Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
// Written in the D programming language.
/**
This is a submodule of $(MREF std, algorithm).
It contains generic _mutation algorithms.

$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE Cheat Sheet,
$(TR $(TH Function Name) $(TH Description))
$(T2 bringToFront,
        If $(D a = [1, 2, 3]) and $(D b = [4, 5, 6, 7]),
        $(D bringToFront(a, b)) leaves $(D a = [4, 5, 6]) and
        $(D b = [7, 1, 2, 3]).)
$(T2 copy,
        Copies a range to another. If
        $(D a = [1, 2, 3]) and $(D b = new int[5]), then $(D copy(a, b))
        leaves $(D b = [1, 2, 3, 0, 0]) and returns $(D b[3 .. $]).)
$(T2 fill,
        Fills a range with a pattern,
        e.g., if $(D a = new int[3]), then $(D fill(a, 4))
        leaves $(D a = [4, 4, 4]) and $(D fill(a, [3, 4])) leaves
        $(D a = [3, 4, 3]).)
$(T2 initializeAll,
        If $(D a = [1.2, 3.4]), then $(D initializeAll(a)) leaves
        $(D a = [double.init, double.init]).)
$(T2 move,
        $(D move(a, b)) moves $(D a) into $(D b). $(D move(a)) reads $(D a)
        destructively when necessary.)
$(T2 moveEmplace,
        Similar to $(D move) but assumes `target` is uninitialized.)
$(T2 moveAll,
        Moves all elements from one range to another.)
$(T2 moveEmplaceAll,
        Similar to $(D moveAll) but assumes all elements in `target` are uninitialized.)
$(T2 moveSome,
        Moves as many elements as possible from one range to another.)
$(T2 moveEmplaceSome,
        Similar to $(D moveSome) but assumes all elements in `target` are uninitialized.)
$(T2 remove,
        Removes elements from a range in-place, and returns the shortened
        range.)
$(T2 reverse,
        If $(D a = [1, 2, 3]), $(D reverse(a)) changes it to $(D [3, 2, 1]).)
$(T2 strip,
        Strips all leading and trailing elements equal to a value, or that
        satisfy a predicate.
        If $(D a = [1, 1, 0, 1, 1]), then $(D strip(a, 1)) and
        $(D strip!(e => e == 1)(a)) returns $(D [0]).)
$(T2 stripLeft,
        Strips all leading elements equal to a value, or that satisfy a
        predicate.  If $(D a = [1, 1, 0, 1, 1]), then $(D stripLeft(a, 1)) and
        $(D stripLeft!(e => e == 1)(a)) returns $(D [0, 1, 1]).)
$(T2 stripRight,
        Strips all trailing elements equal to a value, or that satisfy a
        predicate.
        If $(D a = [1, 1, 0, 1, 1]), then $(D stripRight(a, 1)) and
        $(D stripRight!(e => e == 1)(a)) returns $(D [1, 1, 0]).)
$(T2 swap,
        Swaps two values.)
$(T2 swapAt,
        Swaps two values by indices.)
$(T2 swapRanges,
        Swaps all elements of two ranges.)
$(T2 uninitializedFill,
        Fills a range (assumed uninitialized) with a value.)
)

Copyright: Andrei Alexandrescu 2008-.

License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).

Authors: $(HTTP erdani.com, Andrei Alexandrescu)

Source: $(PHOBOSSRC std/algorithm/_mutation.d)

Macros:
T2=$(TR $(TDNW $(LREF $1)) $(TD $+))
 */
module std.algorithm.mutation;

import std.range.primitives;
import std.traits : isArray, isBlitAssignable, isNarrowString, Unqual, isSomeChar;
// FIXME
import std.typecons; // : tuple, Tuple;

// bringToFront
/**
The $(D bringToFront) function has considerable flexibility and
usefulness. It can rotate elements in one buffer left or right, swap
buffers of equal length, and even move elements across disjoint
buffers of different types and different lengths.

$(D bringToFront) takes two ranges $(D front) and $(D back), which may
be of different types. Considering the concatenation of $(D front) and
$(D back) one unified range, $(D bringToFront) rotates that unified
range such that all elements in $(D back) are brought to the beginning
of the unified range. The relative ordering of elements in $(D front)
and $(D back), respectively, remains unchanged.

The $(D bringToFront) function treats strings at the code unit
level and it is not concerned with Unicode character integrity.
$(D bringToFront) is designed as a function for moving elements
in ranges, not as a string function.

Performs $(BIGOH max(front.length, back.length)) evaluations of $(D
swap).

Preconditions:

Either $(D front) and $(D back) are disjoint, or $(D back) is
reachable from $(D front) and $(D front) is not reachable from $(D
back).

Params:
    front = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
    back = a $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)

Returns:
    The number of elements brought to the front, i.e., the length of $(D back).

See_Also:
    $(HTTP sgi.com/tech/stl/_rotate.html, STL's rotate)
*/
size_t bringToFront(InputRange, ForwardRange)(InputRange front, ForwardRange back)
if (isInputRange!InputRange && isForwardRange!ForwardRange)
{
    import std.string : representation;

    static if (isNarrowString!InputRange)
    {
        auto frontW = representation(front);
    }
    else
    {
        alias frontW = front;
    }
    static if (isNarrowString!ForwardRange)
    {
        auto backW = representation(back);
    }
    else
    {
        alias backW = back;
    }

    return bringToFrontImpl(frontW, backW);
}

private size_t bringToFrontImpl(InputRange, ForwardRange)(InputRange front, ForwardRange back)
if (isInputRange!InputRange && isForwardRange!ForwardRange)
{
    import std.array : sameHead;
    import std.range : take, Take;
    enum bool sameHeadExists = is(typeof(front.sameHead(back)));
    size_t result;

    for (bool semidone; !front.empty && !back.empty; )
    {
        static if (sameHeadExists)
        {
            if (front.sameHead(back)) break; // shortcut
        }
        // Swap elements until front and/or back ends.
        auto back0 = back.save;
        size_t nswaps;
        do
        {
            static if (sameHeadExists)
            {
                // Detect the stepping-over condition.
                if (front.sameHead(back0)) back0 = back.save;
            }
            swapFront(front, back);
            ++nswaps;
            front.popFront();
            back.popFront();
        }
        while (!front.empty && !back.empty);

        if (!semidone) result += nswaps;

        // Now deal with the remaining elements.
        if (back.empty)
        {
            if (front.empty) break;
            // Right side was shorter, which means that we've brought
            // all the back elements to the front.
            semidone = true;
            // Next pass: bringToFront(front, back0) to adjust the rest.
            back = back0;
        }
        else
        {
            assert(front.empty);
            // Left side was shorter. Let's step into the back.
            static if (is(InputRange == Take!ForwardRange))
            {
                front = take(back0, nswaps);
            }
            else
            {
                immutable subresult = bringToFront(take(back0, nswaps),
                                                   back);
                if (!semidone) result += subresult;
                break; // done
            }
        }
    }
    return result;
}

/**
The simplest use of $(D bringToFront) is for rotating elements in a
buffer. For example:
*/
@safe unittest
{
    auto arr = [4, 5, 6, 7, 1, 2, 3];
    auto p = bringToFront(arr[0 .. 4], arr[4 .. $]);
    assert(p == arr.length - 4);
    assert(arr == [ 1, 2, 3, 4, 5, 6, 7 ]);
}

/**
The $(D front) range may actually "step over" the $(D back)
range. This is very useful with forward ranges that cannot compute
comfortably right-bounded subranges like $(D arr[0 .. 4]) above. In
the example below, $(D r2) is a right subrange of $(D r1).
*/
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.container : SList;
    import std.range.primitives : popFrontN;

    auto list = SList!(int)(4, 5, 6, 7, 1, 2, 3);
    auto r1 = list[];
    auto r2 = list[]; popFrontN(r2, 4);
    assert(equal(r2, [ 1, 2, 3 ]));
    bringToFront(r1, r2);
    assert(equal(list[], [ 1, 2, 3, 4, 5, 6, 7 ]));
}

/**
Elements can be swapped across ranges of different types:
*/
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.container : SList;

    auto list = SList!(int)(4, 5, 6, 7);
    auto vec = [ 1, 2, 3 ];
    bringToFront(list[], vec);
    assert(equal(list[], [ 1, 2, 3, 4 ]));
    assert(equal(vec, [ 5, 6, 7 ]));
}

/**
Unicode integrity is not preserved:
*/
@safe unittest
{
    import std.string : representation;
    auto ar = representation("a".dup);
    auto br = representation("ç".dup);

    bringToFront(ar, br);

    auto a = cast(char[]) ar;
    auto b = cast(char[]) br;

    // Illegal UTF-8
    assert(a == "\303");
    // Illegal UTF-8
    assert(b == "\247a");
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.conv : text;
    import std.random : Random, unpredictableSeed, uniform;

    // a more elaborate test
    {
        auto rnd = Random(unpredictableSeed);
        int[] a = new int[uniform(100, 200, rnd)];
        int[] b = new int[uniform(100, 200, rnd)];
        foreach (ref e; a) e = uniform(-100, 100, rnd);
        foreach (ref e; b) e = uniform(-100, 100, rnd);
        int[] c = a ~ b;
        // writeln("a= ", a);
        // writeln("b= ", b);
        auto n = bringToFront(c[0 .. a.length], c[a.length .. $]);
        //writeln("c= ", c);
        assert(n == b.length);
        assert(c == b ~ a, text(c, "\n", a, "\n", b));
    }
    // different types, moveFront, no sameHead
    {
        static struct R(T)
        {
            T[] data;
            size_t i;
            @property
            {
                R save() { return this; }
                bool empty() { return i >= data.length; }
                T front() { return data[i]; }
                T front(real e) { return data[i] = cast(T) e; }
            }
            void popFront() { ++i; }
        }
        auto a = R!int([1, 2, 3, 4, 5]);
        auto b = R!real([6, 7, 8, 9]);
        auto n = bringToFront(a, b);
        assert(n == 4);
        assert(a.data == [6, 7, 8, 9, 1]);
        assert(b.data == [2, 3, 4, 5]);
    }
    // front steps over back
    {
        int[] arr, r1, r2;

        // back is shorter
        arr = [4, 5, 6, 7, 1, 2, 3];
        r1 = arr;
        r2 = arr[4 .. $];
        bringToFront(r1, r2) == 3 || assert(0);
        assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));

        // front is shorter
        arr = [5, 6, 7, 1, 2, 3, 4];
        r1 = arr;
        r2 = arr[3 .. $];
        bringToFront(r1, r2) == 4 || assert(0);
        assert(equal(arr, [1, 2, 3, 4, 5, 6, 7]));
    }

    // Bugzilla 16959
    auto arr = ['4', '5', '6', '7', '1', '2', '3'];
    auto p = bringToFront(arr[0 .. 4], arr[4 .. $]);

    assert(p == arr.length - 4);
    assert(arr == ['1', '2', '3', '4', '5', '6', '7']);
}

// Tests if types are arrays and support slice assign.
private enum bool areCopyCompatibleArrays(T1, T2) =
    isArray!T1 && isArray!T2 && is(typeof(T2.init[] = T1.init[]));

// copy
/**
Copies the content of $(D source) into $(D target) and returns the
remaining (unfilled) part of $(D target).

