Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
/* IRA processing allocno lives to build allocno live ranges.
   Copyright (C) 2006-2020 Free Software Foundation, Inc.
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "ira-int.h"
#include "sparseset.h"
#include "function-abi.h"

/* The code in this file is similar to one in global but the code
   works on the allocno basis and creates live ranges instead of
   pseudo-register conflicts.  */

/* Program points are enumerated by numbers from range
   0..IRA_MAX_POINT-1.  There are approximately two times more program
   points than insns.  Program points are places in the program where
   liveness info can be changed.  In most general case (there are more
   complicated cases too) some program points correspond to places
   where input operand dies and other ones correspond to places where
   output operands are born.  */
int ira_max_point;

/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
   live ranges with given start/finish point.  */
live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;

/* Number of the current program point.  */
static int curr_point;

/* Point where register pressure excess started or -1 if there is no
   register pressure excess.  Excess pressure for a register class at
   some point means that there are more allocnos of given register
   class living at the point than number of hard-registers of the
   class available for the allocation.  It is defined only for
   pressure classes.  */
static int high_pressure_start_point[N_REG_CLASSES];

/* Objects live at current point in the scan.  */
static sparseset objects_live;

/* A temporary bitmap used in functions that wish to avoid visiting an allocno
   multiple times.  */
static sparseset allocnos_processed;

/* Set of hard regs (except eliminable ones) currently live.  */
static HARD_REG_SET hard_regs_live;

/* The loop tree node corresponding to the current basic block.  */
static ira_loop_tree_node_t curr_bb_node;

/* The number of the last processed call.  */
static int last_call_num;
/* The number of last call at which given allocno was saved.  */
static int *allocno_saved_at_call;

/* The value returned by ira_setup_alts for the current instruction;
   i.e. the set of alternatives that we should consider to be likely
   candidates during reloading.  */
static alternative_mask preferred_alternatives;

/* If non-NULL, the source operand of a register to register copy for which
   we should not add a conflict with the copy's destination operand.  */
static rtx ignore_reg_for_conflicts;

/* Record hard register REGNO as now being live.  */
static void
make_hard_regno_live (int regno)
{
  SET_HARD_REG_BIT (hard_regs_live, regno);
}

/* Process the definition of hard register REGNO.  This updates
   hard_regs_live and hard reg conflict information for living allocnos.  */
static void
make_hard_regno_dead (int regno)
{
  unsigned int i;
  EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
    {
      ira_object_t obj = ira_object_id_map[i];

      if (ignore_reg_for_conflicts != NULL_RTX
	  && REGNO (ignore_reg_for_conflicts)
	     == (unsigned int) ALLOCNO_REGNO (OBJECT_ALLOCNO (obj)))
	continue;

      SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
      SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
    }
  CLEAR_HARD_REG_BIT (hard_regs_live, regno);
}

/* Record object OBJ as now being live.  Set a bit for it in objects_live,
   and start a new live range for it if necessary.  */
static void
make_object_live (ira_object_t obj)
{
  sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));

  live_range_t lr = OBJECT_LIVE_RANGES (obj);
  if (lr == NULL
      || (lr->finish != curr_point && lr->finish + 1 != curr_point))
    ira_add_live_range_to_object (obj, curr_point, -1);
}

/* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
   associated with object OBJ.  */
static void
update_allocno_pressure_excess_length (ira_object_t obj)
{
  ira_allocno_t a = OBJECT_ALLOCNO (obj);
  int start, i;
  enum reg_class aclass, pclass, cl;
  live_range_t p;

  aclass = ALLOCNO_CLASS (a);
  pclass = ira_pressure_class_translate[aclass];
  for (i = 0;
       (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
       i++)
    {
      if (! ira_reg_pressure_class_p[cl])
	continue;
      if (high_pressure_start_point[cl] < 0)
	continue;
      p = OBJECT_LIVE_RANGES (obj);
      ira_assert (p != NULL);
      start = (high_pressure_start_point[cl] > p->start
	       ? high_pressure_start_point[cl] : p->start);
      ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
    }
}

/* Process the definition of object OBJ, which is associated with allocno A.
   This finishes the current live range for it.  */
static void
make_object_dead (ira_object_t obj)
{
  live_range_t lr;
  int regno;
  int ignore_regno = -1;
  int ignore_total_regno = -1;
  int end_regno = -1;

  sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));

  /* Check whether any part of IGNORE_REG_FOR_CONFLICTS already conflicts
     with OBJ.  */
  if (ignore_reg_for_conflicts != NULL_RTX
      && REGNO (ignore_reg_for_conflicts) < FIRST_PSEUDO_REGISTER)
    {
      end_regno = END_REGNO (ignore_reg_for_conflicts);
      ignore_regno = ignore_total_regno = REGNO (ignore_reg_for_conflicts);

      for (regno = ignore_regno; regno < end_regno; regno++)
	{
	  if (TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno))
	    ignore_regno = end_regno;
	  if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
	    ignore_total_regno = end_regno;
	}
    }

  OBJECT_CONFLICT_HARD_REGS (obj) |= hard_regs_live;
  OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= hard_regs_live;

  /* If IGNORE_REG_FOR_CONFLICTS did not already conflict with OBJ, make
     sure it still doesn't.  */
  for (regno = ignore_regno; regno < end_regno; regno++)
    CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
  for (regno = ignore_total_regno; regno < end_regno; regno++)
    CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);

  lr = OBJECT_LIVE_RANGES (obj);
  ira_assert (lr != NULL);
  lr->finish = curr_point;
  update_allocno_pressure_excess_length (obj);
}

/* The current register pressures for each pressure class for the current
   basic block.  */
static int curr_reg_pressure[N_REG_CLASSES];

/* Record that register pressure for PCLASS increased by N registers.
   Update the current register pressure, maximal register pressure for
   the current BB and the start point of the register pressure
   excess.  */
static void
inc_register_pressure (enum reg_class pclass, int n)
{
  int i;
  enum reg_class cl;

  for (i = 0;
       (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
       i++)
    {
      if (! ira_reg_pressure_class_p[cl])
	continue;
      curr_reg_pressure[cl] += n;
      if (high_pressure_start_point[cl] < 0
	  && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
	high_pressure_start_point[cl] = curr_point;
      if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
	curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
    }
}

