Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
// Written in the D programming language.
/**
This is a submodule of $(MREF std, algorithm).
It contains generic _searching algorithms.

$(SCRIPT inhibitQuickIndex = 1;)
$(BOOKTABLE Cheat Sheet,
$(TR $(TH Function Name) $(TH Description))
$(T2 all,
        $(D all!"a > 0"([1, 2, 3, 4])) returns $(D true) because all elements
        are positive)
$(T2 any,
        $(D any!"a > 0"([1, 2, -3, -4])) returns $(D true) because at least one
        element is positive)
$(T2 balancedParens,
        $(D balancedParens("((1 + 1) / 2)")) returns $(D true) because the
        string has balanced parentheses.)
$(T2 boyerMooreFinder,
        $(D find("hello world", boyerMooreFinder("or"))) returns $(D "orld")
        using the $(LINK2 https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm,
        Boyer-Moore _algorithm).)
$(T2 canFind,
        $(D canFind("hello world", "or")) returns $(D true).)
$(T2 count,
        Counts elements that are equal to a specified value or satisfy a
        predicate.  $(D count([1, 2, 1], 1)) returns $(D 2) and
        $(D count!"a < 0"([1, -3, 0])) returns $(D 1).)
$(T2 countUntil,
        $(D countUntil(a, b)) returns the number of steps taken in $(D a) to
        reach $(D b); for example, $(D countUntil("hello!", "o")) returns
        $(D 4).)
$(T2 commonPrefix,
        $(D commonPrefix("parakeet", "parachute")) returns $(D "para").)
$(T2 endsWith,
        $(D endsWith("rocks", "ks")) returns $(D true).)
$(T2 find,
        $(D find("hello world", "or")) returns $(D "orld") using linear search.
        (For binary search refer to $(REF sortedRange, std,range).))
$(T2 findAdjacent,
        $(D findAdjacent([1, 2, 3, 3, 4])) returns the subrange starting with
        two equal adjacent elements, i.e. $(D [3, 3, 4]).)
$(T2 findAmong,
        $(D findAmong("abcd", "qcx")) returns $(D "cd") because $(D 'c') is
        among $(D "qcx").)
$(T2 findSkip,
        If $(D a = "abcde"), then $(D findSkip(a, "x")) returns $(D false) and
        leaves $(D a) unchanged, whereas $(D findSkip(a, "c")) advances $(D a)
        to $(D "de") and returns $(D true).)
$(T2 findSplit,
        $(D findSplit("abcdefg", "de")) returns the three ranges $(D "abc"),
        $(D "de"), and $(D "fg").)
$(T2 findSplitAfter,
        $(D findSplitAfter("abcdefg", "de")) returns the two ranges
        $(D "abcde") and $(D "fg").)
$(T2 findSplitBefore,
        $(D findSplitBefore("abcdefg", "de")) returns the two ranges $(D "abc")
        and $(D "defg").)
$(T2 minCount,
        $(D minCount([2, 1, 1, 4, 1])) returns $(D tuple(1, 3)).)
$(T2 maxCount,
        $(D maxCount([2, 4, 1, 4, 1])) returns $(D tuple(4, 2)).)
$(T2 minElement,
        Selects the minimal element of a range.
        `minElement([3, 4, 1, 2])` returns `1`.)
$(T2 maxElement,
        Selects the maximal element of a range.
        `maxElement([3, 4, 1, 2])` returns `4`.)
$(T2 minIndex,
        Index of the minimal element of a range.
        `minElement([3, 4, 1, 2])` returns `2`.)
$(T2 maxIndex,
        Index of the maximal element of a range.
        `maxElement([3, 4, 1, 2])` returns `1`.)
$(T2 minPos,
        $(D minPos([2, 3, 1, 3, 4, 1])) returns the subrange $(D [1, 3, 4, 1]),
        i.e., positions the range at the first occurrence of its minimal
        element.)
$(T2 maxPos,
        $(D maxPos([2, 3, 1, 3, 4, 1])) returns the subrange $(D [4, 1]),
        i.e., positions the range at the first occurrence of its maximal
        element.)
$(T2 mismatch,
        $(D mismatch("parakeet", "parachute")) returns the two ranges
        $(D "keet") and $(D "chute").)
$(T2 skipOver,
        Assume $(D a = "blah"). Then $(D skipOver(a, "bi")) leaves $(D a)
        unchanged and returns $(D false), whereas $(D skipOver(a, "bl"))
        advances $(D a) to refer to $(D "ah") and returns $(D true).)
$(T2 startsWith,
        $(D startsWith("hello, world", "hello")) returns $(D true).)
$(T2 until,
        Lazily iterates a range until a specific value is found.)
)

Copyright: Andrei Alexandrescu 2008-.

License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).

Authors: $(HTTP erdani.com, Andrei Alexandrescu)

Source: $(PHOBOSSRC std/algorithm/_searching.d)

Macros:
T2=$(TR $(TDNW $(LREF $1)) $(TD $+))
 */
module std.algorithm.searching;

// FIXME
import std.functional; // : unaryFun, binaryFun;
import std.range.primitives;
import std.traits;
// FIXME
import std.typecons; // : Tuple, Flag, Yes, No;

/++
Checks if $(I _all) of the elements verify $(D pred).
 +/
template all(alias pred = "a")
{
    /++
    Returns $(D true) if and only if $(I _all) values $(D v) found in the
    input _range $(D range) satisfy the predicate $(D pred).
    Performs (at most) $(BIGOH range.length) evaluations of $(D pred).
     +/
    bool all(Range)(Range range)
    if (isInputRange!Range && is(typeof(unaryFun!pred(range.front))))
    {
        import std.functional : not;

        return find!(not!(unaryFun!pred))(range).empty;
    }
}

///
@safe unittest
{
    assert( all!"a & 1"([1, 3, 5, 7, 9]));
    assert(!all!"a & 1"([1, 2, 3, 5, 7, 9]));
}

/++
$(D all) can also be used without a predicate, if its items can be
evaluated to true or false in a conditional statement. This can be a
convenient way to quickly evaluate that $(I _all) of the elements of a range
are true.
 +/
@safe unittest
{
    int[3] vals = [5, 3, 18];
    assert( all(vals[]));
}

@safe unittest
{
    int x = 1;
    assert(all!(a => a > x)([2, 3]));
}

/++
Checks if $(I _any) of the elements verifies $(D pred).
$(D !any) can be used to verify that $(I none) of the elements verify
$(D pred).
This is sometimes called `exists` in other languages.
 +/
template any(alias pred = "a")
{
    /++
    Returns $(D true) if and only if $(I _any) value $(D v) found in the
    input _range $(D range) satisfies the predicate $(D pred).
    Performs (at most) $(BIGOH range.length) evaluations of $(D pred).
     +/
    bool any(Range)(Range range)
    if (isInputRange!Range && is(typeof(unaryFun!pred(range.front))))
    {
        return !find!pred(range).empty;
    }
}

///
@safe unittest
{
    import std.ascii : isWhite;
    assert( all!(any!isWhite)(["a a", "b b"]));
    assert(!any!(all!isWhite)(["a a", "b b"]));
}

/++
$(D any) can also be used without a predicate, if its items can be
evaluated to true or false in a conditional statement. $(D !any) can be a
convenient way to quickly test that $(I none) of the elements of a range
evaluate to true.
 +/
@safe unittest
{
    int[3] vals1 = [0, 0, 0];
    assert(!any(vals1[])); //none of vals1 evaluate to true

    int[3] vals2 = [2, 0, 2];
    assert( any(vals2[]));
    assert(!all(vals2[]));

    int[3] vals3 = [3, 3, 3];
    assert( any(vals3[]));
    assert( all(vals3[]));
}

@safe unittest
{
    auto a = [ 1, 2, 0, 4 ];
    assert(any!"a == 2"(a));
}

// balancedParens
/**
Checks whether $(D r) has "balanced parentheses", i.e. all instances
of $(D lPar) are closed by corresponding instances of $(D rPar). The
parameter $(D maxNestingLevel) controls the nesting level allowed. The
most common uses are the default or $(D 0). In the latter case, no
nesting is allowed.

Params:
    r = The range to check.
    lPar = The element corresponding with a left (opening) parenthesis.
    rPar = The element corresponding with a right (closing) parenthesis.
    maxNestingLevel = The maximum allowed nesting level.

Returns:
    true if the given range has balanced parenthesis within the given maximum
    nesting level; false otherwise.
*/
bool balancedParens(Range, E)(Range r, E lPar, E rPar,
        size_t maxNestingLevel = size_t.max)
if (isInputRange!(Range) && is(typeof(r.front == lPar)))
{
    size_t count;
    for (; !r.empty; r.popFront())
    {
        if (r.front == lPar)
        {
            if (count > maxNestingLevel) return false;
            ++count;
        }
        else if (r.front == rPar)
        {
            if (!count) return false;
            --count;
        }
    }
    return count == 0;
}

///
@safe unittest
{
    auto s = "1 + (2 * (3 + 1 / 2)";
    assert(!balancedParens(s, '(', ')'));
    s = "1 + (2 * (3 + 1) / 2)";
    assert(balancedParens(s, '(', ')'));
    s = "1 + (2 * (3 + 1) / 2)";
    assert(!balancedParens(s, '(', ')', 0));
    s = "1 + (2 * 3 + 1) / (2 - 5)";
    assert(balancedParens(s, '(', ')', 0));
}

/**
 * Sets up Boyer-Moore matching for use with $(D find) below.
 * By default, elements are compared for equality.
 *
 * $(D BoyerMooreFinder) allocates GC memory.
 *
 * Params:
 * pred = Predicate used to compare elements.
 * needle = A random-access range with length and slicing.
 *
 * Returns:
 * An instance of $(D BoyerMooreFinder) that can be used with $(D find()) to
 * invoke the Boyer-Moore matching algorithm for finding of $(D needle) in a
 * given haystack.
 */
struct BoyerMooreFinder(alias pred, Range)
{
private:
    size_t[] skip;                              // GC allocated
    ptrdiff_t[ElementType!(Range)] occ;         // GC allocated
    Range needle;

    ptrdiff_t occurrence(ElementType!(Range) c)
    {
        auto p = c in occ;
        return p ? *p : -1;
    }

/*
This helper function checks whether the last "portion" bytes of
"needle" (which is "nlen" bytes long) exist within the "needle" at
offset "offset" (counted from the end of the string), and whether the
character preceding "offset" is not a match.  Notice that the range
being checked may reach beyond the beginning of the string. Such range
is ignored.
 */
    static bool needlematch(R)(R needle,
                              size_t portion, size_t offset)
    {
        import std.algorithm.comparison : equal;
        ptrdiff_t virtual_begin = needle.length - offset - portion;
        ptrdiff_t ignore = 0;
        if (virtual_begin < 0)
        {
            ignore = -virtual_begin;
            virtual_begin = 0;
        }
        if (virtual_begin > 0
            && needle[virtual_begin - 1] == needle[$ - portion - 1])
            return 0;

        immutable delta = portion - ignore;
        return equal(needle[needle.length - delta .. needle.length],
                needle[virtual_begin .. virtual_begin + delta]);
    }

public:
    ///
    this(Range needle)
    {
        if (!needle.length) return;
        this.needle = needle;
        /* Populate table with the analysis of the needle */
        /* But ignoring the last letter */
        foreach (i, n ; needle[0 .. $ - 1])
        {
            this.occ[n] = i;
        }
        /* Preprocess #2: init skip[] */
        /* Note: This step could be made a lot faster.
         * A simple implementation is shown here. */
        this.skip = new size_t[needle.length];
        foreach (a; 0 .. needle.length)
        {
            size_t value = 0;
            while (value < needle.length
                   && !needlematch(needle, a, value))
            {
                ++value;
            }
            this.skip[needle.length - a - 1] = value;
        }
    }

    ///
    Range beFound(Range haystack)
    {
        import std.algorithm.comparison : max;

        if (!needle.length) return haystack;
        if (needle.length > haystack.length) return haystack[$ .. $];
        /* Search: */
        immutable limit = haystack.length - needle.length;
        for (size_t hpos = 0; hpos <= limit; )
        {
            size_t npos = needle.length - 1;
            while (pred(needle[npos], haystack[npos+hpos]))
            {
                if (npos == 0) return haystack[hpos .. $];
                --npos;
            }
            hpos += max(skip[npos], cast(sizediff_t) npos - occurrence(haystack[npos+hpos]));
        }
        return haystack[$ .. $];
    }

    ///
    @property size_t length()
    {
        return needle.length;
    }

    ///
    alias opDollar = length;
}

/// Ditto
BoyerMooreFinder!(binaryFun!(pred), Range) boyerMooreFinder
(alias pred = "a == b", Range)
(Range needle)
if ((isRandomAccessRange!(Range) && hasSlicing!Range) || isSomeString!Range)
{
    return typeof(return)(needle);
}

///
@safe pure nothrow unittest
{
    auto bmFinder = boyerMooreFinder("TG");

    string r = "TAGTGCCTGA";
    // search for the first match in the haystack r
    r = bmFinder.beFound(r);
    assert(r == "TGCCTGA");

    // continue search in haystack
    r = bmFinder.beFound(r[2 .. $]);
    assert(r == "TGA");
}

/**
Returns the common prefix of two ranges.

Params:
    pred = The predicate to use in comparing elements for commonality. Defaults
        to equality $(D "a == b").

    r1 = A $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) of
        elements.

    r2 = An $(REF_ALTTEXT input range, isInputRange, std,range,primitives) of
        elements.

Returns:
A slice of $(D r1) which contains the characters that both ranges start with,
if the first argument is a string; otherwise, the same as the result of
$(D takeExactly(r1, n)), where $(D n) is the number of elements in the common
prefix of both ranges.

