Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
/* Detect paths through the CFG which can never be executed in a conforming
   program and isolate them.

   Copyright (C) 2013-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-cfg.h"
#include "cfganal.h"
#include "intl.h"


static bool cfg_altered;

/* Callback for walk_stmt_load_store_ops.

   Return TRUE if OP will dereference the tree stored in DATA, FALSE
   otherwise.

   This routine only makes a superficial check for a dereference.  Thus,
   it must only be used if it is safe to return a false negative.  */
static bool
check_loadstore (gimple *stmt, tree op, tree, void *data)
{
  if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
      && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
    {
      TREE_THIS_VOLATILE (op) = 1;
      TREE_SIDE_EFFECTS (op) = 1;
      update_stmt (stmt);
      return true;
    }
  return false;
}

/* Insert a trap after SI and split the block after the trap.  */

static void
insert_trap (gimple_stmt_iterator *si_p, tree op)
{
  /* We want the NULL pointer dereference to actually occur so that
     code that wishes to catch the signal can do so.

     If the dereference is a load, then there's nothing to do as the
     LHS will be a throw-away SSA_NAME and the RHS is the NULL dereference.

     If the dereference is a store and we can easily transform the RHS,
     then simplify the RHS to enable more DCE.   Note that we require the
     statement to be a GIMPLE_ASSIGN which filters out calls on the RHS.  */
  gimple *stmt = gsi_stmt (*si_p);
  if (walk_stmt_load_store_ops (stmt, (void *)op, NULL, check_loadstore)
      && is_gimple_assign (stmt)
      && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))))
    {
      /* We just need to turn the RHS into zero converted to the proper
         type.  */
      tree type = TREE_TYPE (gimple_assign_lhs (stmt));
      gimple_assign_set_rhs_code (stmt, INTEGER_CST);
      gimple_assign_set_rhs1 (stmt, fold_convert (type, integer_zero_node));
      update_stmt (stmt);
    }

  gcall *new_stmt
    = gimple_build_call (builtin_decl_explicit (BUILT_IN_TRAP), 0);
  gimple_seq seq = NULL;
  gimple_seq_add_stmt (&seq, new_stmt);

  /* If we had a NULL pointer dereference, then we want to insert the
     __builtin_trap after the statement, for the other cases we want
     to insert before the statement.  */
  if (walk_stmt_load_store_ops (stmt, (void *)op,
			        check_loadstore,
				check_loadstore))
    {
      gsi_insert_after (si_p, seq, GSI_NEW_STMT);
      if (stmt_ends_bb_p (stmt))
	{
	  split_block (gimple_bb (stmt), stmt);
	  return;
	}
    }
  else
    gsi_insert_before (si_p, seq, GSI_NEW_STMT);

  split_block (gimple_bb (new_stmt), new_stmt);
  *si_p = gsi_for_stmt (stmt);
}

/* BB when reached via incoming edge E will exhibit undefined behavior
   at STMT.  Isolate and optimize the path which exhibits undefined
   behavior.

   Isolation is simple.  Duplicate BB and redirect E to BB'.

   Optimization is simple as well.  Replace STMT in BB' with an
   unconditional trap and remove all outgoing edges from BB'.

   If RET_ZERO, do not trap, only return NULL.

   DUPLICATE is a pre-existing duplicate, use it as BB' if it exists.

   Return BB' (which may be equal to DUPLICATE).  */

ATTRIBUTE_RETURNS_NONNULL basic_block
isolate_path (basic_block bb, basic_block duplicate,
	      edge e, gimple *stmt, tree op, bool ret_zero)
{
  gimple_stmt_iterator si, si2;
  edge_iterator ei;
  edge e2;
  bool impossible = true;
  profile_count count = e->count ();

  for (si = gsi_start_bb (bb); gsi_stmt (si) != stmt; gsi_next (&si))
    if (stmt_can_terminate_bb_p (gsi_stmt (si)))
      {
	impossible = false;
	break;
      }
  force_edge_cold (e, impossible);