Preconditions: $(D target) shall have enough room to accommodate
the entirety of $(D source).

Params:
    source = an $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
    target = an output range

Returns:
    The unfilled part of target

See_Also:
    $(HTTP sgi.com/tech/stl/_copy.html, STL's _copy)
 */
TargetRange copy(SourceRange, TargetRange)(SourceRange source, TargetRange target)
if (areCopyCompatibleArrays!(SourceRange, TargetRange))
{
    const tlen = target.length;
    const slen = source.length;
    assert(tlen >= slen,
            "Cannot copy a source range into a smaller target range.");

    immutable overlaps = __ctfe || () @trusted {
        return source.ptr < target.ptr + tlen &&
               target.ptr < source.ptr + slen; }();

    if (overlaps)
    {
        foreach (idx; 0 .. slen)
            target[idx] = source[idx];
        return target[slen .. tlen];
    }
    else
    {
        // Array specialization.  This uses optimized memory copying
        // routines under the hood and is about 10-20x faster than the
        // generic implementation.
        target[0 .. slen] = source[];
        return target[slen .. $];
    }
}

/// ditto
TargetRange copy(SourceRange, TargetRange)(SourceRange source, TargetRange target)
if (!areCopyCompatibleArrays!(SourceRange, TargetRange) &&
    isInputRange!SourceRange &&
    isOutputRange!(TargetRange, ElementType!SourceRange))
{
    // Specialize for 2 random access ranges.
    // Typically 2 random access ranges are faster iterated by common
    // index than by x.popFront(), y.popFront() pair
    static if (isRandomAccessRange!SourceRange &&
               hasLength!SourceRange &&
               hasSlicing!TargetRange &&
               isRandomAccessRange!TargetRange &&
               hasLength!TargetRange)
    {
        auto len = source.length;
        foreach (idx; 0 .. len)
            target[idx] = source[idx];
        return target[len .. target.length];
    }
    else
    {
        put(target, source);
        return target;
    }
}

///
@safe unittest
{
    int[] a = [ 1, 5 ];
    int[] b = [ 9, 8 ];
    int[] buf = new int[](a.length + b.length + 10);
    auto rem = a.copy(buf);    // copy a into buf
    rem = b.copy(rem);         // copy b into remainder of buf
    assert(buf[0 .. a.length + b.length] == [1, 5, 9, 8]);
    assert(rem.length == 10);   // unused slots in buf
}

/**
As long as the target range elements support assignment from source
range elements, different types of ranges are accepted:
*/
@safe unittest
{
    float[] src = [ 1.0f, 5 ];
    double[] dest = new double[src.length];
    src.copy(dest);
}

/**
To _copy at most $(D n) elements from a range, you may want to use
$(REF take, std,range):
*/
@safe unittest
{
    import std.range;
    int[] src = [ 1, 5, 8, 9, 10 ];
    auto dest = new int[](3);
    src.take(dest.length).copy(dest);
    assert(dest == [ 1, 5, 8 ]);
}

/**
To _copy just those elements from a range that satisfy a predicate,
use $(LREF filter):
*/
@safe unittest
{
    import std.algorithm.iteration : filter;
    int[] src = [ 1, 5, 8, 9, 10, 1, 2, 0 ];
    auto dest = new int[src.length];
    auto rem = src
        .filter!(a => (a & 1) == 1)
        .copy(dest);
    assert(dest[0 .. $ - rem.length] == [ 1, 5, 9, 1 ]);
}

/**
$(REF retro, std,range) can be used to achieve behavior similar to
$(HTTP sgi.com/tech/stl/copy_backward.html, STL's copy_backward'):
*/
@safe unittest
{
    import std.algorithm, std.range;
    int[] src = [1, 2, 4];
    int[] dest = [0, 0, 0, 0, 0];
    src.retro.copy(dest.retro);
    assert(dest == [0, 0, 1, 2, 4]);
}

// Test CTFE copy.
@safe unittest
{
    enum c = copy([1,2,3], [4,5,6,7]);
    assert(c == [7]);
}


@safe unittest
{
    import std.algorithm.iteration : filter;

    {
        int[] a = [ 1, 5 ];
        int[] b = [ 9, 8 ];
        auto e = copy(filter!("a > 1")(a), b);
        assert(b[0] == 5 && e.length == 1);
    }

    {
        int[] a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        copy(a[5 .. 10], a[4 .. 9]);
        assert(a[4 .. 9] == [6, 7, 8, 9, 10]);
    }

    {   // Test for bug 7898
        enum v =
        {
            import std.algorithm;
            int[] arr1 = [10, 20, 30, 40, 50];
            int[] arr2 = arr1.dup;
            copy(arr1, arr2);
            return 35;
        }();
        assert(v == 35);
    }
}

@safe unittest
{
    // Issue 13650
    import std.meta : AliasSeq;
    foreach (Char; AliasSeq!(char, wchar, dchar))
    {
        Char[3] a1 = "123";
        Char[6] a2 = "456789";
        assert(copy(a1[], a2[]) is a2[3..$]);
        assert(a1[] == "123");
        assert(a2[] == "123789");
    }
}

/**
Assigns $(D value) to each element of input _range $(D range).

Params:
        range = An
                $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
                that exposes references to its elements and has assignable
                elements
        value = Assigned to each element of range

See_Also:
        $(LREF uninitializedFill)
        $(LREF initializeAll)
 */
void fill(Range, Value)(auto ref Range range, auto ref Value value)
if ((isInputRange!Range && is(typeof(range.front = value)) ||
    isSomeChar!Value && is(typeof(range[] = value))))
{
    alias T = ElementType!Range;

    static if (is(typeof(range[] = value)))
    {
        range[] = value;
    }
    else static if (is(typeof(range[] = T(value))))
    {
        range[] = T(value);
    }
    else
    {
        for ( ; !range.empty; range.popFront() )
        {
            range.front = value;
        }
    }
}

///
@safe unittest
{
    int[] a = [ 1, 2, 3, 4 ];
    fill(a, 5);
    assert(a == [ 5, 5, 5, 5 ]);
}

// issue 16342, test fallback on mutable narrow strings
@safe unittest
{
    char[] chars = ['a', 'b'];
    fill(chars, 'c');
    assert(chars == "cc");

    char[2] chars2 = ['a', 'b'];
    fill(chars2, 'c');
    assert(chars2 == "cc");

    wchar[] wchars = ['a', 'b'];
    fill(wchars, wchar('c'));
    assert(wchars == "cc"w);

    dchar[] dchars = ['a', 'b'];
    fill(dchars, dchar('c'));
    assert(dchars == "cc"d);
}

@nogc @safe unittest
{
    const(char)[] chars;
    assert(chars.length == 0);
    static assert(!__traits(compiles, fill(chars, 'c')));
    wstring wchars;
    assert(wchars.length == 0);
    static assert(!__traits(compiles, fill(wchars, wchar('c'))));
}

@nogc @safe unittest
{
    char[] chars;
    fill(chars, 'c');
    assert(chars == ""c);
}

@safe unittest
{
    shared(char)[] chrs = ['r'];
    fill(chrs, 'c');
    assert(chrs == [shared(char)('c')]);
}

@nogc @safe unittest
{
    struct Str(size_t len)
    {
        private char[len] _data;
        void opIndexAssign(char value) @safe @nogc
        {_data[] = value;}
    }
    Str!2 str;
    str.fill(':');
    assert(str._data == "::");
}

@safe unittest
{
    char[] chars = ['a','b','c','d'];
    chars[1 .. 3].fill(':');
    assert(chars == "a::d");
}
// end issue 16342

@safe unittest
{
    import std.conv : text;
    import std.internal.test.dummyrange;

    int[] a = [ 1, 2, 3 ];
    fill(a, 6);
    assert(a == [ 6, 6, 6 ], text(a));

    void fun0()
    {
        foreach (i; 0 .. 1000)
        {
            foreach (ref e; a) e = 6;
        }
    }
    void fun1() { foreach (i; 0 .. 1000) fill(a, 6); }

    // fill should accept InputRange
    alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input);
    enum filler = uint.max;
    InputRange range;
    fill(range, filler);
    foreach (value; range.arr)
        assert(value == filler);
}

@safe unittest
{
    //ER8638_1 IS_NOT self assignable
    static struct ER8638_1
    {
        void opAssign(int){}
    }

    //ER8638_1 IS self assignable
    static struct ER8638_2
    {
        void opAssign(ER8638_2){}
        void opAssign(int){}
    }

    auto er8638_1 = new ER8638_1[](10);
    auto er8638_2 = new ER8638_2[](10);
    er8638_1.fill(5); //generic case
    er8638_2.fill(5); //opSlice(T.init) case
}

@safe unittest
{
    {
        int[] a = [1, 2, 3];
        immutable(int) b = 0;
        a.fill(b);
        assert(a == [0, 0, 0]);
    }
    {
        double[] a = [1, 2, 3];
        immutable(int) b = 0;
        a.fill(b);
        assert(a == [0, 0, 0]);
    }
}

/**
Fills $(D range) with a pattern copied from $(D filler). The length of
$(D range) does not have to be a multiple of the length of $(D
filler). If $(D filler) is empty, an exception is thrown.

