{REAL(8) X}    @tab @code{REAL(8)}    @tab Fortran 77 and later
@item @code{CCOS(X)}  @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab Fortran 77 and later
@item @code{ZCOS(X)}  @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDCOS(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{ACOS} @gol
Degrees function: @gol
@ref{COSD}
@end table



@node COSD
@section @code{COSD} --- Cosine function, degrees
@fnindex COSD
@fnindex DCOSD
@fnindex CCOSD
@fnindex ZCOSD
@fnindex CDCOSD
@cindex trigonometric function, cosine, degrees
@cindex cosine, degrees

@table @asis
@item @emph{Description}:
@code{COSD(X)} computes the cosine of @var{X} in degrees.

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = COSD(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}. The real part
of the result is in degrees.  If @var{X} is of the type @code{REAL},
the return value lies in the range @math{ -1 \leq \cosd (x) \leq 1}.

@item @emph{Example}:
@smallexample
program test_cosd
  real :: x = 0.0
  x = cosd(x)
end program test_cosd
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{COSD(X)}   @tab @code{REAL(4) X}    @tab @code{REAL(4)}    @tab GNU extension
@item @code{DCOSD(X)}  @tab @code{REAL(8) X}    @tab @code{REAL(8)}    @tab GNU extension
@item @code{CCOSD(X)}  @tab @code{COMPLEX(4) X} @tab @code{COMPLEX(4)} @tab GNU extension
@item @code{ZCOSD(X)}  @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDCOSD(X)} @tab @code{COMPLEX(8) X} @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{ACOSD} @gol
Radians function: @gol
@ref{COS}
@end table



@node COSH
@section @code{COSH} --- Hyperbolic cosine function
@fnindex COSH
@fnindex DCOSH
@cindex hyperbolic cosine
@cindex hyperbolic function, cosine
@cindex cosine, hyperbolic

@table @asis
@item @emph{Description}:
@code{COSH(X)} computes the hyperbolic cosine of @var{X}.

@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{X = COSH(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians. If @var{X}
is @code{REAL}, the return value has a lower bound of one,
@math{\cosh (x) \geq 1}.

@item @emph{Example}:
@smallexample
program test_cosh
  real(8) :: x = 1.0_8
  x = cosh(x)
end program test_cosh
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{COSH(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DCOSH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{ACOSH}
@end table



@node COTAN
@section @code{COTAN} --- Cotangent function
@fnindex COTAN
@fnindex DCOTAN
@cindex trigonometric function, cotangent
@cindex cotangent

@table @asis
@item @emph{Description}:
@code{COTAN(X)} computes the cotangent of @var{X}. Equivalent to @code{COS(x)}
divided by @code{SIN(x)}, or @code{1 / TAN(x)}.

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = COTAN(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}, and its value is in radians.

@item @emph{Example}:
@smallexample
program test_cotan
  real(8) :: x = 0.165_8
  x = cotan(x)
end program test_cotan
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type     @tab Standard
@item @code{COTAN(X)}   @tab @code{REAL(4) X}  @tab @code{REAL(4)}  @tab GNU extension
@item @code{DCOTAN(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}  @tab GNU extension
@end multitable

@item @emph{See also}:
Converse function: @gol
@ref{TAN} @gol
Degrees function: @gol
@ref{COTAND}
@end table



@node COTAND
@section @code{COTAND} --- Cotangent function, degrees
@fnindex COTAND
@fnindex DCOTAND
@cindex trigonometric function, cotangent, degrees
@cindex cotangent, degrees

@table @asis
@item @emph{Description}:
@code{COTAND(X)} computes the cotangent of @var{X} in degrees.  Equivalent to
@code{COSD(x)} divided by @code{SIND(x)}, or @code{1 / TAND(x)}.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = COTAND(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}, and its value is in degrees.

@item @emph{Example}:
@smallexample
program test_cotand
  real(8) :: x = 0.165_8
  x = cotand(x)
end program test_cotand
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type     @tab Standard
@item @code{COTAND(X)}   @tab @code{REAL(4) X}  @tab @code{REAL(4)}  @tab GNU extension
@item @code{DCOTAND(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}  @tab GNU extension
@end multitable

@item @emph{See also}:
Converse function: @gol
@ref{TAND} @gol
Radians function: @gol
@ref{COTAN}
@end table



@node COUNT
@section @code{COUNT} --- Count function
@fnindex COUNT
@cindex array, conditionally count elements
@cindex array, element counting
@cindex array, number of elements

@table @asis
@item @emph{Description}:

Counts the number of @code{.TRUE.} elements in a logical @var{MASK},
or, if the @var{DIM} argument is supplied, counts the number of
elements along each row of the array in the @var{DIM} direction.
If the array has zero size, or all of the elements of @var{MASK} are
@code{.FALSE.}, then the result is @code{0}.

@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = COUNT(MASK [, DIM, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab The type shall be @code{LOGICAL}.
@item @var{DIM}  @tab (Optional) The type shall be @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is present, the result is an array with a rank one less
than the rank of @var{ARRAY}, and a size corresponding to the shape
of @var{ARRAY} with the @var{DIM} dimension removed.

@item @emph{Example}:
@smallexample
program test_count
    integer, dimension(2,3) :: a, b
    logical, dimension(2,3) :: mask
    a = reshape( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))
    b = reshape( (/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))
    print '(3i3)', a(1,:)
    print '(3i3)', a(2,:)
    print *
    print '(3i3)', b(1,:)
    print '(3i3)', b(2,:)
    print *
    mask = a.ne.b
    print '(3l3)', mask(1,:)
    print '(3l3)', mask(2,:)
    print *
    print '(3i3)', count(mask)
    print *
    print '(3i3)', count(mask, 1)
    print *
    print '(3i3)', count(mask, 2)
end program test_count
@end smallexample
@end table



@node CPU_TIME
@section @code{CPU_TIME} --- CPU elapsed time in seconds
@fnindex CPU_TIME
@cindex time, elapsed

@table @asis
@item @emph{Description}:
Returns a @code{REAL} value representing the elapsed CPU time in
seconds.  This is useful for testing segments of code to determine
execution time.

If a time source is available, time will be reported with microsecond
resolution. If no time source is available, @var{TIME} is set to
@code{-1.0}.

Note that @var{TIME} may contain a, system dependent, arbitrary offset
and may not start with @code{0.0}. For @code{CPU_TIME}, the absolute
value is meaningless, only differences between subsequent calls to
this subroutine, as shown in the example below, should be used.


@item @emph{Standard}:
Fortran 95 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL CPU_TIME(TIME)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME} @tab The type shall be @code{REAL} with @code{INTENT(OUT)}.
@end multitable

@item @emph{Return value}:
None

@item @emph{Example}:
@smallexample
program test_cpu_time
    real :: start, finish
    call cpu_time(start)
        ! put code to test here
    call cpu_time(finish)
    print '("Time = ",f6.3," seconds.")',finish-start
end program test_cpu_time
@end smallexample

@item @emph{See also}:
@ref{SYSTEM_CLOCK}, @gol
@ref{DATE_AND_TIME}
@end table



@node CSHIFT
@section @code{CSHIFT} --- Circular shift elements of an array
@fnindex CSHIFT
@cindex array, shift circularly
@cindex array, permutation
@cindex array, rotate

@table @asis
@item @emph{Description}:
@code{CSHIFT(ARRAY, SHIFT [, DIM])} performs a circular shift on elements of
@var{ARRAY} along the dimension of @var{DIM}.  If @var{DIM} is omitted it is
taken to be @code{1}.  @var{DIM} is a scalar of type @code{INTEGER} in the
range of @math{1 \leq DIM \leq n)} where @math{n} is the rank of @var{ARRAY}.
If the rank of @var{ARRAY} is one, then all elements of @var{ARRAY} are shifted
by @var{SHIFT} places.  If rank is greater than one, then all complete rank one
sections of @var{ARRAY} along the given dimension are shifted.  Elements
shifted out one end of each rank one section are shifted back in the other end.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = CSHIFT(ARRAY, SHIFT [, DIM])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY}  @tab Shall be an array of any type.
@item @var{SHIFT}  @tab The type shall be @code{INTEGER}.
@item @var{DIM}    @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
Returns an array of same type and rank as the @var{ARRAY} argument.

@item @emph{Example}:
@smallexample
program test_cshift
    integer, dimension(3,3) :: a
    a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
    print '(3i3)', a(1,:)
    print '(3i3)', a(2,:)
    print '(3i3)', a(3,:)    
    a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)
    print *
    print '(3i3)', a(1,:)
    print '(3i3)', a(2,:)
    print '(3i3)', a(3,:)
end program test_cshift
@end smallexample
@end table



@node CTIME
@section @code{CTIME} --- Convert a time into a string
@fnindex CTIME
@cindex time, conversion to string
@cindex conversion, to string

@table @asis
@item @emph{Description}:
@code{CTIME} converts a system time value, such as returned by
@ref{TIME8}, to a string. The output will be of the form @samp{Sat
Aug 19 18:13:14 1995}.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL CTIME(TIME, RESULT)}.
@item @code{RESULT = CTIME(TIME)}.
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME}    @tab The type shall be of type @code{INTEGER}.
@item @var{RESULT}  @tab The type shall be of type @code{CHARACTER} and
of default kind. It is an @code{INTENT(OUT)} argument. If the length
of this variable is too short for the time and date string to fit
completely, it will be blank on procedure return.
@end multitable

@item @emph{Return value}:
The converted date and time as a string. 

@item @emph{Example}:
@smallexample
program test_ctime
    integer(8) :: i
    character(len=30) :: date
    i = time8()

    ! Do something, main part of the program
    
    call ctime(i,date)
    print *, 'Program was started on ', date
end program test_ctime
@end smallexample

@item @emph{See Also}:
@ref{DATE_AND_TIME}, @gol
@ref{GMTIME}, @gol
@ref{LTIME}, @gol
@ref{TIME}, @gol
@ref{TIME8}
@end table



@node DATE_AND_TIME
@section @code{DATE_AND_TIME} --- Date and time subroutine
@fnindex DATE_AND_TIME
@cindex date, current
@cindex current date
@cindex time, current
@cindex current time

@table @asis
@item @emph{Description}:
@code{DATE_AND_TIME(DATE, TIME, ZONE, VALUES)} gets the corresponding date and
time information from the real-time system clock.  @var{DATE} is
@code{INTENT(OUT)} and has form ccyymmdd.  @var{TIME} is @code{INTENT(OUT)} and
has form hhmmss.sss.  @var{ZONE} is @code{INTENT(OUT)} and has form (+-)hhmm,
representing the difference with respect to Coordinated Universal Time (UTC).
Unavailable time and date parameters return blanks.

@var{VALUES} is @code{INTENT(OUT)} and provides the following:

@multitable @columnfractions .15 .30 .40
@item @tab @code{VALUE(1)}: @tab The year
@item @tab @code{VALUE(2)}: @tab The month
@item @tab @code{VALUE(3)}: @tab The day of the month
@item @tab @code{VALUE(4)}: @tab Time difference with UTC in minutes
@item @tab @code{VALUE(5)}: @tab The hour of the day
@item @tab @code{VALUE(6)}: @tab The minutes of the hour
@item @tab @code{VALUE(7)}: @tab The seconds of the minute
@item @tab @code{VALUE(8)}: @tab The milliseconds of the second
@end multitable

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{DATE}  @tab (Optional) The type shall be @code{CHARACTER(LEN=8)}
or larger, and of default kind.
@item @var{TIME}  @tab (Optional) The type shall be @code{CHARACTER(LEN=10)}
or larger, and of default kind.
@item @var{ZONE}  @tab (Optional) The type shall be @code{CHARACTER(LEN=5)}
or larger, and of default kind.
@item @var{VALUES}@tab (Optional) The type shall be @code{INTEGER(8)}.
@end multitable

@item @emph{Return value}:
None

@item @emph{Example}:
@smallexample
program test_time_and_date
    character(8)  :: date
    character(10) :: time
    character(5)  :: zone
    integer,dimension(8) :: values
    ! using keyword arguments
    call date_and_time(date,time,zone,values)
    call date_and_time(DATE=date,ZONE=zone)
    call date_and_time(TIME=time)
    call date_and_time(VALUES=values)
    print '(a,2x,a,2x,a)', date, time, zone
    print '(8i5)', values
end program test_time_and_date
@end smallexample

@item @emph{See also}:
@ref{CPU_TIME}, @gol
@ref{SYSTEM_CLOCK}
@end table



@node DBLE
@section @code{DBLE} --- Double conversion function
@fnindex DBLE
@cindex conversion, to real

@table @asis
@item @emph{Description}:
@code{DBLE(A)} Converts @var{A} to double precision real type.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = DBLE(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{INTEGER}, @code{REAL},
or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of type double precision real.

@item @emph{Example}:
@smallexample
program test_dble
    real    :: x = 2.18
    integer :: i = 5
    complex :: z = (2.3,1.14)
    print *, dble(x), dble(i), dble(z)
end program test_dble
@end smallexample

@item @emph{See also}:
@ref{REAL}
@end table



@node DCMPLX
@section @code{DCMPLX} --- Double complex conversion function
@fnindex DCMPLX
@cindex complex numbers, conversion to
@cindex conversion, to complex

@table @asis
@item @emph{Description}:
@code{DCMPLX(X [,Y])} returns a double complex number where @var{X} is
converted to the real component.  If @var{Y} is present it is converted to the
imaginary component.  If @var{Y} is not present then the imaginary component is
set to 0.0.  If @var{X} is complex then @var{Y} must not be present.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = DCMPLX(X [, Y])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER}, @code{REAL},
or @code{COMPLEX}.
@item @var{Y} @tab (Optional if @var{X} is not @code{COMPLEX}.) May be
@code{INTEGER} or @code{REAL}. 
@end multitable

@item @emph{Return value}:
The return value is of type @code{COMPLEX(8)}

@item @emph{Example}:
@smallexample
program test_dcmplx
    integer :: i = 42
    real :: x = 3.14
    complex :: z
    z = cmplx(i, x)
    print *, dcmplx(i)
    print *, dcmplx(x)
    print *, dcmplx(z)
    print *, dcmplx(x,i)
end program test_dcmplx
@end smallexample
@end table


@node DIGITS
@section @code{DIGITS} --- Significant binary digits function
@fnindex DIGITS
@cindex model representation, significant digits

@table @asis
@item @emph{Description}:
@code{DIGITS(X)} returns the number of significant binary digits of the internal
model representation of @var{X}.  For example, on a system using a 32-bit
floating point representation, a default real number would likely return 24.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = DIGITS(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type may be @code{INTEGER} or @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER}.

@item @emph{Example}:
@smallexample
program test_digits
    integer :: i = 12345
    real :: x = 3.143
    real(8) :: y = 2.33
    print *, digits(i)
    print *, digits(x)
    print *, digits(y)
end program test_digits
@end smallexample
@end table



@node DIM
@section @code{DIM} --- Positive difference
@fnindex DIM
@fnindex IDIM
@fnindex DDIM
@cindex positive difference

@table @asis
@item @emph{Description}:
@code{DIM(X,Y)} returns the difference @code{X-Y} if the result is positive;
otherwise returns zero.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = DIM(X, Y)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{INTEGER} or @code{REAL}
@item @var{Y} @tab The type shall be the same type and kind as @var{X}.  (As
a GNU extension, arguments of different kinds are permitted.)
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} or @code{REAL}.  (As a GNU
extension, kind is the largest kind of the actual arguments.)

@item @emph{Example}:
@smallexample
program test_dim
    integer :: i
    real(8) :: x
    i = dim(4, 15)
    x = dim(4.345_8, 2.111_8)
    print *, i
    print *, x
end program test_dim
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument               @tab Return type       @tab Standard
@item @code{DIM(X,Y)}  @tab @code{REAL(4) X, Y}    @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{IDIM(X,Y)} @tab @code{INTEGER(4) X, Y} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{DDIM(X,Y)} @tab @code{REAL(8) X, Y}    @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable
@end table



@node DOT_PRODUCT
@section @code{DOT_PRODUCT} --- Dot product function
@fnindex DOT_PRODUCT
@cindex dot product
@cindex vector product
@cindex product, vector

@table @asis
@item @emph{Description}:
@code{DOT_PRODUCT(VECTOR_A, VECTOR_B)} computes the dot product multiplication
of two vectors @var{VECTOR_A} and @var{VECTOR_B}.  The two vectors may be
either numeric or logical and must be arrays of rank one and of equal size. If
the vectors are @code{INTEGER} or @code{REAL}, the result is
@code{SUM(VECTOR_A*VECTOR_B)}. If the vectors are @code{COMPLEX}, the result
is @code{SUM(CONJG(VECTOR_A)*VECTOR_B)}. If the vectors are @code{LOGICAL},
the result is @code{ANY(VECTOR_A .AND. VECTOR_B)}.  

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VECTOR_A} @tab The type shall be numeric or @code{LOGICAL}, rank 1.
@item @var{VECTOR_B} @tab The type shall be numeric if @var{VECTOR_A} is of numeric type or @code{LOGICAL} if @var{VECTOR_A} is of type @code{LOGICAL}. @var{VECTOR_B} shall be a rank-one array.
@end multitable

@item @emph{Return value}:
If the arguments are numeric, the return value is a scalar of numeric type,
@code{INTEGER}, @code{REAL}, or @code{COMPLEX}.  If the arguments are
@code{LOGICAL}, the return value is @code{.TRUE.} or @code{.FALSE.}.

@item @emph{Example}:
@smallexample
program test_dot_prod
    integer, dimension(3) :: a, b
    a = (/ 1, 2, 3 /)
    b = (/ 4, 5, 6 /)
    print '(3i3)', a
    print *
    print '(3i3)', b
    print *
    print *, dot_product(a,b)
end program test_dot_prod
@end smallexample
@end table



@node DPROD
@section @code{DPROD} --- Double product function
@fnindex DPROD
@cindex product, double-precision

@table @asis
@item @emph{Description}:
@code{DPROD(X,Y)} returns the product @code{X*Y}.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = DPROD(X, Y)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{Y} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL(8)}.

@item @emph{Example}:
@smallexample
program test_dprod
    real :: x = 5.2
    real :: y = 2.3
    real(8) :: d
    d = dprod(x,y)
    print *, d
end program test_dprod
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name              @tab Argument               @tab Return type       @tab Standard
@item @code{DPROD(X,Y)} @tab @code{REAL(4) X, Y}    @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable

@end table


@node DREAL
@section @code{DREAL} --- Double real part function
@fnindex DREAL
@cindex complex numbers, real part

@table @asis
@item @emph{Description}:
@code{DREAL(Z)} returns the real part of complex variable @var{Z}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = DREAL(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{COMPLEX(8)}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL(8)}.

@item @emph{Example}:
@smallexample
program test_dreal
    complex(8) :: z = (1.3_8,7.2_8)
    print *, dreal(z)
end program test_dreal
@end smallexample

@item @emph{See also}:
@ref{AIMAG}

@end table



@node DSHIFTL
@section @code{DSHIFTL} --- Combined left shift
@fnindex DSHIFTL
@cindex left shift, combined
@cindex shift, left

@table @asis
@item @emph{Description}:
@code{DSHIFTL(I, J, SHIFT)} combines bits of @var{I} and @var{J}. The
rightmost @var{SHIFT} bits of the result are the leftmost @var{SHIFT}
bits of @var{J}, and the remaining bits are the rightmost bits of
@var{I}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = DSHIFTL(I, J, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER} or a BOZ constant.
@item @var{J} @tab Shall be of type @code{INTEGER} or a BOZ constant.
If both @var{I} and @var{J} have integer type, then they shall have
the same kind type parameter. @var{I} and @var{J} shall not both be
BOZ constants.
@item @var{SHIFT} @tab Shall be of type @code{INTEGER}. It shall
be nonnegative.  If @var{I} is not a BOZ constant, then @var{SHIFT}
shall be less than or equal to @code{BIT_SIZE(I)}; otherwise,
@var{SHIFT} shall be less than or equal to @code{BIT_SIZE(J)}.
@end multitable

@item @emph{Return value}:
If either @var{I} or @var{J} is a BOZ constant, it is first converted
as if by the intrinsic function @code{INT} to an integer type with the
kind type parameter of the other.

@item @emph{See also}:
@ref{DSHIFTR}
@end table


@node DSHIFTR
@section @code{DSHIFTR} --- Combined right shift
@fnindex DSHIFTR
@cindex right shift, combined
@cindex shift, right

@table @asis
@item @emph{Description}:
@code{DSHIFTR(I, J, SHIFT)} combines bits of @var{I} and @var{J}. The
leftmost @var{SHIFT} bits of the result are the rightmost @var{SHIFT}
bits of @var{I}, and the remaining bits are the leftmost bits of
@var{J}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = DSHIFTR(I, J, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER} or a BOZ constant.
@item @var{J} @tab Shall be of type @code{INTEGER} or a BOZ constant.
If both @var{I} and @var{J} have integer type, then they shall have
the same kind type parameter. @var{I} and @var{J} shall not both be
BOZ constants.
@item @var{SHIFT} @tab Shall be of type @code{INTEGER}. It shall
be nonnegative.  If @var{I} is not a BOZ constant, then @var{SHIFT}
shall be less than or equal to @code{BIT_SIZE(I)}; otherwise,
@var{SHIFT} shall be less than or equal to @code{BIT_SIZE(J)}.
@end multitable

@item @emph{Return value}:
If either @var{I} or @var{J} is a BOZ constant, it is first converted
as if by the intrinsic function @code{INT} to an integer type with the
kind type parameter of the other.

@item @emph{See also}:
@ref{DSHIFTL}
@end table


@node DTIME
@section @code{DTIME} --- Execution time subroutine (or function)
@fnindex DTIME
@cindex time, elapsed
@cindex elapsed time

@table @asis
@item @emph{Description}:
@code{DTIME(VALUES, TIME)} initially returns the number of seconds of runtime
since the start of the process's execution in @var{TIME}.  @var{VALUES}
returns the user and system components of this time in @code{VALUES(1)} and
@code{VALUES(2)} respectively. @var{TIME} is equal to @code{VALUES(1) +
VALUES(2)}.

Subsequent invocations of @code{DTIME} return values accumulated since the
previous invocation.

On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as
32-bit types. Therefore, the values returned by this intrinsic might be, or
become, negative, or numerically less than previous values, during a single
run of the compiled program.

Please note, that this implementation is thread safe if used within OpenMP
directives, i.e., its state will be consistent while called from multiple
threads. However, if @code{DTIME} is called from multiple threads, the result
is still the time since the last invocation. This may not give the intended
results. If possible, use @code{CPU_TIME} instead.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@var{VALUES} and @var{TIME} are @code{INTENT(OUT)} and provide the following:

@multitable @columnfractions .15 .30 .40
@item @tab @code{VALUES(1)}: @tab User time in seconds.
@item @tab @code{VALUES(2)}: @tab System time in seconds.
@item @tab @code{TIME}: @tab Run time since start in seconds.
@end multitable

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL DTIME(VALUES, TIME)}.
@item @code{TIME = DTIME(VALUES)}, (not recommended).
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES}@tab The type shall be @code{REAL(4), DIMENSION(2)}.
@item @var{TIME}@tab The type shall be @code{REAL(4)}.
@end multitable

@item @emph{Return value}:
Elapsed time in seconds since the last invocation or since the start of program
execution if not called before.

@item @emph{Example}:
@smallexample
program test_dtime
    integer(8) :: i, j
    real, dimension(2) :: tarray
    real :: result
    call dtime(tarray, result)
    print *, result
    print *, tarray(1)
    print *, tarray(2)   
    do i=1,100000000    ! Just a delay
        j = i * i - i
    end do
    call dtime(tarray, result)
    print *, result
    print *, tarray(1)
    print *, tarray(2)
end program test_dtime
@end smallexample

@item @emph{See also}:
@ref{CPU_TIME}

@end table



@node EOSHIFT
@section @code{EOSHIFT} --- End-off shift elements of an array
@fnindex EOSHIFT
@cindex array, shift

@table @asis
@item @emph{Description}:
@code{EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])} performs an end-off shift on
elements of @var{ARRAY} along the dimension of @var{DIM}.  If @var{DIM} is
omitted it is taken to be @code{1}.  @var{DIM} is a scalar of type
@code{INTEGER} in the range of @math{1 \leq DIM \leq n)} where @math{n} is the
rank of @var{ARRAY}.  If the rank of @var{ARRAY} is one, then all elements of
@var{ARRAY} are shifted by @var{SHIFT} places.  If rank is greater than one,
then all complete rank one sections of @var{ARRAY} along the given dimension are
shifted.  Elements shifted out one end of each rank one section are dropped.  If
@var{BOUNDARY} is present then the corresponding value of from @var{BOUNDARY}
is copied back in the other end.  If @var{BOUNDARY} is not present then the
following are copied in depending on the type of @var{ARRAY}.

@multitable @columnfractions .15 .80
@item @emph{Array Type} @tab @emph{Boundary Value}
@item Numeric  @tab 0 of the type and kind of @var{ARRAY}.
@item Logical  @tab @code{.FALSE.}.
@item Character(@var{len}) @tab @var{len} blanks.
@end multitable

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY}  @tab May be any type, not scalar.
@item @var{SHIFT}  @tab The type shall be @code{INTEGER}.
@item @var{BOUNDARY} @tab Same type as @var{ARRAY}. 
@item @var{DIM}    @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
Returns an array of same type and rank as the @var{ARRAY} argument.

@item @emph{Example}:
@smallexample
program test_eoshift
    integer, dimension(3,3) :: a
    a = reshape( (/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))
    print '(3i3)', a(1,:)
    print '(3i3)', a(2,:)
    print '(3i3)', a(3,:)    
    a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)
    print *
    print '(3i3)', a(1,:)
    print '(3i3)', a(2,:)
    print '(3i3)', a(3,:)
end program test_eoshift
@end smallexample
@end table



@node EPSILON
@section @code{EPSILON} --- Epsilon function
@fnindex EPSILON
@cindex model representation, epsilon

@table @asis
@item @emph{Description}:
@code{EPSILON(X)} returns the smallest number @var{E} of the same kind
as @var{X} such that @math{1 + E > 1}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = EPSILON(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of same type as the argument.

@item @emph{Example}:
@smallexample
program test_epsilon
    real :: x = 3.143
    real(8) :: y = 2.33
    print *, EPSILON(x)
    print *, EPSILON(y)
end program test_epsilon
@end smallexample
@end table



@node ERF
@section @code{ERF} --- Error function 
@fnindex ERF
@cindex error function

@table @asis
@item @emph{Description}:
@code{ERF(X)} computes the error function of @var{X}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ERF(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL}, of the same kind as
@var{X} and lies in the range @math{-1 \leq erf (x) \leq 1 }.

@item @emph{Example}:
@smallexample
program test_erf
  real(8) :: x = 0.17_8
  x = erf(x)
end program test_erf
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{DERF(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable
@end table



@node ERFC
@section @code{ERFC} --- Error function 
@fnindex ERFC
@cindex error function, complementary

@table @asis
@item @emph{Description}:
@code{ERFC(X)} computes the complementary error function of @var{X}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ERFC(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} and of the same kind as @var{X}.
It lies in the range @math{ 0 \leq erfc (x) \leq 2 }.

@item @emph{Example}:
@smallexample
program test_erfc
  real(8) :: x = 0.17_8
  x = erfc(x)
end program test_erfc
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{DERFC(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab GNU extension
@end multitable
@end table



@node ERFC_SCALED
@section @code{ERFC_SCALED} --- Error function 
@fnindex ERFC_SCALED
@cindex error function, complementary, exponentially-scaled

@table @asis
@item @emph{Description}:
@code{ERFC_SCALED(X)} computes the exponentially-scaled complementary
error function of @var{X}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ERFC_SCALED(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} and of the same kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_erfc_scaled
  real(8) :: x = 0.17_8
  x = erfc_scaled(x)
end program test_erfc_scaled
@end smallexample
@end table



@node ETIME
@section @code{ETIME} --- Execution time subroutine (or function)
@fnindex ETIME
@cindex time, elapsed

@table @asis
@item @emph{Description}:
@code{ETIME(VALUES, TIME)} returns the number of seconds of runtime
since the start of the process's execution in @var{TIME}.  @var{VALUES}
returns the user and system components of this time in @code{VALUES(1)} and
@code{VALUES(2)} respectively. @var{TIME} is equal to @code{VALUES(1) + VALUES(2)}.

On some systems, the underlying timings are represented using types with
sufficiently small limits that overflows (wrap around) are possible, such as
32-bit types. Therefore, the values returned by this intrinsic might be, or
become, negative, or numerically less than previous values, during a single
run of the compiled program.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@var{VALUES} and @var{TIME} are @code{INTENT(OUT)} and provide the following:

@multitable @columnfractions .15 .30 .60
@item @tab @code{VALUES(1)}: @tab User time in seconds.
@item @tab @code{VALUES(2)}: @tab System time in seconds.
@item @tab @code{TIME}: @tab Run time since start in seconds.
@end multitable

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL ETIME(VALUES, TIME)}.
@item @code{TIME = ETIME(VALUES)}, (not recommended).
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES}@tab The type shall be @code{REAL(4), DIMENSION(2)}.
@item @var{TIME}@tab The type shall be @code{REAL(4)}.
@end multitable

@item @emph{Return value}:
Elapsed time in seconds since the start of program execution.

@item @emph{Example}:
@smallexample
program test_etime
    integer(8) :: i, j
    real, dimension(2) :: tarray
    real :: result
    call ETIME(tarray, result)
    print *, result
    print *, tarray(1)
    print *, tarray(2)   
    do i=1,100000000    ! Just a delay
        j = i * i - i
    end do
    call ETIME(tarray, result)
    print *, result
    print *, tarray(1)
    print *, tarray(2)
end program test_etime
@end smallexample

@item @emph{See also}:
@ref{CPU_TIME}

@end table



@node EVENT_QUERY
@section @code{EVENT_QUERY} --- Query whether a coarray event has occurred
@fnindex EVENT_QUERY
@cindex Events, EVENT_QUERY

@table @asis
@item @emph{Description}:
@code{EVENT_QUERY} assignes the number of events to @var{COUNT} which have been
posted to the @var{EVENT} variable and not yet been removed by calling
@code{EVENT WAIT}. When @var{STAT} is present and the invocation was successful,
it is assigned the value 0. If it is present and the invocation has failed,
it is assigned a positive value and @var{COUNT} is assigned the value @math{-1}.