/* Record that register pressure for PCLASS has decreased by NREGS
   registers; update current register pressure, start point of the
   register pressure excess, and register pressure excess length for
   living allocnos.  */

static void
dec_register_pressure (enum reg_class pclass, int nregs)
{
  int i;
  unsigned int j;
  enum reg_class cl;
  bool set_p = false;

  for (i = 0;
       (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
       i++)
    {
      if (! ira_reg_pressure_class_p[cl])
	continue;
      curr_reg_pressure[cl] -= nregs;
      ira_assert (curr_reg_pressure[cl] >= 0);
      if (high_pressure_start_point[cl] >= 0
	  && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
	set_p = true;
    }
  if (set_p)
    {
      EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
	update_allocno_pressure_excess_length (ira_object_id_map[j]);
      for (i = 0;
	   (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
	   i++)
	{
	  if (! ira_reg_pressure_class_p[cl])
	    continue;
	  if (high_pressure_start_point[cl] >= 0
	      && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
	    high_pressure_start_point[cl] = -1;
	}
    }
}

/* Determine from the objects_live bitmap whether REGNO is currently live,
   and occupies only one object.  Return false if we have no information.  */
static bool
pseudo_regno_single_word_and_live_p (int regno)
{
  ira_allocno_t a = ira_curr_regno_allocno_map[regno];
  ira_object_t obj;

  if (a == NULL)
    return false;
  if (ALLOCNO_NUM_OBJECTS (a) > 1)
    return false;

  obj = ALLOCNO_OBJECT (a, 0);

  return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
}

/* Mark the pseudo register REGNO as live.  Update all information about
   live ranges and register pressure.  */
static void
mark_pseudo_regno_live (int regno)
{
  ira_allocno_t a = ira_curr_regno_allocno_map[regno];
  enum reg_class pclass;
  int i, n, nregs;

  if (a == NULL)
    return;

  /* Invalidate because it is referenced.  */
  allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;

  n = ALLOCNO_NUM_OBJECTS (a);
  pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
  nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
  if (n > 1)
    {
      /* We track every subobject separately.  */
      gcc_assert (nregs == n);
      nregs = 1;
    }

  for (i = 0; i < n; i++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, i);

      if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
	continue;

      inc_register_pressure (pclass, nregs);
      make_object_live (obj);
    }
}

/* Like mark_pseudo_regno_live, but try to only mark one subword of
   the pseudo as live.  SUBWORD indicates which; a value of 0
   indicates the low part.  */
static void
mark_pseudo_regno_subword_live (int regno, int subword)
{
  ira_allocno_t a = ira_curr_regno_allocno_map[regno];
  int n;
  enum reg_class pclass;
  ira_object_t obj;

  if (a == NULL)
    return;

  /* Invalidate because it is referenced.  */
  allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;

  n = ALLOCNO_NUM_OBJECTS (a);
  if (n == 1)
    {
      mark_pseudo_regno_live (regno);
      return;
    }

  pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
  gcc_assert
    (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
  obj = ALLOCNO_OBJECT (a, subword);

  if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
    return;

  inc_register_pressure (pclass, 1);
  make_object_live (obj);
}

/* Mark the register REG as live.  Store a 1 in hard_regs_live for
   this register, record how many consecutive hardware registers it
   actually needs.  */
static void
mark_hard_reg_live (rtx reg)
{
  int regno = REGNO (reg);

  if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
    {
      int last = END_REGNO (reg);
      enum reg_class aclass, pclass;

      while (regno < last)
	{
	  if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
	      && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
	    {
	      aclass = ira_hard_regno_allocno_class[regno];
	      pclass = ira_pressure_class_translate[aclass];
	      inc_register_pressure (pclass, 1);
	      make_hard_regno_live (regno);
	    }
	  regno++;
	}
    }
}

/* Mark a pseudo, or one of its subwords, as live.  REGNO is the pseudo's
   register number; ORIG_REG is the access in the insn, which may be a
   subreg.  */
static void
mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
{
  if (read_modify_subreg_p (orig_reg))
    {
      mark_pseudo_regno_subword_live (regno,
				      subreg_lowpart_p (orig_reg) ? 0 : 1);
    }
  else
    mark_pseudo_regno_live (regno);
}

/* Mark the register referenced by use or def REF as live.  */
static void
mark_ref_live (df_ref ref)
{
  rtx reg = DF_REF_REG (ref);
  rtx orig_reg = reg;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
    mark_pseudo_reg_live (orig_reg, REGNO (reg));
  else
    mark_hard_reg_live (reg);
}

/* Mark the pseudo register REGNO as dead.  Update all information about
   live ranges and register pressure.  */
static void
mark_pseudo_regno_dead (int regno)
{
  ira_allocno_t a = ira_curr_regno_allocno_map[regno];
  int n, i, nregs;
  enum reg_class cl;

  if (a == NULL)
    return;

  /* Invalidate because it is referenced.  */
  allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;

  n = ALLOCNO_NUM_OBJECTS (a);
  cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
  nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
  if (n > 1)
    {
      /* We track every subobject separately.  */
      gcc_assert (nregs == n);
      nregs = 1;
    }
  for (i = 0; i < n; i++)
    {
      ira_object_t obj = ALLOCNO_OBJECT (a, i);
      if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
	continue;

      dec_register_pressure (cl, nregs);
      make_object_dead (obj);
    }
}

/* Like mark_pseudo_regno_dead, but called when we know that only part of the
   register dies.  SUBWORD indicates which; a value of 0 indicates the low part.  */
static void
mark_pseudo_regno_subword_dead (int regno, int subword)
{
  ira_allocno_t a = ira_curr_regno_allocno_map[regno];
  int n;
  enum reg_class cl;
  ira_object_t obj;

  if (a == NULL)
    return;

  /* Invalidate because it is referenced.  */
  allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;

  n = ALLOCNO_NUM_OBJECTS (a);
  if (n == 1)
    /* The allocno as a whole doesn't die in this case.  */
    return;

  cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
  gcc_assert
    (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);

  obj = ALLOCNO_OBJECT (a, subword);
  if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
    return;

  dec_register_pressure (cl, 1);
  make_object_dead (obj);
}

/* Process the definition of hard register REG.  This updates hard_regs_live
   and hard reg conflict information for living allocnos.  */
static void
mark_hard_reg_dead (rtx reg)
{
  int regno = REGNO (reg);

  if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
    {
      int last = END_REGNO (reg);
      enum reg_class aclass, pclass;

      while (regno < last)
	{
	  if (TEST_HARD_REG_BIT (hard_regs_live, regno))
	    {
	      aclass = ira_hard_regno_allocno_class[regno];
	      pclass = ira_pressure_class_translate[aclass];
	      dec_register_pressure (pclass, 1);
	      make_hard_regno_dead (regno);
	    }
	  regno++;
	}
    }
}