Params:
    range = An $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
            that exposes references to its elements and has assignable elements.
    filler = The
             $(REF_ALTTEXT forward _range, isForwardRange, std,_range,primitives)
             representing the _fill pattern.
 */
void fill(InputRange, ForwardRange)(InputRange range, ForwardRange filler)
if (isInputRange!InputRange
    && (isForwardRange!ForwardRange
    || (isInputRange!ForwardRange && isInfinite!ForwardRange))
    && is(typeof(InputRange.init.front = ForwardRange.init.front)))
{
    static if (isInfinite!ForwardRange)
    {
        //ForwardRange is infinite, no need for bounds checking or saving
        static if (hasSlicing!ForwardRange && hasLength!InputRange
            && is(typeof(filler[0 .. range.length])))
        {
            copy(filler[0 .. range.length], range);
        }
        else
        {
            //manual feed
            for ( ; !range.empty; range.popFront(), filler.popFront())
            {
                range.front = filler.front;
            }
        }
    }
    else
    {
        import std.exception : enforce;

        enforce(!filler.empty, "Cannot fill range with an empty filler");

        static if (hasLength!InputRange && hasLength!ForwardRange
            && is(typeof(range.length > filler.length)))
        {
            //Case we have access to length
            immutable len = filler.length;
            //Start by bulk copies
            while (range.length > len)
            {
                range = copy(filler.save, range);
            }

            //and finally fill the partial range. No need to save here.
            static if (hasSlicing!ForwardRange && is(typeof(filler[0 .. range.length])))
            {
                //use a quick copy
                auto len2 = range.length;
                range = copy(filler[0 .. len2], range);
            }
            else
            {
                //iterate. No need to check filler, it's length is longer than range's
                for (; !range.empty; range.popFront(), filler.popFront())
                {
                    range.front = filler.front;
                }
            }
        }
        else
        {
            //Most basic case.
            auto bck = filler.save;
            for (; !range.empty; range.popFront(), filler.popFront())
            {
                if (filler.empty) filler = bck.save;
                range.front = filler.front;
            }
        }
    }
}

///
@safe unittest
{
    int[] a = [ 1, 2, 3, 4, 5 ];
    int[] b = [ 8, 9 ];
    fill(a, b);
    assert(a == [ 8, 9, 8, 9, 8 ]);
}

@safe unittest
{
    import std.exception : assertThrown;
    import std.internal.test.dummyrange;

    int[] a = [ 1, 2, 3, 4, 5 ];
    int[] b = [1, 2];
    fill(a, b);
    assert(a == [ 1, 2, 1, 2, 1 ]);

    // fill should accept InputRange
    alias InputRange = DummyRange!(ReturnBy.Reference, Length.No, RangeType.Input);
    InputRange range;
    fill(range,[1,2]);
    foreach (i,value;range.arr)
    assert(value == (i%2 == 0?1:2));

    //test with a input being a "reference forward" range
    fill(a, new ReferenceForwardRange!int([8, 9]));
    assert(a == [8, 9, 8, 9, 8]);

    //test with a input being an "infinite input" range
    fill(a, new ReferenceInfiniteInputRange!int());
    assert(a == [0, 1, 2, 3, 4]);

    //empty filler test
    assertThrown(fill(a, a[$..$]));
}

/**
Initializes all elements of $(D range) with their $(D .init) value.
Assumes that the elements of the range are uninitialized.

Params:
        range = An
                $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
                that exposes references to its elements and has assignable
                elements

See_Also:
        $(LREF fill)
        $(LREF uninitializeFill)
 */
void initializeAll(Range)(Range range)
if (isInputRange!Range && hasLvalueElements!Range && hasAssignableElements!Range)
{
    import core.stdc.string : memset, memcpy;
    import std.traits : hasElaborateAssign, isDynamicArray;

    alias T = ElementType!Range;
    static if (hasElaborateAssign!T)
    {
        import std.algorithm.internal : addressOf;
        //Elaborate opAssign. Must go the memcpy road.
        //We avoid calling emplace here, because our goal is to initialize to
        //the static state of T.init,
        //So we want to avoid any un-necassarilly CC'ing of T.init
        auto p = typeid(T).initializer();
        if (p.ptr)
        {
            for ( ; !range.empty ; range.popFront() )
            {
                static if (__traits(isStaticArray, T))
                {
                    // static array initializer only contains initialization
                    // for one element of the static array.
                    auto elemp = cast(void *) addressOf(range.front);
                    auto endp = elemp + T.sizeof;
                    while (elemp < endp)
                    {
                        memcpy(elemp, p.ptr, p.length);
                        elemp += p.length;
                    }
                }
                else
                {
                    memcpy(addressOf(range.front), p.ptr, T.sizeof);
                }
            }
        }
        else
            static if (isDynamicArray!Range)
                memset(range.ptr, 0, range.length * T.sizeof);
            else
                for ( ; !range.empty ; range.popFront() )
                    memset(addressOf(range.front), 0, T.sizeof);
    }
    else
        fill(range, T.init);
}

/// ditto
void initializeAll(Range)(Range range)
if (is(Range == char[]) || is(Range == wchar[]))
{
    alias T = ElementEncodingType!Range;
    range[] = T.init;
}

///
@system unittest
{
    import core.stdc.stdlib : malloc, free;

    struct S
    {
        int a = 10;
    }

    auto s = (cast(S*) malloc(5 * S.sizeof))[0 .. 5];
    initializeAll(s);
    assert(s == [S(10), S(10), S(10), S(10), S(10)]);

    scope(exit) free(s.ptr);
}

@system unittest
{
    import std.algorithm.iteration : filter;
    import std.meta : AliasSeq;
    import std.traits : hasElaborateAssign;

    //Test strings:
    //Must work on narrow strings.
    //Must reject const
    char[3] a = void;
    a[].initializeAll();
    assert(a[] == [char.init, char.init, char.init]);
    string s;
    assert(!__traits(compiles, s.initializeAll()));
    assert(!__traits(compiles, s.initializeAll()));
    assert(s.empty);

    //Note: Cannot call uninitializedFill on narrow strings

    enum e {e1, e2}
    e[3] b1 = void;
    b1[].initializeAll();
    assert(b1[] == [e.e1, e.e1, e.e1]);
    e[3] b2 = void;
    b2[].uninitializedFill(e.e2);
    assert(b2[] == [e.e2, e.e2, e.e2]);

    static struct S1
    {
        int i;
    }
    static struct S2
    {
        int i = 1;
    }
    static struct S3
    {
        int i;
        this(this){}
    }
    static struct S4
    {
        int i = 1;
        this(this){}
    }
    static assert(!hasElaborateAssign!S1);
    static assert(!hasElaborateAssign!S2);
    static assert( hasElaborateAssign!S3);
    static assert( hasElaborateAssign!S4);
    assert(!typeid(S1).initializer().ptr);
    assert( typeid(S2).initializer().ptr);
    assert(!typeid(S3).initializer().ptr);
    assert( typeid(S4).initializer().ptr);

    foreach (S; AliasSeq!(S1, S2, S3, S4))
    {
        //initializeAll
        {
            //Array
            S[3] ss1 = void;
            ss1[].initializeAll();
            assert(ss1[] == [S.init, S.init, S.init]);

            //Not array
            S[3] ss2 = void;
            auto sf = ss2[].filter!"true"();

            sf.initializeAll();
            assert(ss2[] == [S.init, S.init, S.init]);
        }
        //uninitializedFill
        {
            //Array
            S[3] ss1 = void;
            ss1[].uninitializedFill(S(2));
            assert(ss1[] == [S(2), S(2), S(2)]);

            //Not array
            S[3] ss2 = void;
            auto sf = ss2[].filter!"true"();
            sf.uninitializedFill(S(2));
            assert(ss2[] == [S(2), S(2), S(2)]);
        }
    }
}

// test that initializeAll works for arrays of static arrays of structs with
// elaborate assigns.
@system unittest
{
    struct Int {
        ~this() {}
        int x = 3;
    }
    Int[2] xs = [Int(1), Int(2)];
    struct R {
        bool done;
        bool empty() { return done; }
        ref Int[2] front() { return xs; }
        void popFront() { done = true; }
    }
    initializeAll(R());
    assert(xs[0].x == 3);
    assert(xs[1].x == 3);
}

// move
/**
Moves `source` into `target`, via a destructive copy when necessary.

If `T` is a struct with a destructor or postblit defined, source is reset
to its `.init` value after it is moved into target, otherwise it is
left unchanged.

Preconditions:
If source has internal pointers that point to itself, it cannot be moved, and
will trigger an assertion failure.

Params:
    source = Data to copy.
    target = Where to copy into. The destructor, if any, is invoked before the
        copy is performed.
*/
void move(T)(ref T source, ref T target)
{
    // test @safe destructible
    static if (__traits(compiles, (T t) @safe {}))
        trustedMoveImpl(source, target);
    else
        moveImpl(source, target);
}

/// For non-struct types, `move` just performs `target = source`:
@safe unittest
{
    Object obj1 = new Object;
    Object obj2 = obj1;
    Object obj3;

    move(obj2, obj3);
    assert(obj3 is obj1);
    // obj2 unchanged
    assert(obj2 is obj1);
}

///
pure nothrow @safe @nogc unittest
{
    // Structs without destructors are simply copied
    struct S1
    {
        int a = 1;
        int b = 2;
    }
    S1 s11 = { 10, 11 };
    S1 s12;

    move(s11, s12);

    assert(s12 == S1(10, 11));
    assert(s11 == s12);

    // But structs with destructors or postblits are reset to their .init value
    // after copying to the target.
    struct S2
    {
        int a = 1;
        int b = 2;

        ~this() pure nothrow @safe @nogc { }
    }
    S2 s21 = { 3, 4 };
    S2 s22;

    move(s21, s22);

    assert(s21 == S2(1, 2));
    assert(s22 == S2(3, 4));
}

@safe unittest
{
    import std.exception : assertCTFEable;
    import std.traits;

    assertCTFEable!((){
        Object obj1 = new Object;
        Object obj2 = obj1;
        Object obj3;
        move(obj2, obj3);
        assert(obj3 is obj1);

        static struct S1 { int a = 1, b = 2; }
        S1 s11 = { 10, 11 };
        S1 s12;
        move(s11, s12);
        assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);

        static struct S2 { int a = 1; int * b; }
        S2 s21 = { 10, null };
        s21.b = new int;
        S2 s22;
        move(s21, s22);
        assert(s21 == s22);
    });
    // Issue 5661 test(1)
    static struct S3
    {
        static struct X { int n = 0; ~this(){n = 0;} }
        X x;
    }
    static assert(hasElaborateDestructor!S3);
    S3 s31, s32;
    s31.x.n = 1;
    move(s31, s32);
    assert(s31.x.n == 0);
    assert(s32.x.n == 1);