@item @emph{Standard}:
TS 18508 or later

@item @emph{Class}:
 subroutine

@item @emph{Syntax}:
@code{CALL EVENT_QUERY (EVENT, COUNT [, STAT])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{EVENT}  @tab (intent(IN)) Scalar of type @code{EVENT_TYPE},
defined in @code{ISO_FORTRAN_ENV}; shall not be coindexed.
@item @var{COUNT}  @tab (intent(out))Scalar integer with at least the
precision of default integer.
@item @var{STAT}   @tab (optional) Scalar default-kind integer variable.
@end multitable

@item @emph{Example}:
@smallexample
program atomic
  use iso_fortran_env
  implicit none
  type(event_type) :: event_value_has_been_set[*]
  integer :: cnt
  if (this_image() == 1) then
    call event_query (event_value_has_been_set, cnt)
    if (cnt > 0) write(*,*) "Value has been set"
  elseif (this_image() == 2) then
    event post (event_value_has_been_set[1])
  end if
end program atomic
@end smallexample

@end table



@node EXECUTE_COMMAND_LINE
@section @code{EXECUTE_COMMAND_LINE} --- Execute a shell command
@fnindex EXECUTE_COMMAND_LINE
@cindex system, system call
@cindex command line

@table @asis
@item @emph{Description}:
@code{EXECUTE_COMMAND_LINE} runs a shell command, synchronously or
asynchronously.

The @code{COMMAND} argument is passed to the shell and executed (The
shell is @code{sh} on Unix systems, and @code{cmd.exe} on Windows.).
If @code{WAIT} is present and has the value false, the execution of
the command is asynchronous if the system supports it; otherwise, the
command is executed synchronously using the C library's @code{system}
call.

The three last arguments allow the user to get status information.  After
synchronous execution, @code{EXITSTAT} contains the integer exit code of
the command, as returned by @code{system}.  @code{CMDSTAT} is set to zero
if the command line was executed (whatever its exit status was).
@code{CMDMSG} is assigned an error message if an error has occurred.

Note that the @code{system} function need not be thread-safe. It is
the responsibility of the user to ensure that @code{system} is not
called concurrently.

For asynchronous execution on supported targets, the POSIX
@code{posix_spawn} or @code{fork} functions are used.  Also, a signal
handler for the @code{SIGCHLD} signal is installed.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COMMAND} @tab Shall be a default @code{CHARACTER} scalar.
@item @var{WAIT} @tab (Optional) Shall be a default @code{LOGICAL} scalar.
@item @var{EXITSTAT} @tab (Optional) Shall be an @code{INTEGER} of the
default kind.
@item @var{CMDSTAT} @tab (Optional) Shall be an @code{INTEGER} of the
default kind.
@item @var{CMDMSG} @tab (Optional) Shall be an @code{CHARACTER} scalar of the
default kind.
@end multitable

@item @emph{Example}:
@smallexample
program test_exec
  integer :: i

  call execute_command_line ("external_prog.exe", exitstat=i)
  print *, "Exit status of external_prog.exe was ", i

  call execute_command_line ("reindex_files.exe", wait=.false.)
  print *, "Now reindexing files in the background"

end program test_exec
@end smallexample


@item @emph{Note}:

Because this intrinsic is implemented in terms of the @code{system}
function call, its behavior with respect to signaling is processor
dependent. In particular, on POSIX-compliant systems, the SIGINT and
SIGQUIT signals will be ignored, and the SIGCHLD will be blocked. As
such, if the parent process is terminated, the child process might not be
terminated alongside.


@item @emph{See also}:
@ref{SYSTEM}
@end table



@node EXIT
@section @code{EXIT} --- Exit the program with status. 
@fnindex EXIT
@cindex program termination
@cindex terminate program

@table @asis
@item @emph{Description}:
@code{EXIT} causes immediate termination of the program with status.  If status
is omitted it returns the canonical @emph{success} for the system.  All Fortran
I/O units are closed. 

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL EXIT([STATUS])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STATUS} @tab Shall be an @code{INTEGER} of the default kind.
@end multitable

@item @emph{Return value}:
@code{STATUS} is passed to the parent process on exit.

@item @emph{Example}:
@smallexample
program test_exit
  integer :: STATUS = 0
  print *, 'This program is going to exit.'
  call EXIT(STATUS)
end program test_exit
@end smallexample

@item @emph{See also}:
@ref{ABORT}, @gol
@ref{KILL}
@end table



@node EXP
@section @code{EXP} --- Exponential function 
@fnindex EXP
@fnindex DEXP
@fnindex CEXP
@fnindex ZEXP
@fnindex CDEXP
@cindex exponential function
@cindex logarithm function, inverse

@table @asis
@item @emph{Description}:
@code{EXP(X)} computes the base @math{e} exponential of @var{X}.

@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = EXP(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_exp
  real :: x = 1.0
  x = exp(x)
end program test_exp
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument             @tab Return type         @tab Standard
@item @code{EXP(X)}   @tab @code{REAL(4) X}     @tab @code{REAL(4)}      @tab Fortran 77 and later
@item @code{DEXP(X)}  @tab @code{REAL(8) X}     @tab @code{REAL(8)}      @tab Fortran 77 and later
@item @code{CEXP(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}   @tab Fortran 77 and later
@item @code{ZEXP(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}   @tab GNU extension
@item @code{CDEXP(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}   @tab GNU extension
@end multitable
@end table



@node EXPONENT
@section @code{EXPONENT} --- Exponent function 
@fnindex EXPONENT
@cindex real number, exponent
@cindex floating point, exponent

@table @asis
@item @emph{Description}:
@code{EXPONENT(X)} returns the value of the exponent part of @var{X}. If @var{X}
is zero the value returned is zero. 

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = EXPONENT(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type default @code{INTEGER}.

@item @emph{Example}:
@smallexample
program test_exponent
  real :: x = 1.0
  integer :: i
  i = exponent(x)
  print *, i
  print *, exponent(0.0)
end program test_exponent
@end smallexample
@end table



@node EXTENDS_TYPE_OF
@section @code{EXTENDS_TYPE_OF} ---  Query dynamic type for extension
@fnindex EXTENDS_TYPE_OF

@table @asis
@item @emph{Description}:
Query dynamic type for extension.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = EXTENDS_TYPE_OF(A, MOLD)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be an object of extensible declared type or
unlimited polymorphic. 
@item @var{MOLD} @tab Shall be an object of extensible declared type or
unlimited polymorphic. 
@end multitable

@item @emph{Return value}:
The return value is a scalar of type default logical. It is true if and only if
the dynamic type of A is an extension type of the dynamic type of MOLD.


@item @emph{See also}:
@ref{SAME_TYPE_AS}
@end table



@node FDATE
@section @code{FDATE} --- Get the current time as a string
@fnindex FDATE
@cindex time, current
@cindex current time
@cindex date, current
@cindex current date

@table @asis
@item @emph{Description}:
@code{FDATE(DATE)} returns the current date (using the same format as
@ref{CTIME}) in @var{DATE}. It is equivalent to @code{CALL CTIME(DATE,
TIME())}.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FDATE(DATE)}.
@item @code{DATE = FDATE()}.
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{DATE}@tab The type shall be of type @code{CHARACTER} of the
default kind. It is an @code{INTENT(OUT)} argument.  If the length of
this variable is too short for the date and time string to fit
completely, it will be blank on procedure return.
@end multitable

@item @emph{Return value}:
The current date and time as a string.

@item @emph{Example}:
@smallexample
program test_fdate
    integer(8) :: i, j
    character(len=30) :: date
    call fdate(date)
    print *, 'Program started on ', date
    do i = 1, 100000000 ! Just a delay
        j = i * i - i
    end do
    call fdate(date)
    print *, 'Program ended on ', date
end program test_fdate
@end smallexample

@item @emph{See also}:
@ref{DATE_AND_TIME}, @gol
@ref{CTIME}
@end table


@node FGET
@section @code{FGET} --- Read a single character in stream mode from stdin 
@fnindex FGET
@cindex read character, stream mode
@cindex stream mode, read character
@cindex file operation, read character

@table @asis
@item @emph{Description}:
Read a single character in stream mode from stdin by bypassing normal 
formatted output. Stream I/O should not be mixed with normal record-oriented 
(formatted or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

Note that the @code{FGET} intrinsic is provided for backwards compatibility with 
@command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code 
for future portability. See also @ref{Fortran 2003 status}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FGET(C [, STATUS])}
@item @code{STATUS = FGET(C)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C}      @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file, and a system specific positive
error code otherwise.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_fget
  INTEGER, PARAMETER :: strlen = 100
  INTEGER :: status, i = 1
  CHARACTER(len=strlen) :: str = ""

  WRITE (*,*) 'Enter text:'
  DO
    CALL fget(str(i:i), status)
    if (status /= 0 .OR. i > strlen) exit
    i = i + 1
  END DO
  WRITE (*,*) TRIM(str)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{FGETC}, @gol
@ref{FPUT}, @gol
@ref{FPUTC}
@end table



@node FGETC
@section @code{FGETC} --- Read a single character in stream mode
@fnindex FGETC
@cindex read character, stream mode
@cindex stream mode, read character
@cindex file operation, read character

@table @asis
@item @emph{Description}:
Read a single character in stream mode by bypassing normal formatted output. 
Stream I/O should not be mixed with normal record-oriented (formatted or 
unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

Note that the @code{FGET} intrinsic is provided for backwards compatibility
with @command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code 
for future portability. See also @ref{Fortran 2003 status}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FGETC(UNIT, C [, STATUS])}
@item @code{STATUS = FGETC(UNIT, C)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT}   @tab The type shall be @code{INTEGER}.
@item @var{C}      @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file and a system specific positive
error code otherwise.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_fgetc
  INTEGER :: fd = 42, status
  CHARACTER :: c

  OPEN(UNIT=fd, FILE="/etc/passwd", ACTION="READ", STATUS = "OLD")
  DO
    CALL fgetc(fd, c, status)
    IF (status /= 0) EXIT
    call fput(c)
  END DO
  CLOSE(UNIT=fd)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{FGET}, @gol
@ref{FPUT}, @gol
@ref{FPUTC}
@end table

@node FINDLOC
@section @code{FINDLOC} --- Search an array for a value
@fnindex FINDLOC
@cindex findloc

@table @asis
@item @emph{Description}:
Determines the location of the element in the array with the value
given in the @var{VALUE} argument, or, if the @var{DIM} argument is
supplied, determines the locations of the elements equal to the
@var{VALUE} argument element along each
row of the array in the @var{DIM} direction.  If @var{MASK} is
present, only the elements for which @var{MASK} is @code{.TRUE.} are
considered.  If more than one element in the array has the value
@var{VALUE}, the location returned is that of the first such element
in array element order if the @var{BACK} is not present or if it is
@code{.FALSE.}. If @var{BACK} is true, the location returned is that
of the last such element. If the array has zero size, or all of the
elements of @var{MASK} are @code{.FALSE.}, then the result is an array
of zeroes.  Similarly, if @var{DIM} is supplied and all of the
elements of @var{MASK} along a given row are zero, the result value
for that row is zero.

@item @emph{Standard}:
Fortran 2008 and later.

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = FINDLOC(ARRAY, VALUE, DIM [, MASK] [,KIND] [,BACK])}
@item @code{RESULT = FINDLOC(ARRAY, VALUE, [, MASK] [,KIND] [,BACK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of intrinsic type.
@item @var{VALUE} @tab A scalar of intrinsic type which is in type
conformance with @var{ARRAY}.
@item @var{DIM} @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive.  It may not be an optional dummy argument.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@item @var{BACK} @tab (Optional) A scalar of type @code{LOGICAL}.
@end multitable

@item @emph{Return value}:
If @var{DIM} is absent, the result is a rank-one array with a length
equal to the rank of @var{ARRAY}.  If @var{DIM} is present, the result
is an array with a rank one less than the rank of @var{ARRAY}, and a
size corresponding to the size of @var{ARRAY} with the @var{DIM}
dimension removed.  If @var{DIM} is present and @var{ARRAY} has a rank
of one, the result is a scalar.  If the optional argument @var{KIND}
is present, the result is an integer of kind @var{KIND}, otherwise it
is of default kind.

@item @emph{See also}:
@ref{MAXLOC}, @gol
@ref{MINLOC}

@end table

@node FLOOR
@section @code{FLOOR} --- Integer floor function
@fnindex FLOOR
@cindex floor
@cindex rounding, floor

@table @asis
@item @emph{Description}:
@code{FLOOR(A)} returns the greatest integer less than or equal to @var{X}.

@item @emph{Standard}:
Fortran 95 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = FLOOR(A [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab The type shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER(KIND)} if @var{KIND} is present
and of default-kind @code{INTEGER} otherwise.

@item @emph{Example}:
@smallexample
program test_floor
    real :: x = 63.29
    real :: y = -63.59
    print *, floor(x) ! returns 63
    print *, floor(y) ! returns -64
end program test_floor
@end smallexample

@item @emph{See also}:
@ref{CEILING}, @gol
@ref{NINT}
@end table



@node FLUSH
@section @code{FLUSH} --- Flush I/O unit(s)
@fnindex FLUSH
@cindex file operation, flush

@table @asis
@item @emph{Description}:
Flushes Fortran unit(s) currently open for output. Without the optional
argument, all units are flushed, otherwise just the unit specified.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL FLUSH(UNIT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab (Optional) The type shall be @code{INTEGER}.
@end multitable

@item @emph{Note}:
Beginning with the Fortran 2003 standard, there is a @code{FLUSH}
statement that should be preferred over the @code{FLUSH} intrinsic.

The @code{FLUSH} intrinsic and the Fortran 2003 @code{FLUSH} statement
have identical effect: they flush the runtime library's I/O buffer so
that the data becomes visible to other processes. This does not guarantee
that the data is committed to disk.

On POSIX systems, you can request that all data is transferred  to  the
storage device by calling the @code{fsync} function, with the POSIX file
descriptor of the I/O unit as argument (retrieved with GNU intrinsic
@code{FNUM}). The following example shows how:

@smallexample
  ! Declare the interface for POSIX fsync function
  interface
    function fsync (fd) bind(c,name="fsync")
    use iso_c_binding, only: c_int
      integer(c_int), value :: fd
      integer(c_int) :: fsync
    end function fsync
  end interface

  ! Variable declaration
  integer :: ret

  ! Opening unit 10
  open (10,file="foo")

  ! ...
  ! Perform I/O on unit 10
  ! ...

  ! Flush and sync
  flush(10)
  ret = fsync(fnum(10))

  ! Handle possible error
  if (ret /= 0) stop "Error calling FSYNC"
@end smallexample

@end table



@node FNUM
@section @code{FNUM} --- File number function
@fnindex FNUM
@cindex file operation, file number

@table @asis
@item @emph{Description}:
@code{FNUM(UNIT)} returns the POSIX file descriptor number corresponding to the
open Fortran I/O unit @code{UNIT}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = FNUM(UNIT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER}

@item @emph{Example}:
@smallexample
program test_fnum
  integer :: i
  open (unit=10, status = "scratch")
  i = fnum(10)
  print *, i
  close (10)
end program test_fnum
@end smallexample
@end table



@node FPUT
@section @code{FPUT} --- Write a single character in stream mode to stdout 
@fnindex FPUT
@cindex write character, stream mode
@cindex stream mode, write character
@cindex file operation, write character

@table @asis
@item @emph{Description}:
Write a single character in stream mode to stdout by bypassing normal 
formatted output. Stream I/O should not be mixed with normal record-oriented 
(formatted or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

Note that the @code{FGET} intrinsic is provided for backwards compatibility with 
@command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code 
for future portability. See also @ref{Fortran 2003 status}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FPUT(C [, STATUS])}
@item @code{STATUS = FPUT(C)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C}      @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file and a system specific positive
error code otherwise.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_fput
  CHARACTER(len=10) :: str = "gfortran"
  INTEGER :: i
  DO i = 1, len_trim(str)
    CALL fput(str(i:i))
  END DO
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{FPUTC}, @gol
@ref{FGET}, @gol
@ref{FGETC}
@end table



@node FPUTC
@section @code{FPUTC} --- Write a single character in stream mode
@fnindex FPUTC
@cindex write character, stream mode
@cindex stream mode, write character
@cindex file operation, write character

@table @asis
@item @emph{Description}:
Write a single character in stream mode by bypassing normal formatted 
output. Stream I/O should not be mixed with normal record-oriented 
(formatted or unformatted) I/O on the same unit; the results are unpredictable.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

Note that the @code{FGET} intrinsic is provided for backwards compatibility with 
@command{g77}.  GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code 
for future portability. See also @ref{Fortran 2003 status}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FPUTC(UNIT, C [, STATUS])}
@item @code{STATUS = FPUTC(UNIT, C)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT}   @tab The type shall be @code{INTEGER}.
@item @var{C}      @tab The type shall be @code{CHARACTER} and of default
kind.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, -1 on end-of-file and a system specific positive
error code otherwise.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_fputc
  CHARACTER(len=10) :: str = "gfortran"
  INTEGER :: fd = 42, i

  OPEN(UNIT = fd, FILE = "out", ACTION = "WRITE", STATUS="NEW")
  DO i = 1, len_trim(str)
    CALL fputc(fd, str(i:i))
  END DO
  CLOSE(fd)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{FPUT}, @gol
@ref{FGET}, @gol
@ref{FGETC}
@end table



@node FRACTION
@section @code{FRACTION} --- Fractional part of the model representation
@fnindex FRACTION
@cindex real number, fraction
@cindex floating point, fraction

@table @asis
@item @emph{Description}:
@code{FRACTION(X)} returns the fractional part of the model
representation of @code{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{Y = FRACTION(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type of the argument shall be a @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as the argument.
The fractional part of the model representation of @code{X} is returned;
it is @code{X * RADIX(X)**(-EXPONENT(X))}.

@item @emph{Example}:
@smallexample
program test_fraction
  real :: x
  x = 178.1387e-4
  print *, fraction(x), x * radix(x)**(-exponent(x))
end program test_fraction
@end smallexample

@end table



@node FREE
@section @code{FREE} --- Frees memory
@fnindex FREE
@cindex pointer, cray

@table @asis
@item @emph{Description}:
Frees memory previously allocated by @code{MALLOC}. The @code{FREE}
intrinsic is an extension intended to be used with Cray pointers, and is
provided in GNU Fortran to allow user to compile legacy code. For
new code using Fortran 95 pointers, the memory de-allocation intrinsic is
@code{DEALLOCATE}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL FREE(PTR)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PTR} @tab The type shall be @code{INTEGER}. It represents the
location of the memory that should be de-allocated.
@end multitable

@item @emph{Return value}:
None

@item @emph{Example}:
See @code{MALLOC} for an example.

@item @emph{See also}:
@ref{MALLOC}
@end table



@node FSEEK
@section @code{FSEEK} --- Low level file positioning subroutine
@fnindex FSEEK
@cindex file operation, seek
@cindex file operation, position

@table @asis
@item @emph{Description}:
Moves @var{UNIT} to the specified @var{OFFSET}. If @var{WHENCE} 
is set to 0, the @var{OFFSET} is taken as an absolute value @code{SEEK_SET},
if set to 1, @var{OFFSET} is taken to be relative to the current position 
@code{SEEK_CUR}, and if set to 2 relative to the end of the file @code{SEEK_END}.
On error, @var{STATUS} is set to a nonzero value. If @var{STATUS} the seek 
fails silently.

This intrinsic routine is not fully backwards compatible with @command{g77}. 
In @command{g77}, the @code{FSEEK} takes a statement label instead of a 
@var{STATUS} variable. If FSEEK is used in old code, change
@smallexample
  CALL FSEEK(UNIT, OFFSET, WHENCE, *label)
@end smallexample 
to
@smallexample
  INTEGER :: status
  CALL FSEEK(UNIT, OFFSET, WHENCE, status)
  IF (status /= 0) GOTO label
@end smallexample 

Please note that GNU Fortran provides the Fortran 2003 Stream facility.
Programmers should consider the use of new stream IO feature in new code 
for future portability. See also @ref{Fortran 2003 status}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT}   @tab Shall be a scalar of type @code{INTEGER}.
@item @var{OFFSET} @tab Shall be a scalar of type @code{INTEGER}.
@item @var{WHENCE} @tab Shall be a scalar of type @code{INTEGER}.
Its value shall be either 0, 1 or 2.
@item @var{STATUS} @tab (Optional) shall be a scalar of type 
@code{INTEGER(4)}.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_fseek
  INTEGER, PARAMETER :: SEEK_SET = 0, SEEK_CUR = 1, SEEK_END = 2
  INTEGER :: fd, offset, ierr

  ierr   = 0
  offset = 5
  fd     = 10

  OPEN(UNIT=fd, FILE="fseek.test")
  CALL FSEEK(fd, offset, SEEK_SET, ierr)  ! move to OFFSET
  print *, FTELL(fd), ierr

  CALL FSEEK(fd, 0, SEEK_END, ierr)       ! move to end
  print *, FTELL(fd), ierr

  CALL FSEEK(fd, 0, SEEK_SET, ierr)       ! move to beginning
  print *, FTELL(fd), ierr

  CLOSE(UNIT=fd)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{FTELL}
@end table



@node FSTAT
@section @code{FSTAT} --- Get file status
@fnindex FSTAT
@cindex file system, file status

@table @asis
@item @emph{Description}:
@code{FSTAT} is identical to @ref{STAT}, except that information about an 
already opened file is obtained.

The elements in @code{VALUES} are the same as described by @ref{STAT}.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FSTAT(UNIT, VALUES [, STATUS])}
@item @code{STATUS = FSTAT(UNIT, VALUES)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT}   @tab An open I/O unit number of type @code{INTEGER}.
@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0 
on success and a system specific error code otherwise.
@end multitable

@item @emph{Example}:
See @ref{STAT} for an example.

@item @emph{See also}:
To stat a link: @gol
@ref{LSTAT} @gol
To stat a file: @gol
@ref{STAT}
@end table



@node FTELL
@section @code{FTELL} --- Current stream position
@fnindex FTELL
@cindex file operation, position

@table @asis
@item @emph{Description}:
Retrieves the current position within an open file.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL FTELL(UNIT, OFFSET)}
@item @code{OFFSET = FTELL(UNIT)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{OFFSET}  @tab Shall of type @code{INTEGER}.
@item @var{UNIT}    @tab Shall of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
In either syntax, @var{OFFSET} is set to the current offset of unit
number @var{UNIT}, or to @math{-1} if the unit is not currently open.

@item @emph{Example}:
@smallexample
PROGRAM test_ftell
  INTEGER :: i
  OPEN(10, FILE="temp.dat")
  CALL ftell(10,i)
  WRITE(*,*) i
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{FSEEK}
@end table



@node GAMMA
@section @code{GAMMA} --- Gamma function
@fnindex GAMMA
@fnindex DGAMMA
@cindex Gamma function
@cindex Factorial function

@table @asis
@item @emph{Description}:
@code{GAMMA(X)} computes Gamma (@math{\Gamma}) of @var{X}. For positive,
integer values of @var{X} the Gamma function simplifies to the factorial
function @math{\Gamma(x)=(x-1)!}.

@tex
$$
\Gamma(x) = \int_0^\infty t^{x-1}{\rm e}^{-t}\,{\rm d}t
$$
@end tex

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{X = GAMMA(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} and neither zero
nor a negative integer.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} of the same kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_gamma
  real :: x = 1.0
  x = gamma(x) ! returns 1.0
end program test_gamma
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument         @tab Return type       @tab Standard
@item @code{DGAMMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}    @tab GNU extension
@end multitable

@item @emph{See also}:
Logarithm of the Gamma function: @gol
@ref{LOG_GAMMA}
@end table



@node GERROR
@section @code{GERROR} --- Get last system error message
@fnindex GERROR
@cindex system, error handling

@table @asis
@item @emph{Description}:
Returns the system error message corresponding to the last system error.
This resembles the functionality of @code{strerror(3)} in C.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GERROR(RESULT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{RESULT}  @tab Shall of type @code{CHARACTER} and of default
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_gerror
  CHARACTER(len=100) :: msg
  CALL gerror(msg)
  WRITE(*,*) msg
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{IERRNO}, @gol
@ref{PERROR}
@end table



@node GETARG
@section @code{GETARG} --- Get command line arguments
@fnindex GETARG
@cindex command-line arguments
@cindex arguments, to program

@table @asis
@item @emph{Description}:
Retrieve the @var{POS}-th argument that was passed on the
command line when the containing program was invoked.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  In new code, programmers should consider the use of 
the @ref{GET_COMMAND_ARGUMENT} intrinsic defined by the Fortran 2003 
standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GETARG(POS, VALUE)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{POS}   @tab Shall be of type @code{INTEGER} and not wider than
the default integer kind; @math{@var{POS} \geq 0}
@item @var{VALUE} @tab Shall be of type @code{CHARACTER} and of default
kind.
@item @var{VALUE} @tab Shall be of type @code{CHARACTER}. 
@end multitable

@item @emph{Return value}:
After @code{GETARG} returns, the @var{VALUE} argument holds the
@var{POS}th command line argument. If @var{VALUE} cannot hold the
argument, it is truncated to fit the length of @var{VALUE}. If there are
less than @var{POS} arguments specified at the command line, @var{VALUE}
will be filled with blanks. If @math{@var{POS} = 0}, @var{VALUE} is set
to the name of the program (on systems that support this feature).

@item @emph{Example}:
@smallexample
PROGRAM test_getarg
  INTEGER :: i
  CHARACTER(len=32) :: arg

  DO i = 1, iargc()
    CALL getarg(i, arg)
    WRITE (*,*) arg
  END DO
END PROGRAM
@end smallexample

@item @emph{See also}:
GNU Fortran 77 compatibility function: @gol
@ref{IARGC} @gol
Fortran 2003 functions and subroutines: @gol
@ref{GET_COMMAND}, @gol
@ref{GET_COMMAND_ARGUMENT}, @gol
@ref{COMMAND_ARGUMENT_COUNT}
@end table



@node GET_COMMAND
@section @code{GET_COMMAND} --- Get the entire command line
@fnindex GET_COMMAND
@cindex command-line arguments
@cindex arguments, to program

@table @asis
@item @emph{Description}:
Retrieve the entire command line that was used to invoke the program.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GET_COMMAND([COMMAND, LENGTH, STATUS])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COMMAND} @tab (Optional) shall be of type @code{CHARACTER} and
of default kind.
@item @var{LENGTH} @tab (Optional) Shall be of type @code{INTEGER} and of
default kind.
@item @var{STATUS} @tab (Optional) Shall be of type @code{INTEGER} and of
default kind.
@end multitable

@item @emph{Return value}:
If @var{COMMAND} is present, stores the entire command line that was used
to invoke the program in @var{COMMAND}. If @var{LENGTH} is present, it is
assigned the length of the command line. If @var{STATUS} is present, it
is assigned 0 upon success of the command, -1 if @var{COMMAND} is too
short to store the command line, or a positive value in case of an error.

@item @emph{Example}:
@smallexample
PROGRAM test_get_command
  CHARACTER(len=255) :: cmd
  CALL get_command(cmd)
  WRITE (*,*) TRIM(cmd)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{GET_COMMAND_ARGUMENT}, @gol
@ref{COMMAND_ARGUMENT_COUNT}
@end table



@node GET_COMMAND_ARGUMENT
@section @code{GET_COMMAND_ARGUMENT} --- Get command line arguments
@fnindex GET_COMMAND_ARGUMENT
@cindex command-line arguments
@cindex arguments, to program

@table @asis
@item @emph{Description}:
Retrieve the @var{NUMBER}-th argument that was passed on the
command line when the containing program was invoked.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NUMBER} @tab Shall be a scalar of type @code{INTEGER} and of
default kind, @math{@var{NUMBER} \geq 0}
@item @var{VALUE}  @tab (Optional) Shall be a scalar of type @code{CHARACTER}
and of default kind.
@item @var{LENGTH} @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@item @var{STATUS} @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@end multitable

@item @emph{Return value}:
After @code{GET_COMMAND_ARGUMENT} returns, the @var{VALUE} argument holds the 
@var{NUMBER}-th command line argument. If @var{VALUE} cannot hold the argument, it is 
truncated to fit the length of @var{VALUE}. If there are less than @var{NUMBER}
arguments specified at the command line, @var{VALUE} will be filled with blanks. 
If @math{@var{NUMBER} = 0}, @var{VALUE} is set to the name of the program (on
systems that support this feature). The @var{LENGTH} argument contains the
length of the @var{NUMBER}-th command line argument. If the argument retrieval
fails, @var{STATUS} is a positive number; if @var{VALUE} contains a truncated
command line argument, @var{STATUS} is -1; and otherwise the @var{STATUS} is
zero.

@item @emph{Example}:
@smallexample
PROGRAM test_get_command_argument
  INTEGER :: i
  CHARACTER(len=32) :: arg

  i = 0
  DO
    CALL get_command_argument(i, arg)
    IF (LEN_TRIM(arg) == 0) EXIT

    WRITE (*,*) TRIM(arg)
    i = i+1
  END DO
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{GET_COMMAND}, @gol
@ref{COMMAND_ARGUMENT_COUNT}
@end table



@node GETCWD
@section @code{GETCWD} --- Get current working directory
@fnindex GETCWD
@cindex system, working directory

@table @asis
@item @emph{Description}:
Get current working directory.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL GETCWD(C [, STATUS])}
@item @code{STATUS = GETCWD(C)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab The type shall be @code{CHARACTER} and of default kind.
@item @var{STATUS} @tab (Optional) status flag. Returns 0 on success, 
a system specific and nonzero error code otherwise.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_getcwd
  CHARACTER(len=255) :: cwd
  CALL getcwd(cwd)
  WRITE(*,*) TRIM(cwd)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{CHDIR}
@end table



@node GETENV
@section @code{GETENV} --- Get an environmental variable
@fnindex GETENV
@cindex environment variable

@table @asis
@item @emph{Description}:
Get the @var{VALUE} of the environmental variable @var{NAME}.

This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77.  In new code, programmers should consider the use of
the @ref{GET_ENVIRONMENT_VARIABLE} intrinsic defined by the Fortran
2003 standard.

Note that @code{GETENV} need not be thread-safe. It is the
responsibility of the user to ensure that the environment is not being
updated concurrently with a call to the @code{GETENV} intrinsic.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GETENV(NAME, VALUE)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME}  @tab Shall be of type @code{CHARACTER} and of default kind.
@item @var{VALUE} @tab Shall be of type @code{CHARACTER} and of default kind.
@end multitable

@item @emph{Return value}:
Stores the value of @var{NAME} in @var{VALUE}. If @var{VALUE} is 
not large enough to hold the data, it is truncated. If @var{NAME}
is not set, @var{VALUE} will be filled with blanks.

@item @emph{Example}:
@smallexample
PROGRAM test_getenv
  CHARACTER(len=255) :: homedir
  CALL getenv("HOME", homedir)
  WRITE (*,*) TRIM(homedir)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{GET_ENVIRONMENT_VARIABLE}
@end table



@node GET_ENVIRONMENT_VARIABLE
@section @code{GET_ENVIRONMENT_VARIABLE} --- Get an environmental variable
@fnindex GET_ENVIRONMENT_VARIABLE
@cindex environment variable

@table @asis
@item @emph{Description}:
Get the @var{VALUE} of the environmental variable @var{NAME}.