  /* First duplicate BB if we have not done so already and remove all
     the duplicate's outgoing edges as duplicate is going to unconditionally
     trap.  Removing the outgoing edges is both an optimization and ensures
     we don't need to do any PHI node updates.  */
  if (!duplicate)
    {
      duplicate = duplicate_block (bb, NULL, NULL);
      duplicate->count = profile_count::zero ();
      if (!ret_zero)
	for (ei = ei_start (duplicate->succs); (e2 = ei_safe_edge (ei)); )
	  remove_edge (e2);
    }
  bb->count -= count;

  /* Complete the isolation step by redirecting E to reach DUPLICATE.  */
  e2 = redirect_edge_and_branch (e, duplicate);
  if (e2)
    {
      flush_pending_stmts (e2);

      /* Update profile only when redirection is really processed.  */
      bb->count += e->count ();
    }

  /* There may be more than one statement in DUPLICATE which exhibits
     undefined behavior.  Ultimately we want the first such statement in
     DUPLCIATE so that we're able to delete as much code as possible.

     So each time we discover undefined behavior in DUPLICATE, search for
     the statement which triggers undefined behavior.  If found, then
     transform the statement into a trap and delete everything after the
     statement.  If not found, then this particular instance was subsumed by
     an earlier instance of undefined behavior and there's nothing to do.

     This is made more complicated by the fact that we have STMT, which is in
     BB rather than in DUPLICATE.  So we set up two iterators, one for each
     block and walk forward looking for STMT in BB, advancing each iterator at
     each step.

     When we find STMT the second iterator should point to STMT's equivalent in
     duplicate.  If DUPLICATE ends before STMT is found in BB, then there's
     nothing to do.

     Ignore labels and debug statements.  */
  si = gsi_start_nondebug_after_labels_bb (bb);
  si2 = gsi_start_nondebug_after_labels_bb (duplicate);
  while (!gsi_end_p (si) && !gsi_end_p (si2) && gsi_stmt (si) != stmt)
    {
      gsi_next_nondebug (&si);
      gsi_next_nondebug (&si2);
    }

  /* This would be an indicator that we never found STMT in BB, which should
     never happen.  */
  gcc_assert (!gsi_end_p (si));

  /* If we did not run to the end of DUPLICATE, then SI points to STMT and
     SI2 points to the duplicate of STMT in DUPLICATE.  Insert a trap
     before SI2 and remove SI2 and all trailing statements.  */
  if (!gsi_end_p (si2))
    {
      if (ret_zero)
	{
	  greturn *ret = as_a <greturn *> (gsi_stmt (si2));
	  tree zero = build_zero_cst (TREE_TYPE (gimple_return_retval (ret)));
	  gimple_return_set_retval (ret, zero);
	  update_stmt (ret);
	}
      else
	insert_trap (&si2, op);
    }

  return duplicate;
}

/* Return TRUE if STMT is a div/mod operation using DIVISOR as the divisor.
   FALSE otherwise.  */

static bool
is_divmod_with_given_divisor (gimple *stmt, tree divisor)
{
  /* Only assignments matter.  */
  if (!is_gimple_assign (stmt))
    return false;

  /* Check for every DIV/MOD expression.  */
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
  if (rhs_code == TRUNC_DIV_EXPR
      || rhs_code == FLOOR_DIV_EXPR
      || rhs_code == CEIL_DIV_EXPR
      || rhs_code == EXACT_DIV_EXPR
      || rhs_code == ROUND_DIV_EXPR
      || rhs_code == TRUNC_MOD_EXPR
      || rhs_code == FLOOR_MOD_EXPR
      || rhs_code == CEIL_MOD_EXPR
      || rhs_code == ROUND_MOD_EXPR)
    {
      /* Pointer equality is fine when DIVISOR is an SSA_NAME, but
	 not sufficient for constants which may have different types.  */
      if (operand_equal_p (gimple_assign_rhs2 (stmt), divisor, 0))
	return true;
    }
  return false;
}

/* NAME is an SSA_NAME that we have already determined has the value 0 or NULL.

