Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/* Simple garbage collection for the GNU compiler.
   Copyright (C) 1999-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Generic garbage collection (GC) functions and data, not specific to
   any particular GC implementation.  */

#include "config.h"
#define INCLUDE_MALLOC_H
#include "system.h"
#include "coretypes.h"
#include "timevar.h"
#include "diagnostic-core.h"
#include "ggc-internal.h"
#include "hosthooks.h"
#include "plugin.h"
#include "options.h"

/* When set, ggc_collect will do collection.  */
bool ggc_force_collect;

/* When true, protect the contents of the identifier hash table.  */
bool ggc_protect_identifiers = true;

/* Statistics about the allocation.  */
static ggc_statistics *ggc_stats;

struct traversal_state;

static int compare_ptr_data (const void *, const void *);
static void relocate_ptrs (void *, void *);
static void write_pch_globals (const struct ggc_root_tab * const *tab,
			       struct traversal_state *state);

/* Maintain global roots that are preserved during GC.  */

/* This extra vector of dynamically registered root_tab-s is used by
   ggc_mark_roots and gives the ability to dynamically add new GGC root
   tables, for instance from some plugins; this vector is on the heap
   since it is used by GGC internally.  */
typedef const struct ggc_root_tab *const_ggc_root_tab_t;
static vec<const_ggc_root_tab_t> extra_root_vec;

/* Dynamically register a new GGC root table RT. This is useful for
   plugins. */

void
ggc_register_root_tab (const struct ggc_root_tab* rt)
{
  if (rt)
    extra_root_vec.safe_push (rt);
}

/* Mark all the roots in the table RT.  */

static void
ggc_mark_root_tab (const_ggc_root_tab_t rt)
{
  size_t i;

  for ( ; rt->base != NULL; rt++)
    for (i = 0; i < rt->nelt; i++)
      (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
}

/* Iterate through all registered roots and mark each element.  */

void
ggc_mark_roots (void)
{
  const struct ggc_root_tab *const *rt;
  const_ggc_root_tab_t rtp, rti;
  size_t i;

  for (rt = gt_ggc_deletable_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      memset (rti->base, 0, rti->stride);

  for (rt = gt_ggc_rtab; *rt; rt++)
    ggc_mark_root_tab (*rt);

  FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
    ggc_mark_root_tab (rtp);

  if (ggc_protect_identifiers)
    ggc_mark_stringpool ();

  gt_clear_caches ();

  if (! ggc_protect_identifiers)
    ggc_purge_stringpool ();

  /* Some plugins may call ggc_set_mark from here.  */
  invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
}

/* Allocate a block of memory, then clear it.  */
void *
ggc_internal_cleared_alloc (size_t size, void (*f)(void *), size_t s, size_t n
			    MEM_STAT_DECL)
{
  void *buf = ggc_internal_alloc (size, f, s, n PASS_MEM_STAT);
  memset (buf, 0, size);
  return buf;
}

/* Resize a block of memory, possibly re-allocating it.  */
void *
ggc_realloc (void *x, size_t size MEM_STAT_DECL)
{
  void *r;
  size_t old_size;

  if (x == NULL)
    return ggc_internal_alloc (size PASS_MEM_STAT);

  old_size = ggc_get_size (x);

  if (size <= old_size)
    {
      /* Mark the unwanted memory as unaccessible.  We also need to make
	 the "new" size accessible, since ggc_get_size returns the size of
	 the pool, not the size of the individually allocated object, the
	 size which was previously made accessible.  Unfortunately, we
	 don't know that previously allocated size.  Without that
	 knowledge we have to lose some initialization-tracking for the
	 old parts of the object.  An alternative is to mark the whole
	 old_size as reachable, but that would lose tracking of writes
	 after the end of the object (by small offsets).  Discard the
	 handle to avoid handle leak.  */
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
						    old_size - size));
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
      return x;
    }

  r = ggc_internal_alloc (size PASS_MEM_STAT);

  /* Since ggc_get_size returns the size of the pool, not the size of the
     individually allocated object, we'd access parts of the old object
     that were marked invalid with the memcpy below.  We lose a bit of the
     initialization-tracking since some of it may be uninitialized.  */
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));

  memcpy (r, x, old_size);