Note that @code{GET_ENVIRONMENT_VARIABLE} need not be thread-safe. It
is the responsibility of the user to ensure that the environment is
not being updated concurrently with a call to the
@code{GET_ENVIRONMENT_VARIABLE} intrinsic.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS, TRIM_NAME)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME}      @tab Shall be a scalar of type @code{CHARACTER}
and of default kind.
@item @var{VALUE}     @tab (Optional) Shall be a scalar of type @code{CHARACTER}
and of default kind.
@item @var{LENGTH}    @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@item @var{STATUS}    @tab (Optional) Shall be a scalar of type @code{INTEGER}
and of default kind.
@item @var{TRIM_NAME} @tab (Optional) Shall be a scalar of type @code{LOGICAL}
and of default kind.
@end multitable

@item @emph{Return value}:
Stores the value of @var{NAME} in @var{VALUE}. If @var{VALUE} is 
not large enough to hold the data, it is truncated. If @var{NAME}
is not set, @var{VALUE} will be filled with blanks. Argument @var{LENGTH}
contains the length needed for storing the environment variable @var{NAME}
or zero if it is not present. @var{STATUS} is -1 if @var{VALUE} is present
but too short for the environment variable; it is 1 if the environment
variable does not exist and 2 if the processor does not support environment
variables; in all other cases @var{STATUS} is zero. If @var{TRIM_NAME} is
present with the value @code{.FALSE.}, the trailing blanks in @var{NAME}
are significant; otherwise they are not part of the environment variable
name.

@item @emph{Example}:
@smallexample
PROGRAM test_getenv
  CHARACTER(len=255) :: homedir
  CALL get_environment_variable("HOME", homedir)
  WRITE (*,*) TRIM(homedir)
END PROGRAM
@end smallexample
@end table



@node GETGID
@section @code{GETGID} --- Group ID function
@fnindex GETGID
@cindex system, group ID

@table @asis
@item @emph{Description}:
Returns the numerical group ID of the current process.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = GETGID()}

@item @emph{Return value}:
The return value of @code{GETGID} is an @code{INTEGER} of the default
kind.


@item @emph{Example}:
See @code{GETPID} for an example.

@item @emph{See also}:
@ref{GETPID}, @gol
@ref{GETUID}
@end table



@node GETLOG
@section @code{GETLOG} --- Get login name
@fnindex GETLOG
@cindex system, login name
@cindex login name

@table @asis
@item @emph{Description}:
Gets the username under which the program is running.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GETLOG(C)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C} @tab Shall be of type @code{CHARACTER} and of default kind.
@end multitable

@item @emph{Return value}:
Stores the current user name in @var{LOGIN}.  (On systems where POSIX
functions @code{geteuid} and @code{getpwuid} are not available, and 
the @code{getlogin} function is not implemented either, this will
return a blank string.)

@item @emph{Example}:
@smallexample
PROGRAM TEST_GETLOG
  CHARACTER(32) :: login
  CALL GETLOG(login)
  WRITE(*,*) login
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{GETUID}
@end table



@node GETPID
@section @code{GETPID} --- Process ID function
@fnindex GETPID
@cindex system, process ID
@cindex process ID

@table @asis
@item @emph{Description}:
Returns the numerical process identifier of the current process.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = GETPID()}

@item @emph{Return value}:
The return value of @code{GETPID} is an @code{INTEGER} of the default
kind.


@item @emph{Example}:
@smallexample
program info
  print *, "The current process ID is ", getpid()
  print *, "Your numerical user ID is ", getuid()
  print *, "Your numerical group ID is ", getgid()
end program info
@end smallexample

@item @emph{See also}:
@ref{GETGID}, @gol
@ref{GETUID}
@end table



@node GETUID
@section @code{GETUID} --- User ID function
@fnindex GETUID
@cindex system, user ID
@cindex user id

@table @asis
@item @emph{Description}:
Returns the numerical user ID of the current process.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = GETUID()}

@item @emph{Return value}:
The return value of @code{GETUID} is an @code{INTEGER} of the default
kind.


@item @emph{Example}:
See @code{GETPID} for an example.

@item @emph{See also}:
@ref{GETPID}, @gol
@ref{GETLOG}
@end table



@node GMTIME
@section @code{GMTIME} --- Convert time to GMT info
@fnindex GMTIME
@cindex time, conversion to GMT info

@table @asis
@item @emph{Description}:
Given a system time value @var{TIME} (as provided by the @ref{TIME}
intrinsic), fills @var{VALUES} with values extracted from it appropriate
to the UTC time zone (Universal Coordinated Time, also known in some
countries as GMT, Greenwich Mean Time), using @code{gmtime(3)}.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  In new code, programmers should consider the use of 
the @ref{DATE_AND_TIME} intrinsic defined by the Fortran 95
standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL GMTIME(TIME, VALUES)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME}   @tab An @code{INTEGER} scalar expression
corresponding to a system time, with @code{INTENT(IN)}.
@item @var{VALUES} @tab A default @code{INTEGER} array with 9 elements,
with @code{INTENT(OUT)}.
@end multitable

@item @emph{Return value}:
The elements of @var{VALUES} are assigned as follows:
@enumerate
@item Seconds after the minute, range 0--59 or 0--61 to allow for leap
seconds
@item Minutes after the hour, range 0--59
@item Hours past midnight, range 0--23
@item Day of month, range 1--31
@item Number of months since January, range 0--11
@item Years since 1900
@item Number of days since Sunday, range 0--6
@item Days since January 1, range 0--365
@item Daylight savings indicator: positive if daylight savings is in
effect, zero if not, and negative if the information is not available.
@end enumerate

@item @emph{See also}:
@ref{DATE_AND_TIME}, @gol
@ref{CTIME}, @gol
@ref{LTIME}, @gol
@ref{TIME}, @gol
@ref{TIME8}
@end table



@node HOSTNM
@section @code{HOSTNM} --- Get system host name
@fnindex HOSTNM
@cindex system, host name

@table @asis
@item @emph{Description}:
Retrieves the host name of the system on which the program is running.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL HOSTNM(C [, STATUS])}
@item @code{STATUS = HOSTNM(NAME)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C}    @tab Shall of type @code{CHARACTER} and of default kind.
@item @var{STATUS}  @tab (Optional) status flag of type @code{INTEGER}.
Returns 0 on success, or a system specific error code otherwise.
@end multitable

@item @emph{Return value}:
In either syntax, @var{NAME} is set to the current hostname if it can
be obtained, or to a blank string otherwise.

@end table



@node HUGE
@section @code{HUGE} --- Largest number of a kind
@fnindex HUGE
@cindex limits, largest number
@cindex model representation, largest number

@table @asis
@item @emph{Description}:
@code{HUGE(X)} returns the largest number that is not an infinity in
the model of the type of @code{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = HUGE(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} or @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}

@item @emph{Example}:
@smallexample
program test_huge_tiny
  print *, huge(0), huge(0.0), huge(0.0d0)
  print *, tiny(0.0), tiny(0.0d0)
end program test_huge_tiny
@end smallexample
@end table



@node HYPOT
@section @code{HYPOT} --- Euclidean distance function
@fnindex HYPOT
@cindex Euclidean distance

@table @asis
@item @emph{Description}:
@code{HYPOT(X,Y)} is the Euclidean distance function. It is equal to
@math{\sqrt{X^2 + Y^2}}, without undue underflow or overflow.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = HYPOT(X, Y)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{Y} @tab The type and kind type parameter shall be the same as
@var{X}.
@end multitable

@item @emph{Return value}:
The return value has the same type and kind type parameter as @var{X}.

@item @emph{Example}:
@smallexample
program test_hypot
  real(4) :: x = 1.e0_4, y = 0.5e0_4
  x = hypot(x,y)
end program test_hypot
@end smallexample
@end table



@node IACHAR
@section @code{IACHAR} --- Code in @acronym{ASCII} collating sequence 
@fnindex IACHAR
@cindex @acronym{ASCII} collating sequence
@cindex collating sequence, @acronym{ASCII}
@cindex conversion, to integer

@table @asis
@item @emph{Description}:
@code{IACHAR(C)} returns the code for the @acronym{ASCII} character
in the first character position of @code{C}.

@item @emph{Standard}:
Fortran 95 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IACHAR(C [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C}    @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.

@item @emph{Example}:
@smallexample
program test_iachar
  integer i
  i = iachar(' ')
end program test_iachar
@end smallexample

@item @emph{Note}:
See @ref{ICHAR} for a discussion of converting between numerical values
and formatted string representations.

@item @emph{See also}:
@ref{ACHAR}, @gol
@ref{CHAR}, @gol
@ref{ICHAR}
@end table



@node IALL
@section @code{IALL} --- Bitwise AND of array elements
@fnindex IALL
@cindex array, AND
@cindex bits, AND of array elements

@table @asis
@item @emph{Description}:
Reduces with bitwise AND the elements of @var{ARRAY} along dimension @var{DIM}
if the corresponding element in @var{MASK} is @code{TRUE}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = IALL(ARRAY[, MASK])}
@item @code{RESULT = IALL(ARRAY, DIM[, MASK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
@item @var{DIM}   @tab (Optional) shall be a scalar of type 
@code{INTEGER} with a value in the range from 1 to n, where n 
equals the rank of @var{ARRAY}.
@item @var{MASK}  @tab (Optional) shall be of type @code{LOGICAL} 
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable

@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.

If @var{DIM} is absent, a scalar with the bitwise ALL of all elements in
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
dimension @var{DIM} dropped is returned.

@item @emph{Example}:
@smallexample
PROGRAM test_iall
  INTEGER(1) :: a(2)

  a(1) = b'00100100'
  a(2) = b'01101010'

  ! prints 00100000
  PRINT '(b8.8)', IALL(a)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{IANY}, @gol
@ref{IPARITY}, @gol
@ref{IAND}
@end table



@node IAND
@section @code{IAND} --- Bitwise logical and
@fnindex IAND
@fnindex BIAND
@fnindex IIAND
@fnindex JIAND
@fnindex KIAND
@cindex bitwise logical and
@cindex logical and, bitwise

@table @asis
@item @emph{Description}:
Bitwise logical @code{AND}.

@item @emph{Standard}:
Fortran 90 and later, with boz-literal-constant Fortran 2008 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IAND(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER} or a boz-literal-constant.
@item @var{J} @tab The type shall be @code{INTEGER} with the same
kind type parameter as @var{I} or a boz-literal-constant.
@var{I} and @var{J} shall not both be boz-literal-constants.
@end multitable

@item @emph{Return value}:
The return type is @code{INTEGER} with the kind type parameter of the
arguments.
A boz-literal-constant is converted to an @code{INTEGER} with the kind
type parameter of the other argument as-if a call to @ref{INT} occurred.

@item @emph{Example}:
@smallexample
PROGRAM test_iand
  INTEGER :: a, b
  DATA a / Z'F' /, b / Z'3' /
  WRITE (*,*) IAND(a, b)
END PROGRAM
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{IAND(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BIAND(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IIAND(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JIAND(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KIAND(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{IOR}, @gol
@ref{IEOR}, @gol
@ref{IBITS}, @gol
@ref{IBSET}, @gol
@ref{IBCLR}, @gol
@ref{NOT}
@end table



@node IANY
@section @code{IANY} --- Bitwise OR of array elements
@fnindex IANY
@cindex array, OR
@cindex bits, OR of array elements

@table @asis
@item @emph{Description}:
Reduces with bitwise OR (inclusive or) the elements of @var{ARRAY} along
dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = IANY(ARRAY[, MASK])}
@item @code{RESULT = IANY(ARRAY, DIM[, MASK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
@item @var{DIM}   @tab (Optional) shall be a scalar of type 
@code{INTEGER} with a value in the range from 1 to n, where n 
equals the rank of @var{ARRAY}.
@item @var{MASK}  @tab (Optional) shall be of type @code{LOGICAL} 
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable

@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.

If @var{DIM} is absent, a scalar with the bitwise OR of all elements in
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
dimension @var{DIM} dropped is returned.

@item @emph{Example}:
@smallexample
PROGRAM test_iany
  INTEGER(1) :: a(2)

  a(1) = b'00100100'
  a(2) = b'01101010'

  ! prints 01101110
  PRINT '(b8.8)', IANY(a)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{IPARITY}, @gol
@ref{IALL}, @gol
@ref{IOR}
@end table



@node IARGC
@section @code{IARGC} --- Get the number of command line arguments
@fnindex IARGC
@cindex command-line arguments
@cindex command-line arguments, number of
@cindex arguments, to program

@table @asis
@item @emph{Description}:
@code{IARGC} returns the number of arguments passed on the
command line when the containing program was invoked.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  In new code, programmers should consider the use of 
the @ref{COMMAND_ARGUMENT_COUNT} intrinsic defined by the Fortran 2003 
standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = IARGC()}

@item @emph{Arguments}:
None

@item @emph{Return value}:
The number of command line arguments, type @code{INTEGER(4)}.

@item @emph{Example}:
See @ref{GETARG}

@item @emph{See also}:
GNU Fortran 77 compatibility subroutine: @gol
@ref{GETARG} @gol
Fortran 2003 functions and subroutines: @gol
@ref{GET_COMMAND}, @gol
@ref{GET_COMMAND_ARGUMENT}, @gol
@ref{COMMAND_ARGUMENT_COUNT}
@end table



@node IBCLR
@section @code{IBCLR} --- Clear bit
@fnindex IBCLR
@fnindex BBCLR
@fnindex IIBCLR
@fnindex JIBCLR
@fnindex KIBCLR
@cindex bits, unset
@cindex bits, clear

@table @asis
@item @emph{Description}:
@code{IBCLR} returns the value of @var{I} with the bit at position
@var{POS} set to zero.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IBCLR(I, POS)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{IBCLR(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BBCLR(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IIBCLR(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JIBCLR(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KIBCLR(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{IBITS}, @gol
@ref{IBSET}, @gol
@ref{IAND}, @gol
@ref{IOR}, @gol
@ref{IEOR}, @gol
@ref{MVBITS}
@end table



@node IBITS
@section @code{IBITS} --- Bit extraction
@fnindex IBITS
@fnindex BBITS
@fnindex IIBITS
@fnindex JIBITS
@fnindex KIBITS
@cindex bits, get
@cindex bits, extract

@table @asis
@item @emph{Description}:
@code{IBITS} extracts a field of length @var{LEN} from @var{I},
starting from bit position @var{POS} and extending left for @var{LEN}
bits.  The result is right-justified and the remaining bits are
zeroed.  The value of @code{POS+LEN} must be less than or equal to the
value @code{BIT_SIZE(I)}.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IBITS(I, POS, LEN)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I}   @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@item @var{LEN} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{IBITS(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BBITS(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IIBITS(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JIBITS(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KIBITS(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{BIT_SIZE}, @gol
@ref{IBCLR}, @gol
@ref{IBSET}, @gol
@ref{IAND}, @gol
@ref{IOR}, @gol
@ref{IEOR}
@end table



@node IBSET
@section @code{IBSET} --- Set bit
@fnindex IBSET
@fnindex BBSET
@fnindex IIBSET
@fnindex JIBSET
@fnindex KIBSET
@cindex bits, set

@table @asis
@item @emph{Description}:
@code{IBSET} returns the value of @var{I} with the bit at position
@var{POS} set to one.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IBSET(I, POS)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{POS} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{IBSET(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BBSET(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IIBSET(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JIBSET(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KIBSET(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{IBCLR}, @gol
@ref{IBITS}, @gol
@ref{IAND}, @gol
@ref{IOR}, @gol
@ref{IEOR}, @gol
@ref{MVBITS}
@end table



@node ICHAR
@section @code{ICHAR} --- Character-to-integer conversion function
@fnindex ICHAR
@cindex conversion, to integer

@table @asis
@item @emph{Description}:
@code{ICHAR(C)} returns the code for the character in the first character
position of @code{C} in the system's native character set.
The correspondence between characters and their codes is not necessarily
the same across different GNU Fortran implementations.

@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ICHAR(C [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C}    @tab Shall be a scalar @code{CHARACTER}, with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.

@item @emph{Example}:
@smallexample
program test_ichar
  integer i
  i = ichar(' ')
end program test_ichar
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument             @tab Return type       @tab Standard
@item @code{ICHAR(C)}  @tab @code{CHARACTER C}   @tab @code{INTEGER(4)}    @tab Fortran 77 and later
@end multitable

@item @emph{Note}:
No intrinsic exists to convert between a numeric value and a formatted
character string representation -- for instance, given the
@code{CHARACTER} value @code{'154'}, obtaining an @code{INTEGER} or
@code{REAL} value with the value 154, or vice versa. Instead, this
functionality is provided by internal-file I/O, as in the following
example:
@smallexample
program read_val
  integer value
  character(len=10) string, string2
  string = '154'
  
  ! Convert a string to a numeric value
  read (string,'(I10)') value
  print *, value
  
  ! Convert a value to a formatted string
  write (string2,'(I10)') value
  print *, string2
end program read_val
@end smallexample

@item @emph{See also}:
@ref{ACHAR}, @gol
@ref{CHAR}, @gol
@ref{IACHAR}
@end table



@node IDATE
@section @code{IDATE} --- Get current local time subroutine (day/month/year) 
@fnindex IDATE
@cindex date, current
@cindex current date

@table @asis
@item @emph{Description}:
@code{IDATE(VALUES)} Fills @var{VALUES} with the numerical values at the  
current local time. The day (in the range 1-31), month (in the range 1-12), 
and year appear in elements 1, 2, and 3 of @var{VALUES}, respectively. 
The year has four significant digits.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  In new code, programmers should consider the use of 
the @ref{DATE_AND_TIME} intrinsic defined by the Fortran 95
standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL IDATE(VALUES)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(3)} and
the kind shall be the default integer kind.
@end multitable

@item @emph{Return value}:
Does not return anything.

@item @emph{Example}:
@smallexample
program test_idate
  integer, dimension(3) :: tarray
  call idate(tarray)
  print *, tarray(1)
  print *, tarray(2)
  print *, tarray(3)
end program test_idate
@end smallexample

@item @emph{See also}:
@ref{DATE_AND_TIME}
@end table


@node IEOR
@section @code{IEOR} --- Bitwise logical exclusive or
@fnindex IEOR
@fnindex BIEOR
@fnindex IIEOR
@fnindex JIEOR
@fnindex KIEOR
@cindex bitwise logical exclusive or
@cindex logical exclusive or, bitwise

@table @asis
@item @emph{Description}:
@code{IEOR} returns the bitwise Boolean exclusive-OR of @var{I} and
@var{J}.

@item @emph{Standard}:
Fortran 90 and later, with boz-literal-constant Fortran 2008 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IEOR(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER} or a boz-literal-constant.
@item @var{J} @tab The type shall be @code{INTEGER} with the same
kind type parameter as @var{I} or a boz-literal-constant.
@var{I} and @var{J} shall not both be boz-literal-constants.
@end multitable

@item @emph{Return value}:
The return type is @code{INTEGER} with the kind type parameter of the
arguments.
A boz-literal-constant is converted to an @code{INTEGER} with the kind
type parameter of the other argument as-if a call to @ref{INT} occurred.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{IEOR(A)}  @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BIEOR(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IIEOR(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JIEOR(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KIEOR(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{IOR}, @gol
@ref{IAND}, @gol
@ref{IBITS}, @gol
@ref{IBSET}, @gol
@ref{IBCLR}, @gol
@ref{NOT}
@end table



@node IERRNO
@section @code{IERRNO} --- Get the last system error number
@fnindex IERRNO
@cindex system, error handling

@table @asis
@item @emph{Description}:
Returns the last system error number, as given by the C @code{errno}
variable.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = IERRNO()}

@item @emph{Arguments}:
None

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.

@item @emph{See also}:
@ref{PERROR}
@end table



@node IMAGE_INDEX
@section @code{IMAGE_INDEX} --- Function that converts a cosubscript to an image index
@fnindex IMAGE_INDEX
@cindex coarray, @code{IMAGE_INDEX}
@cindex images, cosubscript to image index conversion

@table @asis
@item @emph{Description}:
Returns the image index belonging to a cosubscript.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Inquiry function.

@item @emph{Syntax}:
@code{RESULT = IMAGE_INDEX(COARRAY, SUB)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COARRAY} @tab Coarray of any type.
@item @var{SUB}     @tab default integer rank-1 array of a size equal to
the corank of @var{COARRAY}.
@end multitable


@item @emph{Return value}:
Scalar default integer with the value of the image index which corresponds
to the cosubscripts. For invalid cosubscripts the result is zero.

@item @emph{Example}:
@smallexample
INTEGER :: array[2,-1:4,8,*]
! Writes  28 (or 0 if there are fewer than 28 images)
WRITE (*,*) IMAGE_INDEX (array, [2,0,3,1])
@end smallexample

@item @emph{See also}:
@ref{THIS_IMAGE}, @gol
@ref{NUM_IMAGES}
@end table



@node INDEX intrinsic
@section @code{INDEX} --- Position of a substring within a string
@fnindex INDEX
@cindex substring position
@cindex string, find substring

@table @asis
@item @emph{Description}:
Returns the position of the start of the first occurrence of string
@var{SUBSTRING} as a substring in @var{STRING}, counting from one.  If
@var{SUBSTRING} is not present in @var{STRING}, zero is returned.  If 
the @var{BACK} argument is present and true, the return value is the
start of the last occurrence rather than the first.

@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar @code{CHARACTER}, with
@code{INTENT(IN)}
@item @var{SUBSTRING} @tab Shall be a scalar @code{CHARACTER}, with
@code{INTENT(IN)}
@item @var{BACK} @tab (Optional) Shall be a scalar @code{LOGICAL}, with
@code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                            @tab Argument           @tab Return type       @tab Standard
@item @code{INDEX(STRING, SUBSTRING)} @tab @code{CHARACTER}   @tab @code{INTEGER(4)} @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{SCAN}, @gol
@ref{VERIFY}
@end table



@node INT
@section @code{INT} --- Convert to integer type
@fnindex INT
@fnindex IFIX
@fnindex IDINT
@cindex conversion, to integer

@table @asis
@item @emph{Description}:
Convert to integer type

@item @emph{Standard}:
Fortran 77 and later, with boz-literal-constant Fortran 2008 and later.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = INT(A [, KIND))}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX} or or a boz-literal-constant.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
These functions return a @code{INTEGER} variable or array under 
the following rules: 

@table @asis
@item (A)
If @var{A} is of type @code{INTEGER}, @code{INT(A) = A} 
@item (B)
If @var{A} is of type @code{REAL} and @math{|A| < 1}, @code{INT(A)}
equals @code{0}. If @math{|A| \geq 1}, then @code{INT(A)} is the integer
whose magnitude is the largest integer that does not exceed the magnitude
of @var{A} and whose sign is the same as the sign of @var{A}.
@item (C)
If @var{A} is of type @code{COMPLEX}, rule B is applied to the real part of @var{A}.
@end table

@item @emph{Example}:
@smallexample
program test_int
  integer :: i = 42
  complex :: z = (-3.7, 1.0)
  print *, int(i)
  print *, int(z), int(z,8)
end program
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{INT(A)}   @tab @code{REAL(4) A}  @tab @code{INTEGER}    @tab Fortran 77 and later
@item @code{IFIX(A)}  @tab @code{REAL(4) A}  @tab @code{INTEGER}    @tab Fortran 77 and later
@item @code{IDINT(A)} @tab @code{REAL(8) A}  @tab @code{INTEGER}    @tab Fortran 77 and later
@end multitable

@end table


@node INT2
@section @code{INT2} --- Convert to 16-bit integer type
@fnindex INT2
@fnindex SHORT
@cindex conversion, to integer

@table @asis
@item @emph{Description}:
Convert to a @code{KIND=2} integer type. This is equivalent to the
standard @code{INT} intrinsic with an optional argument of
@code{KIND=2}, and is only included for backwards compatibility.

The @code{SHORT} intrinsic is equivalent to @code{INT2}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = INT2(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is a @code{INTEGER(2)} variable.

@item @emph{See also}:
@ref{INT}, @gol
@ref{INT8}, @gol
@ref{LONG}
@end table



@node INT8
@section @code{INT8} --- Convert to 64-bit integer type
@fnindex INT8
@cindex conversion, to integer

@table @asis
@item @emph{Description}:
Convert to a @code{KIND=8} integer type. This is equivalent to the
standard @code{INT} intrinsic with an optional argument of
@code{KIND=8}, and is only included for backwards compatibility.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = INT8(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is a @code{INTEGER(8)} variable.

@item @emph{See also}:
@ref{INT}, @gol
@ref{INT2}, @gol
@ref{LONG}
@end table



@node IOR
@section @code{IOR} --- Bitwise logical or
@fnindex IOR
@fnindex BIOR
@fnindex IIOR
@fnindex JIOR
@fnindex KIOR
@cindex bitwise logical or
@cindex logical or, bitwise

@table @asis
@item @emph{Description}:
@code{IOR} returns the bitwise Boolean inclusive-OR of @var{I} and
@var{J}.

@item @emph{Standard}:
Fortran 90 and later, with boz-literal-constant Fortran 2008 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IOR(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER} or a boz-literal-constant.
@item @var{J} @tab The type shall be @code{INTEGER} with the same
kind type parameter as @var{I} or a boz-literal-constant.
@var{I} and @var{J} shall not both be boz-literal-constants.
@end multitable

@item @emph{Return value}:
The return type is @code{INTEGER} with the kind type parameter of the
arguments.
A boz-literal-constant is converted to an @code{INTEGER} with the kind
type parameter of the other argument as-if a call to @ref{INT} occurred.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{IOR(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BIOR(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IIOR(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JIOR(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KIOR(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{IEOR}, @gol
@ref{IAND}, @gol
@ref{IBITS}, @gol
@ref{IBSET}, @gol
@ref{IBCLR}, @gol
@ref{NOT}
@end table



@node IPARITY
@section @code{IPARITY} --- Bitwise XOR of array elements
@fnindex IPARITY
@cindex array, parity
@cindex array, XOR
@cindex bits, XOR of array elements

@table @asis
@item @emph{Description}:
Reduces with bitwise XOR (exclusive or) the elements of @var{ARRAY} along
dimension @var{DIM} if the corresponding element in @var{MASK} is @code{TRUE}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = IPARITY(ARRAY[, MASK])}
@item @code{RESULT = IPARITY(ARRAY, DIM[, MASK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}
@item @var{DIM}   @tab (Optional) shall be a scalar of type 
@code{INTEGER} with a value in the range from 1 to n, where n 
equals the rank of @var{ARRAY}.
@item @var{MASK}  @tab (Optional) shall be of type @code{LOGICAL} 
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable

@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.

If @var{DIM} is absent, a scalar with the bitwise XOR of all elements in
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with
dimension @var{DIM} dropped is returned.

@item @emph{Example}:
@smallexample
PROGRAM test_iparity
  INTEGER(1) :: a(2)

  a(1) = int(b'00100100', 1)
  a(2) = int(b'01101010', 1)

  ! prints 01001110
  PRINT '(b8.8)', IPARITY(a)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{IANY}, @gol
@ref{IALL}, @gol
@ref{IEOR}, @gol
@ref{PARITY}
@end table



@node IRAND
@section @code{IRAND} --- Integer pseudo-random number
@fnindex IRAND
@cindex random number generation

@table @asis
@item @emph{Description}:
@code{IRAND(FLAG)} returns a pseudo-random number from a uniform
distribution between 0 and a system-dependent limit (which is in most
cases 2147483647). If @var{FLAG} is 0, the next number
in the current sequence is returned; if @var{FLAG} is 1, the generator
is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
it is used as a new seed with @code{SRAND}.

This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. It implements a simple modulo generator as provided 
by @command{g77}. For new code, one should consider the use of 
@ref{RANDOM_NUMBER} as it implements a superior algorithm.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = IRAND(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be a scalar @code{INTEGER} of kind 4.
@end multitable

@item @emph{Return value}:
The return value is of @code{INTEGER(kind=4)} type.

@item @emph{Example}:
@smallexample
program test_irand
  integer,parameter :: seed = 86456
  
  call srand(seed)
  print *, irand(), irand(), irand(), irand()
  print *, irand(seed), irand(), irand(), irand()
end program test_irand
@end smallexample

@end table



@node IS_CONTIGUOUS
@section @code{IS_CONTIGUOUS} --- Test whether an array is contiguous
@fnindex IS_IOSTAT_EOR
@cindex array, contiguity

@table @asis
@item @emph{Description}:
@code{IS_CONTIGUOUS} tests whether an array is contiguous.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = IS_CONTIGUOUS(ARRAY)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of any type.
@end multitable

@item @emph{Return value}:
Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
@var{ARRAY} is contiguous and false otherwise.

@item @emph{Example}:
@smallexample
program test
  integer :: a(10)
  a = [1,2,3,4,5,6,7,8,9,10]
  call sub (a)      ! every element, is contiguous
  call sub (a(::2)) ! every other element, is noncontiguous
contains
  subroutine sub (x)
    integer :: x(:)
    if (is_contiguous (x)) then
      write (*,*) 'X is contiguous'
    else
      write (*,*) 'X is not contiguous'
    end if
  end subroutine sub
end program test
@end smallexample
@end table



@node IS_IOSTAT_END
@section @code{IS_IOSTAT_END} --- Test for end-of-file value
@fnindex IS_IOSTAT_END
@cindex @code{IOSTAT}, end of file

@table @asis
@item @emph{Description}:
@code{IS_IOSTAT_END} tests whether an variable has the value of the I/O
status ``end of file''. The function is equivalent to comparing the variable
with the @code{IOSTAT_END} parameter of the intrinsic module
@code{ISO_FORTRAN_ENV}.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IS_IOSTAT_END(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of the type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
@var{I} has the value which indicates an end of file condition for
@code{IOSTAT=} specifiers, and is @code{.FALSE.} otherwise.

@item @emph{Example}:
@smallexample
PROGRAM iostat
  IMPLICIT NONE
  INTEGER :: stat, i
  OPEN(88, FILE='test.dat')
  READ(88, *, IOSTAT=stat) i
  IF(IS_IOSTAT_END(stat)) STOP 'END OF FILE'
END PROGRAM
@end smallexample
@end table



@node IS_IOSTAT_EOR
@section @code{IS_IOSTAT_EOR} --- Test for end-of-record value
@fnindex IS_IOSTAT_EOR
@cindex @code{IOSTAT}, end of record

@table @asis
@item @emph{Description}:
@code{IS_IOSTAT_EOR} tests whether an variable has the value of the I/O
status ``end of record''. The function is equivalent to comparing the
variable with the @code{IOSTAT_EOR} parameter of the intrinsic module
@code{ISO_FORTRAN_ENV}.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = IS_IOSTAT_EOR(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of the type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
Returns a @code{LOGICAL} of the default kind, which @code{.TRUE.} if
@var{I} has the value which indicates an end of file condition for
@code{IOSTAT=} specifiers, and is @code{.FALSE.} otherwise.