   Return TRUE if USE_STMT uses NAME in a way where a 0 or NULL value results
   in undefined behavior, FALSE otherwise

   LOC is used for issuing diagnostics.  This case represents potential
   undefined behavior exposed by path splitting and that's reflected in
   the diagnostic.  */

bool
stmt_uses_name_in_undefined_way (gimple *use_stmt, tree name, location_t loc)
{
  /* If we are working with a non pointer type, then see
     if this use is a DIV/MOD operation using NAME as the
     divisor.  */
  if (!POINTER_TYPE_P (TREE_TYPE (name)))
    {
      if (!cfun->can_throw_non_call_exceptions)
	return is_divmod_with_given_divisor (use_stmt, name);
      return false;
    }

  /* NAME is a pointer, so see if it's used in a context where it must
     be non-NULL.  */
  bool by_dereference
    = infer_nonnull_range_by_dereference (use_stmt, name);

  if (by_dereference
      || infer_nonnull_range_by_attribute (use_stmt, name))
    {

      if (by_dereference)
	{
	  warning_at (loc, OPT_Wnull_dereference,
		      "potential null pointer dereference");
	  if (!flag_isolate_erroneous_paths_dereference)
	    return false;
	}
      else
	{
	  if (!flag_isolate_erroneous_paths_attribute)
	    return false;
	}
      return true;
    }
  return false;
}

/* Return TRUE if USE_STMT uses 0 or NULL in a context which results in
   undefined behavior, FALSE otherwise.

   These cases are explicit in the IL.  */

bool
stmt_uses_0_or_null_in_undefined_way (gimple *stmt)
{
  if (!cfun->can_throw_non_call_exceptions
      && is_divmod_with_given_divisor (stmt, integer_zero_node))
    return true;

  /* By passing null_pointer_node, we can use the
     infer_nonnull_range functions to detect explicit NULL
     pointer dereferences and other uses where a non-NULL
     value is required.  */

  bool by_dereference
    = infer_nonnull_range_by_dereference (stmt, null_pointer_node);
  if (by_dereference
      || infer_nonnull_range_by_attribute (stmt, null_pointer_node))
    {
      if (by_dereference)
	{
	  location_t loc = gimple_location (stmt);
	  warning_at (loc, OPT_Wnull_dereference,
		      "null pointer dereference");
	  if (!flag_isolate_erroneous_paths_dereference)
	    return false;
	}
      else
	{
	  if (!flag_isolate_erroneous_paths_attribute)
	    return false;
	}
      return true;
    }
  return false;
}

/* Describes the property of a return statement that may return
   the address of one or more local variables.  The type must
   be safely assignable and copyable so that it can be stored in
   a hash_map.  */
class args_loc_t
{
 public:

  args_loc_t (): nargs (), locvec (), ptr (&ptr)
  {
    locvec.create (4);
  }

  args_loc_t (const args_loc_t &rhs)
    : nargs (rhs.nargs), locvec (rhs.locvec.copy ()), ptr (&ptr) { }

  args_loc_t& operator= (const args_loc_t &rhs)
  {
    nargs = rhs.nargs;
    locvec.release ();
    locvec = rhs.locvec.copy ();
    return *this;
  }

  ~args_loc_t ()
  {
    locvec.release ();
    gcc_assert (ptr == &ptr);
  }

  /* For a PHI in a return statement its number of arguments.  When greater
     than LOCVEC.LENGTH () implies that an address of one of the locals in
     LOCVEC may but need not be returned by the statement.  Otherwise,
     unless both are zero, it implies it definitely is returned.  */
  unsigned nargs;
  /* The locations of local variables/alloca calls returned by the return
     statement.  Avoid using auto_vec here since it's not safe to copy due
     to pr90904.  */
  vec <location_t> locvec;
  void *ptr;
};

/* A mapping from a return statement to the locations of local variables
   whose addresses it may return.  */
typedef hash_map <gimple *, args_loc_t> locmap_t;

