Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
/* This is a software floating point library which can be used
   for targets without hardware floating point. 
   Copyright (C) 1994-2020 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/* This implements IEEE 754 format arithmetic, but does not provide a
   mechanism for setting the rounding mode, or for generating or handling
   exceptions.

   The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
   Wilson, all of Cygnus Support.  */

/* The intended way to use this file is to make two copies, add `#define FLOAT'
   to one copy, then compile both copies and add them to libgcc.a.  */

#include "tconfig.h"
#include "coretypes.h"
#include "tm.h"
#include "libgcc_tm.h"
#include "fp-bit.h"

/* The following macros can be defined to change the behavior of this file:
   FLOAT: Implement a `float', aka SFmode, fp library.  If this is not
     defined, then this file implements a `double', aka DFmode, fp library.
   FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
     don't include float->double conversion which requires the double library.
     This is useful only for machines which can't support doubles, e.g. some
     8-bit processors.
   CMPtype: Specify the type that floating point compares should return.
     This defaults to SItype, aka int.
   _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
     two integers to the FLO_union_type.
   NO_DENORMALS: Disable handling of denormals.
   NO_NANS: Disable nan and infinity handling
   SMALL_MACHINE: Useful when operations on QIs and HIs are faster
     than on an SI */

/* We don't currently support extended floats (long doubles) on machines
   without hardware to deal with them.

   These stubs are just to keep the linker from complaining about unresolved
   references which can be pulled in from libio & libstdc++, even if the
   user isn't using long doubles.  However, they may generate an unresolved
   external to abort if abort is not used by the function, and the stubs
   are referenced from within libc, since libgcc goes before and after the
   system library.  */

#ifdef DECLARE_LIBRARY_RENAMES
  DECLARE_LIBRARY_RENAMES
#endif

#ifdef EXTENDED_FLOAT_STUBS
extern void abort (void);
void __extendsfxf2 (void) { abort(); }
void __extenddfxf2 (void) { abort(); }
void __truncxfdf2 (void) { abort(); }
void __truncxfsf2 (void) { abort(); }
void __fixxfsi (void) { abort(); }
void __floatsixf (void) { abort(); }
void __addxf3 (void) { abort(); }
void __subxf3 (void) { abort(); }
void __mulxf3 (void) { abort(); }
void __divxf3 (void) { abort(); }
void __negxf2 (void) { abort(); }
void __eqxf2 (void) { abort(); }
void __nexf2 (void) { abort(); }
void __gtxf2 (void) { abort(); }
void __gexf2 (void) { abort(); }
void __lexf2 (void) { abort(); }
void __ltxf2 (void) { abort(); }

void __extendsftf2 (void) { abort(); }
void __extenddftf2 (void) { abort(); }
void __trunctfdf2 (void) { abort(); }
void __trunctfsf2 (void) { abort(); }
void __fixtfsi (void) { abort(); }
void __floatsitf (void) { abort(); }
void __addtf3 (void) { abort(); }
void __subtf3 (void) { abort(); }
void __multf3 (void) { abort(); }
void __divtf3 (void) { abort(); }
void __negtf2 (void) { abort(); }
void __eqtf2 (void) { abort(); }
void __netf2 (void) { abort(); }
void __gttf2 (void) { abort(); }
void __getf2 (void) { abort(); }
void __letf2 (void) { abort(); }
void __lttf2 (void) { abort(); }
#else	/* !EXTENDED_FLOAT_STUBS, rest of file */

/* IEEE "special" number predicates */

#ifdef NO_NANS

#define nan() 0
#define isnan(x) 0
#define isinf(x) 0
#else

#if   defined L_thenan_sf
const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
#elif defined L_thenan_df
const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} };
#elif defined L_thenan_tf
const fp_number_type __thenan_tf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
#elif defined TFLOAT
extern const fp_number_type __thenan_tf;
#elif defined FLOAT
extern const fp_number_type __thenan_sf;
#else
extern const fp_number_type __thenan_df;
#endif

INLINE
static const fp_number_type *
makenan (void)
{
#ifdef TFLOAT
  return & __thenan_tf;
#elif defined FLOAT  
  return & __thenan_sf;
#else
  return & __thenan_df;
#endif
}

INLINE
static int
isnan (const fp_number_type *x)
{
  return __builtin_expect (x->class == CLASS_SNAN || x->class == CLASS_QNAN,
			   0);
}

INLINE
static int
isinf (const fp_number_type *  x)
{
  return __builtin_expect (x->class == CLASS_INFINITY, 0);
}

#endif /* NO_NANS */

INLINE
static int
iszero (const fp_number_type *  x)
{
  return x->class == CLASS_ZERO;
}

INLINE 
static void
flip_sign ( fp_number_type *  x)
{
  x->sign = !x->sign;
}

/* Count leading zeroes in N.  */
INLINE
static int
clzusi (USItype n)
{
  extern int __clzsi2 (USItype);
  if (sizeof (USItype) == sizeof (unsigned int))
    return __builtin_clz (n);
  else if (sizeof (USItype) == sizeof (unsigned long))
    return __builtin_clzl (n);
  else if (sizeof (USItype) == sizeof (unsigned long long))
    return __builtin_clzll (n);
  else
    return __clzsi2 (n);
}

extern FLO_type pack_d (const fp_number_type * );