    // Issue 5661 test(2)
    static struct S4
    {
        static struct X { int n = 0; this(this){n = 0;} }
        X x;
    }
    static assert(hasElaborateCopyConstructor!S4);
    S4 s41, s42;
    s41.x.n = 1;
    move(s41, s42);
    assert(s41.x.n == 0);
    assert(s42.x.n == 1);

    // Issue 13990 test
    class S5;

    S5 s51;
    S5 s52 = s51;
    S5 s53;
    move(s52, s53);
    assert(s53 is s51);
}

/// Ditto
T move(T)(ref T source)
{
    // test @safe destructible
    static if (__traits(compiles, (T t) @safe {}))
        return trustedMoveImpl(source);
    else
        return moveImpl(source);
}

/// Non-copyable structs can still be moved:
pure nothrow @safe @nogc unittest
{
    struct S
    {
        int a = 1;
        @disable this(this);
        ~this() pure nothrow @safe @nogc {}
    }
    S s1;
    s1.a = 2;
    S s2 = move(s1);
    assert(s1.a == 1);
    assert(s2.a == 2);
}

private void trustedMoveImpl(T)(ref T source, ref T target) @trusted
{
    moveImpl(source, target);
}

private void moveImpl(T)(ref T source, ref T target)
{
    import std.traits : hasElaborateDestructor;

    static if (is(T == struct))
    {
        if (&source == &target) return;
        // Destroy target before overwriting it
        static if (hasElaborateDestructor!T) target.__xdtor();
    }
    // move and emplace source into target
    moveEmplace(source, target);
}

private T trustedMoveImpl(T)(ref T source) @trusted
{
    return moveImpl(source);
}

private T moveImpl(T)(ref T source)
{
    T result = void;
    moveEmplace(source, result);
    return result;
}

@safe unittest
{
    import std.exception : assertCTFEable;
    import std.traits;

    assertCTFEable!((){
        Object obj1 = new Object;
        Object obj2 = obj1;
        Object obj3 = move(obj2);
        assert(obj3 is obj1);

        static struct S1 { int a = 1, b = 2; }
        S1 s11 = { 10, 11 };
        S1 s12 = move(s11);
        assert(s11.a == 10 && s11.b == 11 && s12.a == 10 && s12.b == 11);

        static struct S2 { int a = 1; int * b; }
        S2 s21 = { 10, null };
        s21.b = new int;
        S2 s22 = move(s21);
        assert(s21 == s22);
    });

    // Issue 5661 test(1)
    static struct S3
    {
        static struct X { int n = 0; ~this(){n = 0;} }
        X x;
    }
    static assert(hasElaborateDestructor!S3);
    S3 s31;
    s31.x.n = 1;
    S3 s32 = move(s31);
    assert(s31.x.n == 0);
    assert(s32.x.n == 1);

    // Issue 5661 test(2)
    static struct S4
    {
        static struct X { int n = 0; this(this){n = 0;} }
        X x;
    }
    static assert(hasElaborateCopyConstructor!S4);
    S4 s41;
    s41.x.n = 1;
    S4 s42 = move(s41);
    assert(s41.x.n == 0);
    assert(s42.x.n == 1);

    // Issue 13990 test
    class S5;

    S5 s51;
    S5 s52 = s51;
    S5 s53;
    s53 = move(s52);
    assert(s53 is s51);
}

@system unittest
{
    static struct S { int n = 0; ~this() @system { n = 0; } }
    S a, b;
    static assert(!__traits(compiles, () @safe { move(a, b); }));
    static assert(!__traits(compiles, () @safe { move(a); }));
    a.n = 1;
    () @trusted { move(a, b); }();
    assert(a.n == 0);
    a.n = 1;
    () @trusted { move(a); }();
    assert(a.n == 0);
}

@safe unittest//Issue 6217
{
    import std.algorithm.iteration : map;
    auto x = map!"a"([1,2,3]);
    x = move(x);
}

@safe unittest// Issue 8055
{
    static struct S
    {
        int x;
        ~this()
        {
            assert(x == 0);
        }
    }
    S foo(S s)
    {
        return move(s);
    }
    S a;
    a.x = 0;
    auto b = foo(a);
    assert(b.x == 0);
}

@system unittest// Issue 8057
{
    int n = 10;
    struct S
    {
        int x;
        ~this()
        {
            // Access to enclosing scope
            assert(n == 10);
        }
    }
    S foo(S s)
    {
        // Move nested struct
        return move(s);
    }
    S a;
    a.x = 1;
    auto b = foo(a);
    assert(b.x == 1);

    // Regression 8171
    static struct Array(T)
    {
        // nested struct has no member
        struct Payload
        {
            ~this() {}
        }
    }
    Array!int.Payload x = void;
    move(x);
    move(x, x);
}

/**
 * Similar to $(LREF move) but assumes `target` is uninitialized. This
 * is more efficient because `source` can be blitted over `target`
 * without destroying or initializing it first.
 *
 * Params:
 *   source = value to be moved into target
 *   target = uninitialized value to be filled by source
 */
void moveEmplace(T)(ref T source, ref T target) @system
{
    import core.stdc.string : memcpy, memset;
    import std.traits : hasAliasing, hasElaborateAssign,
                        hasElaborateCopyConstructor, hasElaborateDestructor,
                        isAssignable;

    static if (!is(T == class) && hasAliasing!T) if (!__ctfe)
    {
        import std.exception : doesPointTo;
        assert(!doesPointTo(source, source), "Cannot move object with internal pointer.");
    }

    static if (is(T == struct))
    {
        assert(&source !is &target, "source and target must not be identical");

        static if (hasElaborateAssign!T || !isAssignable!T)
            memcpy(&target, &source, T.sizeof);
        else
            target = source;

        // If the source defines a destructor or a postblit hook, we must obliterate the
        // object in order to avoid double freeing and undue aliasing
        static if (hasElaborateDestructor!T || hasElaborateCopyConstructor!T)
        {
            // If T is nested struct, keep original context pointer
            static if (__traits(isNested, T))
                enum sz = T.sizeof - (void*).sizeof;
            else
                enum sz = T.sizeof;

            auto init = typeid(T).initializer();
            if (init.ptr is null) // null ptr means initialize to 0s
                memset(&source, 0, sz);
            else
                memcpy(&source, init.ptr, sz);
        }
    }
    else
    {
        // Primitive data (including pointers and arrays) or class -
        // assignment works great
        target = source;
    }
}

///
pure nothrow @nogc @system unittest
{
    static struct Foo
    {
    pure nothrow @nogc:
        this(int* ptr) { _ptr = ptr; }
        ~this() { if (_ptr) ++*_ptr; }
        int* _ptr;
    }

    int val;
    Foo foo1 = void; // uninitialized
    auto foo2 = Foo(&val); // initialized
    assert(foo2._ptr is &val);

    // Using `move(foo2, foo1)` would have an undefined effect because it would destroy
    // the uninitialized foo1.
    // moveEmplace directly overwrites foo1 without destroying or initializing it first.
    moveEmplace(foo2, foo1);
    assert(foo1._ptr is &val);
    assert(foo2._ptr is null);
    assert(val == 0);
}

// moveAll
/**
Calls `move(a, b)` for each element `a` in `src` and the corresponding
element `b` in `tgt`, in increasing order.

Preconditions:
`walkLength(src) <= walkLength(tgt)`.
This precondition will be asserted. If you cannot ensure there is enough room in
`tgt` to accommodate all of `src` use $(LREF moveSome) instead.

Params:
    src = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
        movable elements.
    tgt = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
        elements that elements from $(D src) can be moved into.

Returns: The leftover portion of $(D tgt) after all elements from $(D src) have
been moved.
 */
InputRange2 moveAll(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt)
if (isInputRange!InputRange1 && isInputRange!InputRange2
        && is(typeof(move(src.front, tgt.front))))
{
    return moveAllImpl!move(src, tgt);
}

///
pure nothrow @safe @nogc unittest
{
    int[3] a = [ 1, 2, 3 ];
    int[5] b;
    assert(moveAll(a[], b[]) is b[3 .. $]);
    assert(a[] == b[0 .. 3]);
    int[3] cmp = [ 1, 2, 3 ];
    assert(a[] == cmp[]);
}

/**
 * Similar to $(LREF moveAll) but assumes all elements in `tgt` are
 * uninitialized. Uses $(LREF moveEmplace) to move elements from
 * `src` over elements from `tgt`.
 */
InputRange2 moveEmplaceAll(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt) @system
if (isInputRange!InputRange1 && isInputRange!InputRange2
        && is(typeof(moveEmplace(src.front, tgt.front))))
{
    return moveAllImpl!moveEmplace(src, tgt);
}

///
pure nothrow @nogc @system unittest
{
    static struct Foo
    {
        ~this() pure nothrow @nogc { if (_ptr) ++*_ptr; }
        int* _ptr;
    }
    int[3] refs = [0, 1, 2];
    Foo[3] src = [Foo(&refs[0]), Foo(&refs[1]), Foo(&refs[2])];
    Foo[5] dst = void;

    auto tail = moveEmplaceAll(src[], dst[]); // move 3 value from src over dst
    assert(tail.length == 2); // returns remaining uninitialized values
    initializeAll(tail);

    import std.algorithm.searching : all;
    assert(src[].all!(e => e._ptr is null));
    assert(dst[0 .. 3].all!(e => e._ptr !is null));
}

@system unittest
{
    struct InputRange
    {
        ref int front() { return data[0]; }
        void popFront() { data.popFront; }
        bool empty() { return data.empty; }
        int[] data;
    }
    auto a = InputRange([ 1, 2, 3 ]);
    auto b = InputRange(new int[5]);
    moveAll(a, b);
    assert(a.data == b.data[0 .. 3]);
    assert(a.data == [ 1, 2, 3 ]);
}

private InputRange2 moveAllImpl(alias moveOp, InputRange1, InputRange2)(
    ref InputRange1 src, ref InputRange2 tgt)
{
    import std.exception : enforce;

    static if (isRandomAccessRange!InputRange1 && hasLength!InputRange1 && hasLength!InputRange2
         && hasSlicing!InputRange2 && isRandomAccessRange!InputRange2)
    {
        auto toMove = src.length;
        assert(toMove <= tgt.length);
        foreach (idx; 0 .. toMove)
            moveOp(src[idx], tgt[idx]);
        return tgt[toMove .. tgt.length];
    }
    else
    {
        for (; !src.empty; src.popFront(), tgt.popFront())
        {
            assert(!tgt.empty);
            moveOp(src.front, tgt.front);
        }
        return tgt;
    }
}

// moveSome
/**
Calls `move(a, b)` for each element `a` in `src` and the corresponding
element `b` in `tgt`, in increasing order, stopping when either range has been
exhausted.