@item @emph{Example}:
@smallexample
PROGRAM iostat
  IMPLICIT NONE
  INTEGER :: stat, i(50)
  OPEN(88, FILE='test.dat', FORM='UNFORMATTED')
  READ(88, IOSTAT=stat) i
  IF(IS_IOSTAT_EOR(stat)) STOP 'END OF RECORD'
END PROGRAM
@end smallexample
@end table


@node ISATTY
@section @code{ISATTY} --- Whether a unit is a terminal device.
@fnindex ISATTY
@cindex system, terminal

@table @asis
@item @emph{Description}:
Determine whether a unit is connected to a terminal device.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = ISATTY(UNIT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab Shall be a scalar @code{INTEGER}.
@end multitable

@item @emph{Return value}:
Returns @code{.TRUE.} if the @var{UNIT} is connected to a terminal 
device, @code{.FALSE.} otherwise.

@item @emph{Example}:
@smallexample
PROGRAM test_isatty
  INTEGER(kind=1) :: unit
  DO unit = 1, 10
    write(*,*) isatty(unit=unit)
  END DO
END PROGRAM
@end smallexample
@item @emph{See also}:
@ref{TTYNAM}
@end table



@node ISHFT
@section @code{ISHFT} --- Shift bits
@fnindex ISHFT
@fnindex BSHFT
@fnindex IISHFT
@fnindex JISHFT
@fnindex KISHFT
@cindex bits, shift

@table @asis
@item @emph{Description}:
@code{ISHFT} returns a value corresponding to @var{I} with all of the
bits shifted @var{SHIFT} places.  A value of @var{SHIFT} greater than
zero corresponds to a left shift, a value of zero corresponds to no
shift, and a value less than zero corresponds to a right shift.  If the
absolute value of @var{SHIFT} is greater than @code{BIT_SIZE(I)}, the
value is undefined.  Bits shifted out from the left end or right end are
lost; zeros are shifted in from the opposite end.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ISHFT(I, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{ISHFT(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BSHFT(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IISHFT(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JISHFT(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KISHFT(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{ISHFTC}
@end table



@node ISHFTC
@section @code{ISHFTC} --- Shift bits circularly
@fnindex ISHFTC
@fnindex BSHFTC
@fnindex IISHFTC
@fnindex JISHFTC
@fnindex KISHFTC
@cindex bits, shift circular

@table @asis
@item @emph{Description}:
@code{ISHFTC} returns a value corresponding to @var{I} with the
rightmost @var{SIZE} bits shifted circularly @var{SHIFT} places; that
is, bits shifted out one end are shifted into the opposite end.  A value
of @var{SHIFT} greater than zero corresponds to a left shift, a value of
zero corresponds to no shift, and a value less than zero corresponds to
a right shift.  The absolute value of @var{SHIFT} must be less than
@var{SIZE}.  If the @var{SIZE} argument is omitted, it is taken to be
equivalent to @code{BIT_SIZE(I)}.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = ISHFTC(I, SHIFT [, SIZE])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@item @var{SIZE} @tab (Optional) The type shall be @code{INTEGER};
the value must be greater than zero and less than or equal to
@code{BIT_SIZE(I)}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{ISHFTC(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BSHFTC(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IISHFTC(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JISHFTC(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KISHFTC(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{ISHFT}
@end table



@node ISNAN
@section @code{ISNAN} --- Test for a NaN
@fnindex ISNAN
@cindex IEEE, ISNAN

@table @asis
@item @emph{Description}:
@code{ISNAN} tests whether a floating-point value is an IEEE
Not-a-Number (NaN).
@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{ISNAN(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Variable of the type @code{REAL}.

@end multitable

@item @emph{Return value}:
Returns a default-kind @code{LOGICAL}. The returned value is @code{TRUE}
if @var{X} is a NaN and @code{FALSE} otherwise.

@item @emph{Example}:
@smallexample
program test_nan
  implicit none
  real :: x
  x = -1.0
  x = sqrt(x)
  if (isnan(x)) stop '"x" is a NaN'
end program test_nan
@end smallexample
@end table



@node ITIME
@section @code{ITIME} --- Get current local time subroutine (hour/minutes/seconds) 
@fnindex ITIME
@cindex time, current
@cindex current time

@table @asis
@item @emph{Description}:
@code{ITIME(VALUES)} Fills @var{VALUES} with the numerical values at the  
current local time. The hour (in the range 1-24), minute (in the range 1-60), 
and seconds (in the range 1-60) appear in elements 1, 2, and 3 of @var{VALUES}, 
respectively.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  In new code, programmers should consider the use of 
the @ref{DATE_AND_TIME} intrinsic defined by the Fortran 95
standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL ITIME(VALUES)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VALUES} @tab The type shall be @code{INTEGER, DIMENSION(3)}
and the kind shall be the default integer kind.
@end multitable

@item @emph{Return value}:
Does not return anything.


@item @emph{Example}:
@smallexample
program test_itime
  integer, dimension(3) :: tarray
  call itime(tarray)
  print *, tarray(1)
  print *, tarray(2)
  print *, tarray(3)
end program test_itime
@end smallexample

@item @emph{See also}:
@ref{DATE_AND_TIME}
@end table



@node KILL
@section @code{KILL} --- Send a signal to a process
@fnindex KILL

@table @asis
@item @emph{Description}:
Sends the signal specified by @var{SIG} to the process @var{PID}.
See @code{kill(2)}.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.
@item @emph{Standard}:
GNU extension

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL KILL(PID, SIG [, STATUS])}
@item @code{STATUS = KILL(PID, SIG)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PID} @tab Shall be a scalar @code{INTEGER} with @code{INTENT(IN)}.
@item @var{SIG} @tab Shall be a scalar @code{INTEGER} with @code{INTENT(IN)}.
@item @var{STATUS} @tab [Subroutine](Optional)
Shall be a scalar @code{INTEGER}.
Returns 0 on success; otherwise a system-specific error code is returned.
@item @var{STATUS} @tab [Function] The kind type parameter is that of
@code{pid}.
Returns 0 on success; otherwise a system-specific error code is returned.
@end multitable

@item @emph{See also}:
@ref{ABORT}, @gol
@ref{EXIT}
@end table


@node KIND
@section @code{KIND} --- Kind of an entity
@fnindex KIND
@cindex kind

@table @asis
@item @emph{Description}:
@code{KIND(X)} returns the kind value of the entity @var{X}.

@item @emph{Standard}:
Fortran 95 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{K = KIND(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{LOGICAL}, @code{INTEGER},
@code{REAL}, @code{COMPLEX} or @code{CHARACTER}.  It may be scalar or
array valued.
@end multitable

@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER} and of the default
integer kind.

@item @emph{Example}:
@smallexample
program test_kind
  integer,parameter :: kc = kind(' ')
  integer,parameter :: kl = kind(.true.)

  print *, "The default character kind is ", kc
  print *, "The default logical kind is ", kl
end program test_kind
@end smallexample

@end table



@node LBOUND
@section @code{LBOUND} --- Lower dimension bounds of an array
@fnindex LBOUND
@cindex array, lower bound

@table @asis
@item @emph{Description}:
Returns the lower bounds of an array, or a single lower bound
along the @var{DIM} dimension.
@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = LBOUND(ARRAY [, DIM [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the lower bounds of
@var{ARRAY}.  If @var{DIM} is present, the result is a scalar
corresponding to the lower bound of the array along that dimension.  If
@var{ARRAY} is an expression rather than a whole array or array
structure component, or if it has a zero extent along the relevant
dimension, the lower bound is taken to be 1.

@item @emph{See also}:
@ref{UBOUND}, @gol
@ref{LCOBOUND}
@end table



@node LCOBOUND
@section @code{LCOBOUND} --- Lower codimension bounds of an array
@fnindex LCOBOUND
@cindex coarray, lower bound

@table @asis
@item @emph{Description}:
Returns the lower bounds of a coarray, or a single lower cobound
along the @var{DIM} codimension.
@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an coarray, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the lower cobounds of
@var{COARRAY}.  If @var{DIM} is present, the result is a scalar
corresponding to the lower cobound of the array along that codimension.

@item @emph{See also}:
@ref{UCOBOUND}, @gol
@ref{LBOUND}
@end table



@node LEADZ
@section @code{LEADZ} --- Number of leading zero bits of an integer
@fnindex LEADZ
@cindex zero bits

@table @asis
@item @emph{Description}:
@code{LEADZ} returns the number of leading zero bits of an integer.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LEADZ(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The type of the return value is the default @code{INTEGER}.
If all the bits of @code{I} are zero, the result value is @code{BIT_SIZE(I)}.

@item @emph{Example}:
@smallexample
PROGRAM test_leadz
  WRITE (*,*) BIT_SIZE(1)  ! prints 32
  WRITE (*,*) LEADZ(1)     ! prints 31
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{BIT_SIZE}, @gol
@ref{TRAILZ}, @gol
@ref{POPCNT}, @gol
@ref{POPPAR}
@end table



@node LEN
@section @code{LEN} --- Length of a character entity
@fnindex LEN
@cindex string, length

@table @asis
@item @emph{Description}:
Returns the length of a character string.  If @var{STRING} is an array,
the length of an element of @var{STRING} is returned.  Note that
@var{STRING} need not be defined when this intrinsic is invoked, since
only the length, not the content, of @var{STRING} is needed.

@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{L = LEN(STRING [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar or array of type
@code{CHARACTER}, with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.


@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name               @tab Argument          @tab Return type       @tab Standard
@item @code{LEN(STRING)} @tab @code{CHARACTER}  @tab @code{INTEGER}    @tab Fortran 77 and later
@end multitable


@item @emph{See also}:
@ref{LEN_TRIM}, @gol
@ref{ADJUSTL}, @gol
@ref{ADJUSTR}
@end table



@node LEN_TRIM
@section @code{LEN_TRIM} --- Length of a character entity without trailing blank characters
@fnindex LEN_TRIM
@cindex string, length, without trailing whitespace

@table @asis
@item @emph{Description}:
Returns the length of a character string, ignoring any trailing blanks.

@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LEN_TRIM(STRING [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER},
with @code{INTENT(IN)}
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.

@item @emph{See also}:
@ref{LEN}, @gol
@ref{ADJUSTL}, @gol
@ref{ADJUSTR}
@end table



@node LGE
@section @code{LGE} --- Lexical greater than or equal
@fnindex LGE
@cindex lexical comparison of strings
@cindex string, comparison

@table @asis
@item @emph{Description}:
Determines whether one string is lexically greater than or equal to
another string, where the two strings are interpreted as containing
ASCII character codes.  If the String A and String B are not the same
length, the shorter is compared as if spaces were appended to it to form
a value that has the same length as the longer.

In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LGE(STRING_A, STRING_B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable

@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A >= STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                           @tab Argument          @tab Return type       @tab Standard
@item @code{LGE(STRING_A, STRING_B)} @tab @code{CHARACTER}  @tab @code{LOGICAL}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{LGT}, @gol
@ref{LLE}, @gol
@ref{LLT}
@end table



@node LGT
@section @code{LGT} --- Lexical greater than
@fnindex LGT
@cindex lexical comparison of strings
@cindex string, comparison

@table @asis
@item @emph{Description}:
Determines whether one string is lexically greater than another string,
where the two strings are interpreted as containing ASCII character
codes.  If the String A and String B are not the same length, the
shorter is compared as if spaces were appended to it to form a value
that has the same length as the longer.

In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LGT(STRING_A, STRING_B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable

@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A > STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                           @tab Argument          @tab Return type       @tab Standard
@item @code{LGT(STRING_A, STRING_B)} @tab @code{CHARACTER}  @tab @code{LOGICAL}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{LGE}, @gol
@ref{LLE}, @gol
@ref{LLT}
@end table



@node LINK
@section @code{LINK} --- Create a hard link
@fnindex LINK
@cindex file system, create link
@cindex file system, hard link

@table @asis
@item @emph{Description}:
Makes a (hard) link from file @var{PATH1} to @var{PATH2}. A null
character (@code{CHAR(0)}) can be used to mark the end of the names in
@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
names are ignored.  If the @var{STATUS} argument is supplied, it
contains 0 on success or a nonzero error code upon return; see
@code{link(2)}.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL LINK(PATH1, PATH2 [, STATUS])}
@item @code{STATUS = LINK(PATH1, PATH2)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable

@item @emph{See also}:
@ref{SYMLNK}, @gol
@ref{UNLINK}
@end table



@node LLE
@section @code{LLE} --- Lexical less than or equal
@fnindex LLE
@cindex lexical comparison of strings
@cindex string, comparison

@table @asis
@item @emph{Description}:
Determines whether one string is lexically less than or equal to another
string, where the two strings are interpreted as containing ASCII
character codes.  If the String A and String B are not the same length,
the shorter is compared as if spaces were appended to it to form a value
that has the same length as the longer.

In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LLE(STRING_A, STRING_B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable

@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A <= STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                           @tab Argument          @tab Return type       @tab Standard
@item @code{LLE(STRING_A, STRING_B)} @tab @code{CHARACTER}  @tab @code{LOGICAL}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{LGE}, @gol
@ref{LGT}, @gol
@ref{LLT}
@end table



@node LLT
@section @code{LLT} --- Lexical less than
@fnindex LLT
@cindex lexical comparison of strings
@cindex string, comparison

@table @asis
@item @emph{Description}:
Determines whether one string is lexically less than another string,
where the two strings are interpreted as containing ASCII character
codes.  If the String A and String B are not the same length, the
shorter is compared as if spaces were appended to it to form a value
that has the same length as the longer.

In general, the lexical comparison intrinsics @code{LGE}, @code{LGT},
@code{LLE}, and @code{LLT} differ from the corresponding intrinsic
operators @code{.GE.}, @code{.GT.}, @code{.LE.}, and @code{.LT.}, in
that the latter use the processor's character ordering (which is not
ASCII on some targets), whereas the former always use the ASCII
ordering.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LLT(STRING_A, STRING_B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING_A} @tab Shall be of default @code{CHARACTER} type.
@item @var{STRING_B} @tab Shall be of default @code{CHARACTER} type.
@end multitable

@item @emph{Return value}:
Returns @code{.TRUE.} if @code{STRING_A < STRING_B}, and @code{.FALSE.}
otherwise, based on the ASCII ordering.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name                           @tab Argument          @tab Return type       @tab Standard
@item @code{LLT(STRING_A, STRING_B)} @tab @code{CHARACTER}  @tab @code{LOGICAL}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{LGE}, @gol
@ref{LGT}, @gol
@ref{LLE}
@end table



@node LNBLNK
@section @code{LNBLNK} --- Index of the last non-blank character in a string
@fnindex LNBLNK
@cindex string, find non-blank character

@table @asis
@item @emph{Description}:
Returns the length of a character string, ignoring any trailing blanks.
This is identical to the standard @code{LEN_TRIM} intrinsic, and is only
included for backwards compatibility.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LNBLNK(STRING)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER},
with @code{INTENT(IN)}
@end multitable

@item @emph{Return value}:
The return value is of @code{INTEGER(kind=4)} type.

@item @emph{See also}:
@ref{INDEX intrinsic}, @gol
@ref{LEN_TRIM}
@end table



@node LOC
@section @code{LOC} --- Returns the address of a variable
@fnindex LOC
@cindex location of a variable in memory

@table @asis
@item @emph{Description}:
@code{LOC(X)} returns the address of @var{X} as an integer.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = LOC(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Variable of any type.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER}, with a @code{KIND}
corresponding to the size (in bytes) of a memory address on the target
machine.

@item @emph{Example}:
@smallexample
program test_loc
  integer :: i
  real :: r
  i = loc(r)
  print *, i
end program test_loc
@end smallexample
@end table



@node LOG
@section @code{LOG} --- Natural logarithm function
@fnindex LOG
@fnindex ALOG
@fnindex DLOG
@fnindex CLOG
@fnindex ZLOG
@fnindex CDLOG
@cindex exponential function, inverse
@cindex logarithm function
@cindex natural logarithm function

@table @asis
@item @emph{Description}:
@code{LOG(X)} computes the natural logarithm of @var{X}, i.e. the
logarithm to the base @math{e}.

@item @emph{Standard}:
Fortran 77 and later, has GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LOG(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} or @code{COMPLEX}.
The kind type parameter is the same as @var{X}.
If @var{X} is @code{COMPLEX}, the imaginary part @math{\omega} is in the range
@math{-\pi < \omega \leq \pi}.

@item @emph{Example}:
@smallexample
program test_log
  real(8) :: x = 2.7182818284590451_8
  complex :: z = (1.0, 2.0)
  x = log(x)    ! will yield (approximately) 1
  z = log(z)
end program test_log
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{ALOG(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab Fortran 77 or later
@item @code{DLOG(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab Fortran 77 or later
@item @code{CLOG(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab Fortran 77 or later
@item @code{ZLOG(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab GNU extension
@item @code{CDLOG(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab GNU extension
@end multitable
@end table



@node LOG10
@section @code{LOG10} --- Base 10 logarithm function
@fnindex LOG10
@fnindex ALOG10
@fnindex DLOG10
@cindex exponential function, inverse
@cindex logarithm function with base 10
@cindex base 10 logarithm function

@table @asis
@item @emph{Description}:
@code{LOG10(X)} computes the base 10 logarithm of @var{X}.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LOG10(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} or @code{COMPLEX}.
The kind type parameter is the same as @var{X}.

@item @emph{Example}:
@smallexample
program test_log10
  real(8) :: x = 10.0_8
  x = log10(x)
end program test_log10
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{ALOG10(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DLOG10(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable
@end table



@node LOG_GAMMA
@section @code{LOG_GAMMA} --- Logarithm of the Gamma function
@fnindex LOG_GAMMA
@fnindex LGAMMA
@fnindex ALGAMA
@fnindex DLGAMA
@cindex Gamma function, logarithm of

@table @asis
@item @emph{Description}:
@code{LOG_GAMMA(X)} computes the natural logarithm of the absolute value
of the Gamma (@math{\Gamma}) function.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{X = LOG_GAMMA(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} and neither zero
nor a negative integer.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} of the same kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_log_gamma
  real :: x = 1.0
  x = lgamma(x) ! returns 0.0
end program test_log_gamma
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument         @tab Return type       @tab Standard
@item @code{LGAMMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)}    @tab GNU extension
@item @code{ALGAMA(X)} @tab @code{REAL(4) X} @tab @code{REAL(4)}    @tab GNU extension
@item @code{DLGAMA(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)}    @tab GNU extension
@end multitable

@item @emph{See also}:
Gamma function: @gol
@ref{GAMMA}
@end table



@node LOGICAL
@section @code{LOGICAL} --- Convert to logical type
@fnindex LOGICAL
@cindex conversion, to logical

@table @asis
@item @emph{Description}:
Converts one kind of @code{LOGICAL} variable to another.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LOGICAL(L [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{L}    @tab The type shall be @code{LOGICAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is a @code{LOGICAL} value equal to @var{L}, with a
kind corresponding to @var{KIND}, or of the default logical kind if
@var{KIND} is not given.

@item @emph{See also}:
@ref{INT}, @gol
@ref{REAL}, @gol
@ref{CMPLX}
@end table



@node LONG
@section @code{LONG} --- Convert to integer type
@fnindex LONG
@cindex conversion, to integer

@table @asis
@item @emph{Description}:
Convert to a @code{KIND=4} integer type, which is the same size as a C
@code{long} integer.  This is equivalent to the standard @code{INT}
intrinsic with an optional argument of @code{KIND=4}, and is only
included for backwards compatibility.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LONG(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab Shall be of type @code{INTEGER},
@code{REAL}, or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is a @code{INTEGER(4)} variable.

@item @emph{See also}:
@ref{INT}, @gol
@ref{INT2}, @gol
@ref{INT8}
@end table



@node LSHIFT
@section @code{LSHIFT} --- Left shift bits
@fnindex LSHIFT
@cindex bits, shift left

@table @asis
@item @emph{Description}:
@code{LSHIFT} returns a value corresponding to @var{I} with all of the
bits shifted left by @var{SHIFT} places.  @var{SHIFT} shall be
nonnegative and less than or equal to @code{BIT_SIZE(I)}, otherwise
the result value is undefined.  Bits shifted out from the left end are
lost; zeros are shifted in from the opposite end.

This function has been superseded by the @code{ISHFT} intrinsic, which
is standard in Fortran 95 and later, and the @code{SHIFTL} intrinsic,
which is standard in Fortran 2008 and later.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = LSHIFT(I, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{See also}:
@ref{ISHFT}, @gol
@ref{ISHFTC}, @gol
@ref{RSHIFT}, @gol
@ref{SHIFTA}, @gol
@ref{SHIFTL}, @gol
@ref{SHIFTR}
@end table



@node LSTAT
@section @code{LSTAT} --- Get file status
@fnindex LSTAT
@cindex file system, file status

@table @asis
@item @emph{Description}:
@code{LSTAT} is identical to @ref{STAT}, except that if path is a
symbolic link, then the link itself is statted, not the file that it
refers to.

The elements in @code{VALUES} are the same as described by @ref{STAT}.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL LSTAT(NAME, VALUES [, STATUS])}
@item @code{STATUS = LSTAT(NAME, VALUES)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME}   @tab The type shall be @code{CHARACTER} of the default
kind, a valid path within the file system.
@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}.
Returns 0 on success and a system specific error code otherwise.
@end multitable

@item @emph{Example}:
See @ref{STAT} for an example.

@item @emph{See also}:
To stat an open file: @gol
@ref{FSTAT} @gol
To stat a file: @gol
@ref{STAT}
@end table



@node LTIME
@section @code{LTIME} --- Convert time to local time info
@fnindex LTIME
@cindex time, conversion to local time info

@table @asis
@item @emph{Description}:
Given a system time value @var{TIME} (as provided by the @ref{TIME}
intrinsic), fills @var{VALUES} with values extracted from it appropriate
to the local time zone using @code{localtime(3)}.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  In new code, programmers should consider the use of 
the @ref{DATE_AND_TIME} intrinsic defined by the Fortran 95
standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL LTIME(TIME, VALUES)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME}  @tab An @code{INTEGER} scalar expression
corresponding to a system time, with @code{INTENT(IN)}.
@item @var{VALUES} @tab A default @code{INTEGER} array with 9 elements,
with @code{INTENT(OUT)}.
@end multitable

@item @emph{Return value}:
The elements of @var{VALUES} are assigned as follows:
@enumerate
@item Seconds after the minute, range 0--59 or 0--61 to allow for leap
seconds
@item Minutes after the hour, range 0--59
@item Hours past midnight, range 0--23
@item Day of month, range 1--31
@item Number of months since January, range 0--11
@item Years since 1900
@item Number of days since Sunday, range 0--6
@item Days since January 1, range 0--365
@item Daylight savings indicator: positive if daylight savings is in
effect, zero if not, and negative if the information is not available.
@end enumerate

@item @emph{See also}:
@ref{DATE_AND_TIME}, @gol
@ref{CTIME}, @gol
@ref{GMTIME}, @gol
@ref{TIME}, @gol
@ref{TIME8}
@end table



@node MALLOC
@section @code{MALLOC} --- Allocate dynamic memory
@fnindex MALLOC
@cindex pointer, cray

@table @asis
@item @emph{Description}:
@code{MALLOC(SIZE)} allocates @var{SIZE} bytes of dynamic memory and
returns the address of the allocated memory. The @code{MALLOC} intrinsic
is an extension intended to be used with Cray pointers, and is provided
in GNU Fortran to allow the user to compile legacy code. For new code
using Fortran 95 pointers, the memory allocation intrinsic is
@code{ALLOCATE}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{PTR = MALLOC(SIZE)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SIZE} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER(K)}, with @var{K} such that
variables of type @code{INTEGER(K)} have the same size as
C pointers (@code{sizeof(void *)}).

@item @emph{Example}:
The following example demonstrates the use of @code{MALLOC} and
@code{FREE} with Cray pointers.

@smallexample
program test_malloc
  implicit none
  integer i
  real*8 x(*), z
  pointer(ptr_x,x)

  ptr_x = malloc(20*8)
  do i = 1, 20
    x(i) = sqrt(1.0d0 / i)
  end do
  z = 0
  do i = 1, 20
    z = z + x(i)
    print *, z
  end do
  call free(ptr_x)
end program test_malloc
@end smallexample

@item @emph{See also}:
@ref{FREE}
@end table



@node MASKL
@section @code{MASKL} --- Left justified mask
@fnindex MASKL
@cindex mask, left justified

@table @asis
@item @emph{Description}:
@code{MASKL(I[, KIND])} has its leftmost @var{I} bits set to 1, and the
remaining bits set to 0.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MASKL(I[, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@item @var{KIND} @tab Shall be a scalar constant expression of type
@code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER}. If @var{KIND} is present, it
specifies the kind value of the return type; otherwise, it is of the
default integer kind.

@item @emph{See also}:
@ref{MASKR}
@end table



@node MASKR
@section @code{MASKR} --- Right justified mask
@fnindex MASKR
@cindex mask, right justified

@table @asis
@item @emph{Description}:
@code{MASKL(I[, KIND])} has its rightmost @var{I} bits set to 1, and the
remaining bits set to 0.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MASKR(I[, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@item @var{KIND} @tab Shall be a scalar constant expression of type
@code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER}. If @var{KIND} is present, it
specifies the kind value of the return type; otherwise, it is of the
default integer kind.

@item @emph{See also}:
@ref{MASKL}
@end table



@node MATMUL
@section @code{MATMUL} --- matrix multiplication
@fnindex MATMUL
@cindex matrix multiplication
@cindex product, matrix

@table @asis
@item @emph{Description}:
Performs a matrix multiplication on numeric or logical arguments.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = MATMUL(MATRIX_A, MATRIX_B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MATRIX_A} @tab An array of @code{INTEGER},
@code{REAL}, @code{COMPLEX}, or @code{LOGICAL} type, with a rank of
one or two.
@item @var{MATRIX_B} @tab An array of @code{INTEGER},
@code{REAL}, or @code{COMPLEX} type if @var{MATRIX_A} is of a numeric
type; otherwise, an array of @code{LOGICAL} type. The rank shall be one
or two, and the first (or only) dimension of @var{MATRIX_B} shall be
equal to the last (or only) dimension of @var{MATRIX_A}.
@var{MATRIX_A} and @var{MATRIX_B} shall not both be rank one arrays.
@end multitable

@item @emph{Return value}:
The matrix product of @var{MATRIX_A} and @var{MATRIX_B}.  The type and
kind of the result follow the usual type and kind promotion rules, as
for the @code{*} or @code{.AND.} operators.
@end table



@node MAX
@section @code{MAX} --- Maximum value of an argument list
@fnindex MAX
@fnindex MAX0
@fnindex AMAX0
@fnindex MAX1
@fnindex AMAX1
@fnindex DMAX1
@cindex maximum value

@table @asis
@item @emph{Description}:
Returns the argument with the largest (most positive) value.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MAX(A1, A2 [, A3 [, ...]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A1}          @tab The type shall be @code{INTEGER} or
@code{REAL}.
@item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
as @var{A1}.  (As a GNU extension, arguments of different kinds are
permitted.)
@end multitable

@item @emph{Return value}:
The return value corresponds to the maximum value among the arguments,
and has the same type and kind as the first argument.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument             @tab Return type         @tab Standard
@item @code{MAX0(A1)}  @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)}   @tab Fortran 77 and later
@item @code{AMAX0(A1)} @tab @code{INTEGER(4) A1} @tab @code{REAL(MAX(X))} @tab Fortran 77 and later
@item @code{MAX1(A1)}  @tab @code{REAL A1}       @tab @code{INT(MAX(X))}  @tab Fortran 77 and later
@item @code{AMAX1(A1)} @tab @code{REAL(4) A1}    @tab @code{REAL(4)}      @tab Fortran 77 and later
@item @code{DMAX1(A1)} @tab @code{REAL(8) A1}    @tab @code{REAL(8)}      @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{MAXLOC} @gol
@ref{MAXVAL}, @gol
@ref{MIN}
@end table



@node MAXEXPONENT
@section @code{MAXEXPONENT} --- Maximum exponent of a real kind
@fnindex MAXEXPONENT
@cindex model representation, maximum exponent

@table @asis
@item @emph{Description}:
@code{MAXEXPONENT(X)} returns the maximum exponent in the model of the
type of @code{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = MAXEXPONENT(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.

@item @emph{Example}:
@smallexample
program exponents
  real(kind=4) :: x
  real(kind=8) :: y

  print *, minexponent(x), maxexponent(x)
  print *, minexponent(y), maxexponent(y)
end program exponents
@end smallexample
@end table



@node MAXLOC
@section @code{MAXLOC} --- Location of the maximum value within an array
@fnindex MAXLOC
@cindex array, location of maximum element

@table @asis
@item @emph{Description}:
Determines the location of the element in the array with the maximum
value, or, if the @var{DIM} argument is supplied, determines the
locations of the maximum element along each row of the array in the
@var{DIM} direction.  If @var{MASK} is present, only the elements for
which @var{MASK} is @code{.TRUE.} are considered.  If more than one
element in the array has the maximum value, the location returned is
that of the first such element in array element order if the
@var{BACK} is not present, or is false; if @var{BACK} is true, the location
returned is that of the last such element. If the array has zero
size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
the result is an array of zeroes.  Similarly, if @var{DIM} is supplied
and all of the elements of @var{MASK} along a given row are zero, the
result value for that row is zero.

@item @emph{Standard}:
Fortran 95 and later; @var{ARRAY} of @code{CHARACTER} and the
@var{KIND} argument are available in Fortran 2003 and later.
The @var{BACK} argument is available in Fortran 2008 and later.

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MAXLOC(ARRAY, DIM [, MASK] [,KIND] [,BACK])}
@item @code{RESULT = MAXLOC(ARRAY [, MASK] [,KIND] [,BACK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
@code{REAL}.
@item @var{DIM}   @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive.  It may not be an optional dummy argument.
@item @var{MASK}  @tab Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@item @var{BACK} @tab (Optional) A scalar of type @code{LOGICAL}.
@end multitable

@item @emph{Return value}:
If @var{DIM} is absent, the result is a rank-one array with a length
equal to the rank of @var{ARRAY}.  If @var{DIM} is present, the result
is an array with a rank one less than the rank of @var{ARRAY}, and a
size corresponding to the size of @var{ARRAY} with the @var{DIM}
dimension removed.  If @var{DIM} is present and @var{ARRAY} has a rank
of one, the result is a scalar.   If the optional argument @var{KIND}
is present, the result is an integer of kind @var{KIND}, otherwise it
is of default kind.