/* Given the LOCMAP mapping, issue diagnostics about returning addresses
   of local variables.  When MAYBE is set, all diagnostics will be of
   the "may return" kind.  Otherwise each will be determined based on
   the equality of the corresponding NARGS and LOCVEC.LENGTH () values.  */

static void
diag_returned_locals (bool maybe, const locmap_t &locmap)
{
  for (locmap_t::iterator it = locmap.begin (); it != locmap.end (); ++it)
    {
      gimple *stmt = (*it).first;
      const args_loc_t &argsloc = (*it).second;
      location_t stmtloc = gimple_location (stmt);

      auto_diagnostic_group d;
      unsigned nargs = argsloc.locvec.length ();
      if (warning_at (stmtloc, OPT_Wreturn_local_addr,
		      (maybe || argsloc.nargs > nargs
		       ? G_("function may return address of local variable")
		       : G_("function returns address of local variable"))))
	{
	  for (unsigned i = 0; i != nargs; ++i)
	    inform (argsloc.locvec[i], "declared here");
	}
    }
}

/* Return true if EXPR is an expression of pointer type that refers
   to the address of one or more variables with automatic storage
   duration.  If so, add an entry to *PLOCMAP and insert into
   PLOCMAP->LOCVEC the locations of the corresponding local variables
   whose address is returned by the RETURN_STMT (which may be set to
   (gimple*)-1 as a placeholder for such a statement).  VISITED is
   a bitmap of PHI nodes already visited by recursive calls.  When
   null, PHI expressions are not considered.  */

static bool
is_addr_local (gimple *return_stmt, tree exp, locmap_t *plocmap,
	       hash_set<gphi *> *visited)
{
  if (TREE_CODE (exp) == ADDR_EXPR)
    {
      tree baseaddr = get_base_address (TREE_OPERAND (exp, 0));
      if (TREE_CODE (baseaddr) == MEM_REF)
	return is_addr_local (return_stmt, TREE_OPERAND (baseaddr, 0),
			      plocmap, visited);

      if ((!VAR_P (baseaddr)
	   || is_global_var (baseaddr))
	  && TREE_CODE (baseaddr) != PARM_DECL)
	return false;

      args_loc_t &argsloc = plocmap->get_or_insert (return_stmt);
      argsloc.locvec.safe_push (DECL_SOURCE_LOCATION (baseaddr));
      return true;
    }

  if (!POINTER_TYPE_P (TREE_TYPE (exp)))
    return false;

  if (TREE_CODE (exp) == SSA_NAME)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (exp);
      enum gimple_code code = gimple_code (def_stmt);

      if (is_gimple_assign (def_stmt))
	{
	  tree type = TREE_TYPE (gimple_assign_lhs (def_stmt));
	  if (POINTER_TYPE_P (type))
	    {
	      tree_code code = gimple_assign_rhs_code (def_stmt);
	      tree ptr1 = NULL_TREE, ptr2 = NULL_TREE;

	      /* Set to the number of arguments examined that should
		 be added to ARGSLOC->NARGS to identify expressions
		 only some but not all of whose operands refer to local
		 addresses.  */
	      unsigned nargs = 0;
	      if (code == COND_EXPR)
		{
		  ptr1 = gimple_assign_rhs2 (def_stmt);
		  ptr2 = gimple_assign_rhs3 (def_stmt);
		  nargs = 2;
		}
	      else if (code == MAX_EXPR || code == MIN_EXPR)
		{
		  ptr1 = gimple_assign_rhs1 (def_stmt);
		  ptr2 = gimple_assign_rhs2 (def_stmt);
		  nargs = 2;
		}
	      else if (code == ADDR_EXPR
		       || code == NOP_EXPR
		       || code == POINTER_PLUS_EXPR)
		/* Leave NARGS at zero and let the recursive call set it.  */
		ptr1 = gimple_assign_rhs1 (def_stmt);