  /* The old object is not supposed to be used anymore.  */
  ggc_free (x);

  return r;
}

void *
ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
				    size_t n ATTRIBUTE_UNUSED)
{
  gcc_assert (c * n == sizeof (struct htab));
  return ggc_cleared_alloc<htab> ();
}

/* TODO: once we actually use type information in GGC, create a new tag
   gt_gcc_ptr_array and use it for pointer arrays.  */
void *
ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
{
  gcc_assert (sizeof (PTR *) == n);
  return ggc_cleared_vec_alloc<PTR *> (c);
}

/* These are for splay_tree_new_ggc.  */
void *
ggc_splay_alloc (int sz, void *nl)
{
  gcc_assert (!nl);
  return ggc_internal_alloc (sz);
}

void
ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
{
  gcc_assert (!nl);
}

void
ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
			     ggc_statistics *stats)
{
  /* Set the pointer so that during collection we will actually gather
     the statistics.  */
  ggc_stats = stats;

  /* Then do one collection to fill in the statistics.  */
  ggc_collect ();

  /* At present, we don't really gather any interesting statistics.  */

  /* Don't gather statistics any more.  */
  ggc_stats = NULL;
}

/* Functions for saving and restoring GCable memory to disk.  */

struct ptr_data
{
  void *obj;
  void *note_ptr_cookie;
  gt_note_pointers note_ptr_fn;
  gt_handle_reorder reorder_fn;
  size_t size;
  void *new_addr;
};

#define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)

/* Helper for hashing saving_htab.  */

struct saving_hasher : free_ptr_hash <ptr_data>
{
  typedef void *compare_type;
  static inline hashval_t hash (const ptr_data *);
  static inline bool equal (const ptr_data *, const void *);
};

inline hashval_t
saving_hasher::hash (const ptr_data *p)
{
  return POINTER_HASH (p->obj);
}

inline bool
saving_hasher::equal (const ptr_data *p1, const void *p2)
{
  return p1->obj == p2;
}

static hash_table<saving_hasher> *saving_htab;

/* Register an object in the hash table.  */

int
gt_pch_note_object (void *obj, void *note_ptr_cookie,
		    gt_note_pointers note_ptr_fn)
{
  struct ptr_data **slot;

  if (obj == NULL || obj == (void *) 1)
    return 0;

  slot = (struct ptr_data **)
    saving_htab->find_slot_with_hash (obj, POINTER_HASH (obj), INSERT);
  if (*slot != NULL)
    {
      gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
		  && (*slot)->note_ptr_cookie == note_ptr_cookie);
      return 0;
    }

  *slot = XCNEW (struct ptr_data);
  (*slot)->obj = obj;
  (*slot)->note_ptr_fn = note_ptr_fn;
  (*slot)->note_ptr_cookie = note_ptr_cookie;
  if (note_ptr_fn == gt_pch_p_S)
    (*slot)->size = strlen ((const char *)obj) + 1;
  else
    (*slot)->size = ggc_get_size (obj);
  return 1;
}

/* Register an object in the hash table.  */

void
gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
		     gt_handle_reorder reorder_fn)
{
  struct ptr_data *data;

  if (obj == NULL || obj == (void *) 1)
    return;

  data = (struct ptr_data *)
    saving_htab->find_with_hash (obj, POINTER_HASH (obj));
  gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);

  data->reorder_fn = reorder_fn;
}

/* Handy state for the traversal functions.  */

struct traversal_state
{
  FILE *f;
  struct ggc_pch_data *d;
  size_t count;
  struct ptr_data **ptrs;
  size_t ptrs_i;
};

/* Callbacks for htab_traverse.  */

int
ggc_call_count (ptr_data **slot, traversal_state *state)
{
  struct ptr_data *d = *slot;

  ggc_pch_count_object (state->d, d->obj, d->size,
			d->note_ptr_fn == gt_pch_p_S);
  state->count++;
  return 1;
}

int
ggc_call_alloc (ptr_data **slot, traversal_state *state)
{
  struct ptr_data *d = *slot;

  d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
				      d->note_ptr_fn == gt_pch_p_S);
  state->ptrs[state->ptrs_i++] = d;
  return 1;
}