#if defined(L_pack_df) || defined(L_pack_sf) || defined(L_pack_tf)
FLO_type
pack_d (const fp_number_type *src)
{
  FLO_union_type dst;
  fractype fraction = src->fraction.ll;	/* wasn't unsigned before? */
  int sign = src->sign;
  int exp = 0;

  if (isnan (src))
    {
      exp = EXPMAX;
      /* Restore the NaN's payload.  */
      fraction >>= NGARDS;
      fraction &= QUIET_NAN - 1;
      if (src->class == CLASS_QNAN || 1)
	{
#ifdef QUIET_NAN_NEGATED
	  /* The quiet/signaling bit remains unset.  */
	  /* Make sure the fraction has a non-zero value.  */
	  if (fraction == 0)
	    fraction |= QUIET_NAN - 1;
#else
	  /* Set the quiet/signaling bit.  */
	  fraction |= QUIET_NAN;
#endif
	}
    }
  else if (isinf (src))
    {
      exp = EXPMAX;
      fraction = 0;
    }
  else if (iszero (src))
    {
      exp = 0;
      fraction = 0;
    }
  else if (fraction == 0)
    {
      exp = 0;
    }
  else
    {
      if (__builtin_expect (src->normal_exp < NORMAL_EXPMIN, 0))
	{
#ifdef NO_DENORMALS
	  /* Go straight to a zero representation if denormals are not
 	     supported.  The denormal handling would be harmless but
 	     isn't unnecessary.  */
	  exp = 0;
	  fraction = 0;
#else /* NO_DENORMALS */
	  /* This number's exponent is too low to fit into the bits
	     available in the number, so we'll store 0 in the exponent and
	     shift the fraction to the right to make up for it.  */

	  int shift = NORMAL_EXPMIN - src->normal_exp;

	  exp = 0;

	  if (shift > FRAC_NBITS - NGARDS)
	    {
	      /* No point shifting, since it's more that 64 out.  */
	      fraction = 0;
	    }
	  else
	    {
	      int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0;
	      fraction = (fraction >> shift) | lowbit;
	    }
	  if ((fraction & GARDMASK) == GARDMSB)
	    {
	      if ((fraction & (1 << NGARDS)))
		fraction += GARDROUND + 1;
	    }
	  else
	    {
	      /* Add to the guards to round up.  */
	      fraction += GARDROUND;
	    }
	  /* Perhaps the rounding means we now need to change the
             exponent, because the fraction is no longer denormal.  */
	  if (fraction >= IMPLICIT_1)
	    {
	      exp += 1;
	    }
	  fraction >>= NGARDS;
#endif /* NO_DENORMALS */
	}
      else if (__builtin_expect (src->normal_exp > EXPBIAS, 0))
	{
	  exp = EXPMAX;
	  fraction = 0;
	}
      else
	{
	  exp = src->normal_exp + EXPBIAS;
	  /* IF the gard bits are the all zero, but the first, then we're
	     half way between two numbers, choose the one which makes the
	     lsb of the answer 0.  */
	  if ((fraction & GARDMASK) == GARDMSB)
	    {
	      if (fraction & (1 << NGARDS))
		fraction += GARDROUND + 1;
	    }
	  else
	    {
	      /* Add a one to the guards to round up */
	      fraction += GARDROUND;
	    }
	  if (fraction >= IMPLICIT_2)
	    {
	      fraction >>= 1;
	      exp += 1;
	    }
	  fraction >>= NGARDS;
	}
    }

  /* We previously used bitfields to store the number, but this doesn't
     handle little/big endian systems conveniently, so use shifts and
     masks */
#if defined TFLOAT && defined HALFFRACBITS
 {
   halffractype high, low, unity;
   int lowsign, lowexp;

   unity = (halffractype) 1 << HALFFRACBITS;

   /* Set HIGH to the high double's significand, masking out the implicit 1.
      Set LOW to the low double's full significand.  */
   high = (fraction >> (FRACBITS - HALFFRACBITS)) & (unity - 1);
   low = fraction & (unity * 2 - 1);

   /* Get the initial sign and exponent of the low double.  */
   lowexp = exp - HALFFRACBITS - 1;
   lowsign = sign;