Params:
    src = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
        movable elements.
    tgt = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) with
        elements that elements from $(D src) can be moved into.

Returns: The leftover portions of the two ranges after one or the other of the
ranges have been exhausted.
 */
Tuple!(InputRange1, InputRange2) moveSome(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt)
if (isInputRange!InputRange1 && isInputRange!InputRange2
        && is(typeof(move(src.front, tgt.front))))
{
    return moveSomeImpl!move(src, tgt);
}

///
pure nothrow @safe @nogc unittest
{
    int[5] a = [ 1, 2, 3, 4, 5 ];
    int[3] b;
    assert(moveSome(a[], b[])[0] is a[3 .. $]);
    assert(a[0 .. 3] == b);
    assert(a == [ 1, 2, 3, 4, 5 ]);
}

/**
 * Same as $(LREF moveSome) but assumes all elements in `tgt` are
 * uninitialized. Uses $(LREF moveEmplace) to move elements from
 * `src` over elements from `tgt`.
 */
Tuple!(InputRange1, InputRange2) moveEmplaceSome(InputRange1, InputRange2)(InputRange1 src, InputRange2 tgt) @system
if (isInputRange!InputRange1 && isInputRange!InputRange2
        && is(typeof(move(src.front, tgt.front))))
{
    return moveSomeImpl!moveEmplace(src, tgt);
}

///
pure nothrow @nogc @system unittest
{
    static struct Foo
    {
        ~this() pure nothrow @nogc { if (_ptr) ++*_ptr; }
        int* _ptr;
    }
    int[4] refs = [0, 1, 2, 3];
    Foo[4] src = [Foo(&refs[0]), Foo(&refs[1]), Foo(&refs[2]), Foo(&refs[3])];
    Foo[3] dst = void;

    auto res = moveEmplaceSome(src[], dst[]);
    assert(res.length == 2);

    import std.algorithm.searching : all;
    assert(src[0 .. 3].all!(e => e._ptr is null));
    assert(src[3]._ptr !is null);
    assert(dst[].all!(e => e._ptr !is null));
}

private Tuple!(InputRange1, InputRange2) moveSomeImpl(alias moveOp, InputRange1, InputRange2)(
    ref InputRange1 src, ref InputRange2 tgt)
{
    for (; !src.empty && !tgt.empty; src.popFront(), tgt.popFront())
        moveOp(src.front, tgt.front);
    return tuple(src, tgt);
 }


// SwapStrategy
/**
Defines the swapping strategy for algorithms that need to swap
elements in a range (such as partition and sort). The strategy
concerns the swapping of elements that are not the core concern of the
algorithm. For example, consider an algorithm that sorts $(D [ "abc",
"b", "aBc" ]) according to $(D toUpper(a) < toUpper(b)). That
algorithm might choose to swap the two equivalent strings $(D "abc")
and $(D "aBc"). That does not affect the sorting since both $(D [
"abc", "aBc", "b" ]) and $(D [ "aBc", "abc", "b" ]) are valid
outcomes.

Some situations require that the algorithm must NOT ever change the
relative ordering of equivalent elements (in the example above, only
$(D [ "abc", "aBc", "b" ]) would be the correct result). Such
algorithms are called $(B stable). If the ordering algorithm may swap
equivalent elements discretionarily, the ordering is called $(B
unstable).

Yet another class of algorithms may choose an intermediate tradeoff by
being stable only on a well-defined subrange of the range. There is no
established terminology for such behavior; this library calls it $(B
semistable).

Generally, the $(D stable) ordering strategy may be more costly in
time and/or space than the other two because it imposes additional
constraints. Similarly, $(D semistable) may be costlier than $(D
unstable). As (semi-)stability is not needed very often, the ordering
algorithms in this module parameterized by $(D SwapStrategy) all
choose $(D SwapStrategy.unstable) as the default.
*/

enum SwapStrategy
{
    /**
       Allows freely swapping of elements as long as the output
       satisfies the algorithm's requirements.
    */
    unstable,
    /**
       In algorithms partitioning ranges in two, preserve relative
       ordering of elements only to the left of the partition point.
    */
    semistable,
    /**
       Preserve the relative ordering of elements to the largest
       extent allowed by the algorithm's requirements.
    */
    stable,
}

///
@safe unittest
{
    import std.stdio;
    import std.algorithm.sorting : partition;
    int[] a = [0, 1, 2, 3];
    assert(remove!(SwapStrategy.stable)(a, 1) == [0, 2, 3]);
    a = [0, 1, 2, 3];
    assert(remove!(SwapStrategy.unstable)(a, 1) == [0, 3, 2]);
}

///
@safe unittest
{
    import std.algorithm.sorting : partition;

    // Put stuff greater than 3 on the left
    auto arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    assert(partition!(a => a > 3, SwapStrategy.stable)(arr) == [1, 2, 3]);
    assert(arr == [4, 5, 6, 7, 8, 9, 10, 1, 2, 3]);

    arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    assert(partition!(a => a > 3, SwapStrategy.semistable)(arr) == [2, 3, 1]);
    assert(arr == [4, 5, 6, 7, 8, 9, 10, 2, 3, 1]);

    arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    assert(partition!(a => a > 3, SwapStrategy.unstable)(arr) == [3, 2, 1]);
    assert(arr == [10, 9, 8, 4, 5, 6, 7, 3, 2, 1]);
}

/**
Eliminates elements at given offsets from `range` and returns the shortened
range.

For example, here is how to _remove a single element from an array:

----
string[] a = [ "a", "b", "c", "d" ];
a = a.remove(1); // remove element at offset 1
assert(a == [ "a", "c", "d"]);
----

Note that `remove` does not change the length of the original _range directly;
instead, it returns the shortened _range. If its return value is not assigned to
the original _range, the original _range will retain its original length, though
its contents will have changed:

----
int[] a = [ 3, 5, 7, 8 ];
assert(remove(a, 1) == [ 3, 7, 8 ]);
assert(a == [ 3, 7, 8, 8 ]);
----

The element at _offset `1` has been removed and the rest of the elements have
shifted up to fill its place, however, the original array remains of the same
length. This is because all functions in `std.algorithm` only change $(I
content), not $(I topology). The value `8` is repeated because $(LREF move) was
invoked to rearrange elements, and on integers `move` simply copies the source
to the destination.  To replace `a` with the effect of the removal, simply
assign the slice returned by `remove` to it, as shown in the first example.

Multiple indices can be passed into $(D remove). In that case,
elements at the respective indices are all removed. The indices must
be passed in increasing order, otherwise an exception occurs.

----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove(a, 1, 3, 5) ==
    [ 0, 2, 4, 6, 7, 8, 9, 10 ]);
----

(Note that all indices refer to slots in the $(I original) array, not
in the array as it is being progressively shortened.) Finally, any
combination of integral offsets and tuples composed of two integral
offsets can be passed in.

----
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(remove(a, 1, tuple(3, 5), 9) == [ 0, 2, 5, 6, 7, 8, 10 ]);
----

In this case, the slots at positions 1, 3, 4, and 9 are removed from
the array. The tuple passes in a range closed to the left and open to
the right (consistent with built-in slices), e.g. $(D tuple(3, 5))
means indices $(D 3) and $(D 4) but not $(D 5).

If the need is to remove some elements in the range but the order of
the remaining elements does not have to be preserved, you may want to
pass $(D SwapStrategy.unstable) to $(D remove).

----
int[] a = [ 0, 1, 2, 3 ];
assert(remove!(SwapStrategy.unstable)(a, 1) == [ 0, 3, 2 ]);
----

In the case above, the element at slot $(D 1) is removed, but replaced
with the last element of the range. Taking advantage of the relaxation
of the stability requirement, $(D remove) moved elements from the end
of the array over the slots to be removed. This way there is less data
movement to be done which improves the execution time of the function.

The function $(D remove) works on bidirectional ranges that have assignable
lvalue elements. The moving strategy is (listed from fastest to slowest):
$(UL $(LI If $(D s == SwapStrategy.unstable && isRandomAccessRange!Range &&
hasLength!Range && hasLvalueElements!Range), then elements are moved from the
end of the range into the slots to be filled. In this case, the absolute
minimum of moves is performed.)  $(LI Otherwise, if $(D s ==
SwapStrategy.unstable && isBidirectionalRange!Range && hasLength!Range
&& hasLvalueElements!Range), then elements are still moved from the
end of the range, but time is spent on advancing between slots by repeated
calls to $(D range.popFront).)  $(LI Otherwise, elements are moved
incrementally towards the front of $(D range); a given element is never
moved several times, but more elements are moved than in the previous
cases.))

Params:
    s = a SwapStrategy to determine if the original order needs to be preserved
    range = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,_range,primitives)
    with a length member
    offset = which element(s) to remove

Returns:
    a range containing all of the elements of range with offset removed
 */
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset...)
(Range range, Offset offset)
if (s != SwapStrategy.stable
    && isBidirectionalRange!Range
    && hasLvalueElements!Range
    && hasLength!Range
    && Offset.length >= 1)
{
    Tuple!(size_t, "pos", size_t, "len")[offset.length] blackouts;
    foreach (i, v; offset)
    {
        static if (is(typeof(v[0]) : size_t) && is(typeof(v[1]) : size_t))
        {
            blackouts[i].pos = v[0];
            blackouts[i].len = v[1] - v[0];
        }
        else
        {
            static assert(is(typeof(v) : size_t), typeof(v).stringof);
            blackouts[i].pos = v;
            blackouts[i].len = 1;
        }
        static if (i > 0)
        {
            import std.exception : enforce;

            enforce(blackouts[i - 1].pos + blackouts[i - 1].len
                    <= blackouts[i].pos,
                "remove(): incorrect ordering of elements to remove");
        }
    }

    size_t left = 0, right = offset.length - 1;
    auto tgt = range.save;
    size_t tgtPos = 0;

    while (left <= right)
    {
        // Look for a blackout on the right
        if (blackouts[right].pos + blackouts[right].len >= range.length)
        {
            range.popBackExactly(blackouts[right].len);

            // Since right is unsigned, we must check for this case, otherwise
            // we might turn it into size_t.max and the loop condition will not
            // fail when it should.
            if (right > 0)
            {
                --right;
                continue;
            }
            else
                break;
        }
        // Advance to next blackout on the left
        assert(blackouts[left].pos >= tgtPos);
        tgt.popFrontExactly(blackouts[left].pos - tgtPos);
        tgtPos = blackouts[left].pos;