/* Callback for qsort.  */

static int
compare_ptr_data (const void *p1_p, const void *p2_p)
{
  const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
  const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
  return (((size_t)p1->new_addr > (size_t)p2->new_addr)
	  - ((size_t)p1->new_addr < (size_t)p2->new_addr));
}

/* Callbacks for note_ptr_fn.  */

static void
relocate_ptrs (void *ptr_p, void *state_p)
{
  void **ptr = (void **)ptr_p;
  struct traversal_state *state ATTRIBUTE_UNUSED
    = (struct traversal_state *)state_p;
  struct ptr_data *result;

  if (*ptr == NULL || *ptr == (void *)1)
    return;

  result = (struct ptr_data *)
    saving_htab->find_with_hash (*ptr, POINTER_HASH (*ptr));
  gcc_assert (result);
  *ptr = result->new_addr;
}

/* Write out, after relocation, the pointers in TAB.  */
static void
write_pch_globals (const struct ggc_root_tab * const *tab,
		   struct traversal_state *state)
{
  const struct ggc_root_tab *const *rt;
  const struct ggc_root_tab *rti;
  size_t i;

  for (rt = tab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      for (i = 0; i < rti->nelt; i++)
	{
	  void *ptr = *(void **)((char *)rti->base + rti->stride * i);
	  struct ptr_data *new_ptr;
	  if (ptr == NULL || ptr == (void *)1)
	    {
	      if (fwrite (&ptr, sizeof (void *), 1, state->f)
		  != 1)
		fatal_error (input_location, "cannot write PCH file: %m");
	    }
	  else
	    {
	      new_ptr = (struct ptr_data *)
		saving_htab->find_with_hash (ptr, POINTER_HASH (ptr));
	      if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
		  != 1)
		fatal_error (input_location, "cannot write PCH file: %m");
	    }
	}
}

/* Hold the information we need to mmap the file back in.  */

struct mmap_info
{
  size_t offset;
  size_t size;
  void *preferred_base;
};

/* Write out the state of the compiler to F.  */

void
gt_pch_save (FILE *f)
{
  const struct ggc_root_tab *const *rt;
  const struct ggc_root_tab *rti;
  size_t i;
  struct traversal_state state;
  char *this_object = NULL;
  size_t this_object_size = 0;
  struct mmap_info mmi;
  const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity ();

  gt_pch_save_stringpool ();

  timevar_push (TV_PCH_PTR_REALLOC);
  saving_htab = new hash_table<saving_hasher> (50000);

  for (rt = gt_ggc_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      for (i = 0; i < rti->nelt; i++)
	(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));

  /* Prepare the objects for writing, determine addresses and such.  */
  state.f = f;
  state.d = init_ggc_pch ();
  state.count = 0;
  saving_htab->traverse <traversal_state *, ggc_call_count> (&state);

  mmi.size = ggc_pch_total_size (state.d);

  /* Try to arrange things so that no relocation is necessary, but
     don't try very hard.  On most platforms, this will always work,
     and on the rest it's a lot of work to do better.
     (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
     HOST_HOOKS_GT_PCH_USE_ADDRESS.)  */
  mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));

  ggc_pch_this_base (state.d, mmi.preferred_base);

  state.ptrs = XNEWVEC (struct ptr_data *, state.count);
  state.ptrs_i = 0;

  saving_htab->traverse <traversal_state *, ggc_call_alloc> (&state);
  timevar_pop (TV_PCH_PTR_REALLOC);

  timevar_push (TV_PCH_PTR_SORT);
  qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
  timevar_pop (TV_PCH_PTR_SORT);

  /* Write out all the scalar variables.  */
  for (rt = gt_pch_scalar_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      if (fwrite (rti->base, rti->stride, 1, f) != 1)
	fatal_error (input_location, "cannot write PCH file: %m");

  /* Write out all the global pointers, after translation.  */
  write_pch_globals (gt_ggc_rtab, &state);