	      /* Avoid short-circuiting the logical OR result in case
		 both operands refer to local variables, in which case
		 both should be considered and identified in the warning.  */
	      bool res1 = false, res2 = false;
	      if (ptr1)
		res1 = is_addr_local (return_stmt, ptr1, plocmap, visited);
	      if (ptr2)
		res2 = is_addr_local (return_stmt, ptr2, plocmap, visited);

	      if (nargs)
		if (args_loc_t *argsloc = plocmap->get (return_stmt))
		  argsloc->nargs += nargs;

	      return res1 || res2;
	    }
	  return false;
	}

      if (code == GIMPLE_CALL
	  && gimple_call_builtin_p (def_stmt, BUILT_IN_NORMAL))
	{
	  /* Handle alloca and friends that return pointers to automatic
	     storage.  */
	  tree fn = gimple_call_fndecl (def_stmt);
	  int code = DECL_FUNCTION_CODE (fn);
	  if (code == BUILT_IN_ALLOCA
	      || code == BUILT_IN_ALLOCA_WITH_ALIGN
	      || code == BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX)
	    {
	      args_loc_t &argsloc = plocmap->get_or_insert (return_stmt);
	      argsloc.locvec.safe_push (gimple_location (def_stmt));
	      return true;
	    }

	  if (gimple_call_num_args (def_stmt) < 1)
	    return false;

	  /* Recursively examine the first argument of calls to built-ins
	     that return it.  */
	  switch (code)
	    {
	    case BUILT_IN_MEMCPY:
	    case BUILT_IN_MEMCPY_CHK:
	    case BUILT_IN_MEMPCPY:
	    case BUILT_IN_MEMPCPY_CHK:
	    case BUILT_IN_MEMMOVE:
	    case BUILT_IN_MEMMOVE_CHK:
	    case BUILT_IN_STPCPY:
	    case BUILT_IN_STPCPY_CHK:
	    case BUILT_IN_STPNCPY:
	    case BUILT_IN_STPNCPY_CHK:
	    case BUILT_IN_STRCAT:
	    case BUILT_IN_STRCAT_CHK:
	    case BUILT_IN_STRCHR:
	    case BUILT_IN_STRCPY:
	    case BUILT_IN_STRCPY_CHK:
	    case BUILT_IN_STRNCAT:
	    case BUILT_IN_STRNCAT_CHK:
	    case BUILT_IN_STRNCPY:
	    case BUILT_IN_STRNCPY_CHK:
	    case BUILT_IN_STRRCHR:
	    case BUILT_IN_STRSTR:
	      return is_addr_local (return_stmt,
				    gimple_call_arg (def_stmt, 0),
				    plocmap, visited);
	    default:
	      return false;
	    }
	}

      if (code == GIMPLE_PHI && visited)
	{
	  gphi *phi_stmt = as_a <gphi *> (def_stmt);
	  if (visited->add (phi_stmt))
	    return false;

	  unsigned count = 0;
	  unsigned nargs = gimple_phi_num_args (phi_stmt);
	  args_loc_t &argsloc = plocmap->get_or_insert (return_stmt);
	  /* Bump up the number of operands examined by the number of
	     operands of this PHI.  */
	  argsloc.nargs += nargs;
	  for (unsigned i = 0; i < gimple_phi_num_args (phi_stmt); ++i)
	    {
	      tree arg = gimple_phi_arg_def (phi_stmt, i);
	      if (is_addr_local (return_stmt, arg, plocmap, visited))
		++count;
	    }
	  return count != 0;
	}
    }

  return false;
}

/* Detect returning the address of a local variable in a PHI result LHS
   and argument ARG and PHI edge E in basic block BB.  Add an entry for
   each use to LOCMAP, setting its NARGS member to the NARGS argument
   (the number of PHI operands) plus the number of arguments in binary
   expressions refereced by ARG.  Call isolate_path for each returned
   address and set *ISOLATED to true if called.
   Return either DUPLICATE or the most recent result of isolate_path.  */

static basic_block
handle_return_addr_local_phi_arg (basic_block bb, basic_block duplicate,
				  tree lhs, tree arg, edge e, locmap_t &locmap,
				  unsigned nargs, bool *isolated)
{
  /* Use (gimple*)-1 as a temporary placeholder and replace it with
     the return statement below once it is known.  Using a null doesn't
     work because it's used by the hash_map to mean "no-entry."  Pass
     null instead of a visited_phis bitmap to avoid descending into
     PHIs since they are being processed by the caller.  Those that
     remain will be checked again later.  */
  if (!is_addr_local ((gimple*)-1, arg, &locmap, NULL))
    {
      /* Remove the placeholder regardless of success or failure.  */
      locmap.remove ((gimple*)-1);
      return duplicate;
    }

  const args_loc_t* const placeargsloc = locmap.get ((gimple*)-1);
  const unsigned nlocs = placeargsloc->locvec.length ();
  gcc_assert (nlocs);