   /* HIGH should be rounded like a normal double, making |LOW| <=
      0.5 ULP of HIGH.  Assume round-to-nearest.  */
   if (exp < EXPMAX)
     if (low > unity || (low == unity && (high & 1) == 1))
       {
	 /* Round HIGH up and adjust LOW to match.  */
	 high++;
	 if (high == unity)
	   {
	     /* May make it infinite, but that's OK.  */
	     high = 0;
	     exp++;
	   }
	 low = unity * 2 - low;
	 lowsign ^= 1;
       }

   high |= (halffractype) exp << HALFFRACBITS;
   high |= (halffractype) sign << (HALFFRACBITS + EXPBITS);

   if (exp == EXPMAX || exp == 0 || low == 0)
     low = 0;
   else
     {
       while (lowexp > 0 && low < unity)
	 {
	   low <<= 1;
	   lowexp--;
	 }

       if (lowexp <= 0)
	 {
	   halffractype roundmsb, round;
	   int shift;

	   shift = 1 - lowexp;
	   roundmsb = (1 << (shift - 1));
	   round = low & ((roundmsb << 1) - 1);

	   low >>= shift;
	   lowexp = 0;

	   if (round > roundmsb || (round == roundmsb && (low & 1) == 1))
	     {
	       low++;
	       if (low == unity)
		 /* LOW rounds up to the smallest normal number.  */
		 lowexp++;
	     }
	 }

       low &= unity - 1;
       low |= (halffractype) lowexp << HALFFRACBITS;
       low |= (halffractype) lowsign << (HALFFRACBITS + EXPBITS);
     }
   dst.value_raw = ((fractype) high << HALFSHIFT) | low;
 }
#else
  dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1);
  dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS;
  dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS);
#endif

#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
#ifdef TFLOAT
  {
    qrtrfractype tmp1 = dst.words[0];
    qrtrfractype tmp2 = dst.words[1];
    dst.words[0] = dst.words[3];
    dst.words[1] = dst.words[2];
    dst.words[2] = tmp2;
    dst.words[3] = tmp1;
  }
#else
  {
    halffractype tmp = dst.words[0];
    dst.words[0] = dst.words[1];
    dst.words[1] = tmp;
  }
#endif
#endif

  return dst.value;
}
#endif

#if defined(L_unpack_df) || defined(L_unpack_sf) || defined(L_unpack_tf)
void
unpack_d (FLO_union_type * src, fp_number_type * dst)
{
  /* We previously used bitfields to store the number, but this doesn't
     handle little/big endian systems conveniently, so use shifts and
     masks */
  fractype fraction;
  int exp;
  int sign;

#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
  FLO_union_type swapped;

#ifdef TFLOAT
  swapped.words[0] = src->words[3];
  swapped.words[1] = src->words[2];
  swapped.words[2] = src->words[1];
  swapped.words[3] = src->words[0];
#else
  swapped.words[0] = src->words[1];
  swapped.words[1] = src->words[0];
#endif
  src = &swapped;
#endif
  
#if defined TFLOAT && defined HALFFRACBITS
 {
   halffractype high, low;
   
   high = src->value_raw >> HALFSHIFT;
   low = src->value_raw & (((fractype)1 << HALFSHIFT) - 1);

   fraction = high & ((((fractype)1) << HALFFRACBITS) - 1);
   fraction <<= FRACBITS - HALFFRACBITS;
   exp = ((int)(high >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
   sign = ((int)(high >> (((HALFFRACBITS + EXPBITS))))) & 1;

   if (exp != EXPMAX && exp != 0 && low != 0)
     {
       int lowexp = ((int)(low >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
       int lowsign = ((int)(low >> (((HALFFRACBITS + EXPBITS))))) & 1;
       int shift;
       fractype xlow;

       xlow = low & ((((fractype)1) << HALFFRACBITS) - 1);
       if (lowexp)
	 xlow |= (((halffractype)1) << HALFFRACBITS);
       else
	 lowexp = 1;
       shift = (FRACBITS - HALFFRACBITS) - (exp - lowexp);
       if (shift > 0)
	 xlow <<= shift;
       else if (shift < 0)
	 xlow >>= -shift;
       if (sign == lowsign)
	 fraction += xlow;
       else if (fraction >= xlow)
	 fraction -= xlow;
       else
	 {
	   /* The high part is a power of two but the full number is lower.
	      This code will leave the implicit 1 in FRACTION, but we'd
	      have added that below anyway.  */
	   fraction = (((fractype) 1 << FRACBITS) - xlow) << 1;
	   exp--;
	 }
     }
 }
#else
  fraction = src->value_raw & ((((fractype)1) << FRACBITS) - 1);
  exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1);
  sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1;
#endif

  dst->sign = sign;
  if (exp == 0)
    {
      /* Hmm.  Looks like 0 */
      if (fraction == 0
#ifdef NO_DENORMALS
	  || 1
#endif
	  )
	{
	  /* tastes like zero */
	  dst->class = CLASS_ZERO;
	}
      else
	{
	  /* Zero exponent with nonzero fraction - it's denormalized,
	     so there isn't a leading implicit one - we'll shift it so
	     it gets one.  */
	  dst->normal_exp = exp - EXPBIAS + 1;
	  fraction <<= NGARDS;