  /* Pad the PCH file so that the mmapped area starts on an allocation
     granularity (usually page) boundary.  */
  {
    long o;
    o = ftell (state.f) + sizeof (mmi);
    if (o == -1)
      fatal_error (input_location, "cannot get position in PCH file: %m");
    mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
    if (mmi.offset == mmap_offset_alignment)
      mmi.offset = 0;
    mmi.offset += o;
  }
  if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
    fatal_error (input_location, "cannot write PCH file: %m");
  if (mmi.offset != 0
      && fseek (state.f, mmi.offset, SEEK_SET) != 0)
    fatal_error (input_location, "cannot write padding to PCH file: %m");

  ggc_pch_prepare_write (state.d, state.f);

#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
  vec<char> vbits = vNULL;
#endif

  /* Actually write out the objects.  */
  for (i = 0; i < state.count; i++)
    {
      if (this_object_size < state.ptrs[i]->size)
	{
	  this_object_size = state.ptrs[i]->size;
	  this_object = XRESIZEVAR (char, this_object, this_object_size);
	}
#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
      /* obj might contain uninitialized bytes, e.g. in the trailing
	 padding of the object.  Avoid warnings by making the memory
	 temporarily defined and then restoring previous state.  */
      int get_vbits = 0;
      size_t valid_size = state.ptrs[i]->size;
      if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
	{
	  if (vbits.length () < valid_size)
	    vbits.safe_grow (valid_size);
	  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
					  vbits.address (), valid_size);
	  if (get_vbits == 3)
	    {
	      /* We assume that first part of obj is addressable, and
		 the rest is unaddressable.  Find out where the boundary is
		 using binary search.  */
	      size_t lo = 0, hi = valid_size;
	      while (hi > lo)
		{
		  size_t mid = (lo + hi) / 2;
		  get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
						  + mid, vbits.address (),
						  1);
		  if (get_vbits == 3)
		    hi = mid;
		  else if (get_vbits == 1)
		    lo = mid + 1;
		  else
		    break;
		}
	      if (get_vbits == 1 || get_vbits == 3)
		{
		  valid_size = lo;
		  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
						  vbits.address (),
						  valid_size);
		}
	    }
	  if (get_vbits == 1)
	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
							 state.ptrs[i]->size));
	}
#endif
      memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
      if (state.ptrs[i]->reorder_fn != NULL)
	state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
				   state.ptrs[i]->note_ptr_cookie,
				   relocate_ptrs, &state);
      state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
				  state.ptrs[i]->note_ptr_cookie,
				  relocate_ptrs, &state);
      ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
			    state.ptrs[i]->new_addr, state.ptrs[i]->size,
			    state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
      if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
	memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
      if (__builtin_expect (get_vbits == 1, 0))
	{
	  (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
				     valid_size);
	  if (valid_size != state.ptrs[i]->size)
	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
							  state.ptrs[i]->obj
							  + valid_size,
							  state.ptrs[i]->size
							  - valid_size));
	}
#endif
    }
#if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS
  vbits.release ();
#endif

  ggc_pch_finish (state.d, state.f);
  gt_pch_fixup_stringpool ();

  XDELETE (state.ptrs);
  XDELETE (this_object);
  delete saving_htab;
  saving_htab = NULL;
}

/* Read the state of the compiler back in from F.  */

void
gt_pch_restore (FILE *f)
{
  const struct ggc_root_tab *const *rt;
  const struct ggc_root_tab *rti;
  size_t i;
  struct mmap_info mmi;
  int result;
  struct line_maps * old_line_table = line_table;
  location_t old_input_loc = input_location;

  /* Delete any deletable objects.  This makes ggc_pch_read much
     faster, as it can be sure that no GCable objects remain other
     than the ones just read in.  */
  for (rt = gt_ggc_deletable_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      memset (rti->base, 0, rti->stride);

  /* Read in all the scalar variables.  */
  for (rt = gt_pch_scalar_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      if (fread (rti->base, rti->stride, 1, f) != 1)
	{
          line_table = old_line_table;
	  input_location = old_input_loc;
	  fatal_error (input_location, "cannot read PCH file: %m");
        }