See_Also:
    $(REF takeExactly, std,range)
 */
auto commonPrefix(alias pred = "a == b", R1, R2)(R1 r1, R2 r2)
if (isForwardRange!R1 && isInputRange!R2 &&
    !isNarrowString!R1 &&
    is(typeof(binaryFun!pred(r1.front, r2.front))))
{
    import std.algorithm.comparison : min;
    static if (isRandomAccessRange!R1 && isRandomAccessRange!R2 &&
               hasLength!R1 && hasLength!R2 &&
               hasSlicing!R1)
    {
        immutable limit = min(r1.length, r2.length);
        foreach (i; 0 .. limit)
        {
            if (!binaryFun!pred(r1[i], r2[i]))
            {
                return r1[0 .. i];
            }
        }
        return r1[0 .. limit];
    }
    else
    {
        import std.range : takeExactly;
        auto result = r1.save;
        size_t i = 0;
        for (;
             !r1.empty && !r2.empty && binaryFun!pred(r1.front, r2.front);
             ++i, r1.popFront(), r2.popFront())
        {}
        return takeExactly(result, i);
    }
}

///
@safe unittest
{
    assert(commonPrefix("hello, world", "hello, there") == "hello, ");
}

/// ditto
auto commonPrefix(alias pred, R1, R2)(R1 r1, R2 r2)
if (isNarrowString!R1 && isInputRange!R2 &&
    is(typeof(binaryFun!pred(r1.front, r2.front))))
{
    import std.utf : decode;

    auto result = r1.save;
    immutable len = r1.length;
    size_t i = 0;

    for (size_t j = 0; i < len && !r2.empty; r2.popFront(), i = j)
    {
        immutable f = decode(r1, j);
        if (!binaryFun!pred(f, r2.front))
            break;
    }

    return result[0 .. i];
}

/// ditto
auto commonPrefix(R1, R2)(R1 r1, R2 r2)
if (isNarrowString!R1 && isInputRange!R2 && !isNarrowString!R2 &&
    is(typeof(r1.front == r2.front)))
{
    return commonPrefix!"a == b"(r1, r2);
}

/// ditto
auto commonPrefix(R1, R2)(R1 r1, R2 r2)
if (isNarrowString!R1 && isNarrowString!R2)
{
    import std.algorithm.comparison : min;

    static if (ElementEncodingType!R1.sizeof == ElementEncodingType!R2.sizeof)
    {
        import std.utf : stride, UTFException;

        immutable limit = min(r1.length, r2.length);
        for (size_t i = 0; i < limit;)
        {
            immutable codeLen = stride(r1, i);
            size_t j = 0;

            for (; j < codeLen && i < limit; ++i, ++j)
            {
                if (r1[i] != r2[i])
                    return r1[0 .. i - j];
            }

            if (i == limit && j < codeLen)
                throw new UTFException("Invalid UTF-8 sequence", i);
        }
        return r1[0 .. limit];
    }
    else
        return commonPrefix!"a == b"(r1, r2);
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.algorithm.iteration : filter;
    import std.conv : to;
    import std.exception : assertThrown;
    import std.meta : AliasSeq;
    import std.range;
    import std.utf : UTFException;

    assert(commonPrefix([1, 2, 3], [1, 2, 3, 4, 5]) == [1, 2, 3]);
    assert(commonPrefix([1, 2, 3, 4, 5], [1, 2, 3]) == [1, 2, 3]);
    assert(commonPrefix([1, 2, 3, 4], [1, 2, 3, 4]) == [1, 2, 3, 4]);
    assert(commonPrefix([1, 2, 3], [7, 2, 3, 4, 5]).empty);
    assert(commonPrefix([7, 2, 3, 4, 5], [1, 2, 3]).empty);
    assert(commonPrefix([1, 2, 3], cast(int[]) null).empty);
    assert(commonPrefix(cast(int[]) null, [1, 2, 3]).empty);
    assert(commonPrefix(cast(int[]) null, cast(int[]) null).empty);

    foreach (S; AliasSeq!(char[], const(char)[], string,
                          wchar[], const(wchar)[], wstring,
                          dchar[], const(dchar)[], dstring))
    {
        foreach (T; AliasSeq!(string, wstring, dstring))
        (){ // avoid slow optimizations for large functions @@@BUG@@@ 2396
            assert(commonPrefix(to!S(""), to!T("")).empty);
            assert(commonPrefix(to!S(""), to!T("hello")).empty);
            assert(commonPrefix(to!S("hello"), to!T("")).empty);
            assert(commonPrefix(to!S("hello, world"), to!T("hello, there")) == to!S("hello, "));
            assert(commonPrefix(to!S("hello, there"), to!T("hello, world")) == to!S("hello, "));
            assert(commonPrefix(to!S("hello, "), to!T("hello, world")) == to!S("hello, "));
            assert(commonPrefix(to!S("hello, world"), to!T("hello, ")) == to!S("hello, "));
            assert(commonPrefix(to!S("hello, world"), to!T("hello, world")) == to!S("hello, world"));

            //Bug# 8890
            assert(commonPrefix(to!S("Пиво"), to!T("Пони"))== to!S("П"));
            assert(commonPrefix(to!S("Пони"), to!T("Пиво"))== to!S("П"));
            assert(commonPrefix(to!S("Пиво"), to!T("Пиво"))== to!S("Пиво"));
            assert(commonPrefix(to!S("\U0010FFFF\U0010FFFB\U0010FFFE"),
                                to!T("\U0010FFFF\U0010FFFB\U0010FFFC")) == to!S("\U0010FFFF\U0010FFFB"));
            assert(commonPrefix(to!S("\U0010FFFF\U0010FFFB\U0010FFFC"),
                                to!T("\U0010FFFF\U0010FFFB\U0010FFFE")) == to!S("\U0010FFFF\U0010FFFB"));
            assert(commonPrefix!"a != b"(to!S("Пиво"), to!T("онво")) == to!S("Пи"));
            assert(commonPrefix!"a != b"(to!S("онво"), to!T("Пиво")) == to!S("он"));
        }();

        static assert(is(typeof(commonPrefix(to!S("Пиво"), filter!"true"("Пони"))) == S));
        assert(equal(commonPrefix(to!S("Пиво"), filter!"true"("Пони")), to!S("П")));

        static assert(is(typeof(commonPrefix(filter!"true"("Пиво"), to!S("Пони"))) ==
                      typeof(takeExactly(filter!"true"("П"), 1))));
        assert(equal(commonPrefix(filter!"true"("Пиво"), to!S("Пони")), takeExactly(filter!"true"("П"), 1)));
    }

    assertThrown!UTFException(commonPrefix("\U0010FFFF\U0010FFFB", "\U0010FFFF\U0010FFFB"[0 .. $ - 1]));

    assert(commonPrefix("12345"d, [49, 50, 51, 60, 60]) == "123"d);
    assert(commonPrefix([49, 50, 51, 60, 60], "12345" ) == [49, 50, 51]);
    assert(commonPrefix([49, 50, 51, 60, 60], "12345"d) == [49, 50, 51]);

    assert(commonPrefix!"a == ('0' + b)"("12345" , [1, 2, 3, 9, 9]) == "123");
    assert(commonPrefix!"a == ('0' + b)"("12345"d, [1, 2, 3, 9, 9]) == "123"d);
    assert(commonPrefix!"('0' + a) == b"([1, 2, 3, 9, 9], "12345" ) == [1, 2, 3]);
    assert(commonPrefix!"('0' + a) == b"([1, 2, 3, 9, 9], "12345"d) == [1, 2, 3]);
}

// count
/**
The first version counts the number of elements $(D x) in $(D r) for
which $(D pred(x, value)) is $(D true). $(D pred) defaults to
equality. Performs $(BIGOH haystack.length) evaluations of $(D pred).

The second version returns the number of times $(D needle) occurs in
$(D haystack). Throws an exception if $(D needle.empty), as the _count
of the empty range in any range would be infinite. Overlapped counts
are not considered, for example $(D count("aaa", "aa")) is $(D 1), not
$(D 2).

The third version counts the elements for which $(D pred(x)) is $(D
true). Performs $(BIGOH haystack.length) evaluations of $(D pred).

The fourth version counts the number of elements in a range. It is
an optimization for the third version: if the given range has the
`length` property the count is returned right away, otherwise
performs $(BIGOH haystack.length) to walk the range.

Note: Regardless of the overload, $(D count) will not accept
infinite ranges for $(D haystack).

Params:
    pred = The predicate to evaluate.
    haystack = The range to _count.
    needle = The element or sub-range to _count in the `haystack`.

Returns:
    The number of positions in the `haystack` for which `pred` returned true.
*/
size_t count(alias pred = "a == b", Range, E)(Range haystack, E needle)
if (isInputRange!Range && !isInfinite!Range &&
    is(typeof(binaryFun!pred(haystack.front, needle)) : bool))
{
    bool pred2(ElementType!Range a) { return binaryFun!pred(a, needle); }
    return count!pred2(haystack);
}

///
@safe unittest
{
    import std.uni : toLower;

    // count elements in range
    int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ];
    assert(count(a) == 9);
    assert(count(a, 2) == 3);
    assert(count!("a > b")(a, 2) == 5);
    // count range in range
    assert(count("abcadfabf", "ab") == 2);
    assert(count("ababab", "abab") == 1);
    assert(count("ababab", "abx") == 0);
    // fuzzy count range in range
    assert(count!((a, b) => toLower(a) == toLower(b))("AbcAdFaBf", "ab") == 2);
    // count predicate in range
    assert(count!("a > 1")(a) == 8);
}

@safe unittest
{
    import std.conv : text;

    int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ];
    assert(count(a, 2) == 3, text(count(a, 2)));
    assert(count!("a > b")(a, 2) == 5, text(count!("a > b")(a, 2)));

    // check strings
    assert(count("日本語")  == 3);
    assert(count("日本語"w) == 3);
    assert(count("日本語"d) == 3);

    assert(count!("a == '日'")("日本語")  == 1);
    assert(count!("a == '本'")("日本語"w) == 1);
    assert(count!("a == '語'")("日本語"d) == 1);
}

@safe unittest
{
    string s = "This is a fofofof list";
    string sub = "fof";
    assert(count(s, sub) == 2);
}

/// Ditto
size_t count(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && !isInfinite!R1 &&
    isForwardRange!R2 &&
    is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool))
{
    assert(!needle.empty, "Cannot count occurrences of an empty range");

    static if (isInfinite!R2)
    {
        //Note: This is the special case of looking for an infinite inside a finite...
        //"How many instances of the Fibonacci sequence can you count in [1, 2, 3]?" - "None."
        return 0;
    }
    else
    {
        size_t result;
        //Note: haystack is not saved, because findskip is designed to modify it
        for ( ; findSkip!pred(haystack, needle.save) ; ++result)
        {}
        return result;
    }
}

/// Ditto
size_t count(alias pred, R)(R haystack)
if (isInputRange!R && !isInfinite!R &&
    is(typeof(unaryFun!pred(haystack.front)) : bool))
{
    size_t result;
    alias T = ElementType!R; //For narrow strings forces dchar iteration
    foreach (T elem; haystack)
        if (unaryFun!pred(elem)) ++result;
    return result;
}

/// Ditto
size_t count(R)(R haystack)
if (isInputRange!R && !isInfinite!R)
{
    return walkLength(haystack);
}

@safe unittest
{
    int[] a = [ 1, 2, 4, 3, 2, 5, 3, 2, 4 ];
    assert(count!("a == 3")(a) == 2);
    assert(count("日本語") == 3);
}

// Issue 11253
@safe nothrow unittest
{
    assert([1, 2, 3].count([2, 3]) == 1);
}

/++
    Counts elements in the given
    $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
    until the given predicate is true for one of the given $(D needles).

    Params:
        pred = The predicate for determining when to stop counting.
        haystack = The
            $(REF_ALTTEXT input range, isInputRange, std,range,primitives) to be
            counted.
        needles = Either a single element, or a
            $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
            of elements, to be evaluated in turn against each
            element in $(D haystack) under the given predicate.

    Returns: The number of elements which must be popped from the front of
    $(D haystack) before reaching an element for which
    $(D startsWith!pred(haystack, needles)) is $(D true). If
    $(D startsWith!pred(haystack, needles)) is not $(D true) for any element in
    $(D haystack), then $(D -1) is returned.