  /* Add to the number of PHI arguments determined by the caller
     the number of operands of the expressions referenced by ARG.
     This lets the caller determine whether it's dealing with
     a "may return" or "definitely returns."  */
  nargs += placeargsloc->nargs;

  /* Set to true if any expressions referenced by ARG involve
     multiple addresses only some of which are those of locals.  */
  bool maybe = placeargsloc->nargs > placeargsloc->locvec.length ();

  gimple *use_stmt;
  imm_use_iterator iter;

  /* Look for uses of the PHI result LHS in return statements.  */
  FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
    {
      greturn *return_stmt = dyn_cast <greturn *> (use_stmt);
      if (!return_stmt)
	continue;

      if (gimple_return_retval (return_stmt) != lhs)
	continue;

      /* Add an entry for the return statement and the locations
	 oof the PHI arguments obtained above to the map.  */
      args_loc_t &argsloc = locmap.get_or_insert (use_stmt);
      argsloc.nargs = nargs;
      unsigned nelts = argsloc.locvec.length () + nlocs;
      argsloc.locvec.reserve (nelts);
      argsloc.locvec.splice (placeargsloc->locvec);

      if (!maybe
	  && (flag_isolate_erroneous_paths_dereference
	      || flag_isolate_erroneous_paths_attribute)
	  && gimple_bb (use_stmt) == bb)
	{
	  duplicate = isolate_path (bb, duplicate, e,
				    use_stmt, lhs, true);

	  /* Let caller know the path has been isolated.  */
	  *isolated = true;
	}
    }

  locmap.remove ((gimple*)-1);

  return duplicate;
}

/* Look for PHI nodes which feed statements in the same block where
   the value of the PHI node implies the statement is erroneous.

   For example, a NULL PHI arg value which then feeds a pointer
   dereference.

   When found isolate and optimize the path associated with the PHI
   argument feeding the erroneous statement.  */
static void
find_implicit_erroneous_behavior (void)
{
  locmap_t locmap;

  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      gphi_iterator si;

      /* Out of an abundance of caution, do not isolate paths to a
	 block where the block has any abnormal outgoing edges.

	 We might be able to relax this in the future.  We have to detect
	 when we have to split the block with the NULL dereference and
	 the trap we insert.  We have to preserve abnormal edges out
	 of the isolated block which in turn means updating PHIs at
	 the targets of those abnormal outgoing edges.  */
      if (has_abnormal_or_eh_outgoing_edge_p (bb))
	continue;


      /* If BB has an edge to itself, then duplication of BB below
	 could result in reallocation of BB's PHI nodes.   If that happens
	 then the loop below over the PHIs would use the old PHI and
	 thus invalid information.  We don't have a good way to know
	 if a PHI has been reallocated, so just avoid isolation in
	 this case.  */
      if (find_edge (bb, bb))
	continue;

      /* First look for a PHI which sets a pointer to NULL and which
 	 is then dereferenced within BB.  This is somewhat overly
	 conservative, but probably catches most of the interesting
	 cases.   */
      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gphi *phi = si.phi ();
	  tree lhs = gimple_phi_result (phi);

	  /* Initial number of PHI arguments.  The result may change
	     from one iteration of the loop below to the next in
	     response to changes to the CFG but only the initial
	     value is stored below for use by diagnostics.  */
	  unsigned nargs = gimple_phi_num_args (phi);

	  /* PHI produces a pointer result.  See if any of the PHI's
	     arguments are NULL.