  /* Read in all the global pointers, in 6 easy loops.  */
  for (rt = gt_ggc_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      for (i = 0; i < rti->nelt; i++)
	if (fread ((char *)rti->base + rti->stride * i,
		   sizeof (void *), 1, f) != 1)
          {
            line_table = old_line_table;
	    input_location = old_input_loc;
	    fatal_error (input_location, "cannot read PCH file: %m");
          }

  if (fread (&mmi, sizeof (mmi), 1, f) != 1)
    {
      line_table = old_line_table;
      input_location = old_input_loc;
      fatal_error (input_location, "cannot read PCH file: %m");
    }

  result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
					  fileno (f), mmi.offset);
  if (result < 0) {
    line_table = old_line_table;
    input_location = old_input_loc;
    fatal_error (input_location, "had to relocate PCH");
  }
  if (result == 0)
    {
      if (fseek (f, mmi.offset, SEEK_SET) != 0
	  || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
	{
          line_table = old_line_table;
          input_location = old_input_loc;
	  fatal_error (input_location, "cannot read PCH file: %m");
        }
    }
  else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
    {
      line_table = old_line_table;
      input_location = old_input_loc;
      fatal_error (input_location, "cannot read PCH file: %m");
    }

  ggc_pch_read (f, mmi.preferred_base);

  gt_pch_restore_stringpool ();
}

/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
   Select no address whatsoever, and let gt_pch_save choose what it will with
   malloc, presumably.  */

void *
default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
			    int fd ATTRIBUTE_UNUSED)
{
  return NULL;
}

/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
   Allocate SIZE bytes with malloc.  Return 0 if the address we got is the
   same as base, indicating that the memory has been allocated but needs to
   be read in from the file.  Return -1 if the address differs, to relocation
   of the PCH file would be required.  */

int
default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
			    size_t offset ATTRIBUTE_UNUSED)
{
  void *addr = xmalloc (size);
  return (addr == base) - 1;
}

/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS.   Return the
   alignment required for allocating virtual memory. Usually this is the
   same as pagesize.  */

size_t
default_gt_pch_alloc_granularity (void)
{
  return getpagesize ();
}

#if HAVE_MMAP_FILE
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
   We temporarily allocate SIZE bytes, and let the kernel place the data
   wherever it will.  If it worked, that's our spot, if not we're likely
   to be in trouble.  */

void *
mmap_gt_pch_get_address (size_t size, int fd)
{
  void *ret;

  ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
  if (ret == (void *) MAP_FAILED)
    ret = NULL;
  else
    munmap ((caddr_t) ret, size);

  return ret;
}

/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
   Map SIZE bytes of FD+OFFSET at BASE.  Return 1 if we succeeded at
   mapping the data at BASE, -1 if we couldn't.

   This version assumes that the kernel honors the START operand of mmap
   even without MAP_FIXED if START through START+SIZE are not currently
   mapped with something.  */

int
mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
{
  void *addr;

  /* We're called with size == 0 if we're not planning to load a PCH
     file at all.  This allows the hook to free any static space that
     we might have allocated at link time.  */
  if (size == 0)
    return -1;

  addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
	       fd, offset);

  return addr == base ? 1 : -1;
}
#endif /* HAVE_MMAP_FILE */

#if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT

/* Modify the bound based on rlimits.  */
static double
ggc_rlimit_bound (double limit)
{
#if defined(HAVE_GETRLIMIT)
  struct rlimit rlim;
# if defined (RLIMIT_AS)
  /* RLIMIT_AS is what POSIX says is the limit on mmap.  Presumably
     any OS which has RLIMIT_AS also has a working mmap that GCC will use.  */
  if (getrlimit (RLIMIT_AS, &rlim) == 0
      && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
      && rlim.rlim_cur < limit)
    limit = rlim.rlim_cur;
# elif defined (RLIMIT_DATA)
  /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
     might be on an OS that has a broken mmap.  (Others don't bound
     mmap at all, apparently.)  */
  if (getrlimit (RLIMIT_DATA, &rlim) == 0
      && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
      && rlim.rlim_cur < limit
      /* Darwin has this horribly bogus default setting of
	 RLIMIT_DATA, to 6144Kb.  No-one notices because RLIMIT_DATA
	 appears to be ignored.  Ignore such silliness.  If a limit
	 this small was actually effective for mmap, GCC wouldn't even
	 start up.  */
      && rlim.rlim_cur >= 8 * 1024 * 1024)
    limit = rlim.rlim_cur;
# endif /* RLIMIT_AS or RLIMIT_DATA */
#endif /* HAVE_GETRLIMIT */

  return limit;
}

/* Heuristic to set a default for GGC_MIN_EXPAND.  */
static int
ggc_min_expand_heuristic (void)
{
  double min_expand = physmem_total ();