    See_Also: $(REF indexOf, std,string)
  +/
ptrdiff_t countUntil(alias pred = "a == b", R, Rs...)(R haystack, Rs needles)
if (isForwardRange!R
    && Rs.length > 0
    && isForwardRange!(Rs[0]) == isInputRange!(Rs[0])
    && is(typeof(startsWith!pred(haystack, needles[0])))
    && (Rs.length == 1
    || is(typeof(countUntil!pred(haystack, needles[1 .. $])))))
{
    typeof(return) result;

    static if (needles.length == 1)
    {
        static if (hasLength!R) //Note: Narrow strings don't have length.
        {
            //We delegate to find because find is very efficient.
            //We store the length of the haystack so we don't have to save it.
            auto len = haystack.length;
            auto r2 = find!pred(haystack, needles[0]);
            if (!r2.empty)
              return cast(typeof(return)) (len - r2.length);
        }
        else
        {
            import std.range : dropOne;

            if (needles[0].empty)
              return 0;

            //Default case, slower route doing startsWith iteration
            for ( ; !haystack.empty ; ++result )
            {
                //We compare the first elements of the ranges here before
                //forwarding to startsWith. This avoids making useless saves to
                //haystack/needle if they aren't even going to be mutated anyways.
                //It also cuts down on the amount of pops on haystack.
                if (binaryFun!pred(haystack.front, needles[0].front))
                {
                    //Here, we need to save the needle before popping it.
                    //haystack we pop in all paths, so we do that, and then save.
                    haystack.popFront();
                    if (startsWith!pred(haystack.save, needles[0].save.dropOne()))
                      return result;
                }
                else
                  haystack.popFront();
            }
        }
    }
    else
    {
        foreach (i, Ri; Rs)
        {
            static if (isForwardRange!Ri)
            {
                if (needles[i].empty)
                  return 0;
            }
        }
        Tuple!Rs t;
        foreach (i, Ri; Rs)
        {
            static if (!isForwardRange!Ri)
            {
                t[i] = needles[i];
            }
        }
        for (; !haystack.empty ; ++result, haystack.popFront())
        {
            foreach (i, Ri; Rs)
            {
                static if (isForwardRange!Ri)
                {
                    t[i] = needles[i].save;
                }
            }
            if (startsWith!pred(haystack.save, t.expand))
            {
                return result;
            }
        }
    }

    //Because of @@@8804@@@: Avoids both "unreachable code" or "no return statement"
    static if (isInfinite!R) assert(0);
    else return -1;
}

/// ditto
ptrdiff_t countUntil(alias pred = "a == b", R, N)(R haystack, N needle)
if (isInputRange!R &&
    is(typeof(binaryFun!pred(haystack.front, needle)) : bool))
{
    bool pred2(ElementType!R a) { return binaryFun!pred(a, needle); }
    return countUntil!pred2(haystack);
}

///
@safe unittest
{
    assert(countUntil("hello world", "world") == 6);
    assert(countUntil("hello world", 'r') == 8);
    assert(countUntil("hello world", "programming") == -1);
    assert(countUntil("日本語", "本語") == 1);
    assert(countUntil("日本語", '語')   == 2);
    assert(countUntil("日本語", "五") == -1);
    assert(countUntil("日本語", '五') == -1);
    assert(countUntil([0, 7, 12, 22, 9], [12, 22]) == 2);
    assert(countUntil([0, 7, 12, 22, 9], 9) == 4);
    assert(countUntil!"a > b"([0, 7, 12, 22, 9], 20) == 3);
}

@safe unittest
{
    import std.algorithm.iteration : filter;
    import std.internal.test.dummyrange;

    assert(countUntil("日本語", "") == 0);
    assert(countUntil("日本語"d, "") == 0);

    assert(countUntil("", "") == 0);
    assert(countUntil("".filter!"true"(), "") == 0);

    auto rf = [0, 20, 12, 22, 9].filter!"true"();
    assert(rf.countUntil!"a > b"((int[]).init) == 0);
    assert(rf.countUntil!"a > b"(20) == 3);
    assert(rf.countUntil!"a > b"([20, 8]) == 3);
    assert(rf.countUntil!"a > b"([20, 10]) == -1);
    assert(rf.countUntil!"a > b"([20, 8, 0]) == -1);

    auto r = new ReferenceForwardRange!int([0, 1, 2, 3, 4, 5, 6]);
    auto r2 = new ReferenceForwardRange!int([3, 4]);
    auto r3 = new ReferenceForwardRange!int([3, 5]);
    assert(r.save.countUntil(3)  == 3);
    assert(r.save.countUntil(r2) == 3);
    assert(r.save.countUntil(7)  == -1);
    assert(r.save.countUntil(r3) == -1);
}

@safe unittest
{
    assert(countUntil("hello world", "world", "asd") == 6);
    assert(countUntil("hello world", "world", "ello") == 1);
    assert(countUntil("hello world", "world", "") == 0);
    assert(countUntil("hello world", "world", 'l') == 2);
}

/++
    Similar to the previous overload of $(D countUntil), except that this one
    evaluates only the predicate $(D pred).

    Params:
        pred = Predicate to when to stop counting.
        haystack = An
          $(REF_ALTTEXT input range, isInputRange, std,range,primitives) of
          elements to be counted.
    Returns: The number of elements which must be popped from $(D haystack)
    before $(D pred(haystack.front)) is $(D true).
  +/
ptrdiff_t countUntil(alias pred, R)(R haystack)
if (isInputRange!R &&
    is(typeof(unaryFun!pred(haystack.front)) : bool))
{
    typeof(return) i;
    static if (isRandomAccessRange!R)
    {
        //Optimized RA implementation. Since we want to count *and* iterate at
        //the same time, it is more efficient this way.
        static if (hasLength!R)
        {
            immutable len = cast(typeof(return)) haystack.length;
            for ( ; i < len ; ++i )
                if (unaryFun!pred(haystack[i])) return i;
        }
        else //if (isInfinite!R)
        {
            for ( ;  ; ++i )
                if (unaryFun!pred(haystack[i])) return i;
        }
    }
    else static if (hasLength!R)
    {
        //For those odd ranges that have a length, but aren't RA.
        //It is faster to quick find, and then compare the lengths
        auto r2 = find!pred(haystack.save);
        if (!r2.empty) return cast(typeof(return)) (haystack.length - r2.length);
    }
    else //Everything else
    {
        alias T = ElementType!R; //For narrow strings forces dchar iteration
        foreach (T elem; haystack)
        {
            if (unaryFun!pred(elem)) return i;
            ++i;
        }
    }

    //Because of @@@8804@@@: Avoids both "unreachable code" or "no return statement"
    static if (isInfinite!R) assert(0);
    else return -1;
}

///
@safe unittest
{
    import std.ascii : isDigit;
    import std.uni : isWhite;

    assert(countUntil!(std.uni.isWhite)("hello world") == 5);
    assert(countUntil!(std.ascii.isDigit)("hello world") == -1);
    assert(countUntil!"a > 20"([0, 7, 12, 22, 9]) == 3);
}

@safe unittest
{
    import std.internal.test.dummyrange;

    // References
    {
        // input
        ReferenceInputRange!int r;
        r = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6]);
        assert(r.countUntil(3) == 3);
        r = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6]);
        assert(r.countUntil(7) == -1);
    }
    {
        // forward
        auto r = new ReferenceForwardRange!int([0, 1, 2, 3, 4, 5, 6]);
        assert(r.save.countUntil([3, 4]) == 3);
        assert(r.save.countUntil(3) == 3);
        assert(r.save.countUntil([3, 7]) == -1);
        assert(r.save.countUntil(7) == -1);
    }
    {
        // infinite forward
        auto r = new ReferenceInfiniteForwardRange!int(0);
        assert(r.save.countUntil([3, 4]) == 3);
        assert(r.save.countUntil(3) == 3);
    }
}

/**
Checks if the given range ends with (one of) the given needle(s).
The reciprocal of $(D startsWith).

Params:
    pred = The predicate to use for comparing elements between the range and
        the needle(s).

    doesThisEnd = The
        $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
        to check.

    withOneOfThese = The needles to check against, which may be single
        elements, or bidirectional ranges of elements.

    withThis = The single element to check.

Returns:
0 if the needle(s) do not occur at the end of the given range;
otherwise the position of the matching needle, that is, 1 if the range ends
with $(D withOneOfThese[0]), 2 if it ends with $(D withOneOfThese[1]), and so
on.

In the case when no needle parameters are given, return $(D true) iff back of
$(D doesThisStart) fulfils predicate $(D pred).
*/
uint endsWith(alias pred = "a == b", Range, Needles...)(Range doesThisEnd, Needles withOneOfThese)
if (isBidirectionalRange!Range && Needles.length > 1 &&
    is(typeof(.endsWith!pred(doesThisEnd, withOneOfThese[0])) : bool) &&
    is(typeof(.endsWith!pred(doesThisEnd, withOneOfThese[1 .. $])) : uint))
{
    alias haystack = doesThisEnd;
    alias needles  = withOneOfThese;

    // Make one pass looking for empty ranges in needles
    foreach (i, Unused; Needles)
    {
        // Empty range matches everything
        static if (!is(typeof(binaryFun!pred(haystack.back, needles[i])) : bool))
        {
            if (needles[i].empty) return i + 1;
        }
    }

    for (; !haystack.empty; haystack.popBack())
    {
        foreach (i, Unused; Needles)
        {
            static if (is(typeof(binaryFun!pred(haystack.back, needles[i])) : bool))
            {
                // Single-element
                if (binaryFun!pred(haystack.back, needles[i]))
                {
                    // found, but continue to account for one-element
                    // range matches (consider endsWith("ab", "b",
                    // 'b') should return 1, not 2).
                    continue;
                }
            }
            else
            {
                if (binaryFun!pred(haystack.back, needles[i].back))
                    continue;
            }

            // This code executed on failure to match
            // Out with this guy, check for the others
            uint result = endsWith!pred(haystack, needles[0 .. i], needles[i + 1 .. $]);
            if (result > i) ++result;
            return result;
        }

        // If execution reaches this point, then the back matches for all
        // needles ranges. What we need to do now is to lop off the back of
        // all ranges involved and recurse.
        foreach (i, Unused; Needles)
        {
            static if (is(typeof(binaryFun!pred(haystack.back, needles[i])) : bool))
            {
                // Test has passed in the previous loop
                return i + 1;
            }
            else
            {
                needles[i].popBack();
                if (needles[i].empty) return i + 1;
            }
        }
    }
    return 0;
}

/// Ditto
bool endsWith(alias pred = "a == b", R1, R2)(R1 doesThisEnd, R2 withThis)
if (isBidirectionalRange!R1 &&
    isBidirectionalRange!R2 &&
    is(typeof(binaryFun!pred(doesThisEnd.back, withThis.back)) : bool))
{
    alias haystack = doesThisEnd;
    alias needle   = withThis;

    static if (is(typeof(pred) : string))
        enum isDefaultPred = pred == "a == b";
    else
        enum isDefaultPred = false;

    static if (isDefaultPred && isArray!R1 && isArray!R2 &&
               is(Unqual!(ElementEncodingType!R1) == Unqual!(ElementEncodingType!R2)))
    {
        if (haystack.length < needle.length) return false;

        return haystack[$ - needle.length .. $] == needle;
    }
    else
    {
        import std.range : retro;
        return startsWith!pred(retro(doesThisEnd), retro(withThis));
    }
}

/// Ditto
bool endsWith(alias pred = "a == b", R, E)(R doesThisEnd, E withThis)
if (isBidirectionalRange!R &&
    is(typeof(binaryFun!pred(doesThisEnd.back, withThis)) : bool))
{
    if (doesThisEnd.empty)
        return false;

    alias predFunc = binaryFun!pred;

    // auto-decoding special case
    static if (isNarrowString!R)
    {
        // specialize for ASCII as to not change previous behavior
        if (withThis <= 0x7F)
            return predFunc(doesThisEnd[$ - 1], withThis);
        else
            return predFunc(doesThisEnd.back, withThis);
    }
    else
    {
        return predFunc(doesThisEnd.back, withThis);
    }
}

/// Ditto
bool endsWith(alias pred, R)(R doesThisEnd)
if (isInputRange!R &&
    ifTestable!(typeof(doesThisEnd.front), unaryFun!pred))
{
    return !doesThisEnd.empty && unaryFun!pred(doesThisEnd.back);
}

///
@safe unittest
{
    import std.ascii : isAlpha;
    assert("abc".endsWith!(a => a.isAlpha));
    assert("abc".endsWith!isAlpha);

    assert(!"ab1".endsWith!(a => a.isAlpha));

    assert(!"ab1".endsWith!isAlpha);
    assert(!"".endsWith!(a => a.isAlpha));

    import std.algorithm.comparison : among;
    assert("abc".endsWith!(a => a.among('c', 'd') != 0));
    assert(!"abc".endsWith!(a => a.among('a', 'b') != 0));

    assert(endsWith("abc", ""));
    assert(!endsWith("abc", "b"));
    assert(endsWith("abc", "a", 'c') == 2);
    assert(endsWith("abc", "c", "a") == 1);
    assert(endsWith("abc", "c", "c") == 1);
    assert(endsWith("abc", "bc", "c") == 2);
    assert(endsWith("abc", "x", "c", "b") == 2);
    assert(endsWith("abc", "x", "aa", "bc") == 3);
    assert(endsWith("abc", "x", "aaa", "sab") == 0);
    assert(endsWith("abc", "x", "aaa", 'c', "sab") == 3);
}

@safe unittest
{
    import std.algorithm.iteration : filterBidirectional;
    import std.conv : to;
    import std.meta : AliasSeq;

    foreach (S; AliasSeq!(char[], wchar[], dchar[], string, wstring, dstring))
    {
        assert(!endsWith(to!S("abc"), 'a'));
        assert(endsWith(to!S("abc"), 'a', 'c') == 2);
        assert(!endsWith(to!S("abc"), 'x', 'n', 'b'));
        assert(endsWith(to!S("abc"), 'x', 'n', 'c') == 3);
        assert(endsWith(to!S("abc\uFF28"), 'a', '\uFF28', 'c') == 2);

        foreach (T; AliasSeq!(char[], wchar[], dchar[], string, wstring, dstring))
        (){ // avoid slow optimizations for large functions @@@BUG@@@ 2396
            //Lots of strings
            assert(endsWith(to!S("abc"), to!T("")));
            assert(!endsWith(to!S("abc"), to!T("a")));
            assert(!endsWith(to!S("abc"), to!T("b")));
            assert(endsWith(to!S("abc"), to!T("bc"), 'c') == 2);
            assert(endsWith(to!S("abc"), to!T("a"), "c") == 2);
            assert(endsWith(to!S("abc"), to!T("c"), "a") == 1);
            assert(endsWith(to!S("abc"), to!T("c"), "c") == 1);
            assert(endsWith(to!S("abc"), to!T("x"), 'c', "b") == 2);
            assert(endsWith(to!S("abc"), 'x', to!T("aa"), "bc") == 3);
            assert(endsWith(to!S("abc"), to!T("x"), "aaa", "sab") == 0);
            assert(endsWith(to!S("abc"), to!T("x"), "aaa", "c", "sab") == 3);
            assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("l\uFF4co")));
            assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("lo"), to!T("l\uFF4co")) == 2);