	  dst->class = CLASS_NUMBER;
#if 1
	  while (fraction < IMPLICIT_1)
	    {
	      fraction <<= 1;
	      dst->normal_exp--;
	    }
#endif
	  dst->fraction.ll = fraction;
	}
    }
  else if (__builtin_expect (exp == EXPMAX, 0))
    {
      /* Huge exponent*/
      if (fraction == 0)
	{
	  /* Attached to a zero fraction - means infinity */
	  dst->class = CLASS_INFINITY;
	}
      else
	{
	  /* Nonzero fraction, means nan */
#ifdef QUIET_NAN_NEGATED
	  if ((fraction & QUIET_NAN) == 0)
#else
	  if (fraction & QUIET_NAN)
#endif
	    {
	      dst->class = CLASS_QNAN;
	    }
	  else
	    {
	      dst->class = CLASS_SNAN;
	    }
	  /* Now that we know which kind of NaN we got, discard the
	     quiet/signaling bit, but do preserve the NaN payload.  */
	  fraction &= ~QUIET_NAN;
	  dst->fraction.ll = fraction << NGARDS;
	}
    }
  else
    {
      /* Nothing strange about this number */
      dst->normal_exp = exp - EXPBIAS;
      dst->class = CLASS_NUMBER;
      dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
    }
}
#endif /* L_unpack_df || L_unpack_sf */

#if defined(L_addsub_sf) || defined(L_addsub_df) || defined(L_addsub_tf)
static const fp_number_type *
_fpadd_parts (fp_number_type * a,
	      fp_number_type * b,
	      fp_number_type * tmp)
{
  intfrac tfraction;

  /* Put commonly used fields in local variables.  */
  int a_normal_exp;
  int b_normal_exp;
  fractype a_fraction;
  fractype b_fraction;

  if (isnan (a))
    {
      return a;
    }
  if (isnan (b))
    {
      return b;
    }
  if (isinf (a))
    {
      /* Adding infinities with opposite signs yields a NaN.  */
      if (isinf (b) && a->sign != b->sign)
	return makenan ();
      return a;
    }
  if (isinf (b))
    {
      return b;
    }
  if (iszero (b))
    {
      if (iszero (a))
	{
	  *tmp = *a;
	  tmp->sign = a->sign & b->sign;
	  return tmp;
	}
      return a;
    }
  if (iszero (a))
    {
      return b;
    }

  /* Got two numbers. shift the smaller and increment the exponent till
     they're the same */
  {
    int diff;
    int sdiff;

    a_normal_exp = a->normal_exp;
    b_normal_exp = b->normal_exp;
    a_fraction = a->fraction.ll;
    b_fraction = b->fraction.ll;

    diff = a_normal_exp - b_normal_exp;
    sdiff = diff;

    if (diff < 0)
      diff = -diff;
    if (diff < FRAC_NBITS)
      {
	if (sdiff > 0)
	  {
	    b_normal_exp += diff;
	    LSHIFT (b_fraction, diff);
	  }
	else if (sdiff < 0)
	  {
	    a_normal_exp += diff;
	    LSHIFT (a_fraction, diff);
	  }
      }
    else
      {
	/* Somethings's up.. choose the biggest */
	if (a_normal_exp > b_normal_exp)
	  {
	    b_normal_exp = a_normal_exp;
	    b_fraction = 0;
	  }
	else
	  {
	    a_normal_exp = b_normal_exp;
	    a_fraction = 0;
	  }
      }
  }

  if (a->sign != b->sign)
    {
      if (a->sign)
	{
	  tfraction = -a_fraction + b_fraction;
	}
      else
	{
	  tfraction = a_fraction - b_fraction;
	}
      if (tfraction >= 0)
	{
	  tmp->sign = 0;
	  tmp->normal_exp = a_normal_exp;
	  tmp->fraction.ll = tfraction;
	}
      else
	{
	  tmp->sign = 1;
	  tmp->normal_exp = a_normal_exp;
	  tmp->fraction.ll = -tfraction;
	}
      /* and renormalize it */

      while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
	{
	  tmp->fraction.ll <<= 1;
	  tmp->normal_exp--;
	}
    }
  else
    {
      tmp->sign = a->sign;
      tmp->normal_exp = a_normal_exp;
      tmp->fraction.ll = a_fraction + b_fraction;
    }
  tmp->class = CLASS_NUMBER;
  /* Now the fraction is added, we have to shift down to renormalize the
     number */

  if (tmp->fraction.ll >= IMPLICIT_2)
    {
      LSHIFT (tmp->fraction.ll, 1);
      tmp->normal_exp++;
    }
  return tmp;
}