@item @emph{See also}:
@ref{FINDLOC}, @gol
@ref{MAX}, @gol
@ref{MAXVAL}
@end table



@node MAXVAL
@section @code{MAXVAL} --- Maximum value of an array
@fnindex MAXVAL
@cindex array, maximum value
@cindex maximum value

@table @asis
@item @emph{Description}:
Determines the maximum value of the elements in an array value, or, if
the @var{DIM} argument is supplied, determines the maximum value along
each row of the array in the @var{DIM} direction.  If @var{MASK} is
present, only the elements for which @var{MASK} is @code{.TRUE.} are
considered.  If the array has zero size, or all of the elements of
@var{MASK} are @code{.FALSE.}, then the result is @code{-HUGE(ARRAY)}
if @var{ARRAY} is numeric, or a string of nulls if @var{ARRAY} is of character
type.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MAXVAL(ARRAY, DIM [, MASK])}
@item @code{RESULT = MAXVAL(ARRAY [, MASK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
@code{REAL}.
@item @var{DIM}   @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive.  It may not be an optional dummy argument.
@item @var{MASK}  @tab (Opional) Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@end multitable

@item @emph{Return value}:
If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
is a scalar.  If @var{DIM} is present, the result is an array with a
rank one less than the rank of @var{ARRAY}, and a size corresponding to
the size of @var{ARRAY} with the @var{DIM} dimension removed.  In all
cases, the result is of the same type and kind as @var{ARRAY}.

@item @emph{See also}:
@ref{MAX}, @gol
@ref{MAXLOC}
@end table



@node MCLOCK
@section @code{MCLOCK} --- Time function
@fnindex MCLOCK
@cindex time, clock ticks
@cindex clock ticks

@table @asis
@item @emph{Description}:
Returns the number of clock ticks since the start of the process, based
on the function @code{clock(3)} in the C standard library.

This intrinsic is not fully portable, such as to systems with 32-bit
@code{INTEGER} types but supporting times wider than 32 bits. Therefore,
the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the
compiled program.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = MCLOCK()}

@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(4)}, equal to the
number of clock ticks since the start of the process, or @code{-1} if
the system does not support @code{clock(3)}.

@item @emph{See also}:
@ref{CTIME}, @gol
@ref{GMTIME}, @gol
@ref{LTIME}, @gol
@ref{MCLOCK}, @gol
@ref{TIME}
@end table



@node MCLOCK8
@section @code{MCLOCK8} --- Time function (64-bit)
@fnindex MCLOCK8
@cindex time, clock ticks
@cindex clock ticks

@table @asis
@item @emph{Description}:
Returns the number of clock ticks since the start of the process, based
on the function @code{clock(3)} in the C standard library.

@emph{Warning:} this intrinsic does not increase the range of the timing
values over that returned by @code{clock(3)}. On a system with a 32-bit
@code{clock(3)}, @code{MCLOCK8} will return a 32-bit value, even though
it is converted to a 64-bit @code{INTEGER(8)} value. That means
overflows of the 32-bit value can still occur. Therefore, the values
returned by this intrinsic might be or become negative or numerically
less than previous values during a single run of the compiled program.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = MCLOCK8()}

@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(8)}, equal to the
number of clock ticks since the start of the process, or @code{-1} if
the system does not support @code{clock(3)}.

@item @emph{See also}:
@ref{CTIME}, @gol
@ref{GMTIME}, @gol
@ref{LTIME}, @gol
@ref{MCLOCK}, @gol
@ref{TIME8}
@end table



@node MERGE
@section @code{MERGE} --- Merge variables
@fnindex MERGE
@cindex array, merge arrays
@cindex array, combine arrays

@table @asis
@item @emph{Description}:
Select values from two arrays according to a logical mask.  The result
is equal to @var{TSOURCE} if @var{MASK} is @code{.TRUE.}, or equal to
@var{FSOURCE} if it is @code{.FALSE.}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MERGE(TSOURCE, FSOURCE, MASK)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TSOURCE} @tab May be of any type.
@item @var{FSOURCE} @tab Shall be of the same type and type parameters
as @var{TSOURCE}.
@item @var{MASK}    @tab Shall be of type @code{LOGICAL}.
@end multitable

@item @emph{Return value}:
The result is of the same type and type parameters as @var{TSOURCE}.

@end table



@node MERGE_BITS
@section @code{MERGE_BITS} --- Merge of bits under mask
@fnindex MERGE_BITS
@cindex bits, merge

@table @asis
@item @emph{Description}:
@code{MERGE_BITS(I, J, MASK)} merges the bits of @var{I} and @var{J}
as determined by the mask.  The i-th bit of the result is equal to the 
i-th bit of @var{I} if the i-th bit of @var{MASK} is 1; it is equal to
the i-th bit of @var{J} otherwise.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MERGE_BITS(I, J, MASK)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER} or a boz-literal-constant.
@item @var{J} @tab Shall be of type @code{INTEGER} with the same
kind type parameter as @var{I} or a boz-literal-constant.
@var{I} and @var{J} shall not both be boz-literal-constants.
@item @var{MASK} @tab Shall be of type @code{INTEGER} or a boz-literal-constant
and of the same kind as @var{I}.
@end multitable

@item @emph{Return value}:
The result is of the same type and kind as @var{I}.

@end table



@node MIN
@section @code{MIN} --- Minimum value of an argument list
@fnindex MIN
@fnindex MIN0
@fnindex AMIN0
@fnindex MIN1
@fnindex AMIN1
@fnindex DMIN1
@cindex minimum value

@table @asis
@item @emph{Description}:
Returns the argument with the smallest (most negative) value.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MIN(A1, A2 [, A3, ...])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A1}          @tab The type shall be @code{INTEGER} or
@code{REAL}.
@item @var{A2}, @var{A3}, ... @tab An expression of the same type and kind
as @var{A1}.  (As a GNU extension, arguments of different kinds are
permitted.)
@end multitable

@item @emph{Return value}:
The return value corresponds to the maximum value among the arguments,
and has the same type and kind as the first argument.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name              @tab Argument             @tab Return type        @tab Standard
@item @code{MIN0(A1)}   @tab @code{INTEGER(4) A1} @tab @code{INTEGER(4)}  @tab Fortran 77 and later
@item @code{AMIN0(A1)}  @tab @code{INTEGER(4) A1} @tab @code{REAL(4)}     @tab Fortran 77 and later
@item @code{MIN1(A1)}   @tab @code{REAL A1}       @tab @code{INTEGER(4)}  @tab Fortran 77 and later
@item @code{AMIN1(A1)}  @tab @code{REAL(4) A1}    @tab @code{REAL(4)}     @tab Fortran 77 and later
@item @code{DMIN1(A1)}  @tab @code{REAL(8) A1}    @tab @code{REAL(8)}     @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{MAX}, @gol
@ref{MINLOC}, @gol
@ref{MINVAL}
@end table



@node MINEXPONENT
@section @code{MINEXPONENT} --- Minimum exponent of a real kind
@fnindex MINEXPONENT
@cindex model representation, minimum exponent

@table @asis
@item @emph{Description}:
@code{MINEXPONENT(X)} returns the minimum exponent in the model of the
type of @code{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = MINEXPONENT(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.

@item @emph{Example}:
See @code{MAXEXPONENT} for an example.
@end table



@node MINLOC
@section @code{MINLOC} --- Location of the minimum value within an array
@fnindex MINLOC
@cindex array, location of minimum element

@table @asis
@item @emph{Description}:
Determines the location of the element in the array with the minimum
value, or, if the @var{DIM} argument is supplied, determines the
locations of the minimum element along each row of the array in the
@var{DIM} direction.  If @var{MASK} is present, only the elements for
which @var{MASK} is @code{.TRUE.} are considered.  If more than one
element in the array has the minimum value, the location returned is
that of the first such element in array element order if the
@var{BACK} is not present, or is false; if @var{BACK} is true, the location
returned is that of the last such element.  If the array has
zero size, or all of the elements of @var{MASK} are @code{.FALSE.}, then
the result is an array of zeroes.  Similarly, if @var{DIM} is supplied
and all of the elements of @var{MASK} along a given row are zero, the
result value for that row is zero.

@item @emph{Standard}:
Fortran 90 and later; @var{ARRAY} of @code{CHARACTER} and the
@var{KIND} argument are available in Fortran 2003 and later.
The @var{BACK} argument is available in Fortran 2008 and later.

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MINLOC(ARRAY, DIM [, MASK] [,KIND] [,BACK])}
@item @code{RESULT = MINLOC(ARRAY [, MASK], [,KIND] [,BACK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER},
@code{REAL} or @code{CHARACTER}.
@item @var{DIM}   @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive.  It may not be an optional dummy argument.
@item @var{MASK}  @tab Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@item @var{BACK} @tab (Optional) A scalar of type @code{LOGICAL}.
@end multitable

@item @emph{Return value}:
If @var{DIM} is absent, the result is a rank-one array with a length
equal to the rank of @var{ARRAY}.  If @var{DIM} is present, the result
is an array with a rank one less than the rank of @var{ARRAY}, and a
size corresponding to the size of @var{ARRAY} with the @var{DIM}
dimension removed.  If @var{DIM} is present and @var{ARRAY} has a rank
of one, the result is a scalar.  If the optional argument @var{KIND}
is present, the result is an integer of kind @var{KIND}, otherwise it
is of default kind.

@item @emph{See also}:
@ref{FINDLOC}, @gol
@ref{MIN}, @gol
@ref{MINVAL}
@end table



@node MINVAL
@section @code{MINVAL} --- Minimum value of an array
@fnindex MINVAL
@cindex array, minimum value
@cindex minimum value

@table @asis
@item @emph{Description}:
Determines the minimum value of the elements in an array value, or, if
the @var{DIM} argument is supplied, determines the minimum value along
each row of the array in the @var{DIM} direction.  If @var{MASK} is
present, only the elements for which @var{MASK} is @code{.TRUE.} are
considered.  If the array has zero size, or all of the elements of
@var{MASK} are @code{.FALSE.}, then the result is @code{HUGE(ARRAY)} if
@var{ARRAY} is numeric, or a string of @code{CHAR(255)} characters if
@var{ARRAY} is of character type.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = MINVAL(ARRAY, DIM [, MASK])}
@item @code{RESULT = MINVAL(ARRAY [, MASK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER} or
@code{REAL}.
@item @var{DIM}   @tab (Optional) Shall be a scalar of type
@code{INTEGER}, with a value between one and the rank of @var{ARRAY},
inclusive.  It may not be an optional dummy argument.
@item @var{MASK}  @tab Shall be an array of type @code{LOGICAL},
and conformable with @var{ARRAY}.
@end multitable

@item @emph{Return value}:
If @var{DIM} is absent, or if @var{ARRAY} has a rank of one, the result
is a scalar.  If @var{DIM} is present, the result is an array with a
rank one less than the rank of @var{ARRAY}, and a size corresponding to
the size of @var{ARRAY} with the @var{DIM} dimension removed.  In all
cases, the result is of the same type and kind as @var{ARRAY}.

@item @emph{See also}:
@ref{MIN}, @gol
@ref{MINLOC}
@end table



@node MOD
@section @code{MOD} --- Remainder function
@fnindex MOD
@fnindex AMOD
@fnindex DMOD
@fnindex BMOD
@fnindex IMOD
@fnindex JMOD
@fnindex KMOD
@cindex remainder
@cindex division, remainder

@table @asis
@item @emph{Description}:
@code{MOD(A,P)} computes the remainder of the division of A by P@. 

@item @emph{Standard}:
Fortran 77 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MOD(A, P)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A} 
and not equal to zero.  (As a GNU extension, arguments of different kinds are
permitted.)
@end multitable

@item @emph{Return value}:
The return value is the result of @code{A - (INT(A/P) * P)}. The type
and kind of the return value is the same as that of the arguments. The
returned value has the same sign as A and a magnitude less than the
magnitude of P.  (As a GNU extension, kind is the largest kind of the actual
arguments.)

@item @emph{Example}:
@smallexample
program test_mod
  print *, mod(17,3)
  print *, mod(17.5,5.5)
  print *, mod(17.5d0,5.5)
  print *, mod(17.5,5.5d0)

  print *, mod(-17,3)
  print *, mod(-17.5,5.5)
  print *, mod(-17.5d0,5.5)
  print *, mod(-17.5,5.5d0)

  print *, mod(17,-3)
  print *, mod(17.5,-5.5)
  print *, mod(17.5d0,-5.5)
  print *, mod(17.5,-5.5d0)
end program test_mod
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Arguments          @tab Return type    @tab Standard
@item @code{MOD(A,P)}  @tab @code{INTEGER A,P} @tab @code{INTEGER} @tab Fortran 77 and later
@item @code{AMOD(A,P)} @tab @code{REAL(4) A,P} @tab @code{REAL(4)} @tab Fortran 77 and later
@item @code{DMOD(A,P)} @tab @code{REAL(8) A,P} @tab @code{REAL(8)} @tab Fortran 77 and later
@item @code{BMOD(A,P)}  @tab @code{INTEGER(1) A,P} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IMOD(A,P)}  @tab @code{INTEGER(2) A,P} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JMOD(A,P)}  @tab @code{INTEGER(4) A,P} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KMOD(A,P)}  @tab @code{INTEGER(8) A,P} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{MODULO}

@end table



@node MODULO
@section @code{MODULO} --- Modulo function
@fnindex MODULO
@cindex modulo
@cindex division, modulo

@table @asis
@item @emph{Description}:
@code{MODULO(A,P)} computes the @var{A} modulo @var{P}.

@item @emph{Standard}:
Fortran 95 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = MODULO(A, P)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be a scalar of type @code{INTEGER} or @code{REAL}.
@item @var{P} @tab Shall be a scalar of the same type and kind as @var{A}. 
It shall not be zero.  (As a GNU extension, arguments of different kinds are
permitted.)
@end multitable

@item @emph{Return value}:
The type and kind of the result are those of the arguments.  (As a GNU
extension, kind is the largest kind of the actual arguments.)
@table @asis
@item If @var{A} and @var{P} are of type @code{INTEGER}:
@code{MODULO(A,P)} has the value @var{R} such that @code{A=Q*P+R}, where
@var{Q} is an integer and @var{R} is between 0 (inclusive) and @var{P}
(exclusive).
@item If @var{A} and @var{P} are of type @code{REAL}:
@code{MODULO(A,P)} has the value of @code{A - FLOOR (A / P) * P}.
@end table
The returned value has the same sign as P and a magnitude less than
the magnitude of P.

@item @emph{Example}:
@smallexample
program test_modulo
  print *, modulo(17,3)
  print *, modulo(17.5,5.5)

  print *, modulo(-17,3)
  print *, modulo(-17.5,5.5)

  print *, modulo(17,-3)
  print *, modulo(17.5,-5.5)
end program
@end smallexample

@item @emph{See also}:
@ref{MOD}

@end table



@node MOVE_ALLOC
@section @code{MOVE_ALLOC} --- Move allocation from one object to another
@fnindex MOVE_ALLOC
@cindex moving allocation
@cindex allocation, moving

@table @asis
@item @emph{Description}:
@code{MOVE_ALLOC(FROM, TO)} moves the allocation from @var{FROM} to
@var{TO}.  @var{FROM} will become deallocated in the process.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Pure subroutine

@item @emph{Syntax}:
@code{CALL MOVE_ALLOC(FROM, TO)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{FROM}  @tab @code{ALLOCATABLE}, @code{INTENT(INOUT)}, may be
of any type and kind.
@item @var{TO} @tab @code{ALLOCATABLE}, @code{INTENT(OUT)}, shall be
of the same type, kind and rank as @var{FROM}.
@end multitable

@item @emph{Return value}:
None

@item @emph{Example}:
@smallexample
program test_move_alloc
    integer, allocatable :: a(:), b(:)

    allocate(a(3))
    a = [ 1, 2, 3 ]
    call move_alloc(a, b)
    print *, allocated(a), allocated(b)
    print *, b
end program test_move_alloc
@end smallexample
@end table



@node MVBITS
@section @code{MVBITS} --- Move bits from one integer to another
@fnindex MVBITS
@fnindex BMVBITS
@fnindex IMVBITS
@fnindex JMVBITS
@fnindex KMVBITS
@cindex bits, move

@table @asis
@item @emph{Description}:
Moves @var{LEN} bits from positions @var{FROMPOS} through
@code{FROMPOS+LEN-1} of @var{FROM} to positions @var{TOPOS} through
@code{TOPOS+LEN-1} of @var{TO}. The portion of argument @var{TO} not
affected by the movement of bits is unchanged. The values of
@code{FROMPOS+LEN-1} and @code{TOPOS+LEN-1} must be less than
@code{BIT_SIZE(FROM)}.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental subroutine

@item @emph{Syntax}:
@code{CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{FROM}    @tab The type shall be @code{INTEGER}.
@item @var{FROMPOS} @tab The type shall be @code{INTEGER}.
@item @var{LEN}     @tab The type shall be @code{INTEGER}.
@item @var{TO}      @tab The type shall be @code{INTEGER}, of the
same kind as @var{FROM}.
@item @var{TOPOS}   @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{MVBITS(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 90 and later
@item @code{BMVBITS(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{IMVBITS(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JMVBITS(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KMVBITS(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{IBCLR}, @gol
@ref{IBSET}, @gol
@ref{IBITS}, @gol
@ref{IAND}, @gol
@ref{IOR}, @gol
@ref{IEOR}
@end table



@node NEAREST
@section @code{NEAREST} --- Nearest representable number
@fnindex NEAREST
@cindex real number, nearest different
@cindex floating point, nearest different

@table @asis
@item @emph{Description}:
@code{NEAREST(X, S)} returns the processor-representable number nearest
to @code{X} in the direction indicated by the sign of @code{S}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = NEAREST(X, S)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@item @var{S} @tab Shall be of type @code{REAL} and
not equal to zero.
@end multitable

@item @emph{Return value}:
The return value is of the same type as @code{X}. If @code{S} is
positive, @code{NEAREST} returns the processor-representable number
greater than @code{X} and nearest to it. If @code{S} is negative,
@code{NEAREST} returns the processor-representable number smaller than
@code{X} and nearest to it.

@item @emph{Example}:
@smallexample
program test_nearest
  real :: x, y
  x = nearest(42.0, 1.0)
  y = nearest(42.0, -1.0)
  write (*,"(3(G20.15))") x, y, x - y
end program test_nearest
@end smallexample
@end table



@node NEW_LINE
@section @code{NEW_LINE} --- New line character
@fnindex NEW_LINE
@cindex newline
@cindex output, newline

@table @asis
@item @emph{Description}:
@code{NEW_LINE(C)} returns the new-line character.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = NEW_LINE(C)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{C}    @tab The argument shall be a scalar or array of the
type @code{CHARACTER}.
@end multitable

@item @emph{Return value}:
Returns a @var{CHARACTER} scalar of length one with the new-line character of
the same kind as parameter @var{C}.

@item @emph{Example}:
@smallexample
program newline
  implicit none
  write(*,'(A)') 'This is record 1.'//NEW_LINE('A')//'This is record 2.'
end program newline
@end smallexample
@end table



@node NINT
@section @code{NINT} --- Nearest whole number
@fnindex NINT
@fnindex IDNINT
@cindex rounding, nearest whole number

@table @asis
@item @emph{Description}:
@code{NINT(A)} rounds its argument to the nearest whole number.

@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = NINT(A [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab The type of the argument shall be @code{REAL}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
Returns @var{A} with the fractional portion of its magnitude eliminated by
rounding to the nearest whole number and with its sign preserved,
converted to an @code{INTEGER} of the default kind.

@item @emph{Example}:
@smallexample
program test_nint
  real(4) x4
  real(8) x8
  x4 = 1.234E0_4
  x8 = 4.321_8
  print *, nint(x4), idnint(x8)
end program test_nint
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument           @tab Return Type     @tab Standard
@item @code{NINT(A)}   @tab @code{REAL(4) A}   @tab  @code{INTEGER} @tab Fortran 77 and later
@item @code{IDNINT(A)} @tab @code{REAL(8) A}   @tab  @code{INTEGER} @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{CEILING}, @gol
@ref{FLOOR}
@end table



@node NORM2
@section @code{NORM2} --- Euclidean vector norms
@fnindex NORM2
@cindex Euclidean vector norm
@cindex L2 vector norm
@cindex norm, Euclidean

@table @asis
@item @emph{Description}:
Calculates the Euclidean vector norm (@math{L_2} norm) of
of @var{ARRAY} along dimension @var{DIM}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = NORM2(ARRAY[, DIM])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{REAL}
@item @var{DIM}   @tab (Optional) shall be a scalar of type 
@code{INTEGER} with a value in the range from 1 to n, where n 
equals the rank of @var{ARRAY}.
@end multitable

@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.

If @var{DIM} is absent, a scalar with the square root of the sum of all
elements in @var{ARRAY} squared  is returned. Otherwise, an array of
rank @math{n-1}, where @math{n} equals the rank of @var{ARRAY}, and a
shape similar to that of @var{ARRAY} with dimension @var{DIM} dropped
is returned.

@item @emph{Example}:
@smallexample
PROGRAM test_sum
  REAL :: x(5) = [ real :: 1, 2, 3, 4, 5 ]
  print *, NORM2(x)  ! = sqrt(55.) ~ 7.416
END PROGRAM
@end smallexample
@end table



@node NOT
@section @code{NOT} --- Logical negation
@fnindex NOT
@fnindex BNOT
@fnindex INOT
@fnindex JNOT
@fnindex KNOT
@cindex bits, negate
@cindex bitwise logical not
@cindex logical not, bitwise

@table @asis
@item @emph{Description}:
@code{NOT} returns the bitwise Boolean inverse of @var{I}.

@item @emph{Standard}:
Fortran 90 and later, has overloads that are GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = NOT(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return type is @code{INTEGER}, of the same kind as the
argument.

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument            @tab Return type       @tab Standard
@item @code{NOT(A)}   @tab @code{INTEGER A}    @tab @code{INTEGER}    @tab Fortran 95 and later
@item @code{BNOT(A)} @tab @code{INTEGER(1) A} @tab @code{INTEGER(1)} @tab GNU extension
@item @code{INOT(A)} @tab @code{INTEGER(2) A} @tab @code{INTEGER(2)} @tab GNU extension
@item @code{JNOT(A)} @tab @code{INTEGER(4) A} @tab @code{INTEGER(4)} @tab GNU extension
@item @code{KNOT(A)} @tab @code{INTEGER(8) A} @tab @code{INTEGER(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
@ref{IAND}, @gol
@ref{IEOR}, @gol
@ref{IOR}, @gol
@ref{IBITS}, @gol
@ref{IBSET}, @gol
@ref{IBCLR}
@end table



@node NULL
@section @code{NULL} --- Function that returns an disassociated pointer
@fnindex NULL
@cindex pointer, status
@cindex pointer, disassociated

@table @asis
@item @emph{Description}:
Returns a disassociated pointer.

If @var{MOLD} is present, a disassociated pointer of the same type is
returned, otherwise the type is determined by context.

In Fortran 95, @var{MOLD} is optional. Please note that Fortran 2003
includes cases where it is required.

@item @emph{Standard}:
Fortran 95 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{PTR => NULL([MOLD])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MOLD} @tab (Optional) shall be a pointer of any association
status and of any type.
@end multitable

@item @emph{Return value}:
A disassociated pointer.

@item @emph{Example}:
@smallexample
REAL, POINTER, DIMENSION(:) :: VEC => NULL ()
@end smallexample

@item @emph{See also}:
@ref{ASSOCIATED}
@end table



@node NUM_IMAGES
@section @code{NUM_IMAGES} --- Function that returns the number of images
@fnindex NUM_IMAGES
@cindex coarray, @code{NUM_IMAGES}
@cindex images, number of

@table @asis
@item @emph{Description}:
Returns the number of images.

@item @emph{Standard}:
Fortran 2008 and later. With @var{DISTANCE} or @var{FAILED} argument, 
Technical Specification (TS) 18508 or later


@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = NUM_IMAGES(DISTANCE, FAILED)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{DISTANCE} @tab (optional, intent(in)) Nonnegative scalar integer
@item @var{FAILED}   @tab (optional, intent(in)) Scalar logical expression
@end multitable

@item @emph{Return value}:
Scalar default-kind integer.  If @var{DISTANCE} is not present or has value 0,
the number of images in the current team is returned. For values smaller or
equal distance to the initial team, it returns the number of images index
on the ancestor team which has a distance of @var{DISTANCE} from the invoking
team. If @var{DISTANCE} is larger than the distance to the initial team, the
number of images of the initial team is returned. If @var{FAILED} is not present
the total number of images is returned; if it has the value @code{.TRUE.},
the number of failed images is returned, otherwise, the number of images which
do have not the failed status.

@item @emph{Example}:
@smallexample
INTEGER :: value[*]
INTEGER :: i
value = THIS_IMAGE()
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
  DO i = 1, NUM_IMAGES()
    WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
  END DO
END IF
@end smallexample

@item @emph{See also}:
@ref{THIS_IMAGE}, @gol
@ref{IMAGE_INDEX}
@end table



@node OR
@section @code{OR} --- Bitwise logical OR
@fnindex OR
@cindex bitwise logical or
@cindex logical or, bitwise

@table @asis
@item @emph{Description}:
Bitwise logical @code{OR}.

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  For integer arguments, programmers should consider
the use of the @ref{IOR} intrinsic defined by the Fortran standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = OR(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be either a scalar @code{INTEGER}
type or a scalar @code{LOGICAL} type or a boz-literal-constant.
@item @var{J} @tab The type shall be the same as the type of @var{I} or
a boz-literal-constant. @var{I} and @var{J} shall not both be
boz-literal-constants.  If either @var{I} and @var{J} is a
boz-literal-constant, then the other argument must be a scalar @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return type is either a scalar @code{INTEGER} or a scalar
@code{LOGICAL}.  If the kind type parameters differ, then the
smaller kind type is implicitly converted to larger kind, and the 
return has the larger kind.  A boz-literal-constant is 
converted to an @code{INTEGER} with the kind type parameter of
the other argument as-if a call to @ref{INT} occurred.

@item @emph{Example}:
@smallexample
PROGRAM test_or
  LOGICAL :: T = .TRUE., F = .FALSE.
  INTEGER :: a, b
  DATA a / Z'F' /, b / Z'3' /

  WRITE (*,*) OR(T, T), OR(T, F), OR(F, T), OR(F, F)
  WRITE (*,*) OR(a, b)
END PROGRAM
@end smallexample

@item @emph{See also}:
Fortran 95 elemental function: @gol
@ref{IOR}
@end table



@node PACK
@section @code{PACK} --- Pack an array into an array of rank one
@fnindex PACK
@cindex array, packing
@cindex array, reduce dimension
@cindex array, gather elements

@table @asis
@item @emph{Description}:
Stores the elements of @var{ARRAY} in an array of rank one.

The beginning of the resulting array is made up of elements whose @var{MASK} 
equals @code{TRUE}. Afterwards, positions are filled with elements taken from
@var{VECTOR}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = PACK(ARRAY, MASK[,VECTOR])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY}  @tab Shall be an array of any type.
@item @var{MASK}   @tab Shall be an array of type @code{LOGICAL} and 
of the same size as @var{ARRAY}. Alternatively, it may be a @code{LOGICAL} 
scalar.
@item @var{VECTOR} @tab (Optional) shall be an array of the same type 
as @var{ARRAY} and of rank one. If present, the number of elements in 
@var{VECTOR} shall be equal to or greater than the number of true elements 
in @var{MASK}. If @var{MASK} is scalar, the number of elements in 
@var{VECTOR} shall be equal to or greater than the number of elements in
@var{ARRAY}.
@end multitable

@item @emph{Return value}:
The result is an array of rank one and the same type as that of @var{ARRAY}.
If @var{VECTOR} is present, the result size is that of @var{VECTOR}, the
number of @code{TRUE} values in @var{MASK} otherwise.

@item @emph{Example}:
Gathering nonzero elements from an array:
@smallexample
PROGRAM test_pack_1
  INTEGER :: m(6)
  m = (/ 1, 0, 0, 0, 5, 0 /)
  WRITE(*, FMT="(6(I0, ' '))") pack(m, m /= 0)  ! "1 5"
END PROGRAM
@end smallexample

Gathering nonzero elements from an array and appending elements from @var{VECTOR}:
@smallexample
PROGRAM test_pack_2
  INTEGER :: m(4)
  m = (/ 1, 0, 0, 2 /)
  ! The following results in "1 2 3 4"
  WRITE(*, FMT="(4(I0, ' '))") pack(m, m /= 0, (/ 0, 0, 3, 4 /))
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{UNPACK}
@end table



@node PARITY
@section @code{PARITY} --- Reduction with exclusive OR
@fnindex PARITY
@cindex Parity
@cindex Reduction, XOR
@cindex XOR reduction

@table @asis
@item @emph{Description}:
Calculates the parity, i.e. the reduction using @code{.XOR.},
of @var{MASK} along dimension @var{DIM}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = PARITY(MASK[, DIM])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{LOGICAL} @tab Shall be an array of type @code{LOGICAL}
@item @var{DIM}   @tab (Optional) shall be a scalar of type 
@code{INTEGER} with a value in the range from 1 to n, where n 
equals the rank of @var{MASK}.
@end multitable

@item @emph{Return value}:
The result is of the same type as @var{MASK}.

If @var{DIM} is absent, a scalar with the parity of all elements in
@var{MASK} is returned, i.e. true if an odd number of elements is
@code{.true.} and false otherwise.  If @var{DIM} is present, an array
of rank @math{n-1}, where @math{n} equals the rank of @var{ARRAY},
and a shape similar to that of @var{MASK} with dimension @var{DIM}
dropped is returned.

@item @emph{Example}:
@smallexample
PROGRAM test_sum
  LOGICAL :: x(2) = [ .true., .false. ]
  print *, PARITY(x) ! prints "T" (true).
END PROGRAM
@end smallexample
@end table



@node PERROR
@section @code{PERROR} --- Print system error message
@fnindex PERROR
@cindex system, error handling

@table @asis
@item @emph{Description}:
Prints (on the C @code{stderr} stream) a newline-terminated error
message corresponding to the last system error. This is prefixed by
@var{STRING}, a colon and a space. See @code{perror(3)}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL PERROR(STRING)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab A scalar of type @code{CHARACTER} and of the
default kind.
@end multitable

@item @emph{See also}:
@ref{IERRNO}
@end table



@node POPCNT
@section @code{POPCNT} --- Number of bits set
@fnindex POPCNT
@cindex binary representation
@cindex bits set

@table @asis
@item @emph{Description}:
@code{POPCNT(I)} returns the number of bits set ('1' bits) in the binary
representation of @code{I}.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = POPCNT(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.