            //Unicode
            assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("l\uFF4co")));
            assert(endsWith(to!S("\uFF28el\uFF4co"), to!T("lo"), to!T("l\uFF4co")) == 2);
            assert(endsWith(to!S("日本語"), to!T("本語")));
            assert(endsWith(to!S("日本語"), to!T("日本語")));
            assert(!endsWith(to!S("本語"), to!T("日本語")));

            //Empty
            assert(endsWith(to!S(""),  T.init));
            assert(!endsWith(to!S(""), 'a'));
            assert(endsWith(to!S("a"), T.init));
            assert(endsWith(to!S("a"), T.init, "") == 1);
            assert(endsWith(to!S("a"), T.init, 'a') == 1);
            assert(endsWith(to!S("a"), 'a', T.init) == 2);
        }();
    }

    foreach (T; AliasSeq!(int, short))
    {
        immutable arr = cast(T[])[0, 1, 2, 3, 4, 5];

        //RA range
        assert(endsWith(arr, cast(int[]) null));
        assert(!endsWith(arr, 0));
        assert(!endsWith(arr, 4));
        assert(endsWith(arr, 5));
        assert(endsWith(arr, 0, 4, 5) == 3);
        assert(endsWith(arr, [5]));
        assert(endsWith(arr, [4, 5]));
        assert(endsWith(arr, [4, 5], 7) == 1);
        assert(!endsWith(arr, [2, 4, 5]));
        assert(endsWith(arr, [2, 4, 5], [3, 4, 5]) == 2);

        //Normal input range
        assert(!endsWith(filterBidirectional!"true"(arr), 4));
        assert(endsWith(filterBidirectional!"true"(arr), 5));
        assert(endsWith(filterBidirectional!"true"(arr), [5]));
        assert(endsWith(filterBidirectional!"true"(arr), [4, 5]));
        assert(endsWith(filterBidirectional!"true"(arr), [4, 5], 7) == 1);
        assert(!endsWith(filterBidirectional!"true"(arr), [2, 4, 5]));
        assert(endsWith(filterBidirectional!"true"(arr), [2, 4, 5], [3, 4, 5]) == 2);
        assert(endsWith(arr, filterBidirectional!"true"([4, 5])));
        assert(endsWith(arr, filterBidirectional!"true"([4, 5]), 7) == 1);
        assert(!endsWith(arr, filterBidirectional!"true"([2, 4, 5])));
        assert(endsWith(arr, [2, 4, 5], filterBidirectional!"true"([3, 4, 5])) == 2);

        //Non-default pred
        assert(endsWith!("a%10 == b%10")(arr, [14, 15]));
        assert(!endsWith!("a%10 == b%10")(arr, [15, 14]));
    }
}

/**
Iterates the passed range and selects the extreme element with `less`.
If the extreme element occurs multiple time, the first occurrence will be
returned.

Params:
    map = custom accessor for the comparison key
    selector = custom mapping for the extrema selection
    seed = custom seed to use as initial element
    r = Range from which the extreme value will be selected

Returns:
    The extreme value according to `map` and `selector` of the passed-in values.
*/
private auto extremum(alias map, alias selector = "a < b", Range)(Range r)
if (isInputRange!Range && !isInfinite!Range &&
    is(typeof(unaryFun!map(ElementType!(Range).init))))
in
{
    assert(!r.empty, "r is an empty range");
}
body
{
    alias Element = ElementType!Range;
    Unqual!Element seed = r.front;
    r.popFront();
    return extremum!(map, selector)(r, seed);
}

private auto extremum(alias map, alias selector = "a < b", Range,
                      RangeElementType = ElementType!Range)
                     (Range r, RangeElementType seedElement)
if (isInputRange!Range && !isInfinite!Range &&
    !is(CommonType!(ElementType!Range, RangeElementType) == void) &&
     is(typeof(unaryFun!map(ElementType!(Range).init))))
{
    alias mapFun = unaryFun!map;
    alias selectorFun = binaryFun!selector;

    alias Element = ElementType!Range;
    alias CommonElement = CommonType!(Element, RangeElementType);
    Unqual!CommonElement extremeElement = seedElement;

    alias MapType = Unqual!(typeof(mapFun(CommonElement.init)));
    MapType extremeElementMapped = mapFun(extremeElement);

    // direct access via a random access range is faster
    static if (isRandomAccessRange!Range)
    {
        foreach (const i; 0 .. r.length)
        {
            MapType mapElement = mapFun(r[i]);
            if (selectorFun(mapElement, extremeElementMapped))
            {
                extremeElement = r[i];
                extremeElementMapped = mapElement;
            }
        }
    }
    else
    {
        while (!r.empty)
        {
            MapType mapElement = mapFun(r.front);
            if (selectorFun(mapElement, extremeElementMapped))
            {
                extremeElement = r.front;
                extremeElementMapped = mapElement;
            }
            r.popFront();
        }
    }
    return extremeElement;
}

private auto extremum(alias selector = "a < b", Range)(Range r)
    if (isInputRange!Range && !isInfinite!Range &&
        !is(typeof(unaryFun!selector(ElementType!(Range).init))))
{
    alias Element = ElementType!Range;
    Unqual!Element seed = r.front;
    r.popFront();
    return extremum!selector(r, seed);
}

// if we only have one statement in the loop it can be optimized a lot better
private auto extremum(alias selector = "a < b", Range,
                      RangeElementType = ElementType!Range)
                     (Range r, RangeElementType seedElement)
    if (isInputRange!Range && !isInfinite!Range &&
        !is(CommonType!(ElementType!Range, RangeElementType) == void) &&
        !is(typeof(unaryFun!selector(ElementType!(Range).init))))
{
    alias Element = ElementType!Range;
    alias CommonElement = CommonType!(Element, RangeElementType);
    Unqual!CommonElement extremeElement = seedElement;
    alias selectorFun = binaryFun!selector;

    // direct access via a random access range is faster
    static if (isRandomAccessRange!Range)
    {
        foreach (const i; 0 .. r.length)
        {
            if (selectorFun(r[i], extremeElement))
            {
                extremeElement = r[i];
            }
        }
    }
    else
    {
        while (!r.empty)
        {
            if (selectorFun(r.front, extremeElement))
            {
                extremeElement = r.front;
            }
            r.popFront();
        }
    }
    return extremeElement;
}

@safe pure unittest
{
    // allows a custom map to select the extremum
    assert([[0, 4], [1, 2]].extremum!"a[0]" == [0, 4]);
    assert([[0, 4], [1, 2]].extremum!"a[1]" == [1, 2]);

    // allows a custom selector for comparison
    assert([[0, 4], [1, 2]].extremum!("a[0]", "a > b") == [1, 2]);
    assert([[0, 4], [1, 2]].extremum!("a[1]", "a > b") == [0, 4]);

    // use a custom comparator
    import std.math : cmp;
    assert([-2., 0, 5].extremum!cmp == 5.0);
    assert([-2., 0, 2].extremum!`cmp(a, b) < 0` == -2.0);

    // combine with map
    import std.range : enumerate;
    assert([-3., 0, 5].enumerate.extremum!(`a.value`, cmp) == tuple(2, 5.0));
    assert([-2., 0, 2].enumerate.extremum!(`a.value`, `cmp(a, b) < 0`) == tuple(0, -2.0));

    // seed with a custom value
    int[] arr;
    assert(arr.extremum(1) == 1);
}

@safe pure nothrow unittest
{
    // 2d seeds
    int[][] arr2d;
    assert(arr2d.extremum([1]) == [1]);

    // allow seeds of different types (implicit casting)
    assert(extremum([2, 3, 4], 1.5) == 1.5);
}

@safe pure unittest
{
    import std.range : enumerate, iota;

    // forward ranges
    assert(iota(1, 5).extremum() == 1);
    assert(iota(2, 5).enumerate.extremum!"a.value" == tuple(0, 2));

    // should work with const
    const(int)[] immArr = [2, 1, 3];
    assert(immArr.extremum == 1);

    // should work with immutable
    immutable(int)[] immArr2 = [2, 1, 3];
    assert(immArr2.extremum == 1);

    // with strings
    assert(["b", "a", "c"].extremum == "a");

    // with all dummy ranges
    import std.internal.test.dummyrange;
    foreach (DummyType; AllDummyRanges)
    {
        DummyType d;
        assert(d.extremum == 1);
        assert(d.extremum!(a => a)  == 1);
        assert(d.extremum!`a > b` == 10);
        assert(d.extremum!(a => a, `a > b`) == 10);
    }
}

@nogc @safe nothrow pure unittest
{
    static immutable arr = [7, 3, 4, 2, 1, 8];
    assert(arr.extremum == 1);

    static immutable arr2d = [[1, 9], [3, 1], [4, 2]];
    assert(arr2d.extremum!"a[1]" == arr2d[1]);
}

// find
/**
Finds an individual element in an input range. Elements of $(D
haystack) are compared with $(D needle) by using predicate $(D
pred). Performs $(BIGOH walkLength(haystack)) evaluations of $(D
pred).

To _find the last occurrence of $(D needle) in $(D haystack), call $(D
find(retro(haystack), needle)). See $(REF retro, std,range).

Params:

pred = The predicate for comparing each element with the needle, defaulting to
$(D "a == b").
The negated predicate $(D "a != b") can be used to search instead for the first
element $(I not) matching the needle.

haystack = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
searched in.

needle = The element searched for.

Constraints:

$(D isInputRange!InputRange && is(typeof(binaryFun!pred(haystack.front, needle)
: bool)))

Returns:

$(D haystack) advanced such that the front element is the one searched for;
that is, until $(D binaryFun!pred(haystack.front, needle)) is $(D true). If no
such position exists, returns an empty $(D haystack).

See_Also:
     $(HTTP sgi.com/tech/stl/_find.html, STL's _find)
 */
InputRange find(alias pred = "a == b", InputRange, Element)(InputRange haystack, scope Element needle)
if (isInputRange!InputRange &&
    is (typeof(binaryFun!pred(haystack.front, needle)) : bool))
{
    alias R = InputRange;
    alias E = Element;
    alias predFun = binaryFun!pred;
    static if (is(typeof(pred == "a == b")))
        enum isDefaultPred = pred == "a == b";
    else
        enum isDefaultPred = false;
    enum  isIntegralNeedle = isSomeChar!E || isIntegral!E || isBoolean!E;

    alias EType  = ElementType!R;

    // If the haystack is a SortedRange we can use binary search to find the needle.
    // Works only for the default find predicate and any SortedRange predicate.
    // 8829 enhancement
    import std.range : SortedRange;
    static if (is(InputRange : SortedRange!TT, TT) && isDefaultPred)
    {
        auto lb = haystack.lowerBound(needle);
        if (lb.length == haystack.length || haystack[lb.length] != needle)
            return haystack[$ .. $];

        return haystack[lb.length .. $];
    }
    else static if (isNarrowString!R)
    {
        alias EEType = ElementEncodingType!R;
        alias UEEType = Unqual!EEType;

        //These are two special cases which can search without decoding the UTF stream.
        static if (isDefaultPred && isIntegralNeedle)
        {
            import std.utf : canSearchInCodeUnits;

            //This special case deals with UTF8 search, when the needle
            //is represented by a single code point.
            //Note: "needle <= 0x7F" properly handles sign via unsigned promotion
            static if (is(UEEType == char))
            {
                if (!__ctfe && canSearchInCodeUnits!char(needle))
                {
                    static R trustedMemchr(ref R haystack, ref E needle) @trusted nothrow pure
                    {
                        import core.stdc.string : memchr;
                        auto ptr = memchr(haystack.ptr, needle, haystack.length);
                        return ptr ?
                             haystack[cast(char*) ptr - haystack.ptr .. $] :
                             haystack[$ .. $];
                    }
                    return trustedMemchr(haystack, needle);
                }
            }

            //Ditto, but for UTF16
            static if (is(UEEType == wchar))
            {
                if (canSearchInCodeUnits!wchar(needle))
                {
                    foreach (i, ref EEType e; haystack)
                    {
                        if (e == needle)
                            return haystack[i .. $];
                    }
                    return haystack[$ .. $];
                }
            }
        }

        //Previous conditonal optimizations did not succeed. Fallback to
        //unconditional implementations
        static if (isDefaultPred)
        {
            import std.utf : encode;

            //In case of default pred, it is faster to do string/string search.
            UEEType[is(UEEType == char) ? 4 : 2] buf;

            size_t len = encode(buf, needle);
            return find(haystack, buf[0 .. len]);
        }
        else
        {
            import std.utf : decode;

            //Explicit pred: we must test each character by the book.
            //We choose a manual decoding approach, because it is faster than
            //the built-in foreach, or doing a front/popFront for-loop.
            immutable len = haystack.length;
            size_t i = 0, next = 0;
            while (next < len)
            {
                if (predFun(decode(haystack, next), needle))
                    return haystack[i .. $];
                i = next;
            }
            return haystack[$ .. $];
        }
    }
    else static if (isArray!R)
    {
        //10403 optimization
        static if (isDefaultPred && isIntegral!EType && EType.sizeof == 1 && isIntegralNeedle)
        {
            import std.algorithm.comparison : max, min;

            R findHelper(ref R haystack, ref E needle) @trusted nothrow pure
            {
                import core.stdc.string : memchr;

                EType* ptr = null;
                //Note: we use "min/max" to handle sign mismatch.
                if (min(EType.min, needle) == EType.min &&
                    max(EType.max, needle) == EType.max)
                {
                    ptr = cast(EType*) memchr(haystack.ptr, needle,
                        haystack.length);
                }

                return ptr ?
                    haystack[ptr - haystack.ptr .. $] :
                    haystack[$ .. $];
            }

            if (!__ctfe)
                return findHelper(haystack, needle);
        }

        //Default implementation.
        foreach (i, ref e; haystack)
            if (predFun(e, needle))
                return haystack[i .. $];
        return haystack[$ .. $];
    }
    else
    {
        //Everything else. Walk.
        for ( ; !haystack.empty; haystack.popFront() )
        {
            if (predFun(haystack.front, needle))
                break;
        }
        return haystack;
    }
}