FLO_type
add (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  fp_number_type tmp;
  const fp_number_type *res;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  res = _fpadd_parts (&a, &b, &tmp);

  return pack_d (res);
}

FLO_type
sub (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  fp_number_type tmp;
  const fp_number_type *res;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  b.sign ^= 1;

  res = _fpadd_parts (&a, &b, &tmp);

  return pack_d (res);
}
#endif /* L_addsub_sf || L_addsub_df */

#if defined(L_mul_sf) || defined(L_mul_df) || defined(L_mul_tf)
static inline __attribute__ ((__always_inline__)) const fp_number_type *
_fpmul_parts ( fp_number_type *  a,
	       fp_number_type *  b,
	       fp_number_type * tmp)
{
  fractype low = 0;
  fractype high = 0;

  if (isnan (a))
    {
      a->sign = a->sign != b->sign;
      return a;
    }
  if (isnan (b))
    {
      b->sign = a->sign != b->sign;
      return b;
    }
  if (isinf (a))
    {
      if (iszero (b))
	return makenan ();
      a->sign = a->sign != b->sign;
      return a;
    }
  if (isinf (b))
    {
      if (iszero (a))
	{
	  return makenan ();
	}
      b->sign = a->sign != b->sign;
      return b;
    }
  if (iszero (a))
    {
      a->sign = a->sign != b->sign;
      return a;
    }
  if (iszero (b))
    {
      b->sign = a->sign != b->sign;
      return b;
    }

  /* Calculate the mantissa by multiplying both numbers to get a
     twice-as-wide number.  */
  {
#if defined(NO_DI_MODE) || defined(TFLOAT)
    {
      fractype x = a->fraction.ll;
      fractype ylow = b->fraction.ll;
      fractype yhigh = 0;
      int bit;

      /* ??? This does multiplies one bit at a time.  Optimize.  */
      for (bit = 0; bit < FRAC_NBITS; bit++)
	{
	  int carry;

	  if (x & 1)
	    {
	      carry = (low += ylow) < ylow;
	      high += yhigh + carry;
	    }
	  yhigh <<= 1;
	  if (ylow & FRACHIGH)
	    {
	      yhigh |= 1;
	    }
	  ylow <<= 1;
	  x >>= 1;
	}
    }
#elif defined(FLOAT) 
    /* Multiplying two USIs to get a UDI, we're safe.  */
    {
      UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll;
      
      high = answer >> BITS_PER_SI;
      low = answer;
    }
#else
    /* fractype is DImode, but we need the result to be twice as wide.
       Assuming a widening multiply from DImode to TImode is not
       available, build one by hand.  */
    {
      USItype nl = a->fraction.ll;
      USItype nh = a->fraction.ll >> BITS_PER_SI;
      USItype ml = b->fraction.ll;
      USItype mh = b->fraction.ll >> BITS_PER_SI;
      UDItype pp_ll = (UDItype) ml * nl;
      UDItype pp_hl = (UDItype) mh * nl;
      UDItype pp_lh = (UDItype) ml * nh;
      UDItype pp_hh = (UDItype) mh * nh;
      UDItype res2 = 0;
      UDItype res0 = 0;
      UDItype ps_hh__ = pp_hl + pp_lh;
      if (ps_hh__ < pp_hl)
	res2 += (UDItype)1 << BITS_PER_SI;
      pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI;
      res0 = pp_ll + pp_hl;
      if (res0 < pp_ll)
	res2++;
      res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh;
      high = res2;
      low = res0;
    }
#endif
  }

  tmp->normal_exp = a->normal_exp + b->normal_exp
    + FRAC_NBITS - (FRACBITS + NGARDS);
  tmp->sign = a->sign != b->sign;
  while (high >= IMPLICIT_2)
    {
      tmp->normal_exp++;
      if (high & 1)
	{
	  low >>= 1;
	  low |= FRACHIGH;
	}
      high >>= 1;
    }
  while (high < IMPLICIT_1)
    {
      tmp->normal_exp--;

      high <<= 1;
      if (low & FRACHIGH)
	high |= 1;
      low <<= 1;
    }

  if ((high & GARDMASK) == GARDMSB)
    {
      if (high & (1 << NGARDS))
	{
	  /* Because we're half way, we would round to even by adding
	     GARDROUND + 1, except that's also done in the packing
	     function, and rounding twice will lose precision and cause
	     the result to be too far off.  Example: 32-bit floats with
	     bit patterns 0xfff * 0x3f800400 ~= 0xfff (less than 0.5ulp
	     off), not 0x1000 (more than 0.5ulp off).  */
	}
      else if (low)
	{
	  /* We're a further than half way by a small amount corresponding
	     to the bits set in "low".  Knowing that, we round here and
	     not in pack_d, because there we don't have "low" available
	     anymore.  */
	  high += GARDROUND + 1;

	  /* Avoid further rounding in pack_d.  */
	  high &= ~(fractype) GARDMASK;
	}
    }
  tmp->fraction.ll = high;
  tmp->class = CLASS_NUMBER;
  return tmp;
}