/* Mark a pseudo, or one of its subwords, as dead.  REGNO is the pseudo's
   register number; ORIG_REG is the access in the insn, which may be a
   subreg.  */
static void
mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
{
  if (read_modify_subreg_p (orig_reg))
    {
      mark_pseudo_regno_subword_dead (regno,
				      subreg_lowpart_p (orig_reg) ? 0 : 1);
    }
  else
    mark_pseudo_regno_dead (regno);
}

/* Mark the register referenced by definition DEF as dead, if the
   definition is a total one.  */
static void
mark_ref_dead (df_ref def)
{
  rtx reg = DF_REF_REG (def);
  rtx orig_reg = reg;

  if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
    return;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
      && (GET_CODE (orig_reg) != SUBREG
	  || REGNO (reg) < FIRST_PSEUDO_REGISTER
	  || !read_modify_subreg_p (orig_reg)))
    return;

  if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
    mark_pseudo_reg_dead (orig_reg, REGNO (reg));
  else
    mark_hard_reg_dead (reg);
}

/* If REG is a pseudo or a subreg of it, and the class of its allocno
   intersects CL, make a conflict with pseudo DREG.  ORIG_DREG is the
   rtx actually accessed, it may be identical to DREG or a subreg of it.
   Advance the current program point before making the conflict if
   ADVANCE_P.  Return TRUE if we will need to advance the current
   program point.  */
static bool
make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
		      bool advance_p)
{
  rtx orig_reg = reg;
  ira_allocno_t a;

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
    return advance_p;

  a = ira_curr_regno_allocno_map[REGNO (reg)];
  if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
    return advance_p;

  if (advance_p)
    curr_point++;

  mark_pseudo_reg_live (orig_reg, REGNO (reg));
  mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
  mark_pseudo_reg_dead (orig_reg, REGNO (reg));
  mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));

  return false;
}

/* Check and make if necessary conflicts for pseudo DREG of class
   DEF_CL of the current insn with input operand USE of class USE_CL.
   ORIG_DREG is the rtx actually accessed, it may be identical to
   DREG or a subreg of it.  Advance the current program point before
   making the conflict if ADVANCE_P.  Return TRUE if we will need to
   advance the current program point.  */
static bool
check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
				 enum reg_class def_cl, int use,
				 enum reg_class use_cl, bool advance_p)
{
  if (! reg_classes_intersect_p (def_cl, use_cl))
    return advance_p;

  advance_p = make_pseudo_conflict (recog_data.operand[use],
				    use_cl, dreg, orig_dreg, advance_p);

  /* Reload may end up swapping commutative operands, so you
     have to take both orderings into account.  The
     constraints for the two operands can be completely
     different.  (Indeed, if the constraints for the two
     operands are the same for all alternatives, there's no
     point marking them as commutative.)  */
  if (use < recog_data.n_operands - 1
      && recog_data.constraints[use][0] == '%')
    advance_p
      = make_pseudo_conflict (recog_data.operand[use + 1],
			      use_cl, dreg, orig_dreg, advance_p);
  if (use >= 1
      && recog_data.constraints[use - 1][0] == '%')
    advance_p
      = make_pseudo_conflict (recog_data.operand[use - 1],
			      use_cl, dreg, orig_dreg, advance_p);
  return advance_p;
}

/* Check and make if necessary conflicts for definition DEF of class
   DEF_CL of the current insn with input operands.  Process only
   constraints of alternative ALT.

   One of three things is true when this function is called:

   (1) DEF is an earlyclobber for alternative ALT.  Input operands then
       conflict with DEF in ALT unless they explicitly match DEF via 0-9
       constraints.

   (2) DEF matches (via 0-9 constraints) an operand that is an
       earlyclobber for alternative ALT.  Other input operands then
       conflict with DEF in ALT.

   (3) [FOR_TIE_P] Some input operand X matches DEF for alternative ALT.
       Input operands with a different value from X then conflict with
       DEF in ALT.

   However, there's still a judgement call to make when deciding
   whether a conflict in ALT is important enough to be reflected
   in the pan-alternative allocno conflict set.  */
static void
check_and_make_def_conflict (int alt, int def, enum reg_class def_cl,
			     bool for_tie_p)
{
  int use, use_match;
  ira_allocno_t a;
  enum reg_class use_cl, acl;
  bool advance_p;
  rtx dreg = recog_data.operand[def];
  rtx orig_dreg = dreg;

  if (def_cl == NO_REGS)
    return;

  if (GET_CODE (dreg) == SUBREG)
    dreg = SUBREG_REG (dreg);

  if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
    return;

  a = ira_curr_regno_allocno_map[REGNO (dreg)];
  acl = ALLOCNO_CLASS (a);
  if (! reg_classes_intersect_p (acl, def_cl))
    return;

  advance_p = true;

  int n_operands = recog_data.n_operands;
  const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
  for (use = 0; use < n_operands; use++)
    {
      int alt1;

      if (use == def || recog_data.operand_type[use] == OP_OUT)
	continue;

      /* An earlyclobber on DEF doesn't apply to an input operand X if X
	 explicitly matches DEF, but it applies to other input operands
	 even if they happen to be the same value as X.

	 In contrast, if an input operand X is tied to a non-earlyclobber
	 DEF, there's no conflict with other input operands that have the
	 same value as X.  */
      if (op_alt[use].matches == def
	  || (for_tie_p
	      && rtx_equal_p (recog_data.operand[use],
			      recog_data.operand[op_alt[def].matched])))
	continue;

      if (op_alt[use].anything_ok)
	use_cl = ALL_REGS;
      else
	use_cl = op_alt[use].cl;
      if (use_cl == NO_REGS)
	continue;

      /* If DEF is simply a tied operand, ignore cases in which this
	 alternative requires USE to have a likely-spilled class.
	 Adding a conflict would just constrain USE further if DEF
	 happens to be allocated first.  */
      if (for_tie_p && targetm.class_likely_spilled_p (use_cl))
	continue;

      /* If there's any alternative that allows USE to match DEF, do not
	 record a conflict.  If that causes us to create an invalid
	 instruction due to the earlyclobber, reload must fix it up.