///
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.container : SList;
    import std.range;
    import std.range.primitives : empty;

    auto arr = assumeSorted!"a < b"([1, 2, 4, 4, 4, 4, 5, 6, 9]);
    assert(find(arr, 4) == assumeSorted!"a < b"([4, 4, 4, 4, 5, 6, 9]));
    assert(find(arr, 1) == arr);
    assert(find(arr, 9) == assumeSorted!"a < b"([9]));
    assert(find!"a > b"(arr, 4) == assumeSorted!"a < b"([5, 6, 9]));
    assert(find!"a < b"(arr, 4) == arr);
    assert(find(arr, 0).empty());
    assert(find(arr, 10).empty());
    assert(find(arr, 8).empty());

    auto r = assumeSorted!"a > b"([10, 7, 3, 1, 0, 0]);
    assert(find(r, 3) == assumeSorted!"a > b"([3, 1, 0, 0]));
    assert(find!"a > b"(r, 8) == r);
    assert(find!"a < b"(r, 5) == assumeSorted!"a > b"([3, 1, 0, 0]));

    assert(find("hello, world", ',') == ", world");
    assert(find([1, 2, 3, 5], 4) == []);
    assert(equal(find(SList!int(1, 2, 3, 4, 5)[], 4), SList!int(4, 5)[]));
    assert(find!"a > b"([1, 2, 3, 5], 2) == [3, 5]);

    auto a = [ 1, 2, 3 ];
    assert(find(a, 5).empty);       // not found
    assert(!find(a, 2).empty);      // found

    // Case-insensitive find of a string
    string[] s = [ "Hello", "world", "!" ];
    assert(!find!("toLower(a) == b")(s, "hello").empty);
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.container : SList;

    auto lst = SList!int(1, 2, 5, 7, 3);
    assert(lst.front == 1);
    auto r = find(lst[], 5);
    assert(equal(r, SList!int(5, 7, 3)[]));
    assert(find([1, 2, 3, 5], 4).empty);
    assert(equal(find!"a > b"("hello", 'k'), "llo"));
}

@safe pure nothrow unittest
{
    assert(!find              ([1, 2, 3], 2).empty);
    assert(!find!((a,b)=>a == b)([1, 2, 3], 2).empty);
    assert(!find              ([1, 2, 3], 2).empty);
    assert(!find!((a,b)=>a == b)([1, 2, 3], 2).empty);
}

@safe pure unittest
{
    import std.meta : AliasSeq;
    foreach (R; AliasSeq!(string, wstring, dstring))
    {
        foreach (E; AliasSeq!(char, wchar, dchar))
        {
            assert(find              ("hello world", 'w') == "world");
            assert(find!((a,b)=>a == b)("hello world", 'w') == "world");
            assert(find              ("日c語", 'c') == "c語");
            assert(find!((a,b)=>a == b)("日c語", 'c') == "c語");
            assert(find              ("0123456789", 'A').empty);
            static if (E.sizeof >= 2)
            {
                assert(find              ("日本語", '本') == "本語");
                assert(find!((a,b)=>a == b)("日本語", '本') == "本語");
            }
        }
    }
}

@safe unittest
{
    //CTFE
    static assert(find("abc", 'b') == "bc");
    static assert(find("日b語", 'b') == "b語");
    static assert(find("日本語", '本') == "本語");
    static assert(find([1, 2, 3], 2)  == [2, 3]);

    static assert(find              ([1, 2, 3], 2));
    static assert(find!((a,b)=>a == b)([1, 2, 3], 2));
    static assert(find              ([1, 2, 3], 2));
    static assert(find!((a,b)=>a == b)([1, 2, 3], 2));
}

@safe unittest
{
    import std.exception : assertCTFEable;
    import std.meta : AliasSeq;

    void dg() @safe pure nothrow
    {
        byte[]  sarr = [1, 2, 3, 4];
        ubyte[] uarr = [1, 2, 3, 4];
        foreach (arr; AliasSeq!(sarr, uarr))
        {
            foreach (T; AliasSeq!(byte, ubyte, int, uint))
            {
                assert(find(arr, cast(T) 3) == arr[2 .. $]);
                assert(find(arr, cast(T) 9) == arr[$ .. $]);
            }
            assert(find(arr, 256) == arr[$ .. $]);
        }
    }
    dg();
    assertCTFEable!dg;
}

@safe unittest
{
    // Bugzilla 11603
    enum Foo : ubyte { A }
    assert([Foo.A].find(Foo.A).empty == false);

    ubyte x = 0;
    assert([x].find(x).empty == false);
}

/**
Advances the input range $(D haystack) by calling $(D haystack.popFront)
until either $(D pred(haystack.front)), or $(D
haystack.empty). Performs $(BIGOH haystack.length) evaluations of $(D
pred).

To _find the last element of a
$(REF_ALTTEXT bidirectional, isBidirectionalRange, std,range,primitives) $(D haystack) satisfying
$(D pred), call $(D find!(pred)(retro(haystack))). See $(REF retro, std,range).

`find` behaves similar to `dropWhile` in other languages.

Params:

pred = The predicate for determining if a given element is the one being
searched for.

haystack = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives) to
search in.

Returns:

$(D haystack) advanced such that the front element is the one searched for;
that is, until $(D binaryFun!pred(haystack.front, needle)) is $(D true). If no
such position exists, returns an empty $(D haystack).

See_Also:
     $(HTTP sgi.com/tech/stl/find_if.html, STL's find_if)
*/
InputRange find(alias pred, InputRange)(InputRange haystack)
if (isInputRange!InputRange)
{
    alias R = InputRange;
    alias predFun = unaryFun!pred;
    static if (isNarrowString!R)
    {
        import std.utf : decode;

        immutable len = haystack.length;
        size_t i = 0, next = 0;
        while (next < len)
        {
            if (predFun(decode(haystack, next)))
                return haystack[i .. $];
            i = next;
        }
        return haystack[$ .. $];
    }
    else
    {
        //standard range
        for ( ; !haystack.empty; haystack.popFront() )
        {
            if (predFun(haystack.front))
                break;
        }
        return haystack;
    }
}

///
@safe unittest
{
    auto arr = [ 1, 2, 3, 4, 1 ];
    assert(find!("a > 2")(arr) == [ 3, 4, 1 ]);

    // with predicate alias
    bool pred(int x) { return x + 1 > 1.5; }
    assert(find!(pred)(arr) == arr);
}

@safe pure unittest
{
    int[] r = [ 1, 2, 3 ];
    assert(find!(a=>a > 2)(r) == [3]);
    bool pred(int x) { return x + 1 > 1.5; }
    assert(find!(pred)(r) == r);

    assert(find!(a=>a > 'v')("hello world") == "world");
    assert(find!(a=>a%4 == 0)("日本語") == "本語");
}

/**
Finds the first occurrence of a forward range in another forward range.

Performs $(BIGOH walkLength(haystack) * walkLength(needle)) comparisons in the
worst case.  There are specializations that improve performance by taking
advantage of $(REF_ALTTEXT bidirectional range, isBidirectionalRange, std,range,primitives)
or random access in the given ranges (where possible), depending on the statistics
of the two ranges' content.

Params:

pred = The predicate to use for comparing respective elements from the haystack
and the needle. Defaults to simple equality $(D "a == b").

haystack = The $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
searched in.

needle = The $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
searched for.

Returns:

$(D haystack) advanced such that $(D needle) is a prefix of it (if no
such position exists, returns $(D haystack) advanced to termination).
 */
R1 find(alias pred = "a == b", R1, R2)(R1 haystack, scope R2 needle)
if (isForwardRange!R1 && isForwardRange!R2
        && is(typeof(binaryFun!pred(haystack.front, needle.front)) : bool))
{
    static if (!isRandomAccessRange!R1)
    {
        static if (is(typeof(pred == "a == b")) && pred == "a == b" && isSomeString!R1 && isSomeString!R2
                && haystack[0].sizeof == needle[0].sizeof)
        {
            // return cast(R1) find(representation(haystack), representation(needle));
            // Specialization for simple string search
            alias Representation =
                Select!(haystack[0].sizeof == 1, ubyte[],
                    Select!(haystack[0].sizeof == 2, ushort[], uint[]));
            // Will use the array specialization
            static TO force(TO, T)(T r) @trusted { return cast(TO) r; }
            return force!R1(.find!(pred, Representation, Representation)
                (force!Representation(haystack), force!Representation(needle)));
        }
        else
        {
            return simpleMindedFind!pred(haystack, needle);
        }
    }
    else static if (!isBidirectionalRange!R2 || !hasSlicing!R1)
    {
        static if (!is(ElementType!R1 == ElementType!R2))
        {
            return simpleMindedFind!pred(haystack, needle);
        }
        else
        {
            // Prepare the search with needle's first element
            if (needle.empty)
                return haystack;

            haystack = .find!pred(haystack, needle.front);

            static if (hasLength!R1 && hasLength!R2 && is(typeof(takeNone(haystack)) == R1))
            {
                if (needle.length > haystack.length)
                    return takeNone(haystack);
            }
            else
            {
                if (haystack.empty)
                    return haystack;
            }

            needle.popFront();
            size_t matchLen = 1;

            // Loop invariant: haystack[0 .. matchLen] matches everything in
            // the initial needle that was popped out of needle.
            for (;;)
            {
                // Extend matchLength as much as possible
                for (;;)
                {
                    import std.range : takeNone;

                    if (needle.empty || haystack.empty)
                        return haystack;

                    static if (hasLength!R1 && is(typeof(takeNone(haystack)) == R1))
                    {
                        if (matchLen == haystack.length)
                            return takeNone(haystack);
                    }

                    if (!binaryFun!pred(haystack[matchLen], needle.front))
                        break;

                    ++matchLen;
                    needle.popFront();
                }

                auto bestMatch = haystack[0 .. matchLen];
                haystack.popFront();
                haystack = .find!pred(haystack, bestMatch);
            }
        }
    }
    else // static if (hasSlicing!R1 && isBidirectionalRange!R2)
    {
        if (needle.empty) return haystack;

        static if (hasLength!R2)
        {
            immutable needleLength = needle.length;
        }
        else
        {
            immutable needleLength = walkLength(needle.save);
        }
        if (needleLength > haystack.length)
        {
            return haystack[haystack.length .. haystack.length];
        }
        // Optimization in case the ranges are both SortedRanges.
        // Binary search can be used to find the first occurence
        // of the first element of the needle in haystack.
        // When it is found O(walklength(needle)) steps are performed.
        // 8829 enhancement
        import std.algorithm.comparison : mismatch;
        import std.range : SortedRange;
        static if (is(R1 == R2)
                && is(R1 : SortedRange!TT, TT)
                && pred == "a == b")
        {
            auto needleFirstElem = needle[0];
            auto partitions      = haystack.trisect(needleFirstElem);
            auto firstElemLen    = partitions[1].length;
            size_t count         = 0;

            if (firstElemLen == 0)
                return haystack[$ .. $];

            while (needle.front() == needleFirstElem)
            {
                needle.popFront();
                ++count;

                if (count > firstElemLen)
                    return haystack[$ .. $];
            }

            auto m = mismatch(partitions[2], needle);

            if (m[1].empty)
                return haystack[partitions[0].length + partitions[1].length - count .. $];
        }
        else static if (isRandomAccessRange!R2)
        {
            immutable lastIndex = needleLength - 1;
            auto last = needle[lastIndex];
            size_t j = lastIndex, skip = 0;
            for (; j < haystack.length;)
            {
                if (!binaryFun!pred(haystack[j], last))
                {
                    ++j;
                    continue;
                }
                immutable k = j - lastIndex;
                // last elements match
                for (size_t i = 0;; ++i)
                {
                    if (i == lastIndex)
                        return haystack[k .. haystack.length];
                    if (!binaryFun!pred(haystack[k + i], needle[i]))
                        break;
                }
                if (skip == 0)
                {
                    skip = 1;
                    while (skip < needleLength && needle[needleLength - 1 - skip] != needle[needleLength - 1])
                    {
                        ++skip;
                    }
                }
                j += skip;
            }
        }
        else
        {
            // @@@BUG@@@
            // auto needleBack = moveBack(needle);
            // Stage 1: find the step
            size_t step = 1;
            auto needleBack = needle.back;
            needle.popBack();
            for (auto i = needle.save; !i.empty && i.back != needleBack;
                    i.popBack(), ++step)
            {
            }
            // Stage 2: linear find
            size_t scout = needleLength - 1;
            for (;;)
            {
                if (scout >= haystack.length)
                    break;
                if (!binaryFun!pred(haystack[scout], needleBack))
                {
                    ++scout;
                    continue;
                }
                // Found a match with the last element in the needle
                auto cand = haystack[scout + 1 - needleLength .. haystack.length];
                if (startsWith!pred(cand, needle))
                {
                    // found
                    return cand;
                }
                scout += step;
            }
        }
        return haystack[haystack.length .. haystack.length];
    }
}

///
@safe unittest
{
    import std.container : SList;
    import std.range.primitives : empty;
    import std.typecons : Tuple;

    assert(find("hello, world", "World").empty);
    assert(find("hello, world", "wo") == "world");
    assert([1, 2, 3, 4].find(SList!int(2, 3)[]) == [2, 3, 4]);
    alias C = Tuple!(int, "x", int, "y");
    auto a = [C(1,0), C(2,0), C(3,1), C(4,0)];
    assert(a.find!"a.x == b"([2, 3]) == [C(2,0), C(3,1), C(4,0)]);
    assert(a[1 .. $].find!"a.x == b"([2, 3]) == [C(2,0), C(3,1), C(4,0)]);
}