        // Number of elements to the right of blackouts[right]
        immutable tailLen = range.length - (blackouts[right].pos + blackouts[right].len);
        size_t toMove = void;
        if (tailLen < blackouts[left].len)
        {
            toMove = tailLen;
            blackouts[left].pos += toMove;
            blackouts[left].len -= toMove;
        }
        else
        {
            toMove = blackouts[left].len;
            ++left;
        }
        tgtPos += toMove;
        foreach (i; 0 .. toMove)
        {
            move(range.back, tgt.front);
            range.popBack();
            tgt.popFront();
        }
    }

    return range;
}

/// Ditto
Range remove
(SwapStrategy s = SwapStrategy.stable, Range, Offset...)
(Range range, Offset offset)
if (s == SwapStrategy.stable
    && isBidirectionalRange!Range
    && hasLvalueElements!Range
    && Offset.length >= 1)
{
    auto result = range;
    auto src = range, tgt = range;
    size_t pos;
    foreach (pass, i; offset)
    {
        static if (is(typeof(i[0])) && is(typeof(i[1])))
        {
            auto from = i[0], delta = i[1] - i[0];
        }
        else
        {
            auto from = i;
            enum delta = 1;
        }

        static if (pass > 0)
        {
            import std.exception : enforce;
            enforce(pos <= from,
                    "remove(): incorrect ordering of elements to remove");

            for (; pos < from; ++pos, src.popFront(), tgt.popFront())
            {
                move(src.front, tgt.front);
            }
        }
        else
        {
            src.popFrontExactly(from);
            tgt.popFrontExactly(from);
            pos = from;
        }
        // now skip source to the "to" position
        src.popFrontExactly(delta);
        result.popBackExactly(delta);
        pos += delta;
    }
    // leftover move
    moveAll(src, tgt);
    return result;
}

///
@safe pure unittest
{
    import std.typecons : tuple;

    auto a = [ 0, 1, 2, 3, 4, 5 ];
    assert(remove!(SwapStrategy.stable)(a, 1) == [ 0, 2, 3, 4, 5 ]);
    a = [ 0, 1, 2, 3, 4, 5 ];
    assert(remove!(SwapStrategy.stable)(a, 1, 3) == [ 0, 2, 4, 5] );
    a = [ 0, 1, 2, 3, 4, 5 ];
    assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 6)) == [ 0, 2 ]);

    a = [ 0, 1, 2, 3, 4, 5 ];
    assert(remove!(SwapStrategy.unstable)(a, 1) == [0, 5, 2, 3, 4]);
    a = [ 0, 1, 2, 3, 4, 5 ];
    assert(remove!(SwapStrategy.unstable)(a, tuple(1, 4)) == [0, 5, 4]);
}

@safe unittest
{
    import std.exception : assertThrown;
    import std.range;

    // http://d.puremagic.com/issues/show_bug.cgi?id=10173
    int[] test = iota(0, 10).array();
    assertThrown(remove!(SwapStrategy.stable)(test, tuple(2, 4), tuple(1, 3)));
    assertThrown(remove!(SwapStrategy.unstable)(test, tuple(2, 4), tuple(1, 3)));
    assertThrown(remove!(SwapStrategy.stable)(test, 2, 4, 1, 3));
    assertThrown(remove!(SwapStrategy.unstable)(test, 2, 4, 1, 3));
}

@safe unittest
{
    import std.range;
    int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    assert(remove!(SwapStrategy.stable)(a, 1) ==
        [ 0, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]);

    a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    assert(remove!(SwapStrategy.unstable)(a, 0, 10) ==
           [ 9, 1, 2, 3, 4, 5, 6, 7, 8 ]);

    a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    assert(remove!(SwapStrategy.unstable)(a, 0, tuple(9, 11)) ==
            [ 8, 1, 2, 3, 4, 5, 6, 7 ]);
    // http://d.puremagic.com/issues/show_bug.cgi?id=5224
    a = [ 1, 2, 3, 4 ];
    assert(remove!(SwapStrategy.unstable)(a, 2) ==
           [ 1, 2, 4 ]);

    a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    assert(remove!(SwapStrategy.stable)(a, 1, 5) ==
        [ 0, 2, 3, 4, 6, 7, 8, 9, 10 ]);

    a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    assert(remove!(SwapStrategy.stable)(a, 1, 3, 5)
            == [ 0, 2, 4, 6, 7, 8, 9, 10]);
    a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    assert(remove!(SwapStrategy.stable)(a, 1, tuple(3, 5))
            == [ 0, 2, 5, 6, 7, 8, 9, 10]);

    a = iota(0, 10).array();
    assert(remove!(SwapStrategy.unstable)(a, tuple(1, 4), tuple(6, 7))
            == [0, 9, 8, 7, 4, 5]);
}

@safe unittest
{
    // Issue 11576
    auto arr = [1,2,3];
    arr = arr.remove!(SwapStrategy.unstable)(2);
    assert(arr == [1,2]);

}

@safe unittest
{
    import std.range;
    // Bug# 12889
    int[1][] arr = [[0], [1], [2], [3], [4], [5], [6]];
    auto orig = arr.dup;
    foreach (i; iota(arr.length))
    {
        assert(orig == arr.remove!(SwapStrategy.unstable)(tuple(i,i)));
        assert(orig == arr.remove!(SwapStrategy.stable)(tuple(i,i)));
    }
}

/**
Reduces the length of the
$(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,_range,primitives) $(D range) by removing
elements that satisfy $(D pred). If $(D s = SwapStrategy.unstable),
elements are moved from the right end of the range over the elements
to eliminate. If $(D s = SwapStrategy.stable) (the default),
elements are moved progressively to front such that their relative
order is preserved. Returns the filtered range.

Params:
    range = a bidirectional ranges with lvalue elements

Returns:
    the range with all of the elements where $(D pred) is $(D true)
    removed
*/
Range remove(alias pred, SwapStrategy s = SwapStrategy.stable, Range)
(Range range)
if (isBidirectionalRange!Range
    && hasLvalueElements!Range)
{
    import std.functional : unaryFun;
    auto result = range;
    static if (s != SwapStrategy.stable)
    {
        for (;!range.empty;)
        {
            if (!unaryFun!pred(range.front))
            {
                range.popFront();
                continue;
            }
            move(range.back, range.front);
            range.popBack();
            result.popBack();
        }
    }
    else
    {
        auto tgt = range;
        for (; !range.empty; range.popFront())
        {
            if (unaryFun!(pred)(range.front))
            {
                // yank this guy
                result.popBack();
                continue;
            }
            // keep this guy
            move(range.front, tgt.front);
            tgt.popFront();
        }
    }
    return result;
}

///
@safe unittest
{
    static immutable base = [1, 2, 3, 2, 4, 2, 5, 2];

    int[] arr = base[].dup;

    // using a string-based predicate
    assert(remove!("a == 2")(arr) == [ 1, 3, 4, 5 ]);

    // The original array contents have been modified,
    // so we need to reset it to its original state.
    // The length is unmodified however.
    arr[] = base[];

    // using a lambda predicate
    assert(remove!(a => a == 2)(arr) == [ 1, 3, 4, 5 ]);
}

@safe unittest
{
    int[] a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
    assert(remove!("a == 2", SwapStrategy.unstable)(a) ==
            [ 1, 6, 3, 5, 3, 4, 5 ]);
    a = [ 1, 2, 3, 2, 3, 4, 5, 2, 5, 6 ];
    assert(remove!("a == 2", SwapStrategy.stable)(a) ==
            [ 1, 3, 3, 4, 5, 5, 6 ]);
}

@nogc @system unittest
{
    // @nogc test
    int[10] arr = [0,1,2,3,4,5,6,7,8,9];
    alias pred = e => e < 5;

    auto r = arr[].remove!(SwapStrategy.unstable)(0);
    r = r.remove!(SwapStrategy.stable)(0);
    r = r.remove!(pred, SwapStrategy.unstable);
    r = r.remove!(pred, SwapStrategy.stable);
}

@safe unittest
{
    import std.algorithm.comparison : min;
    import std.algorithm.searching : all, any;
    import std.algorithm.sorting : isStrictlyMonotonic;
    import std.array : array;
    import std.meta : AliasSeq;
    import std.range : iota, only;
    import std.typecons : Tuple;
    alias S = Tuple!(int[2]);
    S[] soffsets;
    foreach (start; 0 .. 5)
    foreach (end; min(start+1,5) .. 5)
          soffsets ~= S([start,end]);
    alias D = Tuple!(int[2],int[2]);
    D[] doffsets;
    foreach (start1; 0 .. 10)
    foreach (end1; min(start1+1,10) .. 10)
    foreach (start2; end1 .. 10)
    foreach (end2; min(start2+1,10) .. 10)
          doffsets ~= D([start1,end1],[start2,end2]);
    alias T = Tuple!(int[2],int[2],int[2]);
    T[] toffsets;
    foreach (start1; 0 .. 15)
    foreach (end1; min(start1+1,15) .. 15)
    foreach (start2; end1 .. 15)
    foreach (end2; min(start2+1,15) .. 15)
    foreach (start3; end2 .. 15)
    foreach (end3; min(start3+1,15) .. 15)
            toffsets ~= T([start1,end1],[start2,end2],[start3,end3]);

    static void verify(O...)(int[] r, int len, int removed, bool stable, O offsets)
    {
        assert(r.length == len - removed);
        assert(!stable || r.isStrictlyMonotonic);
        assert(r.all!(e => all!(o => e < o[0] || e >= o[1])(offsets.only)));
    }

    foreach (offsets; AliasSeq!(soffsets,doffsets,toffsets))
    foreach (os; offsets)
    {
        int len = 5*os.length;
        auto w = iota(0, len).array;
        auto x = w.dup;
        auto y = w.dup;
        auto z = w.dup;
        alias pred = e => any!(o => o[0] <= e && e < o[1])(only(os.expand));
        w = w.remove!(SwapStrategy.unstable)(os.expand);
        x = x.remove!(SwapStrategy.stable)(os.expand);
        y = y.remove!(pred, SwapStrategy.unstable);
        z = z.remove!(pred, SwapStrategy.stable);
        int removed;
        foreach (o; os)
            removed += o[1] - o[0];
        verify(w, len, removed, false, os[]);
        verify(x, len, removed, true, os[]);
        verify(y, len, removed, false, os[]);
        verify(z, len, removed, true, os[]);
        assert(w == y);
        assert(x == z);
    }
}