	 Likewise, if we're treating a tied DEF like a partial earlyclobber,
	 do not record a conflict if there's another alternative in which
	 DEF is neither tied nor earlyclobber.  */
      for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
	{
	  if (!TEST_BIT (preferred_alternatives, alt1))
	    continue;
	  const operand_alternative *op_alt1
	    = &recog_op_alt[alt1 * n_operands];
	  if (op_alt1[use].matches == def
	      || (use < n_operands - 1
		  && recog_data.constraints[use][0] == '%'
		  && op_alt1[use + 1].matches == def)
	      || (use >= 1
		  && recog_data.constraints[use - 1][0] == '%'
		  && op_alt1[use - 1].matches == def))
	    break;
	  if (for_tie_p
	      && !op_alt1[def].earlyclobber
	      && op_alt1[def].matched < 0
	      && alternative_class (op_alt1, def) != NO_REGS
	      && alternative_class (op_alt1, use) != NO_REGS)
	    break;
	}

      if (alt1 < recog_data.n_alternatives)
	continue;

      advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
						   use, use_cl, advance_p);

      if ((use_match = op_alt[use].matches) >= 0)
	{
	  gcc_checking_assert (use_match != def);

	  if (op_alt[use_match].anything_ok)
	    use_cl = ALL_REGS;
	  else
	    use_cl = op_alt[use_match].cl;
	  advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
						       use, use_cl, advance_p);
	}
    }
}

/* Make conflicts of early clobber pseudo registers of the current
   insn with its inputs.  Avoid introducing unnecessary conflicts by
   checking classes of the constraints and pseudos because otherwise
   significant code degradation is possible for some targets.

   For these purposes, tying an input to an output makes that output act
   like an earlyclobber for inputs with a different value, since the output
   register then has a predetermined purpose on input to the instruction.  */
static void
make_early_clobber_and_input_conflicts (void)
{
  int alt;
  int def, def_match;
  enum reg_class def_cl;

  int n_alternatives = recog_data.n_alternatives;
  int n_operands = recog_data.n_operands;
  const operand_alternative *op_alt = recog_op_alt;
  for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
    if (TEST_BIT (preferred_alternatives, alt))
      for (def = 0; def < n_operands; def++)
	{
	  if (op_alt[def].anything_ok)
	    def_cl = ALL_REGS;
	  else
	    def_cl = op_alt[def].cl;
	  if (def_cl != NO_REGS)
	    {
	      if (op_alt[def].earlyclobber)
		check_and_make_def_conflict (alt, def, def_cl, false);
	      else if (op_alt[def].matched >= 0
		       && !targetm.class_likely_spilled_p (def_cl))
		check_and_make_def_conflict (alt, def, def_cl, true);
	    }

	  if ((def_match = op_alt[def].matches) >= 0
	      && (op_alt[def_match].earlyclobber
		  || op_alt[def].earlyclobber))
	    {
	      if (op_alt[def_match].anything_ok)
		def_cl = ALL_REGS;
	      else
		def_cl = op_alt[def_match].cl;
	      check_and_make_def_conflict (alt, def, def_cl, false);
	    }
	}
}

/* Mark early clobber hard registers of the current INSN as live (if
   LIVE_P) or dead.  Return true if there are such registers.  */
static bool
mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
{
  df_ref def;
  bool set_p = false;

  FOR_EACH_INSN_DEF (def, insn)
    if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
      {
	rtx dreg = DF_REF_REG (def);

	if (GET_CODE (dreg) == SUBREG)
	  dreg = SUBREG_REG (dreg);
	if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
	  continue;

	/* Hard register clobbers are believed to be early clobber
	   because there is no way to say that non-operand hard
	   register clobbers are not early ones.  */
	if (live_p)
	  mark_ref_live (def);
	else
	  mark_ref_dead (def);
	set_p = true;
      }

  return set_p;
}

/* Checks that CONSTRAINTS permits to use only one hard register.  If
   it is so, the function returns the class of the hard register.
   Otherwise it returns NO_REGS.  */
static enum reg_class
single_reg_class (const char *constraints, rtx op, rtx equiv_const)
{
  int c;
  enum reg_class cl, next_cl;
  enum constraint_num cn;

  cl = NO_REGS;
  alternative_mask preferred = preferred_alternatives;
  for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
    if (c == '#')
      preferred &= ~ALTERNATIVE_BIT (0);
    else if (c == ',')
      preferred >>= 1;
    else if (preferred & 1)
      switch (c)
	{
	case 'g':
	  return NO_REGS;

	default:
	  /* ??? Is this the best way to handle memory constraints?  */
	  cn = lookup_constraint (constraints);
	  if (insn_extra_memory_constraint (cn)
	      || insn_extra_special_memory_constraint (cn)
	      || insn_extra_address_constraint (cn))
	    return NO_REGS;
	  if (constraint_satisfied_p (op, cn)
	      || (equiv_const != NULL_RTX
		  && CONSTANT_P (equiv_const)
		  && constraint_satisfied_p (equiv_const, cn)))
	    return NO_REGS;
	  next_cl = reg_class_for_constraint (cn);
	  if (next_cl == NO_REGS)
	    break;
	  if (cl == NO_REGS
	      ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
	      : (ira_class_singleton[cl][GET_MODE (op)]
		 != ira_class_singleton[next_cl][GET_MODE (op)]))
	    return NO_REGS;
	  cl = next_cl;
	  break;

	case '0': case '1': case '2': case '3': case '4':
	case '5': case '6': case '7': case '8': case '9':
	  next_cl
	    = single_reg_class (recog_data.constraints[c - '0'],
				recog_data.operand[c - '0'], NULL_RTX);
	  if (cl == NO_REGS
	      ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
	      : (ira_class_singleton[cl][GET_MODE (op)]
		 != ira_class_singleton[next_cl][GET_MODE (op)]))
	    return NO_REGS;
	  cl = next_cl;
	  break;
	}
  return cl;
}

/* The function checks that operand OP_NUM of the current insn can use
   only one hard register.  If it is so, the function returns the
   class of the hard register.  Otherwise it returns NO_REGS.  */
static enum reg_class
single_reg_operand_class (int op_num)
{
  if (op_num < 0 || recog_data.n_alternatives == 0)
    return NO_REGS;
  return single_reg_class (recog_data.constraints[op_num],
			   recog_data.operand[op_num], NULL_RTX);
}