FLO_type
multiply (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  fp_number_type tmp;
  const fp_number_type *res;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  res = _fpmul_parts (&a, &b, &tmp);

  return pack_d (res);
}
#endif /* L_mul_sf || L_mul_df || L_mul_tf */

#if defined(L_div_sf) || defined(L_div_df) || defined(L_div_tf)
static inline __attribute__ ((__always_inline__)) const fp_number_type *
_fpdiv_parts (fp_number_type * a,
	      fp_number_type * b)
{
  fractype bit;
  fractype numerator;
  fractype denominator;
  fractype quotient;

  if (isnan (a))
    {
      return a;
    }
  if (isnan (b))
    {
      return b;
    }

  a->sign = a->sign ^ b->sign;

  if (isinf (a) || iszero (a))
    {
      if (a->class == b->class)
	return makenan ();
      return a;
    }

  if (isinf (b))
    {
      a->fraction.ll = 0;
      a->normal_exp = 0;
      return a;
    }
  if (iszero (b))
    {
      a->class = CLASS_INFINITY;
      return a;
    }

  /* Calculate the mantissa by multiplying both 64bit numbers to get a
     128 bit number */
  {
    /* quotient =
       ( numerator / denominator) * 2^(numerator exponent -  denominator exponent)
     */

    a->normal_exp = a->normal_exp - b->normal_exp;
    numerator = a->fraction.ll;
    denominator = b->fraction.ll;

    if (numerator < denominator)
      {
	/* Fraction will be less than 1.0 */
	numerator *= 2;
	a->normal_exp--;
      }
    bit = IMPLICIT_1;
    quotient = 0;
    /* ??? Does divide one bit at a time.  Optimize.  */
    while (bit)
      {
	if (numerator >= denominator)
	  {
	    quotient |= bit;
	    numerator -= denominator;
	  }
	bit >>= 1;
	numerator *= 2;
      }

    if ((quotient & GARDMASK) == GARDMSB)
      {
	if (quotient & (1 << NGARDS))
	  {
	    /* Because we're half way, we would round to even by adding
	       GARDROUND + 1, except that's also done in the packing
	       function, and rounding twice will lose precision and cause
	       the result to be too far off.  */
	  }
	else if (numerator)
	  {
	    /* We're a further than half way by the small amount
	       corresponding to the bits set in "numerator".  Knowing
	       that, we round here and not in pack_d, because there we
	       don't have "numerator" available anymore.  */
	    quotient += GARDROUND + 1;

	    /* Avoid further rounding in pack_d.  */
	    quotient &= ~(fractype) GARDMASK;
	  }
      }

    a->fraction.ll = quotient;
    return (a);
  }
}

FLO_type
divide (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  const fp_number_type *res;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  res = _fpdiv_parts (&a, &b);

  return pack_d (res);
}
#endif /* L_div_sf || L_div_df */

#if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) \
    || defined(L_fpcmp_parts_tf)
/* according to the demo, fpcmp returns a comparison with 0... thus
   a<b -> -1
   a==b -> 0
   a>b -> +1
 */

int
__fpcmp_parts (fp_number_type * a, fp_number_type * b)
{
#if 0
  /* either nan -> unordered. Must be checked outside of this routine.  */
  if (isnan (a) && isnan (b))
    {
      return 1;			/* still unordered! */
    }
#endif

  if (isnan (a) || isnan (b))
    {
      return 1;			/* how to indicate unordered compare? */
    }
  if (isinf (a) && isinf (b))
    {
      /* +inf > -inf, but +inf != +inf */
      /* b    \a| +inf(0)| -inf(1)
       ______\+--------+--------
       +inf(0)| a==b(0)| a<b(-1)
       -------+--------+--------
       -inf(1)| a>b(1) | a==b(0)
       -------+--------+--------
       So since unordered must be nonzero, just line up the columns...
       */
      return b->sign - a->sign;
    }
  /* but not both...  */
  if (isinf (a))
    {
      return a->sign ? -1 : 1;
    }
  if (isinf (b))
    {
      return b->sign ? 1 : -1;
    }
  if (iszero (a) && iszero (b))
    {
      return 0;
    }
  if (iszero (a))
    {
      return b->sign ? 1 : -1;
    }
  if (iszero (b))
    {
      return a->sign ? -1 : 1;
    }
  /* now both are "normal".  */
  if (a->sign != b->sign)
    {
      /* opposite signs */
      return a->sign ? -1 : 1;
    }
  /* same sign; exponents? */
  if (a->normal_exp > b->normal_exp)
    {
      return a->sign ? -1 : 1;
    }
  if (a->normal_exp < b->normal_exp)
    {
      return a->sign ? 1 : -1;
    }
  /* same exponents; check size.  */
  if (a->fraction.ll > b->fraction.ll)
    {
      return a->sign ? -1 : 1;
    }
  if (a->fraction.ll < b->fraction.ll)
    {
      return a->sign ? 1 : -1;
    }
  /* after all that, they're equal.  */
  return 0;
}
#endif

#if defined(L_compare_sf) || defined(L_compare_df) || defined(L_compoare_tf)
CMPtype
compare (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  return __fpcmp_parts (&a, &b);
}
#endif /* L_compare_sf || L_compare_df */