@safe unittest
{
    import std.container : SList;
    alias C = Tuple!(int, "x", int, "y");
    assert([C(1,0), C(2,0), C(3,1), C(4,0)].find!"a.x == b"(SList!int(2, 3)[]) == [C(2,0), C(3,1), C(4,0)]);
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.container : SList;

    auto lst = SList!int(1, 2, 5, 7, 3);
    static assert(isForwardRange!(int[]));
    static assert(isForwardRange!(typeof(lst[])));
    auto r = find(lst[], [2, 5]);
    assert(equal(r, SList!int(2, 5, 7, 3)[]));
}

@safe unittest
{
    import std.range;
    import std.stdio;

    auto r1 = assumeSorted([1, 2, 3, 3, 3, 4, 5, 6, 7, 8, 8, 8, 10]);
    auto r2 = assumeSorted([3, 3, 4, 5, 6, 7, 8, 8]);
    auto r3 = assumeSorted([3, 4, 5, 6, 7, 8]);
    auto r4 = assumeSorted([4, 5, 6]);
    auto r5 = assumeSorted([12, 13]);
    auto r6 = assumeSorted([8, 8, 10, 11]);
    auto r7 = assumeSorted([3, 3, 3, 3, 3, 3, 3]);

    assert(find(r1, r2) == assumeSorted([3, 3, 4, 5, 6, 7, 8, 8, 8, 10]));
    assert(find(r1, r3) == assumeSorted([3, 4, 5, 6, 7, 8, 8, 8, 10]));
    assert(find(r1, r4) == assumeSorted([4, 5, 6, 7, 8, 8, 8, 10]));
    assert(find(r1, r5).empty());
    assert(find(r1, r6).empty());
    assert(find(r1, r7).empty());
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    // @@@BUG@@@ removing static below makes unittest fail
    static struct BiRange
    {
        int[] payload;
        @property bool empty() { return payload.empty; }
        @property BiRange save() { return this; }
        @property ref int front() { return payload[0]; }
        @property ref int back() { return payload[$ - 1]; }
        void popFront() { return payload.popFront(); }
        void popBack() { return payload.popBack(); }
    }
    auto r = BiRange([1, 2, 3, 10, 11, 4]);
    assert(equal(find(r, [10, 11]), [10, 11, 4]));
}

@safe unittest
{
    import std.container : SList;

    assert(find([ 1, 2, 3 ], SList!int(2, 3)[]) == [ 2, 3 ]);
    assert(find([ 1, 2, 1, 2, 3, 3 ], SList!int(2, 3)[]) == [ 2, 3, 3 ]);
}

//Bug# 8334
@safe unittest
{
    import std.algorithm.iteration : filter;
    import std.range;

    auto haystack = [1, 2, 3, 4, 1, 9, 12, 42];
    auto needle = [12, 42, 27];

    //different overload of find, but it's the base case.
    assert(find(haystack, needle).empty);

    assert(find(haystack, takeExactly(filter!"true"(needle), 3)).empty);
    assert(find(haystack, filter!"true"(needle)).empty);
}

// Internally used by some find() overloads above
private R1 simpleMindedFind(alias pred, R1, R2)(R1 haystack, scope R2 needle)
{
    enum estimateNeedleLength = hasLength!R1 && !hasLength!R2;

    static if (hasLength!R1)
    {
        static if (!hasLength!R2)
            size_t estimatedNeedleLength = 0;
        else
            immutable size_t estimatedNeedleLength = needle.length;
    }

    bool haystackTooShort()
    {
        static if (estimateNeedleLength)
        {
            return haystack.length < estimatedNeedleLength;
        }
        else
        {
            return haystack.empty;
        }
    }

  searching:
    for (;; haystack.popFront())
    {
        if (haystackTooShort())
        {
            // Failed search
            static if (hasLength!R1)
            {
                static if (is(typeof(haystack[haystack.length ..
                                                haystack.length]) : R1))
                    return haystack[haystack.length .. haystack.length];
                else
                    return R1.init;
            }
            else
            {
                assert(haystack.empty);
                return haystack;
            }
        }
        static if (estimateNeedleLength)
            size_t matchLength = 0;
        for (auto h = haystack.save, n = needle.save;
             !n.empty;
             h.popFront(), n.popFront())
        {
            if (h.empty || !binaryFun!pred(h.front, n.front))
            {
                // Failed searching n in h
                static if (estimateNeedleLength)
                {
                    if (estimatedNeedleLength < matchLength)
                        estimatedNeedleLength = matchLength;
                }
                continue searching;
            }
            static if (estimateNeedleLength)
                ++matchLength;
        }
        break;
    }
    return haystack;
}

@safe unittest
{
    // Test simpleMindedFind for the case where both haystack and needle have
    // length.
    struct CustomString
    {
    @safe:
        string _impl;

        // This is what triggers issue 7992.
        @property size_t length() const { return _impl.length; }
        @property void length(size_t len) { _impl.length = len; }

        // This is for conformance to the forward range API (we deliberately
        // make it non-random access so that we will end up in
        // simpleMindedFind).
        @property bool empty() const { return _impl.empty; }
        @property dchar front() const { return _impl.front; }
        void popFront() { _impl.popFront(); }
        @property CustomString save() { return this; }
    }

    // If issue 7992 occurs, this will throw an exception from calling
    // popFront() on an empty range.
    auto r = find(CustomString("a"), CustomString("b"));
    assert(r.empty);
}

/**
Finds two or more $(D needles) into a $(D haystack). The predicate $(D
pred) is used throughout to compare elements. By default, elements are
compared for equality.

Params:

pred = The predicate to use for comparing elements.

haystack = The target of the search. Must be an input range.
If any of $(D needles) is a range with elements comparable to
elements in $(D haystack), then $(D haystack) must be a
$(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
such that the search can backtrack.

needles = One or more items to search for. Each of $(D needles) must
be either comparable to one element in $(D haystack), or be itself a
forward range with elements comparable with elements in
$(D haystack).

Returns:

A tuple containing $(D haystack) positioned to match one of the
needles and also the 1-based index of the matching element in $(D
needles) (0 if none of $(D needles) matched, 1 if $(D needles[0])
matched, 2 if $(D needles[1]) matched...). The first needle to be found
will be the one that matches. If multiple needles are found at the
same spot in the range, then the shortest one is the one which matches
(if multiple needles of the same length are found at the same spot (e.g
$(D "a") and $(D 'a')), then the left-most of them in the argument list
matches).

The relationship between $(D haystack) and $(D needles) simply means
that one can e.g. search for individual $(D int)s or arrays of $(D
int)s in an array of $(D int)s. In addition, if elements are
individually comparable, searches of heterogeneous types are allowed
as well: a $(D double[]) can be searched for an $(D int) or a $(D
short[]), and conversely a $(D long) can be searched for a $(D float)
or a $(D double[]). This makes for efficient searches without the need
to coerce one side of the comparison into the other's side type.

The complexity of the search is $(BIGOH haystack.length *
max(needles.length)). (For needles that are individual items, length
is considered to be 1.) The strategy used in searching several
subranges at once maximizes cache usage by moving in $(D haystack) as
few times as possible.
 */
Tuple!(Range, size_t) find(alias pred = "a == b", Range, Ranges...)
(Range haystack, Ranges needles)
if (Ranges.length > 1 && is(typeof(startsWith!pred(haystack, needles))))
{
    for (;; haystack.popFront())
    {
        size_t r = startsWith!pred(haystack, needles);
        if (r || haystack.empty)
        {
            return tuple(haystack, r);
        }
    }
}

///
@safe unittest
{
    import std.typecons : tuple;
    int[] a = [ 1, 4, 2, 3 ];
    assert(find(a, 4) == [ 4, 2, 3 ]);
    assert(find(a, [ 1, 4 ]) == [ 1, 4, 2, 3 ]);
    assert(find(a, [ 1, 3 ], 4) == tuple([ 4, 2, 3 ], 2));
    // Mixed types allowed if comparable
    assert(find(a, 5, [ 1.2, 3.5 ], 2.0) == tuple([ 2, 3 ], 3));
}

@safe unittest
{
    auto s1 = "Mary has a little lamb";
    assert(find(s1, "has a", "has an") == tuple("has a little lamb", 1));
    assert(find(s1, 't', "has a", "has an") == tuple("has a little lamb", 2));
    assert(find(s1, 't', "has a", 'y', "has an") == tuple("y has a little lamb", 3));
    assert(find("abc", "bc").length == 2);
}

@safe unittest
{
    import std.algorithm.internal : rndstuff;
    import std.meta : AliasSeq;
    import std.uni : toUpper;

    int[] a = [ 1, 2, 3 ];
    assert(find(a, 5).empty);
    assert(find(a, 2) == [2, 3]);

    foreach (T; AliasSeq!(int, double))
    {
        auto b = rndstuff!(T)();
        if (!b.length) continue;
        b[$ / 2] = 200;
        b[$ / 4] = 200;
        assert(find(b, 200).length == b.length - b.length / 4);
    }

    // Case-insensitive find of a string
    string[] s = [ "Hello", "world", "!" ];
    assert(find!("toUpper(a) == toUpper(b)")(s, "hello").length == 3);

    static bool f(string a, string b) { return toUpper(a) == toUpper(b); }
    assert(find!(f)(s, "hello").length == 3);
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.algorithm.internal : rndstuff;
    import std.meta : AliasSeq;
    import std.range : retro;

    int[] a = [ 1, 2, 3, 2, 6 ];
    assert(find(retro(a), 5).empty);
    assert(equal(find(retro(a), 2), [ 2, 3, 2, 1 ][]));

    foreach (T; AliasSeq!(int, double))
    {
        auto b = rndstuff!(T)();
        if (!b.length) continue;
        b[$ / 2] = 200;
        b[$ / 4] = 200;
        assert(find(retro(b), 200).length ==
                b.length - (b.length - 1) / 2);
    }
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.internal.test.dummyrange;

    int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
    int[] b = [ 1, 2, 3 ];
    assert(find(a, b) == [ 1, 2, 3, 4, 5 ]);
    assert(find(b, a).empty);

    foreach (DummyType; AllDummyRanges)
    {
        DummyType d;
        auto findRes = find(d, 5);
        assert(equal(findRes, [5,6,7,8,9,10]));
    }
}

/**
 * Finds $(D needle) in $(D haystack) efficiently using the
 * $(LINK2 https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm,
 * Boyer-Moore) method.
 *
 * Params:
 * haystack = A random-access range with length and slicing.
 * needle = A $(LREF BoyerMooreFinder).
 *
 * Returns:
 * $(D haystack) advanced such that $(D needle) is a prefix of it (if no
 * such position exists, returns $(D haystack) advanced to termination).
 */
RandomAccessRange find(RandomAccessRange, alias pred, InputRange)(
    RandomAccessRange haystack, scope BoyerMooreFinder!(pred, InputRange) needle)
{
    return needle.beFound(haystack);
}

@safe unittest
{
    string h = "/homes/aalexand/d/dmd/bin/../lib/libphobos.a(dmain2.o)"~
        "(.gnu.linkonce.tmain+0x74): In function `main' undefined reference"~
        " to `_Dmain':";
    string[] ns = ["libphobos", "function", " undefined", "`", ":"];
    foreach (n ; ns)
    {
        auto p = find(h, boyerMooreFinder(n));
        assert(!p.empty);
    }
}

///
@safe unittest
{
    import std.range.primitives : empty;
    int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
    int[] b = [ 1, 2, 3 ];

    assert(find(a, boyerMooreFinder(b)) == [ 1, 2, 3, 4, 5 ]);
    assert(find(b, boyerMooreFinder(a)).empty);
}

@safe unittest
{
    auto bm = boyerMooreFinder("for");
    auto match = find("Moor", bm);
    assert(match.empty);
}

// canFind
/++
Convenience function. Like find, but only returns whether or not the search
was successful.

See_Also:
$(LREF among) for checking a value against multiple possibilities.
 +/
template canFind(alias pred="a == b")
{
    import std.meta : allSatisfy;

    /++
    Returns $(D true) if and only if any value $(D v) found in the
    input range $(D range) satisfies the predicate $(D pred).
    Performs (at most) $(BIGOH haystack.length) evaluations of $(D pred).
     +/
    bool canFind(Range)(Range haystack)
    if (is(typeof(find!pred(haystack))))
    {
        return any!pred(haystack);
    }

    /++
    Returns $(D true) if and only if $(D needle) can be found in $(D
    range). Performs $(BIGOH haystack.length) evaluations of $(D pred).
     +/
    bool canFind(Range, Element)(Range haystack, scope Element needle)
    if (is(typeof(find!pred(haystack, needle))))
    {
        return !find!pred(haystack, needle).empty;
    }

    /++
    Returns the 1-based index of the first needle found in $(D haystack). If no
    needle is found, then $(D 0) is returned.

    So, if used directly in the condition of an if statement or loop, the result
    will be $(D true) if one of the needles is found and $(D false) if none are
    found, whereas if the result is used elsewhere, it can either be cast to
    $(D bool) for the same effect or used to get which needle was found first
    without having to deal with the tuple that $(D LREF find) returns for the
    same operation.
     +/
    size_t canFind(Range, Ranges...)(Range haystack, scope Ranges needles)
    if (Ranges.length > 1 &&
        allSatisfy!(isForwardRange, Ranges) &&
        is(typeof(find!pred(haystack, needles))))
    {
        return find!pred(haystack, needles)[1];
    }
}

///
@safe unittest
{
    assert(canFind([0, 1, 2, 3], 2) == true);
    assert(canFind([0, 1, 2, 3], [1, 2], [2, 3]));
    assert(canFind([0, 1, 2, 3], [1, 2], [2, 3]) == 1);
    assert(canFind([0, 1, 2, 3], [1, 7], [2, 3]));
    assert(canFind([0, 1, 2, 3], [1, 7], [2, 3]) == 2);

    assert(canFind([0, 1, 2, 3], 4) == false);
    assert(!canFind([0, 1, 2, 3], [1, 3], [2, 4]));
    assert(canFind([0, 1, 2, 3], [1, 3], [2, 4]) == 0);
}

/**
 * Example using a custom predicate.
 * Note that the needle appears as the second argument of the predicate.
 */
@safe unittest
{
    auto words = [
        "apple",
        "beeswax",
        "cardboard"
    ];
    assert(!canFind(words, "bees"));
    assert( canFind!((string a, string b) => a.startsWith(b))(words, "bees"));
}

@safe unittest
{
    import std.algorithm.internal : rndstuff;

    auto a = rndstuff!(int)();
    if (a.length)
    {
        auto b = a[a.length / 2];
        assert(canFind(a, b));
    }
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    assert(equal!(canFind!"a < b")([[1, 2, 3], [7, 8, 9]], [2, 8]));
}

// findAdjacent
/**
Advances $(D r) until it finds the first two adjacent elements $(D a),
$(D b) that satisfy $(D pred(a, b)). Performs $(BIGOH r.length)
evaluations of $(D pred).