/* The function sets up hard register set *SET to hard registers which
   might be used by insn reloads because the constraints are too
   strict.  */
void
ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set,
				   alternative_mask preferred)
{
  int i, c, regno = 0;
  enum reg_class cl;
  rtx op;
  machine_mode mode;

  CLEAR_HARD_REG_SET (*set);
  for (i = 0; i < recog_data.n_operands; i++)
    {
      op = recog_data.operand[i];

      if (GET_CODE (op) == SUBREG)
	op = SUBREG_REG (op);

      if (GET_CODE (op) == SCRATCH
	  || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
	{
	  const char *p = recog_data.constraints[i];

	  mode = (GET_CODE (op) == SCRATCH
		  ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
	  cl = NO_REGS;
	  for (; (c = *p); p += CONSTRAINT_LEN (c, p))
	    if (c == '#')
	      preferred &= ~ALTERNATIVE_BIT (0);
	    else if (c == ',')
	      preferred >>= 1;
	    else if (preferred & 1)
	      {
		cl = reg_class_for_constraint (lookup_constraint (p));
		if (cl != NO_REGS)
		  {
		    /* There is no register pressure problem if all of the
		       regs in this class are fixed.  */
		    int regno = ira_class_singleton[cl][mode];
		    if (regno >= 0)
		      add_to_hard_reg_set (set, mode, regno);
		  }
	      }
	}
    }
}
/* Processes input operands, if IN_P, or output operands otherwise of
   the current insn with FREQ to find allocno which can use only one
   hard register and makes other currently living allocnos conflicting
   with the hard register.  */
static void
process_single_reg_class_operands (bool in_p, int freq)
{
  int i, regno;
  unsigned int px;
  enum reg_class cl;
  rtx operand;
  ira_allocno_t operand_a, a;

  for (i = 0; i < recog_data.n_operands; i++)
    {
      operand = recog_data.operand[i];
      if (in_p && recog_data.operand_type[i] != OP_IN
	  && recog_data.operand_type[i] != OP_INOUT)
	continue;
      if (! in_p && recog_data.operand_type[i] != OP_OUT
	  && recog_data.operand_type[i] != OP_INOUT)
	continue;
      cl = single_reg_operand_class (i);
      if (cl == NO_REGS)
	continue;

      operand_a = NULL;

      if (GET_CODE (operand) == SUBREG)
	operand = SUBREG_REG (operand);

      if (REG_P (operand)
	  && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
	{
	  enum reg_class aclass;

	  operand_a = ira_curr_regno_allocno_map[regno];
	  aclass = ALLOCNO_CLASS (operand_a);
	  if (ira_class_subset_p[cl][aclass])
	    {
	      /* View the desired allocation of OPERAND as:

		    (REG:YMODE YREGNO),

		 a simplification of:

		    (subreg:YMODE (reg:XMODE XREGNO) OFFSET).  */
	      machine_mode ymode, xmode;
	      int xregno, yregno;
	      poly_int64 offset;

	      xmode = recog_data.operand_mode[i];
	      xregno = ira_class_singleton[cl][xmode];
	      gcc_assert (xregno >= 0);
	      ymode = ALLOCNO_MODE (operand_a);
	      offset = subreg_lowpart_offset (ymode, xmode);
	      yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
	      if (yregno >= 0
		  && ira_class_hard_reg_index[aclass][yregno] >= 0)
		{
		  int cost;

		  ira_allocate_and_set_costs
		    (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
		     aclass, 0);
		  ira_init_register_move_cost_if_necessary (xmode);
		  cost = freq * (in_p
				 ? ira_register_move_cost[xmode][aclass][cl]
				 : ira_register_move_cost[xmode][cl][aclass]);
		  ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
		    [ira_class_hard_reg_index[aclass][yregno]] -= cost;
		}
	    }
	}

      EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
        {
	  ira_object_t obj = ira_object_id_map[px];
	  a = OBJECT_ALLOCNO (obj);
	  if (a != operand_a)
	    {
	      /* We could increase costs of A instead of making it
		 conflicting with the hard register.  But it works worse
		 because it will be spilled in reload in anyway.  */
	      OBJECT_CONFLICT_HARD_REGS (obj) |= reg_class_contents[cl];
	      OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= reg_class_contents[cl];
	    }
	}
    }
}

/* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
   we find a SET rtx that we can use to deduce that a register can be cheaply
   caller-saved.  Return such a register, or NULL_RTX if none is found.  */
static rtx
find_call_crossed_cheap_reg (rtx_insn *insn)
{
  rtx cheap_reg = NULL_RTX;
  rtx exp = CALL_INSN_FUNCTION_USAGE (insn);

  while (exp != NULL)
    {
      rtx x = XEXP (exp, 0);
      if (GET_CODE (x) == SET)
	{
	  exp = x;
	  break;
	}
      exp = XEXP (exp, 1);
    }
  if (exp != NULL)
    {
      basic_block bb = BLOCK_FOR_INSN (insn);
      rtx reg = SET_SRC (exp);
      rtx_insn *prev = PREV_INSN (insn);
      while (prev && !(INSN_P (prev)
		       && BLOCK_FOR_INSN (prev) != bb))
	{
	  if (NONDEBUG_INSN_P (prev))
	    {
	      rtx set = single_set (prev);

	      if (set && rtx_equal_p (SET_DEST (set), reg))
		{
		  rtx src = SET_SRC (set);
		  if (!REG_P (src) || HARD_REGISTER_P (src)
		      || !pseudo_regno_single_word_and_live_p (REGNO (src)))
		    break;
		  if (!modified_between_p (src, prev, insn))
		    cheap_reg = src;
		  break;
		}
	      if (set && rtx_equal_p (SET_SRC (set), reg))
		{
		  rtx dest = SET_DEST (set);
		  if (!REG_P (dest) || HARD_REGISTER_P (dest)
		      || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
		    break;
		  if (!modified_between_p (dest, prev, insn))
		    cheap_reg = dest;
		  break;
		}

	      if (reg_set_p (reg, prev))
		break;
	    }
	  prev = PREV_INSN (prev);
	}
    }
  return cheap_reg;
}  