  /* Adjust for rlimits.  */
  min_expand = ggc_rlimit_bound (min_expand);

  /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
     a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB).  */
  min_expand /= 1024*1024*1024;
  min_expand *= 70;
  min_expand = MIN (min_expand, 70);
  min_expand += 30;

  return min_expand;
}

/* Heuristic to set a default for GGC_MIN_HEAPSIZE.  */
static int
ggc_min_heapsize_heuristic (void)
{
  double phys_kbytes = physmem_total ();
  double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);

  phys_kbytes /= 1024; /* Convert to Kbytes.  */
  limit_kbytes /= 1024;

  /* The heuristic is RAM/8, with a lower bound of 4M and an upper
     bound of 128M (when RAM >= 1GB).  */
  phys_kbytes /= 8;

#if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
  /* Try not to overrun the RSS limit while doing garbage collection.
     The RSS limit is only advisory, so no margin is subtracted.  */
 {
   struct rlimit rlim;
   if (getrlimit (RLIMIT_RSS, &rlim) == 0
       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
     phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
 }
# endif

  /* Don't blindly run over our data limit; do GC at least when the
     *next* GC would be within 20Mb of the limit or within a quarter of
     the limit, whichever is larger.  If GCC does hit the data limit,
     compilation will fail, so this tries to be conservative.  */
  limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
  limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
  phys_kbytes = MIN (phys_kbytes, limit_kbytes);

  phys_kbytes = MAX (phys_kbytes, 4 * 1024);
  phys_kbytes = MIN (phys_kbytes, 128 * 1024);

  return phys_kbytes;
}
#endif

void
init_ggc_heuristics (void)
{
#if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
  param_ggc_min_expand = ggc_min_expand_heuristic ();
  param_ggc_min_heapsize = ggc_min_heapsize_heuristic ();
#endif
}

/* GGC memory usage.  */
class ggc_usage: public mem_usage
{
public:
  /* Default constructor.  */
  ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {}
  /* Constructor.  */
  ggc_usage (size_t allocated, size_t times, size_t peak,
	     size_t freed, size_t collected, size_t overhead)
    : mem_usage (allocated, times, peak),
    m_freed (freed), m_collected (collected), m_overhead (overhead) {}

  /* Equality operator.  */
  inline bool
  operator== (const ggc_usage &second) const
  {
    return (get_balance () == second.get_balance ()
	    && m_peak == second.m_peak
	    && m_times == second.m_times);
  }

  /* Comparison operator.  */
  inline bool
  operator< (const ggc_usage &second) const
  {
    if (*this == second)
      return false;

    return (get_balance () == second.get_balance () ?
	    (m_peak == second.m_peak ? m_times < second.m_times
	     : m_peak < second.m_peak)
	      : get_balance () < second.get_balance ());
  }

  /* Register overhead of ALLOCATED and OVERHEAD bytes.  */
  inline void
  register_overhead (size_t allocated, size_t overhead)
  {
    m_allocated += allocated;
    m_overhead += overhead;
    m_times++;
  }

  /* Release overhead of SIZE bytes.  */
  inline void
  release_overhead (size_t size)
  {
    m_freed += size;
  }

  /* Sum the usage with SECOND usage.  */
  ggc_usage
  operator+ (const ggc_usage &second)
  {
    return ggc_usage (m_allocated + second.m_allocated,
		      m_times + second.m_times,
		      m_peak + second.m_peak,
		      m_freed + second.m_freed,
		      m_collected + second.m_collected,
		      m_overhead + second.m_overhead);
  }