	     When we remove an edge, we want to reprocess the current
	     index since the argument at that index will have been
	     removed, hence the ugly way we update I for each iteration.  */
	  basic_block duplicate = NULL;
	  for (unsigned i = 0, next_i = 0;
	       i < gimple_phi_num_args (phi); i = next_i)
	    {
	      tree arg = gimple_phi_arg_def (phi, i);
	      edge e = gimple_phi_arg_edge (phi, i);

	      /* Advance the argument index unless a path involving
		 the current argument has been isolated.  */
	      next_i = i + 1;
	      bool isolated = false;
	      duplicate = handle_return_addr_local_phi_arg (bb, duplicate, lhs,
							    arg, e, locmap,
							    nargs, &isolated);
	      if (isolated)
		{
		  cfg_altered = true;
		  next_i = i;
		}

	      if (!integer_zerop (arg))
		continue;

	      location_t phi_arg_loc = gimple_phi_arg_location (phi, i);

	      imm_use_iterator iter;
	      gimple *use_stmt;

	      /* We've got a NULL PHI argument.  Now see if the
 	         PHI's result is dereferenced within BB.  */
	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
	        {
	          /* We only care about uses in BB.  Catching cases in
		     in other blocks would require more complex path
		     isolation code.   */
		  if (gimple_bb (use_stmt) != bb)
		    continue;

		  location_t loc = gimple_location (use_stmt)
		    ? gimple_location (use_stmt)
		    : phi_arg_loc;

		  if (stmt_uses_name_in_undefined_way (use_stmt, lhs, loc))
		    {
		      duplicate = isolate_path (bb, duplicate, e,
						use_stmt, lhs, false);

		      /* When we remove an incoming edge, we need to
			 reprocess the Ith element.  */
		      next_i = i;
		      cfg_altered = true;
		    }
		}
	    }
	}
    }

  diag_returned_locals (false, locmap);
}

/* Detect and diagnose returning the address of a local variable
   in RETURN_STMT in basic block BB.  This only becomes undefined
   behavior if the result is used, so we do not insert a trap and
   only return NULL instead.  */

static void
warn_return_addr_local (basic_block bb, greturn *return_stmt)
{
  tree val = gimple_return_retval (return_stmt);
  if (!val)
    return;

  locmap_t locmap;
  hash_set<gphi *> visited_phis;
  if (!is_addr_local (return_stmt, val, &locmap, &visited_phis))
    return;

  /* We only need it for this particular case.  */
  calculate_dominance_info (CDI_POST_DOMINATORS);

  const args_loc_t *argsloc = locmap.get (return_stmt);
  gcc_assert (argsloc);

  bool maybe = argsloc->nargs > argsloc->locvec.length ();
  if (!maybe)
    maybe = !dominated_by_p (CDI_POST_DOMINATORS,
			     single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);

  diag_returned_locals (maybe, locmap);

  /* Bail if the statement isn't certain to return the address
     of a local (e.g., if it involves a conditional expression
     that wasn't trasnformed into a PHI or if it involves
     a MAX_EXPR or MIN_EXPR only one of whose operands is a local
     (even though such an expression isn't valid in C or has
     defined semantics in C++).  */
  if (maybe)
    return;

  /* Do not modify code if the user only asked for warnings.  */
  if (flag_isolate_erroneous_paths_dereference
      || flag_isolate_erroneous_paths_attribute)
    {
      tree zero = build_zero_cst (TREE_TYPE (val));
      gimple_return_set_retval (return_stmt, zero);
      update_stmt (return_stmt);
    }
}

/* Look for statements which exhibit erroneous behavior.  For example
   a NULL pointer dereference.

   When found, optimize the block containing the erroneous behavior.  */
static void
find_explicit_erroneous_behavior (void)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator si;

      /* Out of an abundance of caution, do not isolate paths to a
	 block where the block has any abnormal outgoing edges.