// reverse
/**
Reverses $(D r) in-place.  Performs $(D r.length / 2) evaluations of $(D
swap).
Params:
    r = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
    with swappable elements or a random access range with a length member

See_Also:
    $(HTTP sgi.com/tech/stl/_reverse.html, STL's _reverse), $(REF retro, std,range) for a lazy reversed range view
*/
void reverse(Range)(Range r)
if (isBidirectionalRange!Range && !isRandomAccessRange!Range
    && hasSwappableElements!Range)
{
    while (!r.empty)
    {
        swap(r.front, r.back);
        r.popFront();
        if (r.empty) break;
        r.popBack();
    }
}

///
@safe unittest
{
    int[] arr = [ 1, 2, 3 ];
    reverse(arr);
    assert(arr == [ 3, 2, 1 ]);
}

///ditto
void reverse(Range)(Range r)
if (isRandomAccessRange!Range && hasLength!Range)
{
    //swapAt is in fact the only way to swap non lvalue ranges
    immutable last = r.length-1;
    immutable steps = r.length/2;
    for (size_t i = 0; i < steps; i++)
    {
        r.swapAt(i, last-i);
    }
}

@safe unittest
{
    int[] range = null;
    reverse(range);
    range = [ 1 ];
    reverse(range);
    assert(range == [1]);
    range = [1, 2];
    reverse(range);
    assert(range == [2, 1]);
    range = [1, 2, 3];
    reverse(range);
    assert(range == [3, 2, 1]);
}

/**
Reverses $(D r) in-place, where $(D r) is a narrow string (having
elements of type $(D char) or $(D wchar)). UTF sequences consisting of
multiple code units are preserved properly.

Params:
    s = a narrow string

Bugs:
    When passing a sting with unicode modifiers on characters, such as $(D \u0301),
    this function will not properly keep the position of the modifier. For example,
    reversing $(D ba\u0301d) ("bád") will result in d\u0301ab ("d́ab") instead of
    $(D da\u0301b) ("dáb").
*/
void reverse(Char)(Char[] s)
if (isNarrowString!(Char[]) && !is(Char == const) && !is(Char == immutable))
{
    import std.string : representation;
    import std.utf : stride;

    auto r = representation(s);
    for (size_t i = 0; i < s.length; )
    {
        immutable step = stride(s, i);
        if (step > 1)
        {
            .reverse(r[i .. i + step]);
            i += step;
        }
        else
        {
            ++i;
        }
    }
    reverse(r);
}

///
@safe unittest
{
    char[] arr = "hello\U00010143\u0100\U00010143".dup;
    reverse(arr);
    assert(arr == "\U00010143\u0100\U00010143olleh");
}

@safe unittest
{
    void test(string a, string b)
    {
        auto c = a.dup;
        reverse(c);
        assert(c == b, c ~ " != " ~ b);
    }

    test("a", "a");
    test(" ", " ");
    test("\u2029", "\u2029");
    test("\u0100", "\u0100");
    test("\u0430", "\u0430");
    test("\U00010143", "\U00010143");
    test("abcdefcdef", "fedcfedcba");
    test("hello\U00010143\u0100\U00010143", "\U00010143\u0100\U00010143olleh");
}

/**
    The strip group of functions allow stripping of either leading, trailing,
    or both leading and trailing elements.

    The $(D stripLeft) function will strip the $(D front) of the range,
    the $(D stripRight) function will strip the $(D back) of the range,
    while the $(D strip) function will strip both the $(D front) and $(D back)
    of the range.

    Note that the $(D strip) and $(D stripRight) functions require the range to
    be a $(LREF BidirectionalRange) range.

    All of these functions come in two varieties: one takes a target element,
    where the range will be stripped as long as this element can be found.
    The other takes a lambda predicate, where the range will be stripped as
    long as the predicate returns true.

    Params:
        range = a $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
        or $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
        element = the elements to remove

    Returns:
        a Range with all of range except element at the start and end
*/
Range strip(Range, E)(Range range, E element)
if (isBidirectionalRange!Range && is(typeof(range.front == element) : bool))
{
    return range.stripLeft(element).stripRight(element);
}

/// ditto
Range strip(alias pred, Range)(Range range)
if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool))
{
    return range.stripLeft!pred().stripRight!pred();
}

/// ditto
Range stripLeft(Range, E)(Range range, E element)
if (isInputRange!Range && is(typeof(range.front == element) : bool))
{
    import std.algorithm.searching : find;
    return find!((auto ref a) => a != element)(range);
}

/// ditto
Range stripLeft(alias pred, Range)(Range range)
if (isInputRange!Range && is(typeof(pred(range.front)) : bool))
{
    import std.algorithm.searching : find;
    import std.functional : not;

    return find!(not!pred)(range);
}

/// ditto
Range stripRight(Range, E)(Range range, E element)
if (isBidirectionalRange!Range && is(typeof(range.back == element) : bool))
{
    for (; !range.empty; range.popBack())
    {
        if (range.back != element)
            break;
    }
    return range;
}

/// ditto
Range stripRight(alias pred, Range)(Range range)
if (isBidirectionalRange!Range && is(typeof(pred(range.back)) : bool))
{
    for (; !range.empty; range.popBack())
    {
        if (!pred(range.back))
            break;
    }
    return range;
}

/// Strip leading and trailing elements equal to the target element.
@safe pure unittest
{
    assert("  foobar  ".strip(' ') == "foobar");
    assert("00223.444500".strip('0') == "223.4445");
    assert("ëëêéüŗōpéêëë".strip('ë') == "êéüŗōpéê");
    assert([1, 1, 0, 1, 1].strip(1) == [0]);
    assert([0.0, 0.01, 0.01, 0.0].strip(0).length == 2);
}

/// Strip leading and trailing elements while the predicate returns true.
@safe pure unittest
{
    assert("  foobar  ".strip!(a => a == ' ')() == "foobar");
    assert("00223.444500".strip!(a => a == '0')() == "223.4445");
    assert("ëëêéüŗōpéêëë".strip!(a => a == 'ë')() == "êéüŗōpéê");
    assert([1, 1, 0, 1, 1].strip!(a => a == 1)() == [0]);
    assert([0.0, 0.01, 0.5, 0.6, 0.01, 0.0].strip!(a => a < 0.4)().length == 2);
}

/// Strip leading elements equal to the target element.
@safe pure unittest
{
    assert("  foobar  ".stripLeft(' ') == "foobar  ");
    assert("00223.444500".stripLeft('0') == "223.444500");
    assert("ůůűniçodêéé".stripLeft('ů') == "űniçodêéé");
    assert([1, 1, 0, 1, 1].stripLeft(1) == [0, 1, 1]);
    assert([0.0, 0.01, 0.01, 0.0].stripLeft(0).length == 3);
}

/// Strip leading elements while the predicate returns true.
@safe pure unittest
{
    assert("  foobar  ".stripLeft!(a => a == ' ')() == "foobar  ");
    assert("00223.444500".stripLeft!(a => a == '0')() == "223.444500");
    assert("ůůűniçodêéé".stripLeft!(a => a == 'ů')() == "űniçodêéé");
    assert([1, 1, 0, 1, 1].stripLeft!(a => a == 1)() == [0, 1, 1]);
    assert([0.0, 0.01, 0.10, 0.5, 0.6].stripLeft!(a => a < 0.4)().length == 2);
}

/// Strip trailing elements equal to the target element.
@safe pure unittest
{
    assert("  foobar  ".stripRight(' ') == "  foobar");
    assert("00223.444500".stripRight('0') == "00223.4445");
    assert("ùniçodêéé".stripRight('é') == "ùniçodê");
    assert([1, 1, 0, 1, 1].stripRight(1) == [1, 1, 0]);
    assert([0.0, 0.01, 0.01, 0.0].stripRight(0).length == 3);
}

/// Strip trailing elements while the predicate returns true.
@safe pure unittest
{
    assert("  foobar  ".stripRight!(a => a == ' ')() == "  foobar");
    assert("00223.444500".stripRight!(a => a == '0')() == "00223.4445");
    assert("ùniçodêéé".stripRight!(a => a == 'é')() == "ùniçodê");
    assert([1, 1, 0, 1, 1].stripRight!(a => a == 1)() == [1, 1, 0]);
    assert([0.0, 0.01, 0.10, 0.5, 0.6].stripRight!(a => a > 0.4)().length == 3);
}

// swap
/**
Swaps $(D lhs) and $(D rhs). The instances $(D lhs) and $(D rhs) are moved in
memory, without ever calling $(D opAssign), nor any other function. $(D T)
need not be assignable at all to be swapped.

If $(D lhs) and $(D rhs) reference the same instance, then nothing is done.

$(D lhs) and $(D rhs) must be mutable. If $(D T) is a struct or union, then
its fields must also all be (recursively) mutable.

Params:
    lhs = Data to be swapped with $(D rhs).
    rhs = Data to be swapped with $(D lhs).
*/
void swap(T)(ref T lhs, ref T rhs) @trusted pure nothrow @nogc
if (isBlitAssignable!T && !is(typeof(lhs.proxySwap(rhs))))
{
    import std.traits : hasAliasing, hasElaborateAssign, isAssignable,
                        isStaticArray;
    static if (hasAliasing!T) if (!__ctfe)
    {
        import std.exception : doesPointTo;
        assert(!doesPointTo(lhs, lhs), "Swap: lhs internal pointer.");
        assert(!doesPointTo(rhs, rhs), "Swap: rhs internal pointer.");
        assert(!doesPointTo(lhs, rhs), "Swap: lhs points to rhs.");
        assert(!doesPointTo(rhs, lhs), "Swap: rhs points to lhs.");
    }

    static if (hasElaborateAssign!T || !isAssignable!T)
    {
        if (&lhs != &rhs)
        {
            // For structs with non-trivial assignment, move memory directly
            ubyte[T.sizeof] t = void;
            auto a = (cast(ubyte*) &lhs)[0 .. T.sizeof];
            auto b = (cast(ubyte*) &rhs)[0 .. T.sizeof];
            t[] = a[];
            a[] = b[];
            b[] = t[];
        }
    }
    else
    {
        //Avoid assigning overlapping arrays. Dynamic arrays are fine, because
        //it's their ptr and length properties which get assigned rather
        //than their elements when assigning them, but static arrays are value
        //types and therefore all of their elements get copied as part of
        //assigning them, which would be assigning overlapping arrays if lhs
        //and rhs were the same array.
        static if (isStaticArray!T)
        {
            if (lhs.ptr == rhs.ptr)
                return;
        }