/* Determine whether INSN is a register to register copy of the type where
   we do not need to make the source and destiniation registers conflict.
   If this is a copy instruction, then return the source reg.  Otherwise,
   return NULL_RTX.  */
rtx
non_conflicting_reg_copy_p (rtx_insn *insn)
{
  /* Reload has issues with overlapping pseudos being assigned to the
     same hard register, so don't allow it.  See PR87600 for details.  */
  if (!targetm.lra_p ())
    return NULL_RTX;

  rtx set = single_set (insn);

  /* Disallow anything other than a simple register to register copy
     that has no side effects.  */
  if (set == NULL_RTX
      || !REG_P (SET_DEST (set))
      || !REG_P (SET_SRC (set))
      || side_effects_p (set))
    return NULL_RTX;

  int dst_regno = REGNO (SET_DEST (set));
  int src_regno = REGNO (SET_SRC (set));
  machine_mode mode = GET_MODE (SET_DEST (set));

  /* By definition, a register does not conflict with itself, therefore we
     do not have to handle it specially.  Returning NULL_RTX now, helps
     simplify the callers of this function.  */
  if (dst_regno == src_regno)
    return NULL_RTX;

  /* Computing conflicts for register pairs is difficult to get right, so
     for now, disallow it.  */
  if ((HARD_REGISTER_NUM_P (dst_regno)
       && hard_regno_nregs (dst_regno, mode) != 1)
      || (HARD_REGISTER_NUM_P (src_regno)
	  && hard_regno_nregs (src_regno, mode) != 1))
    return NULL_RTX;

  return SET_SRC (set);
}

#ifdef EH_RETURN_DATA_REGNO

/* Add EH return hard registers as conflict hard registers to allocnos
   living at end of BB.  For most allocnos it is already done in
   process_bb_node_lives when we processing input edges but it does
   not work when and EH edge is edge out of the current region.  This
   function covers such out of region edges. */
static void
process_out_of_region_eh_regs (basic_block bb)
{
  edge e;
  edge_iterator ei;
  unsigned int i;
  bitmap_iterator bi;
  bool eh_p = false;

  FOR_EACH_EDGE (e, ei, bb->succs)
    if ((e->flags & EDGE_EH)
	&& IRA_BB_NODE (e->dest)->parent != IRA_BB_NODE (bb)->parent)
      eh_p = true;

  if (! eh_p)
    return;

  EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), FIRST_PSEUDO_REGISTER, i, bi)
    {
      ira_allocno_t a = ira_curr_regno_allocno_map[i];
      for (int n = ALLOCNO_NUM_OBJECTS (a) - 1; n >= 0; n--)
	{
	  ira_object_t obj = ALLOCNO_OBJECT (a, n);
	  for (int k = 0; ; k++)
	    {
	      unsigned int regno = EH_RETURN_DATA_REGNO (k);
	      if (regno == INVALID_REGNUM)
		break;
	      SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
	      SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
	    }
	}
    }
}

#endif

/* Process insns of the basic block given by its LOOP_TREE_NODE to
   update allocno live ranges, allocno hard register conflicts,
   intersected calls, and register pressure info for allocnos for the
   basic block for and regions containing the basic block.  */
static void
process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
{
  int i, freq;
  unsigned int j;
  basic_block bb;
  rtx_insn *insn;
  bitmap_iterator bi;
  bitmap reg_live_out;
  unsigned int px;
  bool set_p;

  bb = loop_tree_node->bb;
  if (bb != NULL)
    {
      for (i = 0; i < ira_pressure_classes_num; i++)
	{
	  curr_reg_pressure[ira_pressure_classes[i]] = 0;
	  high_pressure_start_point[ira_pressure_classes[i]] = -1;
	}
      curr_bb_node = loop_tree_node;
      reg_live_out = df_get_live_out (bb);
      sparseset_clear (objects_live);
      REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
      hard_regs_live &= ~(eliminable_regset | ira_no_alloc_regs);
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (TEST_HARD_REG_BIT (hard_regs_live, i))
	  {
	    enum reg_class aclass, pclass, cl;

	    aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
	    pclass = ira_pressure_class_translate[aclass];
	    for (j = 0;
		 (cl = ira_reg_class_super_classes[pclass][j])
		   != LIM_REG_CLASSES;
		 j++)
	      {
		if (! ira_reg_pressure_class_p[cl])
		  continue;
		curr_reg_pressure[cl]++;
		if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
		  curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
		ira_assert (curr_reg_pressure[cl]
			    <= ira_class_hard_regs_num[cl]);
	      }
	  }
      EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
	mark_pseudo_regno_live (j);

#ifdef EH_RETURN_DATA_REGNO
      process_out_of_region_eh_regs (bb);
#endif

      freq = REG_FREQ_FROM_BB (bb);
      if (freq == 0)
	freq = 1;

      /* Invalidate all allocno_saved_at_call entries.  */
      last_call_num++;

      /* Scan the code of this basic block, noting which allocnos and
	 hard regs are born or die.

	 Note that this loop treats uninitialized values as live until
	 the beginning of the block.  For example, if an instruction
	 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
	 set, FOO will remain live until the beginning of the block.
	 Likewise if FOO is not set at all.  This is unnecessarily
	 pessimistic, but it probably doesn't matter much in practice.  */
      FOR_BB_INSNS_REVERSE (bb, insn)
	{
	  ira_allocno_t a;
	  df_ref def, use;
	  bool call_p;

	  if (!NONDEBUG_INSN_P (insn))
	    continue;

	  if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
	    fprintf (ira_dump_file, "   Insn %u(l%d): point = %d\n",
		     INSN_UID (insn), loop_tree_node->parent->loop_num,
		     curr_point);

	  call_p = CALL_P (insn);
	  ignore_reg_for_conflicts = non_conflicting_reg_copy_p (insn);

	  /* Mark each defined value as live.  We need to do this for
	     unused values because they still conflict with quantities
	     that are live at the time of the definition.

	     Ignore DF_REF_MAY_CLOBBERs on a call instruction.  Such
	     references represent the effect of the called function
	     on a call-clobbered register.  Marking the register as
	     live would stop us from allocating it to a call-crossing
	     allocno.  */
	  FOR_EACH_INSN_DEF (def, insn)
	    if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
	      mark_ref_live (def);

	  /* If INSN has multiple outputs, then any value used in one
	     of the outputs conflicts with the other outputs.  Model this
	     by making the used value live during the output phase.