/* These should be optimized for their specific tasks someday.  */

#if defined(L_eq_sf) || defined(L_eq_df) || defined(L_eq_tf)
CMPtype
_eq_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* false, truth == 0 */

  return __fpcmp_parts (&a, &b) ;
}
#endif /* L_eq_sf || L_eq_df */

#if defined(L_ne_sf) || defined(L_ne_df) || defined(L_ne_tf)
CMPtype
_ne_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* true, truth != 0 */

  return  __fpcmp_parts (&a, &b) ;
}
#endif /* L_ne_sf || L_ne_df */

#if defined(L_gt_sf) || defined(L_gt_df) || defined(L_gt_tf)
CMPtype
_gt_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  if (isnan (&a) || isnan (&b))
    return -1;			/* false, truth > 0 */

  return __fpcmp_parts (&a, &b);
}
#endif /* L_gt_sf || L_gt_df */

#if defined(L_ge_sf) || defined(L_ge_df) || defined(L_ge_tf)
CMPtype
_ge_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  if (isnan (&a) || isnan (&b))
    return -1;			/* false, truth >= 0 */
  return __fpcmp_parts (&a, &b) ;
}
#endif /* L_ge_sf || L_ge_df */

#if defined(L_lt_sf) || defined(L_lt_df) || defined(L_lt_tf)
CMPtype
_lt_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* false, truth < 0 */

  return __fpcmp_parts (&a, &b);
}
#endif /* L_lt_sf || L_lt_df */

#if defined(L_le_sf) || defined(L_le_df) || defined(L_le_tf)
CMPtype
_le_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  if (isnan (&a) || isnan (&b))
    return 1;			/* false, truth <= 0 */

  return __fpcmp_parts (&a, &b) ;
}
#endif /* L_le_sf || L_le_df */

#if defined(L_unord_sf) || defined(L_unord_df) || defined(L_unord_tf)
CMPtype
_unord_f2 (FLO_type arg_a, FLO_type arg_b)
{
  fp_number_type a;
  fp_number_type b;
  FLO_union_type au, bu;

  au.value = arg_a;
  bu.value = arg_b;

  unpack_d (&au, &a);
  unpack_d (&bu, &b);

  return (isnan (&a) || isnan (&b));
}
#endif /* L_unord_sf || L_unord_df */

#if defined(L_si_to_sf) || defined(L_si_to_df) || defined(L_si_to_tf)
FLO_type
si_to_float (SItype arg_a)
{
  fp_number_type in;

  in.class = CLASS_NUMBER;
  in.sign = arg_a < 0;
  if (!arg_a)
    {
      in.class = CLASS_ZERO;
    }
  else
    {
      USItype uarg;
      int shift;
      in.normal_exp = FRACBITS + NGARDS;
      if (in.sign) 
	{
	  /* Special case for minint, since there is no +ve integer
	     representation for it */
	  if (arg_a == (- MAX_SI_INT - 1))
	    {
	      return (FLO_type)(- MAX_SI_INT - 1);
	    }
	  uarg = (-arg_a);
	}
      else
	uarg = arg_a;

      in.fraction.ll = uarg;
      shift = clzusi (uarg) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
      if (shift > 0)
	{
	  in.fraction.ll <<= shift;
	  in.normal_exp -= shift;
	}
    }
  return pack_d (&in);
}
#endif /* L_si_to_sf || L_si_to_df */

#if defined(L_usi_to_sf) || defined(L_usi_to_df) || defined(L_usi_to_tf)
FLO_type
usi_to_float (USItype arg_a)
{
  fp_number_type in;

  in.sign = 0;
  if (!arg_a)
    {
      in.class = CLASS_ZERO;
    }
  else
    {
      int shift;
      in.class = CLASS_NUMBER;
      in.normal_exp = FRACBITS + NGARDS;
      in.fraction.ll = arg_a;

      shift = clzusi (arg_a) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
      if (shift < 0)
	{
	  fractype guard = in.fraction.ll & (((fractype)1 << -shift) - 1);
	  in.fraction.ll >>= -shift;
	  in.fraction.ll |= (guard != 0);
	  in.normal_exp -= shift;
	}
      else if (shift > 0)
	{
	  in.fraction.ll <<= shift;
	  in.normal_exp -= shift;
	}
    }
  return pack_d (&in);
}
#endif

#if defined(L_sf_to_si) || defined(L_df_to_si) || defined(L_tf_to_si)
SItype
float_to_si (FLO_type arg_a)
{
  fp_number_type a;
  SItype tmp;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &a);

  if (iszero (&a))
    return 0;
  if (isnan (&a))
    return 0;
  /* get reasonable MAX_SI_INT...  */
  if (isinf (&a))
    return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
  /* it is a number, but a small one */
  if (a.normal_exp < 0)
    return 0;
  if (a.normal_exp > BITS_PER_SI - 2)
    return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
  tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
  return a.sign ? (-tmp) : (tmp);
}
#endif /* L_sf_to_si || L_df_to_si */