Params:
    pred = The predicate to satisfy.
    r = A $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) to
        search in.

Returns:
$(D r) advanced to the first occurrence of two adjacent elements that satisfy
the given predicate. If there are no such two elements, returns $(D r) advanced
until empty.

See_Also:
     $(HTTP sgi.com/tech/stl/adjacent_find.html, STL's adjacent_find)
*/
Range findAdjacent(alias pred = "a == b", Range)(Range r)
if (isForwardRange!(Range))
{
    auto ahead = r.save;
    if (!ahead.empty)
    {
        for (ahead.popFront(); !ahead.empty; r.popFront(), ahead.popFront())
        {
            if (binaryFun!(pred)(r.front, ahead.front)) return r;
        }
    }
    static if (!isInfinite!Range)
        return ahead;
}

///
@safe unittest
{
    int[] a = [ 11, 10, 10, 9, 8, 8, 7, 8, 9 ];
    auto r = findAdjacent(a);
    assert(r == [ 10, 10, 9, 8, 8, 7, 8, 9 ]);
    auto p = findAdjacent!("a < b")(a);
    assert(p == [ 7, 8, 9 ]);

}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.internal.test.dummyrange;
    import std.range;

    int[] a = [ 11, 10, 10, 9, 8, 8, 7, 8, 9 ];
    auto p = findAdjacent(a);
    assert(p == [10, 10, 9, 8, 8, 7, 8, 9 ]);
    p = findAdjacent!("a < b")(a);
    assert(p == [7, 8, 9]);
    // empty
    a = [];
    p = findAdjacent(a);
    assert(p.empty);
    // not found
    a = [ 1, 2, 3, 4, 5 ];
    p = findAdjacent(a);
    assert(p.empty);
    p = findAdjacent!"a > b"(a);
    assert(p.empty);
    ReferenceForwardRange!int rfr = new ReferenceForwardRange!int([1, 2, 3, 2, 2, 3]);
    assert(equal(findAdjacent(rfr), [2, 2, 3]));

    // Issue 9350
    assert(!repeat(1).findAdjacent().empty);
}

// findAmong
/**
Searches the given range for an element that matches one of the given choices.

Advances $(D seq) by calling $(D seq.popFront) until either
$(D find!(pred)(choices, seq.front)) is $(D true), or $(D seq) becomes empty.
Performs $(BIGOH seq.length * choices.length) evaluations of $(D pred).

Params:
    pred = The predicate to use for determining a match.
    seq = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives) to
        search.
    choices = A $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives)
        of possible choices.

Returns:
$(D seq) advanced to the first matching element, or until empty if there are no
matching elements.

See_Also:
    $(HTTP sgi.com/tech/stl/find_first_of.html, STL's find_first_of)
*/
InputRange findAmong(alias pred = "a == b", InputRange, ForwardRange)(
    InputRange seq, ForwardRange choices)
if (isInputRange!InputRange && isForwardRange!ForwardRange)
{
    for (; !seq.empty && find!pred(choices, seq.front).empty; seq.popFront())
    {
    }
    return seq;
}

///
@safe unittest
{
    int[] a = [ -1, 0, 1, 2, 3, 4, 5 ];
    int[] b = [ 3, 1, 2 ];
    assert(findAmong(a, b) == a[2 .. $]);
}

@safe unittest
{
    int[] a = [ -1, 0, 2, 1, 2, 3, 4, 5 ];
    int[] b = [ 1, 2, 3 ];
    assert(findAmong(a, b) == [2, 1, 2, 3, 4, 5 ]);
    assert(findAmong(b, [ 4, 6, 7 ][]).empty);
    assert(findAmong!("a == b")(a, b).length == a.length - 2);
    assert(findAmong!("a == b")(b, [ 4, 6, 7 ][]).empty);
}

// findSkip
/**
 * Finds $(D needle) in $(D haystack) and positions $(D haystack)
 * right after the first occurrence of $(D needle).
 *
 * Params:
 *  haystack = The
 *   $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) to search
 *   in.
 *  needle = The
 *   $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) to search
 *   for.
 *
 * Returns: $(D true) if the needle was found, in which case $(D haystack) is
 * positioned after the end of the first occurrence of $(D needle); otherwise
 * $(D false), leaving $(D haystack) untouched.
 */
bool findSkip(alias pred = "a == b", R1, R2)(ref R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2
        && is(typeof(binaryFun!pred(haystack.front, needle.front))))
{
    auto parts = findSplit!pred(haystack, needle);
    if (parts[1].empty) return false;
    // found
    haystack = parts[2];
    return true;
}

///
@safe unittest
{
    import std.range.primitives : empty;
    // Needle is found; s is replaced by the substring following the first
    // occurrence of the needle.
    string s = "abcdef";
    assert(findSkip(s, "cd") && s == "ef");

    // Needle is not found; s is left untouched.
    s = "abcdef";
    assert(!findSkip(s, "cxd") && s == "abcdef");

    // If the needle occurs at the end of the range, the range is left empty.
    s = "abcdef";
    assert(findSkip(s, "def") && s.empty);
}

/**
These functions find the first occurrence of `needle` in `haystack` and then
split `haystack` as follows.

`findSplit` returns a tuple `result` containing $(I three) ranges. `result[0]`
is the portion of `haystack` before `needle`, `result[1]` is the portion of
`haystack` that matches `needle`, and `result[2]` is the portion of `haystack`
after the match. If `needle` was not found, `result[0]` comprehends `haystack`
entirely and `result[1]` and `result[2]` are empty.

`findSplitBefore` returns a tuple `result` containing two ranges. `result[0]` is
the portion of `haystack` before `needle`, and `result[1]` is the balance of
`haystack` starting with the match. If `needle` was not found, `result[0]`
comprehends `haystack` entirely and `result[1]` is empty.

`findSplitAfter` returns a tuple `result` containing two ranges.
`result[0]` is the portion of `haystack` up to and including the
match, and `result[1]` is the balance of `haystack` starting
after the match. If `needle` was not found, `result[0]` is empty
and `result[1]` is `haystack`.

In all cases, the concatenation of the returned ranges spans the
entire `haystack`.

If `haystack` is a random-access range, all three components of the tuple have
the same type as `haystack`. Otherwise, `haystack` must be a
$(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) and
the type of `result[0]` and `result[1]` is the same as $(REF takeExactly,
std,range).

Params:
    pred = Predicate to use for comparing needle against haystack.
    haystack = The range to search.
    needle = What to look for.

Returns:

A sub-type of `Tuple!()` of the split portions of `haystack` (see above for
details).  This sub-type of `Tuple!()` has `opCast` defined for `bool`.  This
`opCast` returns `true` when the separating `needle` was found
(`!result[1].empty`) and `false` otherwise.  This enables the convenient idiom
shown in the following example.

Example:
---
if (const split = haystack.findSplit(needle))
{
     doSomethingWithSplit(split);
}
---
 */
auto findSplit(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2)
{
    static struct Result(S1, S2) if (isForwardRange!S1 &&
                                     isForwardRange!S2)
    {
        this(S1 pre, S1 separator, S2 post)
        {
            asTuple = typeof(asTuple)(pre, separator, post);
        }
        void opAssign(typeof(asTuple) rhs)
        {
            asTuple = rhs;
        }
        Tuple!(S1, S1, S2) asTuple;
        bool opCast(T : bool)()
        {
            return !asTuple[1].empty;
        }
        alias asTuple this;
    }

    static if (isSomeString!R1 && isSomeString!R2
            || (isRandomAccessRange!R1 && hasSlicing!R1 && hasLength!R1 && hasLength!R2))
    {
        auto balance = find!pred(haystack, needle);
        immutable pos1 = haystack.length - balance.length;
        immutable pos2 = balance.empty ? pos1 : pos1 + needle.length;
        return Result!(typeof(haystack[0 .. pos1]),
                       typeof(haystack[pos2 .. haystack.length]))(haystack[0 .. pos1],
                                                                  haystack[pos1 .. pos2],
                                                                  haystack[pos2 .. haystack.length]);
    }
    else
    {
        import std.range : takeExactly;
        auto original = haystack.save;
        auto h = haystack.save;
        auto n = needle.save;
        size_t pos1, pos2;
        while (!n.empty && !h.empty)
        {
            if (binaryFun!pred(h.front, n.front))
            {
                h.popFront();
                n.popFront();
                ++pos2;
            }
            else
            {
                haystack.popFront();
                n = needle.save;
                h = haystack.save;
                pos2 = ++pos1;
            }
        }
        return Result!(typeof(takeExactly(original, pos1)),
                       typeof(h))(takeExactly(original, pos1),
                                  takeExactly(haystack, pos2 - pos1),
                                  h);
    }
}

/// Ditto
auto findSplitBefore(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2)
{
    static struct Result(S1, S2) if (isForwardRange!S1 &&
                                     isForwardRange!S2)
    {
        this(S1 pre, S2 post)
        {
            asTuple = typeof(asTuple)(pre, post);
        }
        void opAssign(typeof(asTuple) rhs)
        {
            asTuple = rhs;
        }
        Tuple!(S1, S2) asTuple;
        bool opCast(T : bool)()
        {
            return !asTuple[0].empty;
        }
        alias asTuple this;
    }

    static if (isSomeString!R1 && isSomeString!R2
            || (isRandomAccessRange!R1 && hasLength!R1 && hasSlicing!R1 && hasLength!R2))
    {
        auto balance = find!pred(haystack, needle);
        immutable pos = haystack.length - balance.length;
        return Result!(typeof(haystack[0 .. pos]),
                       typeof(haystack[pos .. haystack.length]))(haystack[0 .. pos],
                                                                 haystack[pos .. haystack.length]);
    }
    else
    {
        import std.range : takeExactly;
        auto original = haystack.save;
        auto h = haystack.save;
        auto n = needle.save;
        size_t pos;
        while (!n.empty && !h.empty)
        {
            if (binaryFun!pred(h.front, n.front))
            {
                h.popFront();
                n.popFront();
            }
            else
            {
                haystack.popFront();
                n = needle.save;
                h = haystack.save;
                ++pos;
            }
        }
        return Result!(typeof(takeExactly(original, pos)),
                       typeof(haystack))(takeExactly(original, pos),
                                         haystack);
    }
}

/// Ditto
auto findSplitAfter(alias pred = "a == b", R1, R2)(R1 haystack, R2 needle)
if (isForwardRange!R1 && isForwardRange!R2)
{
    static struct Result(S1, S2) if (isForwardRange!S1 &&
                                     isForwardRange!S2)
    {
        this(S1 pre, S2 post)
        {
            asTuple = typeof(asTuple)(pre, post);
        }
        void opAssign(typeof(asTuple) rhs)
        {
            asTuple = rhs;
        }
        Tuple!(S1, S2) asTuple;
        bool opCast(T : bool)()
        {
            return !asTuple[1].empty;
        }
        alias asTuple this;
    }

    static if (isSomeString!R1 && isSomeString!R2
            || isRandomAccessRange!R1 && hasLength!R1 && hasSlicing!R1 && hasLength!R2)
    {
        auto balance = find!pred(haystack, needle);
        immutable pos = balance.empty ? 0 : haystack.length - balance.length + needle.length;
        return Result!(typeof(haystack[0 .. pos]),
                       typeof(haystack[pos .. haystack.length]))(haystack[0 .. pos],
                                                                 haystack[pos .. haystack.length]);
    }
    else
    {
        import std.range : takeExactly;
        auto original = haystack.save;
        auto h = haystack.save;
        auto n = needle.save;
        size_t pos1, pos2;
        while (!n.empty)
        {
            if (h.empty)
            {
                // Failed search
                return Result!(typeof(takeExactly(original, 0)),
                               typeof(original))(takeExactly(original, 0),
                                                 original);
            }
            if (binaryFun!pred(h.front, n.front))
            {
                h.popFront();
                n.popFront();
                ++pos2;
            }
            else
            {
                haystack.popFront();
                n = needle.save;
                h = haystack.save;
                pos2 = ++pos1;
            }
        }
        return Result!(typeof(takeExactly(original, pos2)),
                       typeof(h))(takeExactly(original, pos2),
                                  h);
    }
}

///
@safe pure nothrow unittest
{
    import std.range.primitives : empty;

    auto a = "Carl Sagan Memorial Station";
    auto r = findSplit(a, "Velikovsky");
    import std.typecons : isTuple;
    static assert(isTuple!(typeof(r.asTuple)));
    static assert(isTuple!(typeof(r)));
    assert(!r);
    assert(r[0] == a);
    assert(r[1].empty);
    assert(r[2].empty);
    r = findSplit(a, " ");
    assert(r[0] == "Carl");
    assert(r[1] == " ");
    assert(r[2] == "Sagan Memorial Station");
    auto r1 = findSplitBefore(a, "Sagan");
    assert(r1);
    assert(r1[0] == "Carl ");
    assert(r1[1] == "Sagan Memorial Station");
    auto r2 = findSplitAfter(a, "Sagan");
    assert(r2);
    assert(r2[0] == "Carl Sagan");
    assert(r2[1] == " Memorial Station");
}