	     It is unsafe to use !single_set here since it will ignore
	     an unused output.  Just because an output is unused does
	     not mean the compiler can assume the side effect will not
	     occur.  Consider if ALLOCNO appears in the address of an
	     output and we reload the output.  If we allocate ALLOCNO
	     to the same hard register as an unused output we could
	     set the hard register before the output reload insn.  */
	  if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
	    FOR_EACH_INSN_USE (use, insn)
	      {
		int i;
		rtx reg;

		reg = DF_REF_REG (use);
		for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
		  {
		    rtx set;

		    set = XVECEXP (PATTERN (insn), 0, i);
		    if (GET_CODE (set) == SET
			&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
		      {
			/* After the previous loop, this is a no-op if
			   REG is contained within SET_DEST (SET).  */
			mark_ref_live (use);
			break;
		      }
		  }
	      }

	  preferred_alternatives = ira_setup_alts (insn);
	  process_single_reg_class_operands (false, freq);

	  if (call_p)
	    {
	      /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
		 there, try to find a pseudo that is live across the call but
		 can be cheaply reconstructed from the return value.  */
	      rtx cheap_reg = find_call_crossed_cheap_reg (insn);
	      if (cheap_reg != NULL_RTX)
		add_reg_note (insn, REG_RETURNED, cheap_reg);

	      last_call_num++;
	      sparseset_clear (allocnos_processed);
	      /* The current set of live allocnos are live across the call.  */
	      EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
	        {
		  ira_object_t obj = ira_object_id_map[i];
		  a = OBJECT_ALLOCNO (obj);
		  int num = ALLOCNO_NUM (a);
		  function_abi callee_abi = insn_callee_abi (insn);

		  /* Don't allocate allocnos that cross setjmps or any
		     call, if this function receives a nonlocal
		     goto.  */
		  if (cfun->has_nonlocal_label
		      || (!targetm.setjmp_preserves_nonvolatile_regs_p ()
			  && (find_reg_note (insn, REG_SETJMP, NULL_RTX)
			      != NULL_RTX)))
		    {
		      SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
		      SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
		    }
		  if (can_throw_internal (insn))
		    {
		      OBJECT_CONFLICT_HARD_REGS (obj)
			|= callee_abi.mode_clobbers (ALLOCNO_MODE (a));
		      OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
			|= callee_abi.mode_clobbers (ALLOCNO_MODE (a));
		    }

		  if (sparseset_bit_p (allocnos_processed, num))
		    continue;
		  sparseset_set_bit (allocnos_processed, num);

		  if (allocno_saved_at_call[num] != last_call_num)
		    /* Here we are mimicking caller-save.c behavior
		       which does not save hard register at a call if
		       it was saved on previous call in the same basic
		       block and the hard register was not mentioned
		       between the two calls.  */
		    ALLOCNO_CALL_FREQ (a) += freq;
		  /* Mark it as saved at the next call.  */
		  allocno_saved_at_call[num] = last_call_num + 1;
		  ALLOCNO_CALLS_CROSSED_NUM (a)++;
		  ALLOCNO_CROSSED_CALLS_ABIS (a) |= 1 << callee_abi.id ();
		  ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a)
		    |= callee_abi.full_and_partial_reg_clobbers ();
		  if (cheap_reg != NULL_RTX
		      && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
		    ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
		}
	    }

	  /* See which defined values die here.  Note that we include
	     the call insn in the lifetimes of these values, so we don't
	     mistakenly consider, for e.g. an addressing mode with a
	     side-effect like a post-increment fetching the address,
	     that the use happens before the call, and the def to happen
	     after the call: we believe both to happen before the actual
	     call.  (We don't handle return-values here.)  */
	  FOR_EACH_INSN_DEF (def, insn)
	    if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
	      mark_ref_dead (def);

	  make_early_clobber_and_input_conflicts ();

	  curr_point++;
	  
	  /* Mark each used value as live.  */
	  FOR_EACH_INSN_USE (use, insn)
	    mark_ref_live (use);

	  process_single_reg_class_operands (true, freq);

	  set_p = mark_hard_reg_early_clobbers (insn, true);

	  if (set_p)
	    {
	      mark_hard_reg_early_clobbers (insn, false);

	      /* Mark each hard reg as live again.  For example, a
		 hard register can be in clobber and in an insn
		 input.  */
	      FOR_EACH_INSN_USE (use, insn)
		{
		  rtx ureg = DF_REF_REG (use);

		  if (GET_CODE (ureg) == SUBREG)
		    ureg = SUBREG_REG (ureg);
		  if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
		    continue;

		  mark_ref_live (use);
		}
	    }

	  curr_point++;
	}
      ignore_reg_for_conflicts = NULL_RTX;

      if (bb_has_eh_pred (bb))
	for (j = 0; ; ++j)
	  {
	    unsigned int regno = EH_RETURN_DATA_REGNO (j);
	    if (regno == INVALID_REGNUM)
	      break;
	    make_hard_regno_live (regno);
	  }

      /* Allocnos can't go in stack regs at the start of a basic block
	 that is reached by an abnormal edge. Likewise for registers
	 that are at least partly call clobbered, because caller-save,
	 fixup_abnormal_edges and possibly the table driven EH machinery
	 are not quite ready to handle such allocnos live across such
	 edges.  */
      if (bb_has_abnormal_pred (bb))
	{
#ifdef STACK_REGS
	  EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
	    {
	      ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);

	      ALLOCNO_NO_STACK_REG_P (a) = true;
	      ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
	    }
	  for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
	    make_hard_regno_live (px);
#endif
	  /* No need to record conflicts for call clobbered regs if we
	     have nonlocal labels around, as we don't ever try to
	     allocate such regs in this case.  */
	  if (!cfun->has_nonlocal_label
	      && has_abnormal_call_or_eh_pred_edge_p (bb))
	    for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
	      if (eh_edge_abi.clobbers_at_least_part_of_reg_p (px)
#ifdef REAL_PIC_OFFSET_TABLE_REGNUM
		  /* We should create a conflict of PIC pseudo with
		     PIC hard reg as PIC hard reg can have a wrong
		     value after jump described by the abnormal edge.
		     In this case we cannot allocate PIC hard reg to
		     PIC pseudo as PIC pseudo will also have a wrong
		     value.  This code is not critical as LRA can fix
		     it but it is better to have the right allocation
		     earlier.  */
		  || (px == REAL_PIC_OFFSET_TABLE_REGNUM
		      && pic_offset_table_rtx != NULL_RTX
		      && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
#endif
		  )
		make_hard_regno_live (px);
	}

      EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
	make_object_dead (ira_object_id_map[i]);

      curr_point++;

    }
  /* Propagate register pressure to upper loop tree nodes.  */
  if (loop_tree_node != ira_loop_tree_root)
    for (i = 0; i < ira_pressure_classes_num; i++)
      {
	enum reg_class pclass;

	pclass = ira_pressure_classes[i];
	if (loop_tree_node->reg_pressure[pclass]
	    > loop_tree_node->parent->reg_pressure[pclass])
	  loop_tree_node->parent->reg_pressure[pclass]
	    = loop_tree_node->reg_pressure[pclass];
      }
}

/* Create and set up IRA_START_POINT_RANGES and
   IRA_FINISH_POINT_RANGES.  */
static void
create_start_finish_chains (void)
{
  ira_object_t obj;
  ira_object_iterator oi;
  live_range_t r;

  ira_start_point_ranges
    = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
  memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
  ira_finish_point_ranges
    = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
  memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
  FOR_EACH_OBJECT (obj, oi)
    for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
      {
	r->start_next = ira_start_point_ranges[r->start];
	ira_start_point_ranges[r->start] = r;
	r->finish_next = ira_finish_point_ranges[r->finish];
 	  ira_finish_point_ranges[r->finish] = r;
      }
}

/* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
   new live ranges and program points were added as a result if new
   insn generation.  */
void
ira_rebuild_start_finish_chains (void)
{
  ira_free (ira_finish_point_ranges);
  ira_free (ira_start_point_ranges);
  create_start_finish_chains ();
}

/* Compress allocno live ranges by removing program points where
   nothing happens.  */
static void
remove_some_program_points_and_update_live_ranges (void)
{
  unsigned i;
  int n;
  int *map;
  ira_object_t obj;
  ira_object_iterator oi;
  live_range_t r, prev_r, next_r;
  sbitmap_iterator sbi;
  bool born_p, dead_p, prev_born_p, prev_dead_p;
  
  auto_sbitmap born (ira_max_point);
  auto_sbitmap dead (ira_max_point);
  bitmap_clear (born);
  bitmap_clear (dead);
  FOR_EACH_OBJECT (obj, oi)
    for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
      {
	ira_assert (r->start <= r->finish);
	bitmap_set_bit (born, r->start);
	bitmap_set_bit (dead, r->finish);
      }

  auto_sbitmap born_or_dead (ira_max_point);
  bitmap_ior (born_or_dead, born, dead);
  map = (int *) ira_allocate (sizeof (int) * ira_max_point);
  n = -1;
  prev_born_p = prev_dead_p = false;
  EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
    {
      born_p = bitmap_bit_p (born, i);
      dead_p = bitmap_bit_p (dead, i);
      if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
	  || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
	map[i] = n;
      else
	map[i] = ++n;
      prev_born_p = born_p;
      prev_dead_p = dead_p;
    }

  n++;
  if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
    fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
	     ira_max_point, n, 100 * n / ira_max_point);
  ira_max_point = n;

  FOR_EACH_OBJECT (obj, oi)
    for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
      {
	next_r = r->next;
	r->start = map[r->start];
	r->finish = map[r->finish];
	if (prev_r == NULL || prev_r->start > r->finish + 1)
	  {
	    prev_r = r;
	    continue;
	  }
	prev_r->start = r->start;
	prev_r->next = next_r;
	ira_finish_live_range (r);
      }

  ira_free (map);
}

/* Print live ranges R to file F.  */
void
ira_print_live_range_list (FILE *f, live_range_t r)
{
  for (; r != NULL; r = r->next)
    fprintf (f, " [%d..%d]", r->start, r->finish);
  fprintf (f, "\n");
}

DEBUG_FUNCTION void
debug (live_range &ref)
{
  ira_print_live_range_list (stderr, &ref);
}

DEBUG_FUNCTION void
debug (live_range *ptr)
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}

/* Print live ranges R to stderr.  */
void
ira_debug_live_range_list (live_range_t r)
{
  ira_print_live_range_list (stderr, r);
}

/* Print live ranges of object OBJ to file F.  */
static void
print_object_live_ranges (FILE *f, ira_object_t obj)
{
  ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
}

/* Print live ranges of allocno A to file F.  */
static void
print_allocno_live_ranges (FILE *f, ira_allocno_t a)
{
  int n = ALLOCNO_NUM_OBJECTS (a);
  int i;

  for (i = 0; i < n; i++)
    {
      fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
      if (n > 1)
	fprintf (f, " [%d]", i);
      fprintf (f, "):");
      print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
    }
}

/* Print live ranges of allocno A to stderr.  */
void
ira_debug_allocno_live_ranges (ira_allocno_t a)
{
  print_allocno_live_ranges (stderr, a);
}

/* Print live ranges of all allocnos to file F.  */
static void
print_live_ranges (FILE *f)
{
  ira_allocno_t a;
  ira_allocno_iterator ai;

  FOR_EACH_ALLOCNO (a, ai)
    print_allocno_live_ranges (f, a);
}

/* Print live ranges of all allocnos to stderr.  */
void
ira_debug_live_ranges (void)
{
  print_live_ranges (stderr);
}

/* The main entry function creates live ranges, set up
   CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
   calculate register pressure info.  */
void
ira_create_allocno_live_ranges (void)
{
  objects_live = sparseset_alloc (ira_objects_num);
  allocnos_processed = sparseset_alloc (ira_allocnos_num);
  curr_point = 0;
  last_call_num = 0;
  allocno_saved_at_call
    = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
  memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
  ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
			  process_bb_node_lives);
  ira_max_point = curr_point;
  create_start_finish_chains ();
  if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
    print_live_ranges (ira_dump_file);
  /* Clean up.  */
  ira_free (allocno_saved_at_call);
  sparseset_free (objects_live);
  sparseset_free (allocnos_processed);
}

/* Compress allocno live ranges.  */
void
ira_compress_allocno_live_ranges (void)
{
  remove_some_program_points_and_update_live_ranges ();
  ira_rebuild_start_finish_chains ();
  if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
    {
      fprintf (ira_dump_file, "Ranges after the compression:\n");
      print_live_ranges (ira_dump_file);
    }
}

/* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES.  */
void
ira_finish_allocno_live_ranges (void)
{
  ira_free (ira_finish_point_ranges);
  ira_free (ira_start_point_ranges);
}