#if defined(L_tf_to_usi)
USItype
float_to_usi (FLO_type arg_a)
{
  fp_number_type a;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &a);

  if (iszero (&a))
    return 0;
  if (isnan (&a))
    return 0;
  /* it is a negative number */
  if (a.sign)
    return 0;
  /* get reasonable MAX_USI_INT...  */
  if (isinf (&a))
    return MAX_USI_INT;
  /* it is a number, but a small one */
  if (a.normal_exp < 0)
    return 0;
  if (a.normal_exp > BITS_PER_SI - 1)
    return MAX_USI_INT;
  else if (a.normal_exp > (FRACBITS + NGARDS))
    return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS));
  else
    return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
}
#endif /* L_tf_to_usi */

#if defined(L_negate_sf) || defined(L_negate_df) || defined(L_negate_tf)
FLO_type
negate (FLO_type arg_a)
{
  fp_number_type a;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &a);

  flip_sign (&a);
  return pack_d (&a);
}
#endif /* L_negate_sf || L_negate_df */

#ifdef FLOAT

#if defined(L_make_sf)
SFtype
__make_fp(fp_class_type class,
	     unsigned int sign,
	     int exp, 
	     USItype frac)
{
  fp_number_type in;

  in.class = class;
  in.sign = sign;
  in.normal_exp = exp;
  in.fraction.ll = frac;
  return pack_d (&in);
}
#endif /* L_make_sf */

#ifndef FLOAT_ONLY

/* This enables one to build an fp library that supports float but not double.
   Otherwise, we would get an undefined reference to __make_dp.
   This is needed for some 8-bit ports that can't handle well values that
   are 8-bytes in size, so we just don't support double for them at all.  */

#if defined(L_sf_to_df)
DFtype
sf_to_df (SFtype arg_a)
{
  fp_number_type in;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &in);

  return __make_dp (in.class, in.sign, in.normal_exp,
		    ((UDItype) in.fraction.ll) << F_D_BITOFF);
}
#endif /* L_sf_to_df */

#if defined(L_sf_to_tf) && defined(TMODES)
TFtype
sf_to_tf (SFtype arg_a)
{
  fp_number_type in;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &in);

  return __make_tp (in.class, in.sign, in.normal_exp,
		    ((UTItype) in.fraction.ll) << F_T_BITOFF);
}
#endif /* L_sf_to_df */

#endif /* ! FLOAT_ONLY */
#endif /* FLOAT */

#ifndef FLOAT

extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);

#if defined(L_make_df)
DFtype
__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
{
  fp_number_type in;

  in.class = class;
  in.sign = sign;
  in.normal_exp = exp;
  in.fraction.ll = frac;
  return pack_d (&in);
}
#endif /* L_make_df */

#if defined(L_df_to_sf)
SFtype
df_to_sf (DFtype arg_a)
{
  fp_number_type in;
  USItype sffrac;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &in);

  sffrac = in.fraction.ll >> F_D_BITOFF;

  /* We set the lowest guard bit in SFFRAC if we discarded any non
     zero bits.  */
  if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0)
    sffrac |= 1;

  return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
}
#endif /* L_df_to_sf */

#if defined(L_df_to_tf) && defined(TMODES) \
    && !defined(FLOAT) && !defined(TFLOAT)
TFtype
df_to_tf (DFtype arg_a)
{
  fp_number_type in;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &in);

  return __make_tp (in.class, in.sign, in.normal_exp,
		    ((UTItype) in.fraction.ll) << D_T_BITOFF);
}
#endif /* L_sf_to_df */

#ifdef TFLOAT
#if defined(L_make_tf)
TFtype
__make_tp(fp_class_type class,
	     unsigned int sign,
	     int exp, 
	     UTItype frac)
{
  fp_number_type in;

  in.class = class;
  in.sign = sign;
  in.normal_exp = exp;
  in.fraction.ll = frac;
  return pack_d (&in);
}
#endif /* L_make_tf */

#if defined(L_tf_to_df)
DFtype
tf_to_df (TFtype arg_a)
{
  fp_number_type in;
  UDItype sffrac;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &in);

  sffrac = in.fraction.ll >> D_T_BITOFF;

  /* We set the lowest guard bit in SFFRAC if we discarded any non
     zero bits.  */
  if ((in.fraction.ll & (((UTItype) 1 << D_T_BITOFF) - 1)) != 0)
    sffrac |= 1;

  return __make_dp (in.class, in.sign, in.normal_exp, sffrac);
}
#endif /* L_tf_to_df */

#if defined(L_tf_to_sf)
SFtype
tf_to_sf (TFtype arg_a)
{
  fp_number_type in;
  USItype sffrac;
  FLO_union_type au;

  au.value = arg_a;
  unpack_d (&au, &in);

  sffrac = in.fraction.ll >> F_T_BITOFF;

  /* We set the lowest guard bit in SFFRAC if we discarded any non
     zero bits.  */
  if ((in.fraction.ll & (((UTItype) 1 << F_T_BITOFF) - 1)) != 0)
    sffrac |= 1;

  return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
}
#endif /* L_tf_to_sf */
#endif /* TFLOAT */

#endif /* ! FLOAT */
#endif /* !EXTENDED_FLOAT_STUBS */