	 We might be able to relax this in the future.  We have to detect
	 when we have to split the block with the NULL dereference and
	 the trap we insert.  We have to preserve abnormal edges out
	 of the isolated block which in turn means updating PHIs at
	 the targets of those abnormal outgoing edges.  */
      if (has_abnormal_or_eh_outgoing_edge_p (bb))
	continue;

      /* Now look at the statements in the block and see if any of
	 them explicitly dereference a NULL pointer.  This happens
	 because of jump threading and constant propagation.  */
      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple *stmt = gsi_stmt (si);

	  if (stmt_uses_0_or_null_in_undefined_way (stmt))
	    {
	      insert_trap (&si, null_pointer_node);
	      bb = gimple_bb (gsi_stmt (si));

	      /* Ignore any more operands on this statement and
		 continue the statement iterator (which should
		 terminate its loop immediately.  */
	      cfg_altered = true;
	      break;
	    }

	  /* Look for a return statement that returns the address
	     of a local variable or the result of alloca.  */
	  if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
	    warn_return_addr_local (bb, return_stmt);
	}
    }
}

/* Search the function for statements which, if executed, would cause
   the program to fault such as a dereference of a NULL pointer.

   Such a program can't be valid if such a statement was to execute
   according to ISO standards.

   We detect explicit NULL pointer dereferences as well as those implied
   by a PHI argument having a NULL value which unconditionally flows into
   a dereference in the same block as the PHI.

   In the former case we replace the offending statement with an
   unconditional trap and eliminate the outgoing edges from the statement's
   basic block.  This may expose secondary optimization opportunities.

   In the latter case, we isolate the path(s) with the NULL PHI
   feeding the dereference.  We can then replace the offending statement
   and eliminate the outgoing edges in the duplicate.  Again, this may
   expose secondary optimization opportunities.

   A warning for both cases may be advisable as well.

   Other statically detectable violations of the ISO standard could be
   handled in a similar way, such as out-of-bounds array indexing.  */

static unsigned int
gimple_ssa_isolate_erroneous_paths (void)
{
  initialize_original_copy_tables ();

  /* Search all the blocks for edges which, if traversed, will
     result in undefined behavior.  */
  cfg_altered = false;

  /* First handle cases where traversal of a particular edge
     triggers undefined behavior.  These cases require creating
     duplicate blocks and thus new SSA_NAMEs.

     We want that process complete prior to the phase where we start
     removing edges from the CFG.  Edge removal may ultimately result in
     removal of PHI nodes and thus releasing SSA_NAMEs back to the
     name manager.

     If the two processes run in parallel we could release an SSA_NAME
     back to the manager but we could still have dangling references
     to the released SSA_NAME in unreachable blocks.
     that any released names not have dangling references in the IL.  */
  find_implicit_erroneous_behavior ();
  find_explicit_erroneous_behavior ();

  free_original_copy_tables ();

  /* We scramble the CFG and loop structures a bit, clean up
     appropriately.  We really should incrementally update the
     loop structures, in theory it shouldn't be that hard.  */
  free_dominance_info (CDI_POST_DOMINATORS);
  if (cfg_altered)
    {
      free_dominance_info (CDI_DOMINATORS);
      loops_state_set (LOOPS_NEED_FIXUP);
      return TODO_cleanup_cfg | TODO_update_ssa;
    }
  return 0;
}

namespace {
const pass_data pass_data_isolate_erroneous_paths =
{
  GIMPLE_PASS, /* type */
  "isolate-paths", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_ISOLATE_ERRONEOUS_PATHS, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_isolate_erroneous_paths : public gimple_opt_pass
{
public:
  pass_isolate_erroneous_paths (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_isolate_erroneous_paths, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_isolate_erroneous_paths (m_ctxt); }
  virtual bool gate (function *)
    {
      /* If we do not have a suitable builtin function for the trap statement,
	 then do not perform the optimization.  */
      return (flag_isolate_erroneous_paths_dereference != 0
	      || flag_isolate_erroneous_paths_attribute != 0
	      || warn_null_dereference);
    }

  virtual unsigned int execute (function *)
    {
      return gimple_ssa_isolate_erroneous_paths ();
    }

}; // class pass_isolate_erroneous_paths
}

gimple_opt_pass *
make_pass_isolate_erroneous_paths (gcc::context *ctxt)
{
  return new pass_isolate_erroneous_paths (ctxt);
}