@item @emph{Example}:
@smallexample
program test_population
  print *, popcnt(127),       poppar(127)
  print *, popcnt(huge(0_4)), poppar(huge(0_4))
  print *, popcnt(huge(0_8)), poppar(huge(0_8))
end program test_population
@end smallexample
@item @emph{See also}:
@ref{POPPAR}, @gol
@ref{LEADZ}, @gol
@ref{TRAILZ}
@end table



@node POPPAR
@section @code{POPPAR} --- Parity of the number of bits set
@fnindex POPPAR
@cindex binary representation
@cindex parity

@table @asis
@item @emph{Description}:
@code{POPPAR(I)} returns parity of the integer @code{I}, i.e. the parity
of the number of bits set ('1' bits) in the binary representation of
@code{I}. It is equal to 0 if @code{I} has an even number of bits set,
and 1 for an odd number of '1' bits.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = POPPAR(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.

@item @emph{Example}:
@smallexample
program test_population
  print *, popcnt(127),       poppar(127)
  print *, popcnt(huge(0_4)), poppar(huge(0_4))
  print *, popcnt(huge(0_8)), poppar(huge(0_8))
end program test_population
@end smallexample
@item @emph{See also}:
@ref{POPCNT}, @gol
@ref{LEADZ}, @gol
@ref{TRAILZ}
@end table



@node PRECISION
@section @code{PRECISION} --- Decimal precision of a real kind
@fnindex PRECISION
@cindex model representation, precision

@table @asis
@item @emph{Description}:
@code{PRECISION(X)} returns the decimal precision in the model of the
type of @code{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = PRECISION(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL} or @code{COMPLEX}. It may
be scalar or valued.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.

@item @emph{Example}:
@smallexample
program prec_and_range
  real(kind=4) :: x(2)
  complex(kind=8) :: y

  print *, precision(x), range(x)
  print *, precision(y), range(y)
end program prec_and_range
@end smallexample
@item @emph{See also}:
@ref{SELECTED_REAL_KIND}, @gol
@ref{RANGE}
@end table



@node PRESENT
@section @code{PRESENT} --- Determine whether an optional dummy argument is specified
@fnindex PRESENT

@table @asis
@item @emph{Description}:
Determines whether an optional dummy argument is present.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = PRESENT(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab May be of any type and may be a pointer, scalar or array
value, or a dummy procedure. It shall be the name of an optional dummy argument
accessible within the current subroutine or function.
@end multitable

@item @emph{Return value}:
Returns either @code{TRUE} if the optional argument @var{A} is present, or
@code{FALSE} otherwise.

@item @emph{Example}:
@smallexample
PROGRAM test_present
  WRITE(*,*) f(), f(42)      ! "F T"
CONTAINS
  LOGICAL FUNCTION f(x)
    INTEGER, INTENT(IN), OPTIONAL :: x
    f = PRESENT(x)
  END FUNCTION
END PROGRAM
@end smallexample
@end table



@node PRODUCT
@section @code{PRODUCT} --- Product of array elements
@fnindex PRODUCT
@cindex array, product
@cindex array, multiply elements
@cindex array, conditionally multiply elements
@cindex multiply array elements

@table @asis
@item @emph{Description}:
Multiplies the elements of @var{ARRAY} along dimension @var{DIM} if
the corresponding element in @var{MASK} is @code{TRUE}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = PRODUCT(ARRAY[, MASK])}
@item @code{RESULT = PRODUCT(ARRAY, DIM[, MASK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}, 
@code{REAL} or @code{COMPLEX}.
@item @var{DIM}   @tab (Optional) shall be a scalar of type 
@code{INTEGER} with a value in the range from 1 to n, where n 
equals the rank of @var{ARRAY}.
@item @var{MASK}  @tab (Optional) shall be of type @code{LOGICAL} 
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable

@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.

If @var{DIM} is absent, a scalar with the product of all elements in 
@var{ARRAY} is returned. Otherwise, an array of rank n-1, where n equals 
the rank of @var{ARRAY}, and a shape similar to that of @var{ARRAY} with 
dimension @var{DIM} dropped is returned.


@item @emph{Example}:
@smallexample
PROGRAM test_product
  INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
  print *, PRODUCT(x)                    ! all elements, product = 120
  print *, PRODUCT(x, MASK=MOD(x, 2)==1) ! odd elements, product = 15
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{SUM}
@end table



@node RADIX
@section @code{RADIX} --- Base of a model number
@fnindex RADIX
@cindex model representation, base
@cindex model representation, radix

@table @asis
@item @emph{Description}:
@code{RADIX(X)} returns the base of the model representing the entity @var{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = RADIX(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{INTEGER} or @code{REAL}
@end multitable

@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER} and of the default
integer kind.

@item @emph{Example}:
@smallexample
program test_radix
  print *, "The radix for the default integer kind is", radix(0)
  print *, "The radix for the default real kind is", radix(0.0)
end program test_radix
@end smallexample
@item @emph{See also}:
@ref{SELECTED_REAL_KIND}
@end table



@node RAN
@section @code{RAN} --- Real pseudo-random number
@fnindex RAN
@cindex random number generation

@table @asis
@item @emph{Description}:
For compatibility with HP FORTRAN 77/iX, the @code{RAN} intrinsic is
provided as an alias for @code{RAND}.  See @ref{RAND} for complete
documentation.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{See also}:
@ref{RAND}, @gol
@ref{RANDOM_NUMBER}
@end table



@node RAND
@section @code{RAND} --- Real pseudo-random number
@fnindex RAND
@cindex random number generation

@table @asis
@item @emph{Description}:
@code{RAND(FLAG)} returns a pseudo-random number from a uniform
distribution between 0 and 1. If @var{FLAG} is 0, the next number
in the current sequence is returned; if @var{FLAG} is 1, the generator
is restarted by @code{CALL SRAND(0)}; if @var{FLAG} has any other value,
it is used as a new seed with @code{SRAND}.

This intrinsic routine is provided for backwards compatibility with
GNU Fortran 77. It implements a simple modulo generator as provided 
by @command{g77}. For new code, one should consider the use of 
@ref{RANDOM_NUMBER} as it implements a superior algorithm.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = RAND(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be a scalar @code{INTEGER} of kind 4.
@end multitable

@item @emph{Return value}:
The return value is of @code{REAL} type and the default kind.

@item @emph{Example}:
@smallexample
program test_rand
  integer,parameter :: seed = 86456
  
  call srand(seed)
  print *, rand(), rand(), rand(), rand()
  print *, rand(seed), rand(), rand(), rand()
end program test_rand
@end smallexample

@item @emph{See also}:
@ref{SRAND}, @gol
@ref{RANDOM_NUMBER}

@end table


@node RANDOM_INIT
@section @code{RANDOM_INIT} --- Initialize a pseudo-random number generator
@fnindex RANDOM_INIT
@cindex random number generation, initialization

@table @asis
@item @emph{Description}:
Initializes the state of the pseudorandom number generator used by 
@code{RANDOM_NUMBER}.

@item @emph{Standard}:
Fortran 2018

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL RANDOM_INIT(REPEATABLE, IMAGE_DISTINCT)}

@item @emph{Arguments}:
@multitable @columnfractions .25 .70
@item @var{REPEATABLE} @tab Shall be a scalar with a @code{LOGICAL} type,
and it is @code{INTENT(IN)}.  If it is @code{.true.}, the seed is set to
a processor-dependent value that is the same each time @code{RANDOM_INIT}
is called from the same image.  The term ``same image'' means a single
instance of program execution.  The sequence of random numbers is different
for repeated execution of the program.  If it is @code{.false.}, the seed
is set to a processor-dependent value.
@item @var{IMAGE_DISTINCT} @tab Shall be a scalar with a
@code{LOGICAL} type, and it is @code{INTENT(IN)}.  If it is @code{.true.},
the seed is set to a processor-dependent value that is distinct from th
seed set by a call to @code{RANDOM_INIT} in another image.  If it is
@code{.false.}, the seed is set value that does depend which image called
@code{RANDOM_INIT}.
@end multitable

@item @emph{Example}:
@smallexample
program test_random_seed
  implicit none
  real x(3), y(3)
  call random_init(.true., .true.)
  call random_number(x)
  call random_init(.true., .true.)
  call random_number(y)
  ! x and y are the same sequence
  if (any(x /= y)) call abort
end program test_random_seed
@end smallexample

@item @emph{See also}:
@ref{RANDOM_NUMBER}, @gol
@ref{RANDOM_SEED}
@end table


@node RANDOM_NUMBER
@section @code{RANDOM_NUMBER} --- Pseudo-random number
@fnindex RANDOM_NUMBER
@cindex random number generation

@table @asis
@item @emph{Description}:
Returns a single pseudorandom number or an array of pseudorandom numbers
from the uniform distribution over the range @math{ 0 \leq x < 1}.

The runtime-library implements the xoshiro256** pseudorandom number
generator (PRNG). This generator has a period of @math{2^{256} - 1},
and when using multiple threads up to @math{2^{128}} threads can each
generate @math{2^{128}} random numbers before any aliasing occurs.

Note that in a multi-threaded program (e.g. using OpenMP directives),
each thread will have its own random number state. For details of the
seeding procedure, see the documentation for the @code{RANDOM_SEED}
intrinsic.


@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{RANDOM_NUMBER(HARVEST)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{HARVEST} @tab Shall be a scalar or an array of type @code{REAL}.
@end multitable

@item @emph{Example}:
@smallexample
program test_random_number
  REAL :: r(5,5)
  CALL RANDOM_NUMBER(r)
end program
@end smallexample

@item @emph{See also}:
@ref{RANDOM_SEED}, @gol
@ref{RANDOM_INIT}
@end table



@node RANDOM_SEED
@section @code{RANDOM_SEED} --- Initialize a pseudo-random number sequence
@fnindex RANDOM_SEED
@cindex random number generation, seeding
@cindex seeding a random number generator

@table @asis
@item @emph{Description}:
Restarts or queries the state of the pseudorandom number generator used by 
@code{RANDOM_NUMBER}.

If @code{RANDOM_SEED} is called without arguments, it is seeded with
random data retrieved from the operating system.

As an extension to the Fortran standard, the GFortran
@code{RANDOM_NUMBER} supports multiple threads. Each thread in a
multi-threaded program has its own seed.  When @code{RANDOM_SEED} is
called either without arguments or with the @var{PUT} argument, the
given seed is copied into a master seed as well as the seed of the
current thread. When a new thread uses @code{RANDOM_NUMBER} for the
first time, the seed is copied from the master seed, and forwarded
@math{N * 2^{128}} steps to guarantee that the random stream does not
alias any other stream in the system, where @var{N} is the number of
threads that have used @code{RANDOM_NUMBER} so far during the program
execution.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL RANDOM_SEED([SIZE, PUT, GET])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SIZE} @tab (Optional) Shall be a scalar and of type default 
@code{INTEGER}, with @code{INTENT(OUT)}. It specifies the minimum size 
of the arrays used with the @var{PUT} and @var{GET} arguments.
@item @var{PUT}  @tab (Optional) Shall be an array of type default 
@code{INTEGER} and rank one. It is @code{INTENT(IN)} and the size of 
the array must be larger than or equal to the number returned by the 
@var{SIZE} argument.
@item @var{GET}  @tab (Optional) Shall be an array of type default 
@code{INTEGER} and rank one. It is @code{INTENT(OUT)} and the size 
of the array must be larger than or equal to the number returned by 
the @var{SIZE} argument.
@end multitable

@item @emph{Example}:
@smallexample
program test_random_seed
  implicit none
  integer, allocatable :: seed(:)
  integer :: n

  call random_seed(size = n)
  allocate(seed(n))
  call random_seed(get=seed)
  write (*, *) seed
end program test_random_seed
@end smallexample

@item @emph{See also}:
@ref{RANDOM_NUMBER}, @gol
@ref{RANDOM_INIT}
@end table



@node RANGE
@section @code{RANGE} --- Decimal exponent range
@fnindex RANGE
@cindex model representation, range

@table @asis
@item @emph{Description}:
@code{RANGE(X)} returns the decimal exponent range in the model of the
type of @code{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = RANGE(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{INTEGER}, @code{REAL}
or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind.

@item @emph{Example}:
See @code{PRECISION} for an example.
@item @emph{See also}:
@ref{SELECTED_REAL_KIND}, @gol
@ref{PRECISION}
@end table



@node RANK
@section @code{RANK} --- Rank of a data object
@fnindex RANK
@cindex rank

@table @asis
@item @emph{Description}:
@code{RANK(A)} returns the rank of a scalar or array data object.

@item @emph{Standard}:
Technical Specification (TS) 29113

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = RANK(A)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab can be of any type
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the default integer
kind. For arrays, their rank is returned; for scalars zero is returned.

@item @emph{Example}:
@smallexample
program test_rank
  integer :: a
  real, allocatable :: b(:,:)

  print *, rank(a), rank(b) ! Prints:  0  2
end program test_rank
@end smallexample

@end table



@node REAL
@section @code{REAL} --- Convert to real type 
@fnindex REAL
@fnindex REALPART
@fnindex FLOAT
@fnindex DFLOAT
@fnindex FLOATI
@fnindex FLOATJ
@fnindex FLOATK
@fnindex SNGL
@cindex conversion, to real
@cindex complex numbers, real part

@table @asis
@item @emph{Description}:
@code{REAL(A [, KIND])} converts its argument @var{A} to a real type.  The
@code{REALPART} function is provided for compatibility with @command{g77},
and its use is strongly discouraged.

@item @emph{Standard}:
Fortran 77 and later, with @var{KIND} argument Fortran 90 and later, has GNU extensions

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = REAL(A [, KIND])}
@item @code{RESULT = REALPART(Z)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A}    @tab Shall be @code{INTEGER}, @code{REAL}, or
@code{COMPLEX}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
These functions return a @code{REAL} variable or array under
the following rules: 

@table @asis
@item (A)
@code{REAL(A)} is converted to a default real type if @var{A} is an 
integer or real variable.
@item (B)
@code{REAL(A)} is converted to a real type with the kind type parameter
of @var{A} if @var{A} is a complex variable.
@item (C)
@code{REAL(A, KIND)} is converted to a real type with kind type
parameter @var{KIND} if @var{A} is a complex, integer, or real
variable.
@end table

@item @emph{Example}:
@smallexample
program test_real
  complex :: x = (1.0, 2.0)
  print *, real(x), real(x,8), realpart(x)
end program test_real
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument           @tab Return type     @tab Standard
@item @code{FLOAT(A)}  @tab @code{INTEGER(4)}  @tab @code{REAL(4)}  @tab GNU extension
@item @code{DFLOAT(A)} @tab @code{INTEGER(4)}  @tab @code{REAL(8)}  @tab GNU extension
@item @code{FLOATI(A)} @tab @code{INTEGER(2)}  @tab @code{REAL(4)}  @tab GNU extension
@item @code{FLOATJ(A)} @tab @code{INTEGER(4)}  @tab @code{REAL(4)}  @tab GNU extension
@item @code{FLOATK(A)} @tab @code{INTEGER(8)}  @tab @code{REAL(4)}  @tab GNU extension
@item @code{SNGL(A)}   @tab @code{INTEGER(8)}  @tab @code{REAL(4)}  @tab GNU extension
@end multitable


@item @emph{See also}:
@ref{DBLE}

@end table



@node RENAME
@section @code{RENAME} --- Rename a file
@fnindex RENAME
@cindex file system, rename file

@table @asis
@item @emph{Description}:
Renames a file from file @var{PATH1} to @var{PATH2}. A null
character (@code{CHAR(0)}) can be used to mark the end of the names in
@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
names are ignored.  If the @var{STATUS} argument is supplied, it
contains 0 on success or a nonzero error code upon return; see
@code{rename(2)}.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL RENAME(PATH1, PATH2 [, STATUS])}
@item @code{STATUS = RENAME(PATH1, PATH2)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable

@item @emph{See also}:
@ref{LINK}

@end table



@node REPEAT
@section @code{REPEAT} --- Repeated string concatenation 
@fnindex REPEAT
@cindex string, repeat
@cindex string, concatenate

@table @asis
@item @emph{Description}:
Concatenates @var{NCOPIES} copies of a string.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = REPEAT(STRING, NCOPIES)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING}  @tab Shall be scalar and of type @code{CHARACTER}.
@item @var{NCOPIES} @tab Shall be scalar and of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
A new scalar of type @code{CHARACTER} built up from @var{NCOPIES} copies 
of @var{STRING}.

@item @emph{Example}:
@smallexample
program test_repeat
  write(*,*) repeat("x", 5)   ! "xxxxx"
end program
@end smallexample
@end table



@node RESHAPE
@section @code{RESHAPE} --- Function to reshape an array
@fnindex RESHAPE
@cindex array, change dimensions
@cindex array, transmogrify

@table @asis
@item @emph{Description}:
Reshapes @var{SOURCE} to correspond to @var{SHAPE}. If necessary,
the new array may be padded with elements from @var{PAD} or permuted
as defined by @var{ORDER}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE} @tab Shall be an array of any type.
@item @var{SHAPE}  @tab Shall be of type @code{INTEGER} and an 
array of rank one. Its values must be positive or zero.
@item @var{PAD}    @tab (Optional) shall be an array of the same 
type as @var{SOURCE}.
@item @var{ORDER}  @tab (Optional) shall be of type @code{INTEGER}
and an array of the same shape as @var{SHAPE}. Its values shall
be a permutation of the numbers from 1 to n, where n is the size of 
@var{SHAPE}. If @var{ORDER} is absent, the natural ordering shall
be assumed.
@end multitable

@item @emph{Return value}:
The result is an array of shape @var{SHAPE} with the same type as 
@var{SOURCE}. 

@item @emph{Example}:
@smallexample
PROGRAM test_reshape
  INTEGER, DIMENSION(4) :: x
  WRITE(*,*) SHAPE(x)                       ! prints "4"
  WRITE(*,*) SHAPE(RESHAPE(x, (/2, 2/)))    ! prints "2 2"
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{SHAPE}
@end table



@node RRSPACING
@section @code{RRSPACING} --- Reciprocal of the relative spacing
@fnindex RRSPACING
@cindex real number, relative spacing
@cindex floating point, relative spacing


@table @asis
@item @emph{Description}:
@code{RRSPACING(X)} returns the  reciprocal of the relative spacing of
model numbers near @var{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = RRSPACING(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The value returned is equal to
@code{ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)}.

@item @emph{See also}:
@ref{SPACING}
@end table



@node RSHIFT
@section @code{RSHIFT} --- Right shift bits
@fnindex RSHIFT
@cindex bits, shift right

@table @asis
@item @emph{Description}:
@code{RSHIFT} returns a value corresponding to @var{I} with all of the
bits shifted right by @var{SHIFT} places.  @var{SHIFT} shall be
nonnegative and less than or equal to @code{BIT_SIZE(I)}, otherwise
the result value is undefined.  Bits shifted out from the right end
are lost. The fill is arithmetic: the bits shifted in from the left
end are equal to the leftmost bit, which in two's complement
representation is the sign bit.

This function has been superseded by the @code{SHIFTA} intrinsic, which
is standard in Fortran 2008 and later.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = RSHIFT(I, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{See also}:
@ref{ISHFT}, @gol
@ref{ISHFTC}, @gol
@ref{LSHIFT}, @gol
@ref{SHIFTA}, @gol
@ref{SHIFTR}, @gol
@ref{SHIFTL}

@end table



@node SAME_TYPE_AS
@section @code{SAME_TYPE_AS} ---  Query dynamic types for equality
@fnindex SAME_TYPE_AS

@table @asis
@item @emph{Description}:
Query dynamic types for equality.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = SAME_TYPE_AS(A, B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be an object of extensible declared type or
unlimited polymorphic.
@item @var{B} @tab Shall be an object of extensible declared type or
unlimited polymorphic.
@end multitable

@item @emph{Return value}:
The return value is a scalar of type default logical. It is true if and
only if the dynamic type of A is the same as the dynamic type of B.

@item @emph{See also}:
@ref{EXTENDS_TYPE_OF}

@end table



@node SCALE
@section @code{SCALE} --- Scale a real value
@fnindex SCALE
@cindex real number, scale
@cindex floating point, scale

@table @asis
@item @emph{Description}:
@code{SCALE(X,I)} returns @code{X * RADIX(X)**I}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SCALE(X, I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type of the argument shall be a @code{REAL}.
@item @var{I} @tab The type of the argument shall be a @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
Its value is @code{X * RADIX(X)**I}.

@item @emph{Example}:
@smallexample
program test_scale
  real :: x = 178.1387e-4
  integer :: i = 5
  print *, scale(x,i), x*radix(x)**i
end program test_scale
@end smallexample

@end table



@node SCAN
@section @code{SCAN} --- Scan a string for the presence of a set of characters
@fnindex SCAN
@cindex string, find subset

@table @asis
@item @emph{Description}:
Scans a @var{STRING} for any of the characters in a @var{SET} 
of characters.

If @var{BACK} is either absent or equals @code{FALSE}, this function
returns the position of the leftmost character of @var{STRING} that is
in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost position
is returned. If no character of @var{SET} is found in @var{STRING}, the 
result is zero.

@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SCAN(STRING, SET[, BACK [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be of type @code{CHARACTER}.
@item @var{SET}    @tab Shall be of type @code{CHARACTER}.
@item @var{BACK}   @tab (Optional) shall be of type @code{LOGICAL}.
@item @var{KIND}   @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.

@item @emph{Example}:
@smallexample
PROGRAM test_scan
  WRITE(*,*) SCAN("FORTRAN", "AO")          ! 2, found 'O'
  WRITE(*,*) SCAN("FORTRAN", "AO", .TRUE.)  ! 6, found 'A'
  WRITE(*,*) SCAN("FORTRAN", "C++")         ! 0, found none
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{INDEX intrinsic}, @gol
@ref{VERIFY}
@end table



@node SECNDS
@section @code{SECNDS} --- Time function
@fnindex SECNDS
@cindex time, elapsed
@cindex elapsed time

@table @asis
@item @emph{Description}:
@code{SECNDS(X)} gets the time in seconds from the real-time system clock.
@var{X} is a reference time, also in seconds. If this is zero, the time in
seconds from midnight is returned. This function is non-standard and its
use is discouraged.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = SECNDS (X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{T}     @tab Shall be of type @code{REAL(4)}.
@item @var{X}     @tab Shall be of type @code{REAL(4)}.
@end multitable

@item @emph{Return value}:
None

@item @emph{Example}:
@smallexample
program test_secnds
    integer :: i
    real(4) :: t1, t2
    print *, secnds (0.0)   ! seconds since midnight
    t1 = secnds (0.0)       ! reference time
    do i = 1, 10000000      ! do something
    end do
    t2 = secnds (t1)        ! elapsed time
    print *, "Something took ", t2, " seconds."
end program test_secnds
@end smallexample
@end table



@node SECOND
@section @code{SECOND} --- CPU time function
@fnindex SECOND
@cindex time, elapsed
@cindex elapsed time

@table @asis
@item @emph{Description}:
Returns a @code{REAL(4)} value representing the elapsed CPU time in
seconds.  This provides the same functionality as the standard
@code{CPU_TIME} intrinsic, and is only included for backwards
compatibility.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SECOND(TIME)}
@item @code{TIME = SECOND()}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{TIME}  @tab Shall be of type @code{REAL(4)}.
@end multitable

@item @emph{Return value}:
In either syntax, @var{TIME} is set to the process's current runtime in
seconds.

@item @emph{See also}:
@ref{CPU_TIME}

@end table



@node SELECTED_CHAR_KIND
@section @code{SELECTED_CHAR_KIND} --- Choose character kind
@fnindex SELECTED_CHAR_KIND
@cindex character kind
@cindex kind, character

@table @asis
@item @emph{Description}:

@code{SELECTED_CHAR_KIND(NAME)} returns the kind value for the character
set named @var{NAME}, if a character set with such a name is supported,
or @math{-1} otherwise. Currently, supported character sets include
``ASCII'' and ``DEFAULT'', which are equivalent, and ``ISO_10646''
(Universal Character Set, UCS-4) which is commonly known as Unicode.

@item @emph{Standard}:
Fortran 2003 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = SELECTED_CHAR_KIND(NAME)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME} @tab Shall be a scalar and of the default character type.
@end multitable

@item @emph{Example}:
@smallexample
program character_kind
  use iso_fortran_env
  implicit none
  integer, parameter :: ascii = selected_char_kind ("ascii")
  integer, parameter :: ucs4  = selected_char_kind ('ISO_10646')

  character(kind=ascii, len=26) :: alphabet
  character(kind=ucs4,  len=30) :: hello_world

  alphabet = ascii_"abcdefghijklmnopqrstuvwxyz"
  hello_world = ucs4_'Hello World and Ni Hao -- ' &
                // char (int (z'4F60'), ucs4)     &
                // char (int (z'597D'), ucs4)

  write (*,*) alphabet

  open (output_unit, encoding='UTF-8')
  write (*,*) trim (hello_world)
end program character_kind
@end smallexample
@end table



@node SELECTED_INT_KIND
@section @code{SELECTED_INT_KIND} --- Choose integer kind
@fnindex SELECTED_INT_KIND
@cindex integer kind
@cindex kind, integer

@table @asis
@item @emph{Description}:
@code{SELECTED_INT_KIND(R)} return the kind value of the smallest integer
type that can represent all values ranging from @math{-10^R} (exclusive)
to @math{10^R} (exclusive). If there is no integer kind that accommodates
this range, @code{SELECTED_INT_KIND} returns @math{-1}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = SELECTED_INT_KIND(R)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{R} @tab Shall be a scalar and of type @code{INTEGER}.
@end multitable

@item @emph{Example}:
@smallexample
program large_integers
  integer,parameter :: k5 = selected_int_kind(5)
  integer,parameter :: k15 = selected_int_kind(15)
  integer(kind=k5) :: i5
  integer(kind=k15) :: i15

  print *, huge(i5), huge(i15)

  ! The following inequalities are always true
  print *, huge(i5) >= 10_k5**5-1
  print *, huge(i15) >= 10_k15**15-1
end program large_integers
@end smallexample
@end table



@node SELECTED_REAL_KIND
@section @code{SELECTED_REAL_KIND} --- Choose real kind
@fnindex SELECTED_REAL_KIND
@cindex real kind
@cindex kind, real
@cindex radix, real

@table @asis
@item @emph{Description}:
@code{SELECTED_REAL_KIND(P,R)} returns the kind value of a real data type
with decimal precision of at least @code{P} digits, exponent range of
at least @code{R}, and with a radix of @code{RADIX}.

@item @emph{Standard}:
Fortran 90 and later, with @code{RADIX} Fortran 2008 or later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = SELECTED_REAL_KIND([P, R, RADIX])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{P} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
@item @var{R} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
@item @var{RADIX} @tab (Optional) shall be a scalar and of type @code{INTEGER}.
@end multitable
Before Fortran 2008, at least one of the arguments @var{R} or @var{P} shall
be present; since Fortran 2008, they are assumed to be zero if absent.

@item @emph{Return value}:

@code{SELECTED_REAL_KIND} returns the value of the kind type parameter of
a real data type with decimal precision of at least @code{P} digits, a
decimal exponent range of at least @code{R}, and with the requested
@code{RADIX}. If the @code{RADIX} parameter is absent, real kinds with
any radix can be returned. If more than one real data type meet the
criteria, the kind of the data type with the smallest decimal precision
is returned. If no real data type matches the criteria, the result is
@table @asis
@item -1 if the processor does not support a real data type with a
precision greater than or equal to @code{P}, but the @code{R} and
@code{RADIX} requirements can be fulfilled
@item -2 if the processor does not support a real type with an exponent
range greater than or equal to @code{R}, but @code{P} and @code{RADIX}
are fulfillable
@item -3 if @code{RADIX} but not @code{P} and @code{R} requirements
are fulfillable
@item -4 if @code{RADIX} and either @code{P} or @code{R} requirements
are fulfillable
@item -5 if there is no real type with the given @code{RADIX}
@end table

@item @emph{Example}:
@smallexample
program real_kinds
  integer,parameter :: p6 = selected_real_kind(6)
  integer,parameter :: p10r100 = selected_real_kind(10,100)
  integer,parameter :: r400 = selected_real_kind(r=400)
  real(kind=p6) :: x
  real(kind=p10r100) :: y
  real(kind=r400) :: z

  print *, precision(x), range(x)
  print *, precision(y), range(y)
  print *, precision(z), range(z)
end program real_kinds
@end smallexample
@item @emph{See also}:
@ref{PRECISION}, @gol
@ref{RANGE}, @gol
@ref{RADIX}
@end table



@node SET_EXPONENT
@section @code{SET_EXPONENT} --- Set the exponent of the model
@fnindex SET_EXPONENT
@cindex real number, set exponent
@cindex floating point, set exponent

@table @asis
@item @emph{Description}:
@code{SET_EXPONENT(X, I)} returns the real number whose fractional part
is that that of @var{X} and whose exponent part is @var{I}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SET_EXPONENT(X, I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}.
The real number whose fractional part
is that that of @var{X} and whose exponent part if @var{I} is returned;
it is @code{FRACTION(X) * RADIX(X)**I}.

@item @emph{Example}:
@smallexample
PROGRAM test_setexp
  REAL :: x = 178.1387e-4
  INTEGER :: i = 17
  PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i
END PROGRAM
@end smallexample

@end table



@node SHAPE
@section @code{SHAPE} --- Determine the shape of an array
@fnindex SHAPE
@cindex array, shape

@table @asis
@item @emph{Description}:
Determines the shape of an array.

@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = SHAPE(SOURCE [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE} @tab Shall be an array or scalar of any type. 
If @var{SOURCE} is a pointer it must be associated and allocatable 
arrays must be allocated.
@item @var{KIND}   @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
An @code{INTEGER} array of rank one with as many elements as @var{SOURCE} 
has dimensions. The elements of the resulting array correspond to the extend
of @var{SOURCE} along the respective dimensions. If @var{SOURCE} is a scalar,
the result is the rank one array of size zero. If @var{KIND} is absent, the
return value has the default integer kind otherwise the specified kind.