        // For non-struct types, suffice to do the classic swap
        auto tmp = lhs;
        lhs = rhs;
        rhs = tmp;
    }
}

///
@safe unittest
{
    // Swapping POD (plain old data) types:
    int a = 42, b = 34;
    swap(a, b);
    assert(a == 34 && b == 42);

    // Swapping structs with indirection:
    static struct S { int x; char c; int[] y; }
    S s1 = { 0, 'z', [ 1, 2 ] };
    S s2 = { 42, 'a', [ 4, 6 ] };
    swap(s1, s2);
    assert(s1.x == 42);
    assert(s1.c == 'a');
    assert(s1.y == [ 4, 6 ]);

    assert(s2.x == 0);
    assert(s2.c == 'z');
    assert(s2.y == [ 1, 2 ]);

    // Immutables cannot be swapped:
    immutable int imm1 = 1, imm2 = 2;
    static assert(!__traits(compiles, swap(imm1, imm2)));

    int c = imm1 + 0;
    int d = imm2 + 0;
    swap(c, d);
    assert(c == 2);
    assert(d == 1);
}

///
@safe unittest
{
    // Non-copyable types can still be swapped.
    static struct NoCopy
    {
        this(this) { assert(0); }
        int n;
        string s;
    }
    NoCopy nc1, nc2;
    nc1.n = 127; nc1.s = "abc";
    nc2.n = 513; nc2.s = "uvwxyz";

    swap(nc1, nc2);
    assert(nc1.n == 513 && nc1.s == "uvwxyz");
    assert(nc2.n == 127 && nc2.s == "abc");

    swap(nc1, nc1);
    swap(nc2, nc2);
    assert(nc1.n == 513 && nc1.s == "uvwxyz");
    assert(nc2.n == 127 && nc2.s == "abc");

    // Types containing non-copyable fields can also be swapped.
    static struct NoCopyHolder
    {
        NoCopy noCopy;
    }
    NoCopyHolder h1, h2;
    h1.noCopy.n = 31; h1.noCopy.s = "abc";
    h2.noCopy.n = 65; h2.noCopy.s = null;

    swap(h1, h2);
    assert(h1.noCopy.n == 65 && h1.noCopy.s == null);
    assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc");

    swap(h1, h1);
    swap(h2, h2);
    assert(h1.noCopy.n == 65 && h1.noCopy.s == null);
    assert(h2.noCopy.n == 31 && h2.noCopy.s == "abc");

    // Const types cannot be swapped.
    const NoCopy const1, const2;
    assert(const1.n == 0 && const2.n == 0);
    static assert(!__traits(compiles, swap(const1, const2)));
}

@safe unittest
{
    //Bug# 4789
    int[1] s = [1];
    swap(s, s);

    int[3] a = [1, 2, 3];
    swap(a[1], a[2]);
    assert(a == [1, 3, 2]);
}

@safe unittest
{
    static struct NoAssign
    {
        int i;
        void opAssign(NoAssign) @disable;
    }
    auto s1 = NoAssign(1);
    auto s2 = NoAssign(2);
    swap(s1, s2);
    assert(s1.i == 2);
    assert(s2.i == 1);
}

@safe unittest
{
    struct S
    {
        const int i;
        int i2 = 2;
        int i3 = 3;
    }
    S s;
    static assert(!__traits(compiles, swap(s, s)));
    swap(s.i2, s.i3);
    assert(s.i2 == 3);
    assert(s.i3 == 2);
}

@safe unittest
{
    //11853
    import std.traits : isAssignable;
    alias T = Tuple!(int, double);
    static assert(isAssignable!T);
}

@safe unittest
{
    // 12024
    import std.datetime;
    SysTime a, b;
    swap(a, b);
}

@system unittest // 9975
{
    import std.exception : doesPointTo, mayPointTo;
    static struct S2
    {
        union
        {
            size_t sz;
            string s;
        }
    }
    S2 a , b;
    a.sz = -1;
    assert(!doesPointTo(a, b));
    assert( mayPointTo(a, b));
    swap(a, b);

    //Note: we can catch an error here, because there is no RAII in this test
    import std.exception : assertThrown;
    void* p, pp;
    p = &p;
    assertThrown!Error(move(p));
    assertThrown!Error(move(p, pp));
    assertThrown!Error(swap(p, pp));
}

@system unittest
{
    static struct A
    {
        int* x;
        this(this) { x = new int; }
    }
    A a1, a2;
    swap(a1, a2);

    static struct B
    {
        int* x;
        void opAssign(B) { x = new int; }
    }
    B b1, b2;
    swap(b1, b2);
}

/// ditto
void swap(T)(ref T lhs, ref T rhs)
if (is(typeof(lhs.proxySwap(rhs))))
{
    lhs.proxySwap(rhs);
}

/**
Swaps two elements in-place of a range `r`,
specified by their indices `i1` and `i2`.

Params:
    r  = a range with swappable elements
    i1 = first index
    i2 = second index
*/
void swapAt(R)(auto ref R r, size_t i1, size_t i2)
{
    static if (is(typeof(&r.swapAt)))
    {
        r.swapAt(i1, i2);
    }
    else static if (is(typeof(&r[i1])))
    {
        swap(r[i1], r[i2]);
    }
    else
    {
        if (i1 == i2) return;
        auto t1 = r.moveAt(i1);
        auto t2 = r.moveAt(i2);
        r[i2] = t1;
        r[i1] = t2;
    }
}

///
pure @safe nothrow unittest
{
    import std.algorithm.comparison : equal;
    auto a = [1, 2, 3];
    a.swapAt(1, 2);
    assert(a.equal([1, 3, 2]));
}

pure @safe nothrow unittest
{
    import std.algorithm.comparison : equal;
    auto a = [4, 5, 6];
    a.swapAt(1, 1);
    assert(a.equal([4, 5, 6]));
}

pure @safe nothrow unittest
{
    // test non random access ranges
    import std.algorithm.comparison : equal;
    import std.array : array;

    char[] b = ['a', 'b', 'c'];
    b.swapAt(1, 2);
    assert(b.equal(['a', 'c', 'b']));

    int[3] c = [1, 2, 3];
    c.swapAt(1, 2);
    assert(c.array.equal([1, 3, 2]));

    // opIndex returns lvalue
    struct RandomIndexType(T)
    {
        T payload;

        @property ref auto opIndex(size_t i)
        {
           return payload[i];
        }

    }
    auto d = RandomIndexType!(int[])([4, 5, 6]);
    d.swapAt(1, 2);
    assert(d.payload.equal([4, 6, 5]));

    // custom moveAt and opIndexAssign
    struct RandomMoveAtType(T)
    {
        T payload;

        ElementType!T moveAt(size_t i)
        {
           return payload.moveAt(i);
        }

        void opIndexAssign(ElementType!T val, size_t idx)
        {
            payload[idx] = val;
        }
    }
    auto e = RandomMoveAtType!(int[])([7, 8, 9]);
    e.swapAt(1, 2);
    assert(e.payload.equal([7, 9, 8]));


    // custom swapAt
    struct RandomSwapAtType(T)
    {
        T payload;

        void swapAt(size_t i)
        {
           return payload.swapAt(i);
        }
    }
    auto f = RandomMoveAtType!(int[])([10, 11, 12]);
    swapAt(f, 1, 2);
    assert(f.payload.equal([10, 12, 11]));
}

private void swapFront(R1, R2)(R1 r1, R2 r2)
if (isInputRange!R1 && isInputRange!R2)
{
    static if (is(typeof(swap(r1.front, r2.front))))
    {
        swap(r1.front, r2.front);
    }
    else
    {
        auto t1 = moveFront(r1), t2 = moveFront(r2);
        r1.front = move(t2);
        r2.front = move(t1);
    }
}

// swapRanges
/**
Swaps all elements of $(D r1) with successive elements in $(D r2).
Returns a tuple containing the remainder portions of $(D r1) and $(D
r2) that were not swapped (one of them will be empty). The ranges may
be of different types but must have the same element type and support
swapping.

Params:
    r1 = an $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
         with swappable elements
    r2 = an $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
         with swappable elements

Returns:
    Tuple containing the remainder portions of r1 and r2 that were not swapped
*/
Tuple!(InputRange1, InputRange2)
swapRanges(InputRange1, InputRange2)(InputRange1 r1, InputRange2 r2)
if (hasSwappableElements!InputRange1 && hasSwappableElements!InputRange2
    && is(ElementType!InputRange1 == ElementType!InputRange2))
{
    for (; !r1.empty && !r2.empty; r1.popFront(), r2.popFront())
    {
        swap(r1.front, r2.front);
    }
    return tuple(r1, r2);
}

///
@safe unittest
{
    import std.range : empty;
    int[] a = [ 100, 101, 102, 103 ];
    int[] b = [ 0, 1, 2, 3 ];
    auto c = swapRanges(a[1 .. 3], b[2 .. 4]);
    assert(c[0].empty && c[1].empty);
    assert(a == [ 100, 2, 3, 103 ]);
    assert(b == [ 0, 1, 101, 102 ]);
}

/**
Initializes each element of $(D range) with $(D value).
Assumes that the elements of the range are uninitialized.
This is of interest for structs that
define copy constructors (for all other types, $(LREF fill) and
uninitializedFill are equivalent).

Params:
        range = An
                $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
                that exposes references to its elements and has assignable
                elements
        value = Assigned to each element of range

See_Also:
        $(LREF fill)
        $(LREF initializeAll)
 */
void uninitializedFill(Range, Value)(Range range, Value value)
if (isInputRange!Range && hasLvalueElements!Range && is(typeof(range.front = value)))
{
    import std.traits : hasElaborateAssign;

    alias T = ElementType!Range;
    static if (hasElaborateAssign!T)
    {
        import std.conv : emplaceRef;

        // Must construct stuff by the book
        for (; !range.empty; range.popFront())
            emplaceRef!T(range.front, value);
    }
    else
        // Doesn't matter whether fill is initialized or not
        return fill(range, value);
}

///
nothrow @system unittest
{
    import core.stdc.stdlib : malloc, free;

    auto s = (cast(int*) malloc(5 * int.sizeof))[0 .. 5];
    uninitializedFill(s, 42);
    assert(s == [ 42, 42, 42, 42, 42 ]);

    scope(exit) free(s.ptr);
}