  /* Dump usage with PREFIX, where TOTAL is sum of all rows.  */
  inline void
  dump (const char *prefix, ggc_usage &total) const
  {
    size_t balance = get_balance ();
    fprintf (stderr,
	     "%-48s " PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%"
	     PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%" PRsa (9) "\n",
	     prefix,
	     SIZE_AMOUNT (balance), get_percent (balance, total.get_balance ()),
	     SIZE_AMOUNT (m_collected),
	     get_percent (m_collected, total.m_collected),
	     SIZE_AMOUNT (m_freed), get_percent (m_freed, total.m_freed),
	     SIZE_AMOUNT (m_overhead),
	     get_percent (m_overhead, total.m_overhead),
	     SIZE_AMOUNT (m_times));
  }

  /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
  inline void
  dump (mem_location *loc, ggc_usage &total) const
  {
    char *location_string = loc->to_string ();

    dump (location_string, total);

    free (location_string);
  }

  /* Dump footer.  */
  inline void
  dump_footer ()
  {
    dump ("Total", *this);
  }

  /* Get balance which is GGC allocation leak.  */
  inline size_t
  get_balance () const
  {
    return m_allocated + m_overhead - m_collected - m_freed;
  }

  typedef std::pair<mem_location *, ggc_usage *> mem_pair_t;

  /* Compare wrapper used by qsort method.  */
  static int
  compare (const void *first, const void *second)
  {
    const mem_pair_t mem1 = *(const mem_pair_t *) first;
    const mem_pair_t mem2 = *(const mem_pair_t *) second;

    size_t balance1 = mem1.second->get_balance ();
    size_t balance2 = mem2.second->get_balance ();

    return balance1 == balance2 ? 0 : (balance1 < balance2 ? 1 : -1);
  }

  /* Dump header with NAME.  */
  static inline void
  dump_header (const char *name)
  {
    fprintf (stderr, "%-48s %11s%17s%17s%16s%17s\n", name, "Leak", "Garbage",
	     "Freed", "Overhead", "Times");
  }

  /* Freed memory in bytes.  */
  size_t m_freed;
  /* Collected memory in bytes.  */
  size_t m_collected;
  /* Overhead memory in bytes.  */
  size_t m_overhead;
};

/* GCC memory description.  */
static mem_alloc_description<ggc_usage> ggc_mem_desc;

/* Dump per-site memory statistics.  */

void
dump_ggc_loc_statistics ()
{
  if (! GATHER_STATISTICS)
    return;

  ggc_force_collect = true;
  ggc_collect ();

  ggc_mem_desc.dump (GGC_ORIGIN);

  ggc_force_collect = false;
}

/* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION).  */
void
ggc_record_overhead (size_t allocated, size_t overhead, void *ptr MEM_STAT_DECL)
{
  ggc_usage *usage = ggc_mem_desc.register_descriptor (ptr, GGC_ORIGIN, false
						       FINAL_PASS_MEM_STAT);

  ggc_mem_desc.register_object_overhead (usage, allocated + overhead, ptr);
  usage->register_overhead (allocated, overhead);
}

/* Notice that the pointer has been freed.  */
void
ggc_free_overhead (void *ptr)
{
  ggc_mem_desc.release_object_overhead (ptr);
}

/* After live values has been marked, walk all recorded pointers and see if
   they are still live.  */
void
ggc_prune_overhead_list (void)
{
  typedef hash_map<const void *, std::pair<ggc_usage *, size_t > > map_t;

  map_t::iterator it = ggc_mem_desc.m_reverse_object_map->begin ();

  for (; it != ggc_mem_desc.m_reverse_object_map->end (); ++it)
    if (!ggc_marked_p ((*it).first))
      {
        (*it).second.first->m_collected += (*it).second.second;
	ggc_mem_desc.m_reverse_object_map->remove ((*it).first);
      }
}

/* Return memory used by heap in kb, 0 if this info is not available.  */

void
report_heap_memory_use ()
{
#ifdef HAVE_MALLINFO
  if (!quiet_flag)
    fprintf (stderr," {heap %luk}", (unsigned long)(mallinfo().arena / 1024));
#endif
}