@item @emph{Example}:
@smallexample
PROGRAM test_shape
  INTEGER, DIMENSION(-1:1, -1:2) :: A
  WRITE(*,*) SHAPE(A)             ! (/ 3, 4 /)
  WRITE(*,*) SIZE(SHAPE(42))      ! (/ /)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{RESHAPE}, @gol
@ref{SIZE}
@end table



@node SHIFTA
@section @code{SHIFTA} --- Right shift with fill
@fnindex SHIFTA
@cindex bits, shift right
@cindex shift, right with fill

@table @asis
@item @emph{Description}:
@code{SHIFTA} returns a value corresponding to @var{I} with all of the
bits shifted right by @var{SHIFT} places.  @var{SHIFT} that be
nonnegative and less than or equal to @code{BIT_SIZE(I)}, otherwise
the result value is undefined.  Bits shifted out from the right end
are lost. The fill is arithmetic: the bits shifted in from the left
end are equal to the leftmost bit, which in two's complement
representation is the sign bit.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SHIFTA(I, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{See also}:
@ref{SHIFTL}, @gol
@ref{SHIFTR}
@end table



@node SHIFTL
@section @code{SHIFTL} --- Left shift
@fnindex SHIFTL
@cindex bits, shift left
@cindex shift, left

@table @asis
@item @emph{Description}:
@code{SHIFTL} returns a value corresponding to @var{I} with all of the
bits shifted left by @var{SHIFT} places.  @var{SHIFT} shall be
nonnegative and less than or equal to @code{BIT_SIZE(I)}, otherwise
the result value is undefined.  Bits shifted out from the left end are
lost, and bits shifted in from the right end are set to 0.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SHIFTL(I, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{See also}:
@ref{SHIFTA}, @gol
@ref{SHIFTR}
@end table



@node SHIFTR
@section @code{SHIFTR} --- Right shift
@fnindex SHIFTR
@cindex bits, shift right
@cindex shift, right

@table @asis
@item @emph{Description}:
@code{SHIFTR} returns a value corresponding to @var{I} with all of the
bits shifted right by @var{SHIFT} places.  @var{SHIFT} shall be
nonnegative and less than or equal to @code{BIT_SIZE(I)}, otherwise
the result value is undefined.  Bits shifted out from the right end
are lost, and bits shifted in from the left end are set to 0.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SHIFTR(I, SHIFT)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be @code{INTEGER}.
@item @var{SHIFT} @tab The type shall be @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of the same kind as
@var{I}.

@item @emph{See also}:
@ref{SHIFTA}, @gol
@ref{SHIFTL}
@end table



@node SIGN
@section @code{SIGN} --- Sign copying function
@fnindex SIGN
@fnindex ISIGN
@fnindex DSIGN
@cindex sign copying

@table @asis
@item @emph{Description}:
@code{SIGN(A,B)} returns the value of @var{A} with the sign of @var{B}.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SIGN(A, B)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be of type @code{INTEGER} or @code{REAL}
@item @var{B} @tab Shall be of the same type and kind as @var{A}.
@end multitable

@item @emph{Return value}:
The kind of the return value is that of @var{A} and @var{B}.
If @math{B\ge 0} then the result is @code{ABS(A)}, else
it is @code{-ABS(A)}.

@item @emph{Example}:
@smallexample
program test_sign
  print *, sign(-12,1)
  print *, sign(-12,0)
  print *, sign(-12,-1)

  print *, sign(-12.,1.)
  print *, sign(-12.,0.)
  print *, sign(-12.,-1.)
end program test_sign
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name              @tab Arguments              @tab Return type       @tab Standard
@item @code{SIGN(A,B)}  @tab @code{REAL(4) A, B}    @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{ISIGN(A,B)} @tab @code{INTEGER(4) A, B} @tab @code{INTEGER(4)} @tab Fortran 77 and later
@item @code{DSIGN(A,B)} @tab @code{REAL(8) A, B}    @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable
@end table



@node SIGNAL
@section @code{SIGNAL} --- Signal handling subroutine (or function)
@fnindex SIGNAL
@cindex system, signal handling

@table @asis
@item @emph{Description}:
@code{SIGNAL(NUMBER, HANDLER [, STATUS])} causes external subroutine
@var{HANDLER} to be executed with a single integer argument when signal
@var{NUMBER} occurs.  If @var{HANDLER} is an integer, it can be used to
turn off handling of signal @var{NUMBER} or revert to its default
action.  See @code{signal(2)}.

If @code{SIGNAL} is called as a subroutine and the @var{STATUS} argument
is supplied, it is set to the value returned by @code{signal(2)}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SIGNAL(NUMBER, HANDLER [, STATUS])}
@item @code{STATUS = SIGNAL(NUMBER, HANDLER)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NUMBER} @tab Shall be a scalar integer, with @code{INTENT(IN)}
@item @var{HANDLER}@tab Signal handler (@code{INTEGER FUNCTION} or
@code{SUBROUTINE}) or dummy/global @code{INTEGER} scalar.
@code{INTEGER}. It is @code{INTENT(IN)}.
@item @var{STATUS} @tab (Optional) @var{STATUS} shall be a scalar
integer. It has @code{INTENT(OUT)}.
@end multitable
@c TODO: What should the interface of the handler be?  Does it take arguments?

@item @emph{Return value}:
The @code{SIGNAL} function returns the value returned by @code{signal(2)}.

@item @emph{Example}:
@smallexample
program test_signal
  intrinsic signal
  external handler_print

  call signal (12, handler_print)
  call signal (10, 1)

  call sleep (30)
end program test_signal
@end smallexample
@end table



@node SIN
@section @code{SIN} --- Sine function 
@fnindex SIN
@fnindex DSIN
@fnindex CSIN
@fnindex ZSIN
@fnindex CDSIN
@cindex trigonometric function, sine
@cindex sine

@table @asis
@item @emph{Description}:
@code{SIN(X)} computes the sine of @var{X}.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SIN(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_sin
  real :: x = 0.0
  x = sin(x)
end program test_sin
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument             @tab Return type       @tab Standard
@item @code{SIN(X)}   @tab @code{REAL(4) X}     @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DSIN(X)}  @tab @code{REAL(8) X}     @tab @code{REAL(8)}    @tab Fortran 77 and later
@item @code{CSIN(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)} @tab Fortran 77 and later
@item @code{ZSIN(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDSIN(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{ASIN} @gol
Degrees function: @gol
@ref{SIND}
@end table



@node SIND
@section @code{SIND} --- Sine function, degrees
@fnindex SIND
@fnindex DSIND
@fnindex CSIND
@fnindex ZSIND
@fnindex CDSIND
@cindex trigonometric function, sine, degrees
@cindex sine, degrees

@table @asis
@item @emph{Description}:
@code{SIND(X)} computes the sine of @var{X} in degrees.

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SIND(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}, and its value is in degrees.

@item @emph{Example}:
@smallexample
program test_sind
  real :: x = 0.0
  x = sind(x)
end program test_sind
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument             @tab Return type       @tab Standard
@item @code{SIND(X)}   @tab @code{REAL(4) X}     @tab @code{REAL(4)}    @tab GNU extension
@item @code{DSIND(X)}  @tab @code{REAL(8) X}     @tab @code{REAL(8)}    @tab GNU extension
@item @code{CSIND(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)} @tab GNU extension
@item @code{ZSIND(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)} @tab GNU extension
@item @code{CDSIND(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)} @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{ASIND} @gol
Radians function: @gol
@ref{SIN} @gol
@end table



@node SINH
@section @code{SINH} --- Hyperbolic sine function 
@fnindex SINH
@fnindex DSINH
@cindex hyperbolic sine
@cindex hyperbolic function, sine
@cindex sine, hyperbolic

@table @asis
@item @emph{Description}:
@code{SINH(X)} computes the hyperbolic sine of @var{X}.

@item @emph{Standard}:
Fortran 90 and later, for a complex argument Fortran 2008 or later, has
a GNU extension

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SINH(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}.

@item @emph{Example}:
@smallexample
program test_sinh
  real(8) :: x = - 1.0_8
  x = sinh(x)
end program test_sinh
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{DSINH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab Fortran 90 and later
@end multitable

@item @emph{See also}:
@ref{ASINH}
@end table



@node SIZE
@section @code{SIZE} --- Determine the size of an array
@fnindex SIZE
@cindex array, size
@cindex array, number of elements
@cindex array, count elements

@table @asis
@item @emph{Description}:
Determine the extent of @var{ARRAY} along a specified dimension @var{DIM},
or the total number of elements in @var{ARRAY} if @var{DIM} is absent.

@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = SIZE(ARRAY[, DIM [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of any type. If @var{ARRAY} is
a pointer it must be associated and allocatable arrays must be allocated.
@item @var{DIM}   @tab (Optional) shall be a scalar of type @code{INTEGER} 
and its value shall be in the range from 1 to n, where n equals the rank 
of @var{ARRAY}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.

@item @emph{Example}:
@smallexample
PROGRAM test_size
  WRITE(*,*) SIZE((/ 1, 2 /))    ! 2
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{SHAPE}, @gol
@ref{RESHAPE}
@end table


@node SIZEOF
@section @code{SIZEOF} --- Size in bytes of an expression
@fnindex SIZEOF
@cindex expression size
@cindex size of an expression

@table @asis
@item @emph{Description}:
@code{SIZEOF(X)} calculates the number of bytes of storage the
expression @code{X} occupies.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{N = SIZEOF(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The argument shall be of any type, rank or shape.
@end multitable

@item @emph{Return value}:
The return value is of type integer and of the system-dependent kind
@var{C_SIZE_T} (from the @var{ISO_C_BINDING} module). Its value is the
number of bytes occupied by the argument.  If the argument has the
@code{POINTER} attribute, the number of bytes of the storage area pointed
to is returned.  If the argument is of a derived type with @code{POINTER}
or @code{ALLOCATABLE} components, the return value does not account for
the sizes of the data pointed to by these components. If the argument is
polymorphic, the size according to the dynamic type is returned. The argument
may not be a procedure or procedure pointer. Note that the code assumes for
arrays that those are contiguous; for contiguous arrays, it returns the
storage or an array element multiplied by the size of the array.

@item @emph{Example}:
@smallexample
   integer :: i
   real :: r, s(5)
   print *, (sizeof(s)/sizeof(r) == 5)
   end
@end smallexample
The example will print @code{.TRUE.} unless you are using a platform
where default @code{REAL} variables are unusually padded.

@item @emph{See also}:
@ref{C_SIZEOF}, @gol
@ref{STORAGE_SIZE}
@end table


@node SLEEP
@section @code{SLEEP} --- Sleep for the specified number of seconds
@fnindex SLEEP
@cindex delayed execution

@table @asis
@item @emph{Description}:
Calling this subroutine causes the process to pause for @var{SECONDS} seconds.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL SLEEP(SECONDS)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SECONDS} @tab The type shall be of default @code{INTEGER}.
@end multitable

@item @emph{Example}:
@smallexample
program test_sleep
  call sleep(5)
end
@end smallexample
@end table



@node SPACING
@section @code{SPACING} --- Smallest distance between two numbers of a given type
@fnindex SPACING
@cindex real number, relative spacing
@cindex floating point, relative spacing

@table @asis
@item @emph{Description}:
Determines the distance between the argument @var{X} and the nearest 
adjacent number of the same type.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SPACING(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable

@item @emph{Return value}:
The result is of the same type as the input argument @var{X}.

@item @emph{Example}:
@smallexample
PROGRAM test_spacing
  INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
  INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)

  WRITE(*,*) spacing(1.0_SGL)      ! "1.1920929E-07"          on i686
  WRITE(*,*) spacing(1.0_DBL)      ! "2.220446049250313E-016" on i686
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{RRSPACING}
@end table



@node SPREAD
@section @code{SPREAD} --- Add a dimension to an array
@fnindex SPREAD
@cindex array, increase dimension
@cindex array, duplicate elements
@cindex array, duplicate dimensions

@table @asis
@item @emph{Description}:
Replicates a @var{SOURCE} array @var{NCOPIES} times along a specified 
dimension @var{DIM}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = SPREAD(SOURCE, DIM, NCOPIES)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE}  @tab Shall be a scalar or an array of any type and 
a rank less than seven.
@item @var{DIM}     @tab Shall be a scalar of type @code{INTEGER} with a 
value in the range from 1 to n+1, where n equals the rank of @var{SOURCE}.
@item @var{NCOPIES} @tab Shall be a scalar of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The result is an array of the same type as @var{SOURCE} and has rank n+1
where n equals the rank of @var{SOURCE}.

@item @emph{Example}:
@smallexample
PROGRAM test_spread
  INTEGER :: a = 1, b(2) = (/ 1, 2 /)
  WRITE(*,*) SPREAD(A, 1, 2)            ! "1 1"
  WRITE(*,*) SPREAD(B, 1, 2)            ! "1 1 2 2"
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{UNPACK}
@end table



@node SQRT
@section @code{SQRT} --- Square-root function
@fnindex SQRT
@fnindex DSQRT
@fnindex CSQRT
@fnindex ZSQRT
@fnindex CDSQRT
@cindex root
@cindex square-root

@table @asis
@item @emph{Description}:
@code{SQRT(X)} computes the square root of @var{X}.

@item @emph{Standard}:
Fortran 77 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = SQRT(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or
@code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value is of type @code{REAL} or @code{COMPLEX}.
The kind type parameter is the same as @var{X}.

@item @emph{Example}:
@smallexample
program test_sqrt
  real(8) :: x = 2.0_8
  complex :: z = (1.0, 2.0)
  x = sqrt(x)
  z = sqrt(z)
end program test_sqrt
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name             @tab Argument             @tab Return type          @tab Standard
@item @code{SQRT(X)}   @tab @code{REAL(4) X}     @tab @code{REAL(4)}       @tab Fortran 77 and later
@item @code{DSQRT(X)}  @tab @code{REAL(8) X}     @tab @code{REAL(8)}       @tab Fortran 77 and later
@item @code{CSQRT(X)}  @tab @code{COMPLEX(4) X}  @tab @code{COMPLEX(4)}    @tab Fortran 77 and later
@item @code{ZSQRT(X)}  @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab GNU extension
@item @code{CDSQRT(X)} @tab @code{COMPLEX(8) X}  @tab @code{COMPLEX(8)}    @tab GNU extension
@end multitable
@end table



@node SRAND
@section @code{SRAND} --- Reinitialize the random number generator
@fnindex SRAND
@cindex random number generation, seeding
@cindex seeding a random number generator

@table @asis
@item @emph{Description}:
@code{SRAND} reinitializes the pseudo-random number generator
called by @code{RAND} and @code{IRAND}. The new seed used by the
generator is specified by the required argument @var{SEED}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL SRAND(SEED)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SEED} @tab Shall be a scalar @code{INTEGER(kind=4)}.
@end multitable

@item @emph{Return value}:
Does not return anything.

@item @emph{Example}:
See @code{RAND} and @code{IRAND} for examples.

@item @emph{Notes}:
The Fortran standard specifies the intrinsic subroutines
@code{RANDOM_SEED} to initialize the pseudo-random number
generator and @code{RANDOM_NUMBER} to generate pseudo-random numbers.
These subroutines should be used in new codes.

Please note that in GNU Fortran, these two sets of intrinsics (@code{RAND},
@code{IRAND} and @code{SRAND} on the one hand, @code{RANDOM_NUMBER} and
@code{RANDOM_SEED} on the other hand) access two independent
pseudo-random number generators.

@item @emph{See also}:
@ref{RAND}, @gol
@ref{RANDOM_SEED}, @gol
@ref{RANDOM_NUMBER}
@end table



@node STAT
@section @code{STAT} --- Get file status
@fnindex STAT
@cindex file system, file status

@table @asis
@item @emph{Description}:
This function returns information about a file. No permissions are required on 
the file itself, but execute (search) permission is required on all of the 
directories in path that lead to the file.

The elements that are obtained and stored in the array @code{VALUES}:
@multitable @columnfractions .15 .70
@item @code{VALUES(1)}   @tab  Device ID 
@item @code{VALUES(2)}   @tab  Inode number 
@item @code{VALUES(3)}   @tab  File mode 
@item @code{VALUES(4)}   @tab  Number of links 
@item @code{VALUES(5)}   @tab  Owner's uid 
@item @code{VALUES(6)}   @tab  Owner's gid 
@item @code{VALUES(7)}   @tab  ID of device containing directory entry for file (0 if not available) 
@item @code{VALUES(8)}   @tab  File size (bytes) 
@item @code{VALUES(9)}   @tab  Last access time 
@item @code{VALUES(10)}  @tab  Last modification time 
@item @code{VALUES(11)}  @tab  Last file status change time 
@item @code{VALUES(12)}  @tab  Preferred I/O block size (-1 if not available) 
@item @code{VALUES(13)}  @tab  Number of blocks allocated (-1 if not available)
@end multitable

Not all these elements are relevant on all systems. 
If an element is not relevant, it is returned as 0.

This intrinsic is provided in both subroutine and function forms; however,
only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL STAT(NAME, VALUES [, STATUS])}
@item @code{STATUS = STAT(NAME, VALUES)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{NAME}   @tab The type shall be @code{CHARACTER}, of the
default kind and a valid path within the file system.
@item @var{VALUES} @tab The type shall be @code{INTEGER(4), DIMENSION(13)}.
@item @var{STATUS} @tab (Optional) status flag of type @code{INTEGER(4)}. Returns 0 
on success and a system specific error code otherwise.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_stat
  INTEGER, DIMENSION(13) :: buff
  INTEGER :: status

  CALL STAT("/etc/passwd", buff, status)

  IF (status == 0) THEN
    WRITE (*, FMT="('Device ID:',               T30, I19)") buff(1)
    WRITE (*, FMT="('Inode number:',            T30, I19)") buff(2)
    WRITE (*, FMT="('File mode (octal):',       T30, O19)") buff(3)
    WRITE (*, FMT="('Number of links:',         T30, I19)") buff(4)
    WRITE (*, FMT="('Owner''s uid:',            T30, I19)") buff(5)
    WRITE (*, FMT="('Owner''s gid:',            T30, I19)") buff(6)
    WRITE (*, FMT="('Device where located:',    T30, I19)") buff(7)
    WRITE (*, FMT="('File size:',               T30, I19)") buff(8)
    WRITE (*, FMT="('Last access time:',        T30, A19)") CTIME(buff(9))
    WRITE (*, FMT="('Last modification time',   T30, A19)") CTIME(buff(10))
    WRITE (*, FMT="('Last status change time:', T30, A19)") CTIME(buff(11))
    WRITE (*, FMT="('Preferred block size:',    T30, I19)") buff(12)
    WRITE (*, FMT="('No. of blocks allocated:', T30, I19)") buff(13)
  END IF
END PROGRAM
@end smallexample

@item @emph{See also}:
To stat an open file: @gol
@ref{FSTAT} @gol
To stat a link: @gol
@ref{LSTAT}
@end table



@node STORAGE_SIZE
@section @code{STORAGE_SIZE} --- Storage size in bits
@fnindex STORAGE_SIZE
@cindex storage size

@table @asis
@item @emph{Description}:
Returns the storage size of argument @var{A} in bits.
@item @emph{Standard}:
Fortran 2008 and later
@item @emph{Class}:
Inquiry function
@item @emph{Syntax}:
@code{RESULT = STORAGE_SIZE(A [, KIND])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{A} @tab Shall be a scalar or array of any type.
@item @var{KIND} @tab (Optional) shall be a scalar integer constant expression.
@end multitable

@item @emph{Return Value}:
The result is a scalar integer with the kind type parameter specified by KIND
(or default integer type if KIND is missing). The result value is the size
expressed in bits for an element of an array that has the dynamic type and type
parameters of A.

@item @emph{See also}:
@ref{C_SIZEOF}, @gol
@ref{SIZEOF}
@end table



@node SUM
@section @code{SUM} --- Sum of array elements
@fnindex SUM
@cindex array, sum
@cindex array, add elements
@cindex array, conditionally add elements
@cindex sum array elements

@table @asis
@item @emph{Description}:
Adds the elements of @var{ARRAY} along dimension @var{DIM} if
the corresponding element in @var{MASK} is @code{TRUE}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = SUM(ARRAY[, MASK])}
@item @code{RESULT = SUM(ARRAY, DIM[, MASK])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array of type @code{INTEGER}, 
@code{REAL} or @code{COMPLEX}.
@item @var{DIM}   @tab (Optional) shall be a scalar of type 
@code{INTEGER} with a value in the range from 1 to n, where n 
equals the rank of @var{ARRAY}.
@item @var{MASK}  @tab (Optional) shall be of type @code{LOGICAL} 
and either be a scalar or an array of the same shape as @var{ARRAY}.
@end multitable

@item @emph{Return value}:
The result is of the same type as @var{ARRAY}.

If @var{DIM} is absent, a scalar with the sum of all elements in @var{ARRAY}
is returned. Otherwise, an array of rank n-1, where n equals the rank of 
@var{ARRAY}, and a shape similar to that of @var{ARRAY} with dimension @var{DIM} 
dropped is returned.

@item @emph{Example}:
@smallexample
PROGRAM test_sum
  INTEGER :: x(5) = (/ 1, 2, 3, 4 ,5 /)
  print *, SUM(x)                        ! all elements, sum = 15
  print *, SUM(x, MASK=MOD(x, 2)==1)     ! odd elements, sum = 9
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{PRODUCT}
@end table



@node SYMLNK
@section @code{SYMLNK} --- Create a symbolic link
@fnindex SYMLNK
@cindex file system, create link
@cindex file system, soft link

@table @asis
@item @emph{Description}:
Makes a symbolic link from file @var{PATH1} to @var{PATH2}. A null
character (@code{CHAR(0)}) can be used to mark the end of the names in
@var{PATH1} and @var{PATH2}; otherwise, trailing blanks in the file
names are ignored.  If the @var{STATUS} argument is supplied, it
contains 0 on success or a nonzero error code upon return; see
@code{symlink(2)}.  If the system does not supply @code{symlink(2)}, 
@code{ENOSYS} is returned.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SYMLNK(PATH1, PATH2 [, STATUS])}
@item @code{STATUS = SYMLNK(PATH1, PATH2)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH1} @tab Shall be of default @code{CHARACTER} type.
@item @var{PATH2} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable

@item @emph{See also}:
@ref{LINK}, @gol
@ref{UNLINK}
@end table



@node SYSTEM
@section @code{SYSTEM} --- Execute a shell command
@fnindex SYSTEM
@cindex system, system call

@table @asis
@item @emph{Description}:
Passes the command @var{COMMAND} to a shell (see @code{system(3)}). If
argument @var{STATUS} is present, it contains the value returned by
@code{system(3)}, which is presumably 0 if the shell command succeeded.
Note that which shell is used to invoke the command is system-dependent
and environment-dependent.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.

Note that the @code{system} function need not be thread-safe. It is
the responsibility of the user to ensure that @code{system} is not
called concurrently.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL SYSTEM(COMMAND [, STATUS])}
@item @code{STATUS = SYSTEM(COMMAND)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{COMMAND} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS}  @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable

@item @emph{See also}:
@ref{EXECUTE_COMMAND_LINE}, which is part of the Fortran 2008 standard
and should considered in new code for future portability.
@end table



@node SYSTEM_CLOCK
@section @code{SYSTEM_CLOCK} --- Time function
@fnindex SYSTEM_CLOCK
@cindex time, clock ticks
@cindex clock ticks

@table @asis
@item @emph{Description}:
Determines the @var{COUNT} of a processor clock since an unspecified
time in the past modulo @var{COUNT_MAX}, @var{COUNT_RATE} determines
the number of clock ticks per second.  If the platform supports a
monotonic clock, that clock is used and can, depending on the platform
clock implementation, provide up to nanosecond resolution.  If a
monotonic clock is not available, the implementation falls back to a
realtime clock.

@var{COUNT_RATE} is system dependent and can vary depending on the kind of
the arguments. For @var{kind=4} arguments (and smaller integer kinds),
@var{COUNT} represents milliseconds, while for @var{kind=8} arguments (and
larger integer kinds), @var{COUNT} typically represents micro- or
nanoseconds depending on resolution of the underlying platform clock.
@var{COUNT_MAX} usually equals @code{HUGE(COUNT_MAX)}. Note that the
millisecond resolution of the @var{kind=4} version implies that the
@var{COUNT} will wrap around in roughly 25 days. In order to avoid issues
with the wrap around and for more precise timing, please use the
@var{kind=8} version.

If there is no clock, or querying the clock fails, @var{COUNT} is set
to @code{-HUGE(COUNT)}, and @var{COUNT_RATE} and @var{COUNT_MAX} are
set to zero.

When running on a platform using the GNU C library (glibc) version
2.16 or older, or a derivative thereof, the high resolution monotonic
clock is available only when linking with the @var{rt} library.  This
can be done explicitly by adding the @code{-lrt} flag when linking the
application, but is also done implicitly when using OpenMP.

On the Windows platform, the version with @var{kind=4} arguments uses
the @code{GetTickCount} function, whereas the @var{kind=8} version
uses @code{QueryPerformanceCounter} and
@code{QueryPerformanceCounterFrequency}. For more information, and
potential caveats, please see the platform documentation.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Subroutine

@item @emph{Syntax}:
@code{CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])}

@item @emph{Arguments}:
@multitable @columnfractions .20 .65
@item @var{COUNT}      @tab (Optional) shall be a scalar of type 
@code{INTEGER} with @code{INTENT(OUT)}.
@item @var{COUNT_RATE} @tab (Optional) shall be a scalar of type 
@code{INTEGER} or @code{REAL}, with @code{INTENT(OUT)}.
@item @var{COUNT_MAX}  @tab (Optional) shall be a scalar of type 
@code{INTEGER} with @code{INTENT(OUT)}.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_system_clock
  INTEGER :: count, count_rate, count_max
  CALL SYSTEM_CLOCK(count, count_rate, count_max)
  WRITE(*,*) count, count_rate, count_max
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{DATE_AND_TIME}, @gol
@ref{CPU_TIME}
@end table



@node TAN
@section @code{TAN} --- Tangent function
@fnindex TAN
@fnindex DTAN
@cindex trigonometric function, tangent
@cindex tangent

@table @asis
@item @emph{Description}:
@code{TAN(X)} computes the tangent of @var{X}.

@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = TAN(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}, and its value is in radians.

@item @emph{Example}:
@smallexample
program test_tan
  real(8) :: x = 0.165_8
  x = tan(x)
end program test_tan
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type     @tab Standard
@item @code{TAN(X)}   @tab @code{REAL(4) X}  @tab @code{REAL(4)}  @tab Fortran 77 and later
@item @code{DTAN(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}  @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{ATAN} @gol
Degrees function: @gol
@ref{TAND}
@end table



@node TAND
@section @code{TAND} --- Tangent function, degrees
@fnindex TAND
@fnindex DTAND
@cindex trigonometric function, tangent, degrees
@cindex tangent, degrees

@table @asis
@item @emph{Description}:
@code{TAND(X)} computes the tangent of @var{X} in degrees.

This function is for compatibility only and should be avoided in favor of
standard constructs wherever possible.

@item @emph{Standard}:
GNU extension, enabled with @option{-fdec-math}.

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = TAND(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}, and its value is in degrees.

@item @emph{Example}:
@smallexample
program test_tand
  real(8) :: x = 0.165_8
  x = tand(x)
end program test_tand
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type     @tab Standard
@item @code{TAND(X)}   @tab @code{REAL(4) X}  @tab @code{REAL(4)}  @tab GNU extension
@item @code{DTAND(X)}  @tab @code{REAL(8) X}  @tab @code{REAL(8)}  @tab GNU extension
@end multitable

@item @emph{See also}:
Inverse function: @gol
@ref{ATAND} @gol
Radians function: @gol
@ref{TAN}
@end table



@node TANH
@section @code{TANH} --- Hyperbolic tangent function 
@fnindex TANH
@fnindex DTANH
@cindex hyperbolic tangent
@cindex hyperbolic function, tangent
@cindex tangent, hyperbolic

@table @asis
@item @emph{Description}:
@code{TANH(X)} computes the hyperbolic tangent of @var{X}.

@item @emph{Standard}:
Fortran 77 and later, for a complex argument Fortran 2008 or later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{X = TANH(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable

@item @emph{Return value}:
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians. If @var{X}
is @code{REAL}, the return value lies in the range
@math{ - 1 \leq tanh(x) \leq 1 }.

@item @emph{Example}:
@smallexample
program test_tanh
  real(8) :: x = 2.1_8
  x = tanh(x)
end program test_tanh
@end smallexample

@item @emph{Specific names}:
@multitable @columnfractions .20 .20 .20 .25
@item Name            @tab Argument          @tab Return type       @tab Standard
@item @code{TANH(X)}  @tab @code{REAL(4) X}  @tab @code{REAL(4)}    @tab Fortran 77 and later
@item @code{DTANH(X)} @tab @code{REAL(8) X}  @tab @code{REAL(8)}    @tab Fortran 77 and later
@end multitable

@item @emph{See also}:
@ref{ATANH}
@end table



@node THIS_IMAGE
@section @code{THIS_IMAGE} --- Function that returns the cosubscript index of this image
@fnindex THIS_IMAGE
@cindex coarray, @code{THIS_IMAGE}
@cindex images, index of this image

@table @asis
@item @emph{Description}:
Returns the cosubscript for this image.

@item @emph{Standard}:
Fortran 2008 and later. With @var{DISTANCE} argument, 
Technical Specification (TS) 18508 or later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{RESULT = THIS_IMAGE()}
@item @code{RESULT = THIS_IMAGE(DISTANCE)}
@item @code{RESULT = THIS_IMAGE(COARRAY [, DIM])}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{DISTANCE} @tab (optional, intent(in)) Nonnegative scalar integer
(not permitted together with @var{COARRAY}).
@item @var{COARRAY} @tab Coarray of any type  (optional; if @var{DIM}
present, required).
@item @var{DIM}     @tab default integer scalar (optional). If present,
@var{DIM} shall be between one and the corank of @var{COARRAY}.
@end multitable


@item @emph{Return value}:
Default integer. If @var{COARRAY} is not present, it is scalar; if
@var{DISTANCE} is not present or has value 0, its value is the image index on
the invoking image for the current team, for values smaller or equal
distance to the initial team, it returns the image index on the ancestor team
which has a distance of @var{DISTANCE} from the invoking team. If
@var{DISTANCE} is larger than the distance to the initial team, the image
index of the initial team is returned. Otherwise when the @var{COARRAY} is
present, if @var{DIM} is not present, a rank-1 array with corank elements is
returned, containing the cosubscripts for @var{COARRAY} specifying the invoking
image. If @var{DIM} is present, a scalar is returned, with the value of
the @var{DIM} element of @code{THIS_IMAGE(COARRAY)}.

@item @emph{Example}:
@smallexample
INTEGER :: value[*]
INTEGER :: i
value = THIS_IMAGE()
SYNC ALL
IF (THIS_IMAGE() == 1) THEN
  DO i = 1, NUM_IMAGES()
    WRITE(*,'(2(a,i0))') 'value[', i, '] is ', value[i]
  END DO
END IF

! Check whether the current image is the initial image
IF (THIS_IMAGE(HUGE(1)) /= THIS_IMAGE())
  error stop "something is rotten here"
@end smallexample

@item @emph{See also}:
@ref{NUM_IMAGES}, @gol
@ref{IMAGE_INDEX}
@end table



@node TIME
@section @code{TIME} --- Time function
@fnindex TIME
@cindex time, current
@cindex current time

@table @asis
@item @emph{Description}:
Returns the current time encoded as an integer (in the manner of the
function @code{time(3)} in the C standard library). This value is
suitable for passing to @ref{CTIME}, @ref{GMTIME}, and @ref{LTIME}.

This intrinsic is not fully portable, such as to systems with 32-bit
@code{INTEGER} types but supporting times wider than 32 bits. Therefore,
the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the
compiled program.

See @ref{TIME8}, for information on a similar intrinsic that might be
portable to more GNU Fortran implementations, though to fewer Fortran
compilers.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = TIME()}

@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(4)}.

@item @emph{See also}:
@ref{DATE_AND_TIME}, @gol
@ref{CTIME}, @gol
@ref{GMTIME}, @gol
@ref{LTIME}, @gol
@ref{MCLOCK}, @gol
@ref{TIME8}
@end table



@node TIME8
@section @code{TIME8} --- Time function (64-bit)
@fnindex TIME8
@cindex time, current
@cindex current time

@table @asis
@item @emph{Description}:
Returns the current time encoded as an integer (in the manner of the
function @code{time(3)} in the C standard library). This value is
suitable for passing to @ref{CTIME}, @ref{GMTIME}, and @ref{LTIME}.

@emph{Warning:} this intrinsic does not increase the range of the timing
values over that returned by @code{time(3)}. On a system with a 32-bit
@code{time(3)}, @code{TIME8} will return a 32-bit value, even though
it is converted to a 64-bit @code{INTEGER(8)} value. That means
overflows of the 32-bit value can still occur. Therefore, the values
returned by this intrinsic might be or become negative or numerically
less than previous values during a single run of the compiled program.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = TIME8()}

@item @emph{Return value}:
The return value is a scalar of type @code{INTEGER(8)}.

@item @emph{See also}:
@ref{DATE_AND_TIME}, @gol
@ref{CTIME}, @gol
@ref{GMTIME}, @gol
@ref{LTIME}, @gol
@ref{MCLOCK8}, @gol
@ref{TIME}
@end table



@node TINY
@section @code{TINY} --- Smallest positive number of a real kind
@fnindex TINY
@cindex limits, smallest number
@cindex model representation, smallest number

@table @asis
@item @emph{Description}:
@code{TINY(X)} returns the smallest positive (non zero) number
in the model of the type of @code{X}.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = TINY(X)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab Shall be of type @code{REAL}.
@end multitable

@item @emph{Return value}:
The return value is of the same type and kind as @var{X}

@item @emph{Example}:
See @code{HUGE} for an example.
@end table



@node TRAILZ
@section @code{TRAILZ} --- Number of trailing zero bits of an integer
@fnindex TRAILZ
@cindex zero bits

@table @asis
@item @emph{Description}:
@code{TRAILZ} returns the number of trailing zero bits of an integer.

@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = TRAILZ(I)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab Shall be of type @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The type of the return value is the default @code{INTEGER}.
If all the bits of @code{I} are zero, the result value is @code{BIT_SIZE(I)}.

@item @emph{Example}:
@smallexample
PROGRAM test_trailz
  WRITE (*,*) TRAILZ(8)  ! prints 3
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{BIT_SIZE}, @gol
@ref{LEADZ}, @gol
@ref{POPPAR}, @gol
@ref{POPCNT}
@end table



@node TRANSFER
@section @code{TRANSFER} --- Transfer bit patterns
@fnindex TRANSFER
@cindex bits, move
@cindex type cast

@table @asis
@item @emph{Description}:
Interprets the bitwise representation of @var{SOURCE} in memory as if it
is the representation of a variable or array of the same type and type
parameters as @var{MOLD}.

This is approximately equivalent to the C concept of @emph{casting} one
type to another.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = TRANSFER(SOURCE, MOLD[, SIZE])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{SOURCE} @tab Shall be a scalar or an array of any type.
@item @var{MOLD}   @tab Shall be a scalar or an array of any type.
@item @var{SIZE}   @tab (Optional) shall be a scalar of type 
@code{INTEGER}.
@end multitable

@item @emph{Return value}:
The result has the same type as @var{MOLD}, with the bit level
representation of @var{SOURCE}.  If @var{SIZE} is present, the result is
a one-dimensional array of length @var{SIZE}.  If @var{SIZE} is absent
but @var{MOLD} is an array (of any size or shape), the result is a one-
dimensional array of the minimum length needed to contain the entirety
of the bitwise representation of @var{SOURCE}.   If @var{SIZE} is absent
and @var{MOLD} is a scalar, the result is a scalar.

If the bitwise representation of the result is longer than that of
@var{SOURCE}, then the leading bits of the result correspond to those of
@var{SOURCE} and any trailing bits are filled arbitrarily.

When the resulting bit representation does not correspond to a valid
representation of a variable of the same type as @var{MOLD}, the results
are undefined, and subsequent operations on the result cannot be
guaranteed to produce sensible behavior.  For example, it is possible to
create @code{LOGICAL} variables for which @code{@var{VAR}} and
@code{.NOT.@var{VAR}} both appear to be true.

@item @emph{Example}:
@smallexample
PROGRAM test_transfer
  integer :: x = 2143289344
  print *, transfer(x, 1.0)    ! prints "NaN" on i686
END PROGRAM
@end smallexample
@end table



@node TRANSPOSE
@section @code{TRANSPOSE} --- Transpose an array of rank two
@fnindex TRANSPOSE
@cindex array, transpose
@cindex matrix, transpose
@cindex transpose

@table @asis
@item @emph{Description}:
Transpose an array of rank two. Element (i, j) of the result has the value 
@code{MATRIX(j, i)}, for all i, j.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = TRANSPOSE(MATRIX)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MATRIX} @tab Shall be an array of any type and have a rank of two.
@end multitable

@item @emph{Return value}:
The result has the same type as @var{MATRIX}, and has shape 
@code{(/ m, n /)} if @var{MATRIX} has shape @code{(/ n, m /)}.
@end table



@node TRIM
@section @code{TRIM} --- Remove trailing blank characters of a string
@fnindex TRIM
@cindex string, remove trailing whitespace

@table @asis
@item @emph{Description}:
Removes trailing blank characters of a string.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = TRIM(STRING)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be a scalar of type @code{CHARACTER}.
@end multitable

@item @emph{Return value}:
A scalar of type @code{CHARACTER} which length is that of @var{STRING}
less the number of trailing blanks.

@item @emph{Example}:
@smallexample
PROGRAM test_trim
  CHARACTER(len=10), PARAMETER :: s = "GFORTRAN  "
  WRITE(*,*) LEN(s), LEN(TRIM(s))  ! "10 8", with/without trailing blanks
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{ADJUSTL}, @gol
@ref{ADJUSTR}
@end table



@node TTYNAM
@section @code{TTYNAM} --- Get the name of a terminal device.
@fnindex TTYNAM
@cindex system, terminal

@table @asis
@item @emph{Description}:
Get the name of a terminal device. For more information, 
see @code{ttyname(3)}.

This intrinsic is provided in both subroutine and function forms; 
however, only one form can be used in any given program unit. 

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL TTYNAM(UNIT, NAME)}
@item @code{NAME = TTYNAM(UNIT)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{UNIT} @tab Shall be a scalar @code{INTEGER}.
@item @var{NAME} @tab Shall be of type @code{CHARACTER}.
@end multitable

@item @emph{Example}:
@smallexample
PROGRAM test_ttynam
  INTEGER :: unit
  DO unit = 1, 10
    IF (isatty(unit=unit)) write(*,*) ttynam(unit)
  END DO
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{ISATTY}
@end table



@node UBOUND
@section @code{UBOUND} --- Upper dimension bounds of an array
@fnindex UBOUND
@cindex array, upper bound

@table @asis
@item @emph{Description}:
Returns the upper bounds of an array, or a single upper bound
along the @var{DIM} dimension.
@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = UBOUND(ARRAY [, DIM [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an array, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND}@tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the upper bounds of
@var{ARRAY}.  If @var{DIM} is present, the result is a scalar
corresponding to the upper bound of the array along that dimension.  If
@var{ARRAY} is an expression rather than a whole array or array
structure component, or if it has a zero extent along the relevant
dimension, the upper bound is taken to be the number of elements along
the relevant dimension.

@item @emph{See also}:
@ref{LBOUND}, @gol
@ref{LCOBOUND}
@end table



@node UCOBOUND
@section @code{UCOBOUND} --- Upper codimension bounds of an array
@fnindex UCOBOUND
@cindex coarray, upper bound

@table @asis
@item @emph{Description}:
Returns the upper cobounds of a coarray, or a single upper cobound
along the @var{DIM} codimension.
@item @emph{Standard}:
Fortran 2008 and later

@item @emph{Class}:
Inquiry function

@item @emph{Syntax}:
@code{RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{ARRAY} @tab Shall be an coarray, of any type.
@item @var{DIM} @tab (Optional) Shall be a scalar @code{INTEGER}.
@item @var{KIND} @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.
If @var{DIM} is absent, the result is an array of the lower cobounds of
@var{COARRAY}.  If @var{DIM} is present, the result is a scalar
corresponding to the lower cobound of the array along that codimension.

@item @emph{See also}:
@ref{LCOBOUND}, @gol
@ref{LBOUND}
@end table



@node UMASK
@section @code{UMASK} --- Set the file creation mask
@fnindex UMASK
@cindex file system, file creation mask

@table @asis
@item @emph{Description}:
Sets the file creation mask to @var{MASK}. If called as a function, it
returns the old value. If called as a subroutine and argument @var{OLD}
if it is supplied, it is set to the old value. See @code{umask(2)}.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL UMASK(MASK [, OLD])}
@item @code{OLD = UMASK(MASK)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{MASK} @tab Shall be a scalar of type @code{INTEGER}.
@item @var{OLD} @tab (Optional) Shall be a scalar of type
@code{INTEGER}.
@end multitable

@end table



@node UNLINK
@section @code{UNLINK} --- Remove a file from the file system
@fnindex UNLINK
@cindex file system, remove file

@table @asis
@item @emph{Description}:
Unlinks the file @var{PATH}. A null character (@code{CHAR(0)}) can be
used to mark the end of the name in @var{PATH}; otherwise, trailing
blanks in the file name are ignored.  If the @var{STATUS} argument is
supplied, it contains 0 on success or a nonzero error code upon return;
see @code{unlink(2)}.

This intrinsic is provided in both subroutine and function forms;
however, only one form can be used in any given program unit.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Subroutine, function

@item @emph{Syntax}:
@multitable @columnfractions .80
@item @code{CALL UNLINK(PATH [, STATUS])}
@item @code{STATUS = UNLINK(PATH)}
@end multitable

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{PATH} @tab Shall be of default @code{CHARACTER} type.
@item @var{STATUS} @tab (Optional) Shall be of default @code{INTEGER} type.
@end multitable

@item @emph{See also}:
@ref{LINK}, @gol
@ref{SYMLNK}
@end table



@node UNPACK
@section @code{UNPACK} --- Unpack an array of rank one into an array
@fnindex UNPACK
@cindex array, unpacking
@cindex array, increase dimension
@cindex array, scatter elements

@table @asis
@item @emph{Description}:
Store the elements of @var{VECTOR} in an array of higher rank.

@item @emph{Standard}:
Fortran 90 and later

@item @emph{Class}:
Transformational function

@item @emph{Syntax}:
@code{RESULT = UNPACK(VECTOR, MASK, FIELD)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{VECTOR} @tab Shall be an array of any type and rank one. It 
shall have at least as many elements as @var{MASK} has @code{TRUE} values.
@item @var{MASK}   @tab Shall be an array of type @code{LOGICAL}.
@item @var{FIELD}  @tab Shall be of the same type as @var{VECTOR} and have
the same shape as @var{MASK}.
@end multitable

@item @emph{Return value}:
The resulting array corresponds to @var{FIELD} with @code{TRUE} elements
of @var{MASK} replaced by values from @var{VECTOR} in array element order.

@item @emph{Example}:
@smallexample
PROGRAM test_unpack
  integer :: vector(2)  = (/1,1/)
  logical :: mask(4)  = (/ .TRUE., .FALSE., .FALSE., .TRUE. /)
  integer :: field(2,2) = 0, unity(2,2)

  ! result: unity matrix
  unity = unpack(vector, reshape(mask, (/2,2/)), field)
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{PACK}, @gol
@ref{SPREAD}
@end table



@node VERIFY
@section @code{VERIFY} --- Scan a string for characters not a given set
@fnindex VERIFY
@cindex string, find missing set

@table @asis
@item @emph{Description}:
Verifies that all the characters in @var{STRING} belong to the set of
characters in @var{SET}.

If @var{BACK} is either absent or equals @code{FALSE}, this function
returns the position of the leftmost character of @var{STRING} that is
not in @var{SET}. If @var{BACK} equals @code{TRUE}, the rightmost
position is returned. If all characters of @var{STRING} are found in
@var{SET}, the result is zero.

@item @emph{Standard}:
Fortran 90 and later, with @var{KIND} argument Fortran 2003 and later

@item @emph{Class}:
Elemental function

@item @emph{Syntax}:
@code{RESULT = VERIFY(STRING, SET[, BACK [, KIND]])}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{STRING} @tab Shall be of type @code{CHARACTER}.
@item @var{SET}    @tab Shall be of type @code{CHARACTER}.
@item @var{BACK}   @tab (Optional) shall be of type @code{LOGICAL}.
@item @var{KIND}   @tab (Optional) An @code{INTEGER} initialization
expression indicating the kind parameter of the result.
@end multitable

@item @emph{Return value}:
The return value is of type @code{INTEGER} and of kind @var{KIND}. If
@var{KIND} is absent, the return value is of default integer kind.

@item @emph{Example}:
@smallexample
PROGRAM test_verify
  WRITE(*,*) VERIFY("FORTRAN", "AO")           ! 1, found 'F'
  WRITE(*,*) VERIFY("FORTRAN", "FOO")          ! 3, found 'R'
  WRITE(*,*) VERIFY("FORTRAN", "C++")          ! 1, found 'F'
  WRITE(*,*) VERIFY("FORTRAN", "C++", .TRUE.)  ! 7, found 'N'
  WRITE(*,*) VERIFY("FORTRAN", "FORTRAN")      ! 0' found none
END PROGRAM
@end smallexample

@item @emph{See also}:
@ref{SCAN}, @gol
@ref{INDEX intrinsic}
@end table



@node XOR
@section @code{XOR} --- Bitwise logical exclusive OR
@fnindex XOR
@cindex bitwise logical exclusive or
@cindex logical exclusive or, bitwise

@table @asis
@item @emph{Description}:
Bitwise logical exclusive or. 

This intrinsic routine is provided for backwards compatibility with 
GNU Fortran 77.  For integer arguments, programmers should consider
the use of the @ref{IEOR} intrinsic and for logical arguments the
@code{.NEQV.} operator, which are both defined by the Fortran standard.

@item @emph{Standard}:
GNU extension

@item @emph{Class}:
Function

@item @emph{Syntax}:
@code{RESULT = XOR(I, J)}

@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{I} @tab The type shall be either a scalar @code{INTEGER}
type or a scalar @code{LOGICAL} type or a boz-literal-constant.
@item @var{J} @tab The type shall be the same as the type of @var{I} or
a boz-literal-constant. @var{I} and @var{J} shall not both be
boz-literal-constants.  If either @var{I} and @var{J} is a
boz-literal-constant, then the other argument must be a scalar @code{INTEGER}.
@end multitable

@item @emph{Return value}:
The return type is either a scalar @code{INTEGER} or a scalar
@code{LOGICAL}.  If the kind type parameters differ, then the
smaller kind type is implicitly converted to larger kind, and the 
return has the larger kind.  A boz-literal-constant is 
converted to an @code{INTEGER} with the kind type parameter of
the other argument as-if a call to @ref{INT} occurred.

@item @emph{Example}:
@smallexample
PROGRAM test_xor
  LOGICAL :: T = .TRUE., F = .FALSE.
  INTEGER :: a, b
  DATA a / Z'F' /, b / Z'3' /

  WRITE (*,*) XOR(T, T), XOR(T, F), XOR(F, T), XOR(F, F)
  WRITE (*,*) XOR(a, b)
END PROGRAM
@end smallexample

@item @emph{See also}:
Fortran 95 elemental function: @gol
@ref{IEOR}
@end table



@node Intrinsic Modules
@chapter Intrinsic Modules
@cindex intrinsic Modules

@menu
* ISO_FORTRAN_ENV::
* ISO_C_BINDING::
* IEEE modules::
* OpenMP Modules OMP_LIB and OMP_LIB_KINDS::
* OpenACC Module OPENACC::
@end menu

@node ISO_FORTRAN_ENV
@section @code{ISO_FORTRAN_ENV}
@table @asis
@item @emph{Standard}:
Fortran 2003 and later, except when otherwise noted
@end table

The @code{ISO_FORTRAN_ENV} module provides the following scalar default-integer
named constants:

@table @asis
@item @code{ATOMIC_INT_KIND}:
Default-kind integer constant to be used as kind parameter when defining
integer variables used in atomic operations. (Fortran 2008 or later.)

@item @code{ATOMIC_LOGICAL_KIND}:
Default-kind integer constant to be used as kind parameter when defining
logical variables used in atomic operations. (Fortran 2008 or later.)

@item @code{CHARACTER_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{CHARACTER} type. (Fortran 2008 or later.)

@item @code{CHARACTER_STORAGE_SIZE}:
Size in bits of the character storage unit.

@item @code{ERROR_UNIT}:
Identifies the preconnected unit used for error reporting.

@item @code{FILE_STORAGE_SIZE}:
Size in bits of the file-storage unit.

@item @code{INPUT_UNIT}:
Identifies the preconnected unit identified by the asterisk
(@code{*}) in @code{READ} statement.

@item @code{INT8}, @code{INT16}, @code{INT32}, @code{INT64}:
Kind type parameters to specify an INTEGER type with a storage
size of 16, 32, and 64 bits. It is negative if a target platform
does not support the particular kind. (Fortran 2008 or later.)

@item @code{INTEGER_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{INTEGER} type. (Fortran 2008 or later.)

@item @code{IOSTAT_END}:
The value assigned to the variable passed to the @code{IOSTAT=} specifier of
an input/output statement if an end-of-file condition occurred.

@item @code{IOSTAT_EOR}:
The value assigned to the variable passed to the @code{IOSTAT=} specifier of
an input/output statement if an end-of-record condition occurred.

@item @code{IOSTAT_INQUIRE_INTERNAL_UNIT}:
Scalar default-integer constant, used by @code{INQUIRE} for the
@code{IOSTAT=} specifier to denote an that a unit number identifies an
internal unit. (Fortran 2008 or later.)

@item @code{NUMERIC_STORAGE_SIZE}:
The size in bits of the numeric storage unit.

@item @code{LOGICAL_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{LOGICAL} type. (Fortran 2008 or later.)

@item @code{OUTPUT_UNIT}:
Identifies the preconnected unit identified by the asterisk
(@code{*}) in @code{WRITE} statement.

@item @code{REAL32}, @code{REAL64}, @code{REAL128}:
Kind type parameters to specify a REAL type with a storage
size of 32, 64, and 128 bits. It is negative if a target platform
does not support the particular kind. (Fortran 2008 or later.)

@item @code{REAL_KINDS}:
Default-kind integer constant array of rank one containing the supported kind
parameters of the @code{REAL} type. (Fortran 2008 or later.)

@item @code{STAT_LOCKED}:
Scalar default-integer constant used as STAT= return value by @code{LOCK} to
denote that the lock variable is locked by the executing image. (Fortran 2008
or later.)

@item @code{STAT_LOCKED_OTHER_IMAGE}:
Scalar default-integer constant used as STAT= return value by @code{UNLOCK} to
denote that the lock variable is locked by another image. (Fortran 2008 or
later.)

@item @code{STAT_STOPPED_IMAGE}:
Positive, scalar default-integer constant used as STAT= return value if the
argument in the statement requires synchronisation with an image, which has
initiated the termination of the execution. (Fortran 2008 or later.)

@item @code{STAT_FAILED_IMAGE}:
Positive, scalar default-integer constant used as STAT= return value if the
argument in the statement requires communication with an image, which has
is in the failed state. (TS 18508 or later.)

@item @code{STAT_UNLOCKED}:
Scalar default-integer constant used as STAT= return value by @code{UNLOCK} to
denote that the lock variable is unlocked. (Fortran 2008 or later.)
@end table

The module provides the following derived type:

@table @asis
@item @code{LOCK_TYPE}:
Derived type with private components to be use with the @code{LOCK} and
@code{UNLOCK} statement. A variable of its type has to be always declared
as coarray and may not appear in a variable-definition context.
(Fortran 2008 or later.)
@end table

The module also provides the following intrinsic procedures:
@ref{COMPILER_OPTIONS} and @ref{COMPILER_VERSION}.



@node ISO_C_BINDING
@section @code{ISO_C_BINDING}
@table @asis
@item @emph{Standard}:
Fortran 2003 and later, GNU extensions
@end table

The following intrinsic procedures are provided by the module; their
definition can be found in the section Intrinsic Procedures of this
manual.

@table @asis
@item @code{C_ASSOCIATED}
@item @code{C_F_POINTER}
@item @code{C_F_PROCPOINTER}
@item @code{C_FUNLOC}
@item @code{C_LOC}
@item @code{C_SIZEOF}
@end table
@c TODO: Vertical spacing between C_FUNLOC and C_LOC wrong in PDF,
@c don't really know why.

The @code{ISO_C_BINDING} module provides the following named constants of
type default integer, which can be used as KIND type parameters.

In addition to the integer named constants required by the Fortran 2003 
standard and @code{C_PTRDIFF_T} of TS 29113, GNU Fortran provides as an
extension named constants for the 128-bit integer types supported by the
C compiler: @code{C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T}.
Furthermore, if @code{__float128} is supported in C, the named constants
@code{C_FLOAT128, C_FLOAT128_COMPLEX} are defined.

@multitable @columnfractions .15 .35 .35 .35
@item Fortran Type  @tab Named constant         @tab C type                                @tab Extension
@item @code{INTEGER}@tab @code{C_INT}           @tab @code{int}
@item @code{INTEGER}@tab @code{C_SHORT}         @tab @code{short int}
@item @code{INTEGER}@tab @code{C_LONG}          @tab @code{long int}
@item @code{INTEGER}@tab @code{C_LONG_LONG}     @tab @code{long long int}
@item @code{INTEGER}@tab @code{C_SIGNED_CHAR}   @tab @code{signed char}/@code{unsigned char}
@item @code{INTEGER}@tab @code{C_SIZE_T}        @tab @code{size_t}
@item @code{INTEGER}@tab @code{C_INT8_T}        @tab @code{int8_t}
@item @code{INTEGER}@tab @code{C_INT16_T}       @tab @code{int16_t}
@item @code{INTEGER}@tab @code{C_INT32_T}       @tab @code{int32_t}
@item @code{INTEGER}@tab @code{C_INT64_T}       @tab @code{int64_t}
@item @code{INTEGER}@tab @code{C_INT128_T}      @tab @code{int128_t}                      @tab Ext.
@item @code{INTEGER}@tab @code{C_INT_LEAST8_T}  @tab @code{int_least8_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST16_T} @tab @code{int_least16_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST32_T} @tab @code{int_least32_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST64_T} @tab @code{int_least64_t}
@item @code{INTEGER}@tab @code{C_INT_LEAST128_T}@tab @code{int_least128_t}                @tab Ext.
@item @code{INTEGER}@tab @code{C_INT_FAST8_T}   @tab @code{int_fast8_t}
@item @code{INTEGER}@tab @code{C_INT_FAST16_T}  @tab @code{int_fast16_t}
@item @code{INTEGER}@tab @code{C_INT_FAST32_T}  @tab @code{int_fast32_t}
@item @code{INTEGER}@tab @code{C_INT_FAST64_T}  @tab @code{int_fast64_t}
@item @code{INTEGER}@tab @code{C_INT_FAST128_T} @tab @code{int_fast128_t}                 @tab Ext.
@item @code{INTEGER}@tab @code{C_INTMAX_T}      @tab @code{intmax_t}
@item @code{INTEGER}@tab @code{C_INTPTR_T}      @tab @code{intptr_t}
@item @code{INTEGER}@tab @code{C_PTRDIFF_T}     @tab @code{ptrdiff_t}                     @tab TS 29113
@item @code{REAL}   @tab @code{C_FLOAT}         @tab @code{float}
@item @code{REAL}   @tab @code{C_DOUBLE}        @tab @code{double}
@item @code{REAL}   @tab @code{C_LONG_DOUBLE}   @tab @code{long double}
@item @code{REAL}   @tab @code{C_FLOAT128}      @tab @code{__float128}                    @tab Ext.
@item @code{COMPLEX}@tab @code{C_FLOAT_COMPLEX} @tab @code{float _Complex}
@item @code{COMPLEX}@tab @code{C_DOUBLE_COMPLEX}@tab @code{double _Complex}
@item @code{COMPLEX}@tab @code{C_LONG_DOUBLE_COMPLEX}@tab @code{long double _Complex}
@item @code{REAL}   @tab @code{C_FLOAT128_COMPLEX}   @tab @code{__float128 _Complex}      @tab Ext.
@item @code{LOGICAL}@tab @code{C_BOOL}          @tab @code{_Bool}
@item @code{CHARACTER}@tab @code{C_CHAR}        @tab @code{char}
@end multitable

Additionally, the following parameters of type @code{CHARACTER(KIND=C_CHAR)}
are defined.

@multitable @columnfractions .20 .45 .15
@item Name                     @tab C definition    @tab Value
@item @code{C_NULL_CHAR}       @tab null character  @tab @code{'\0'}
@item @code{C_ALERT}           @tab alert           @tab @code{'\a'}
@item @code{C_BACKSPACE}       @tab backspace       @tab @code{'\b'}
@item @code{C_FORM_FEED}       @tab form feed       @tab @code{'\f'}
@item @code{C_NEW_LINE}        @tab new line        @tab @code{'\n'}
@item @code{C_CARRIAGE_RETURN} @tab carriage return @tab @code{'\r'}
@item @code{C_HORIZONTAL_TAB}  @tab horizontal tab  @tab @code{'\t'}
@item @code{C_VERTICAL_TAB}    @tab vertical tab    @tab @code{'\v'}
@end multitable

Moreover, the following two named constants are defined:

@multitable @columnfractions .20 .80
@item Name                 @tab Type
@item @code{C_NULL_PTR}    @tab @code{C_PTR}
@item @code{C_NULL_FUNPTR} @tab @code{C_FUNPTR}
@end multitable

Both are equivalent to the value @code{NULL} in C.



@node IEEE modules
@section IEEE modules: @code{IEEE_EXCEPTIONS}, @code{IEEE_ARITHMETIC}, and @code{IEEE_FEATURES}
@table @asis
@item @emph{Standard}:
Fortran 2003 and later
@end table

The @code{IEEE_EXCEPTIONS}, @code{IEEE_ARITHMETIC}, and @code{IEEE_FEATURES}
intrinsic modules provide support for exceptions and IEEE arithmetic, as
defined in Fortran 2003 and later standards, and the IEC 60559:1989 standard
(@emph{Binary floating-point arithmetic for microprocessor systems}). These
modules are only provided on the following supported platforms:

@itemize @bullet
@item i386 and x86_64 processors
@item platforms which use the GNU C Library (glibc)
@item platforms with support for SysV/386 routines for floating point
interface (including Solaris and BSDs)
@item platforms with the AIX OS
@end itemize

For full compliance with the Fortran standards, code using the
@code{IEEE_EXCEPTIONS} or @code{IEEE_ARITHMETIC} modules should be compiled
with the following options: @code{-fno-unsafe-math-optimizations
-frounding-math -fsignaling-nans}.



@node OpenMP Modules OMP_LIB and OMP_LIB_KINDS
@section OpenMP Modules @code{OMP_LIB} and @code{OMP_LIB_KINDS}
@table @asis
@item @emph{Standard}:
OpenMP Application Program Interface v4.5
@end table


The OpenMP Fortran runtime library routines are provided both in
a form of two Fortran 90 modules, named @code{OMP_LIB} and 
@code{OMP_LIB_KINDS}, and in a form of a Fortran @code{include} file named
@file{omp_lib.h}. The procedures provided by @code{OMP_LIB} can be found
in the @ref{Top,,Introduction,libgomp,GNU Offloading and Multi
Processing Runtime Library} manual,
the named constants defined in the modules are listed
below.

For details refer to the actual
@uref{http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf,
OpenMP Application Program Interface v4.5}.
And for the @code{pause}-related constants to the OpenMP 5.0 specification.

@code{OMP_LIB_KINDS} provides the following scalar default-integer
named constants:

@table @asis
@item @code{omp_lock_kind}
@item @code{omp_lock_hint_kind}
@item @code{omp_nest_lock_kind}
@item @code{omp_pause_resource_kind}
@item @code{omp_proc_bind_kind}
@item @code{omp_sched_kind}
@end table

@code{OMP_LIB} provides the scalar default-integer
named constant @code{openmp_version} with a value of the form
@var{yyyymm}, where @code{yyyy} is the year and @var{mm} the month
of the OpenMP version; for OpenMP v4.5 the value is @code{201511}.

The following scalar integer named constants of the
kind @code{omp_sched_kind}:

@table @asis
@item @code{omp_sched_static}
@item @code{omp_sched_dynamic}
@item @code{omp_sched_guided}
@item @code{omp_sched_auto}
@end table

And the following scalar integer named constants of the 
kind @code{omp_proc_bind_kind}:

@table @asis
@item @code{omp_proc_bind_false}
@item @code{omp_proc_bind_true}
@item @code{omp_proc_bind_master}
@item @code{omp_proc_bind_close}
@item @code{omp_proc_bind_spread}
@end table

The following scalar integer named constants are of the
kind @code{omp_lock_hint_kind}:

@table @asis
@item @code{omp_lock_hint_none}
@item @code{omp_lock_hint_uncontended}
@item @code{omp_lock_hint_contended}
@item @code{omp_lock_hint_nonspeculative}
@item @code{omp_lock_hint_speculative}
@end table

And the following two scalar integer named constants are of the
kind @code{omp_pause_resource_kind}:

@table @asis
@item @code{omp_pause_soft}
@item @code{omp_pause_hard}
@end table


@node OpenACC Module OPENACC
@section OpenACC Module @code{OPENACC}
@table @asis
@item @emph{Standard}:
OpenACC Application Programming Interface v2.6
@end table


The OpenACC Fortran runtime library routines are provided both in a
form of a Fortran 90 module, named @code{OPENACC}, and in form of a
Fortran @code{include} file named @file{openacc_lib.h}.  The
procedures provided by @code{OPENACC} can be found in the
@ref{Top,,Introduction,libgomp,GNU Offloading and Multi Processing
Runtime Library} manual, the named constants defined in the modules
are listed below.

For details refer to the actual
@uref{http://www.openacc.org/,
OpenACC Application Programming Interface v2.6}.

@code{OPENACC} provides the scalar default-integer
named constant @code{openacc_version} with a value of the form
@var{yyyymm}, where @code{yyyy} is the year and @var{mm} the month
of the OpenACC version; for OpenACC v2.6 the value is @code{201711}.