/// Use $(REF only, std,range) to find single elements:
@safe pure nothrow unittest
{
    import std.range : only;
    assert([1, 2, 3, 4].findSplitBefore(only(3))[0] == [1, 2]);
}

@safe pure nothrow unittest
{
    import std.range.primitives : empty;

    auto a = [ 1, 2, 3, 4, 5, 6, 7, 8 ];
    auto r = findSplit(a, [9, 1]);
    assert(!r);
    assert(r[0] == a);
    assert(r[1].empty);
    assert(r[2].empty);
    r = findSplit(a, [3]);
    assert(r);
    assert(r[0] == a[0 .. 2]);
    assert(r[1] == a[2 .. 3]);
    assert(r[2] == a[3 .. $]);

    auto r1 = findSplitBefore(a, [9, 1]);
    assert(r1);
    assert(r1[0] == a);
    assert(r1[1].empty);
    r1 = findSplitBefore(a, [3, 4]);
    assert(r1);
    assert(r1[0] == a[0 .. 2]);
    assert(r1[1] == a[2 .. $]);

    auto r2 = findSplitAfter(a, [9, 1]);
    assert(r2);
    assert(r2[0].empty);
    assert(r2[1] == a);
    r2 = findSplitAfter(a, [3, 4]);
    assert(r2);
    assert(r2[0] == a[0 .. 4]);
    assert(r2[1] == a[4 .. $]);
}

@safe pure nothrow unittest
{
    import std.algorithm.comparison : equal;
    import std.algorithm.iteration : filter;

    auto a = [ 1, 2, 3, 4, 5, 6, 7, 8 ];
    auto fwd = filter!"a > 0"(a);
    auto r = findSplit(fwd, [9, 1]);
    assert(!r);
    assert(equal(r[0], a));
    assert(r[1].empty);
    assert(r[2].empty);
    r = findSplit(fwd, [3]);
    assert(r);
    assert(equal(r[0],  a[0 .. 2]));
    assert(equal(r[1], a[2 .. 3]));
    assert(equal(r[2], a[3 .. $]));

    auto r1 = findSplitBefore(fwd, [9, 1]);
    assert(r1);
    assert(equal(r1[0], a));
    assert(r1[1].empty);
    r1 = findSplitBefore(fwd, [3, 4]);
    assert(r1);
    assert(equal(r1[0], a[0 .. 2]));
    assert(equal(r1[1], a[2 .. $]));

    auto r2 = findSplitAfter(fwd, [9, 1]);
    assert(r2);
    assert(r2[0].empty);
    assert(equal(r2[1], a));
    r2 = findSplitAfter(fwd, [3, 4]);
    assert(r2);
    assert(equal(r2[0], a[0 .. 4]));
    assert(equal(r2[1], a[4 .. $]));
}

@safe pure nothrow @nogc unittest
{
    auto str = "sep,one,sep,two";

    auto split = str.findSplitAfter(",");
    assert(split[0] == "sep,");

    split = split[1].findSplitAfter(",");
    assert(split[0] == "one,");

    split = split[1].findSplitBefore(",");
    assert(split[0] == "sep");
}

@safe pure nothrow @nogc unittest
{
    auto str = "sep,one,sep,two";

    auto split = str.findSplitBefore(",two");
    assert(split[0] == "sep,one,sep");
    assert(split[1] == ",two");

    split = split[0].findSplitBefore(",sep");
    assert(split[0] == "sep,one");
    assert(split[1] == ",sep");

    split = split[0].findSplitAfter(",");
    assert(split[0] == "sep,");
    assert(split[1] == "one");
}

// minCount
/**

Computes the minimum (respectively maximum) of `range` along with its number of
occurrences. Formally, the minimum is a value `x` in `range` such that $(D
pred(a, x)) is `false` for all values `a` in `range`. Conversely, the maximum is
a value `x` in `range` such that $(D pred(x, a)) is `false` for all values `a`
in `range` (note the swapped arguments to `pred`).

These functions may be used for computing arbitrary extrema by choosing `pred`
appropriately. For corrrect functioning, `pred` must be a strict partial order,
i.e. transitive (if $(D pred(a, b) && pred(b, c)) then $(D pred(a, c))) and
irreflexive ($(D pred(a, a)) is `false`). The $(LUCKY trichotomy property of
inequality) is not required: these algoritms consider elements `a` and `b` equal
(for the purpose of counting) if `pred` puts them in the same equivalence class,
i.e. $(D !pred(a, b) && !pred(b, a)).

Params:
    pred = The ordering predicate to use to determine the extremum (minimum
        or maximum).
    range = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives) to count.

Returns: The minimum, respectively maximum element of a range together with the
number it occurs in the range.

Throws: `Exception` if `range.empty`.
 */
Tuple!(ElementType!Range, size_t)
minCount(alias pred = "a < b", Range)(Range range)
if (isInputRange!Range && !isInfinite!Range &&
    is(typeof(binaryFun!pred(range.front, range.front))))
{
    import std.algorithm.internal : algoFormat;
    import std.exception : enforce;

    alias T  = ElementType!Range;
    alias UT = Unqual!T;
    alias RetType = Tuple!(T, size_t);

    static assert(is(typeof(RetType(range.front, 1))),
        algoFormat("Error: Cannot call minCount on a %s, because it is not possible "~
               "to copy the result value (a %s) into a Tuple.", Range.stringof, T.stringof));

    enforce(!range.empty, "Can't count elements from an empty range");
    size_t occurrences = 1;

    static if (isForwardRange!Range)
    {
        Range least = range.save;
        for (range.popFront(); !range.empty; range.popFront())
        {
            if (binaryFun!pred(least.front, range.front))
            {
                assert(!binaryFun!pred(range.front, least.front),
                    "min/maxPos: predicate must be a strict partial order.");
                continue;
            }
            if (binaryFun!pred(range.front, least.front))
            {
                // change the min
                least = range.save;
                occurrences = 1;
            }
            else
                ++occurrences;
        }
        return RetType(least.front, occurrences);
    }
    else static if (isAssignable!(UT, T) || (!hasElaborateAssign!UT && isAssignable!UT))
    {
        UT v = UT.init;
        static if (isAssignable!(UT, T)) v = range.front;
        else                             v = cast(UT) range.front;

        for (range.popFront(); !range.empty; range.popFront())
        {
            if (binaryFun!pred(*cast(T*)&v, range.front)) continue;
            if (binaryFun!pred(range.front, *cast(T*)&v))
            {
                // change the min
                static if (isAssignable!(UT, T)) v = range.front;
                else                             v = cast(UT) range.front; //Safe because !hasElaborateAssign!UT
                occurrences = 1;
            }
            else
                ++occurrences;
        }
        return RetType(*cast(T*)&v, occurrences);
    }
    else static if (hasLvalueElements!Range)
    {
        import std.algorithm.internal : addressOf;
        T* p = addressOf(range.front);
        for (range.popFront(); !range.empty; range.popFront())
        {
            if (binaryFun!pred(*p, range.front)) continue;
            if (binaryFun!pred(range.front, *p))
            {
                // change the min
                p = addressOf(range.front);
                occurrences = 1;
            }
            else
                ++occurrences;
        }
        return RetType(*p, occurrences);
    }
    else
        static assert(false,
            algoFormat("Sorry, can't find the minCount of a %s: Don't know how "~
                   "to keep track of the smallest %s element.", Range.stringof, T.stringof));
}

/// Ditto
Tuple!(ElementType!Range, size_t)
maxCount(alias pred = "a < b", Range)(Range range)
if (isInputRange!Range && !isInfinite!Range &&
    is(typeof(binaryFun!pred(range.front, range.front))))
{
    return range.minCount!((a, b) => binaryFun!pred(b, a));
}

///
@safe unittest
{
    import std.conv : text;
    import std.typecons : tuple;

    int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
    // Minimum is 1 and occurs 3 times
    assert(a.minCount == tuple(1, 3));
    // Maximum is 4 and occurs 2 times
    assert(a.maxCount == tuple(4, 2));
}

@system unittest
{
    import std.conv : text;
    import std.exception : assertThrown;
    import std.internal.test.dummyrange;

    int[][] b = [ [4], [2, 4], [4], [4] ];
    auto c = minCount!("a[0] < b[0]")(b);
    assert(c == tuple([2, 4], 1), text(c[0]));

    //Test empty range
    assertThrown(minCount(b[$..$]));

    //test with reference ranges. Test both input and forward.
    assert(minCount(new ReferenceInputRange!int([1, 2, 1, 0, 2, 0])) == tuple(0, 2));
    assert(minCount(new ReferenceForwardRange!int([1, 2, 1, 0, 2, 0])) == tuple(0, 2));
}

@system unittest
{
    import std.conv : text;
    import std.meta : AliasSeq;

    static struct R(T) //input range
    {
        T[] arr;
        alias arr this;
    }

    immutable         a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
    R!(immutable int) b = R!(immutable int)(a);

    assert(minCount(a) == tuple(1, 3));
    assert(minCount(b) == tuple(1, 3));
    assert(minCount!((ref immutable int a, ref immutable int b) => (a > b))(a) == tuple(4, 2));
    assert(minCount!((ref immutable int a, ref immutable int b) => (a > b))(b) == tuple(4, 2));

    immutable(int[])[] c = [ [4], [2, 4], [4], [4] ];
    assert(minCount!("a[0] < b[0]")(c) == tuple([2, 4], 1), text(c[0]));

    static struct S1
    {
        int i;
    }
    alias IS1 = immutable(S1);
    static assert( isAssignable!S1);
    static assert( isAssignable!(S1, IS1));

    static struct S2
    {
        int* p;
        this(ref immutable int i) immutable {p = &i;}
        this(ref int i) {p = &i;}
        @property ref inout(int) i() inout {return *p;}
        bool opEquals(const S2 other) const {return i == other.i;}
    }
    alias IS2 = immutable(S2);
    static assert( isAssignable!S2);
    static assert(!isAssignable!(S2, IS2));
    static assert(!hasElaborateAssign!S2);

    static struct S3
    {
        int i;
        void opAssign(ref S3 other) @disable;
    }
    static assert(!isAssignable!S3);

    foreach (Type; AliasSeq!(S1, IS1, S2, IS2, S3))
    {
        static if (is(Type == immutable)) alias V = immutable int;
        else                              alias V = int;
        V one = 1, two = 2;
        auto r1 = [Type(two), Type(one), Type(one)];
        auto r2 = R!Type(r1);
        assert(minCount!"a.i < b.i"(r1) == tuple(Type(one), 2));
        assert(minCount!"a.i < b.i"(r2) == tuple(Type(one), 2));
        assert(one == 1 && two == 2);
    }
}

/**
Iterates the passed range and returns the minimal element.
A custom mapping function can be passed to `map`.
In other languages this is sometimes called `argmin`.

Complexity: O(n)
    Exactly `n - 1` comparisons are needed.

Params:
    map = custom accessor for the comparison key
    r = range from which the minimal element will be selected
    seed = custom seed to use as initial element

Returns: The minimal element of the passed-in range.

See_Also:
    $(REF min, std,algorithm,comparison)
*/
auto minElement(alias map, Range)(Range r)
if (isInputRange!Range && !isInfinite!Range)
{
    return extremum!map(r);
}

/// ditto
auto minElement(Range)(Range r)
    if (isInputRange!Range && !isInfinite!Range)
{
    return extremum(r);
}

/// ditto
auto minElement(alias map, Range, RangeElementType = ElementType!Range)
               (Range r, RangeElementType seed)
if (isInputRange!Range && !isInfinite!Range &&
    !is(CommonType!(ElementType!Range, RangeElementType) == void))
{
    return extremum!map(r, seed);
}

/// ditto
auto minElement(Range, RangeElementType = ElementType!Range)
               (Range r, RangeElementType seed)
    if (isInputRange!Range && !isInfinite!Range &&
        !is(CommonType!(ElementType!Range, RangeElementType) == void))
{
    return extremum(r, seed);
}

///
@safe pure unittest
{
    import std.range : enumerate;
    import std.typecons : tuple;

    assert([2, 1, 4, 3].minElement == 1);

    // allows to get the index of an element too
    assert([5, 3, 7, 9].enumerate.minElement!"a.value" == tuple(1, 3));

    // any custom accessor can be passed
    assert([[0, 4], [1, 2]].minElement!"a[1]" == [1, 2]);

    // can be seeded
    int[] arr;
    assert(arr.minElement(1) == 1);
}

@safe pure unittest
{
    import std.range : enumerate, iota;
    // supports mapping
    assert([3, 4, 5, 1, 2].enumerate.minElement!"a.value" == tuple(3, 1));
    assert([5, 2, 4].enumerate.minElement!"a.value" == tuple(1, 2));

    // forward ranges
    assert(iota(1, 5).minElement() == 1);
    assert(iota(2, 5).enumerate.minElement!"a.value" == tuple(0, 2));

    // should work with const
    const(int)[] immArr = [2, 1, 3];
    assert(immArr.minElement == 1);

    // should work with immutable
    immutable(int)[] immArr2 = [2, 1, 3];
    assert(immArr2.minElement == 1);

    // with strings
    assert(["b", "a", "c"].minElement == "a");

    // with all dummy ranges
    import std.internal.test.dummyrange;
    foreach (DummyType; AllDummyRanges)
    {
        DummyType d;
        assert(d.minElement == 1);
        assert(d.minElement!(a => a) == 1);
    }

    // with empty, but seeded ranges
    int[] arr;
    assert(arr.minElement(42) == 42);
    assert(arr.minElement!(a => a)(42) == 42);
}

@nogc @safe nothrow pure unittest
{
    static immutable arr = [7, 3, 4, 2, 1, 8];
    assert(arr.minElement == 1);

    static immutable arr2d = [[1, 9], [3, 1], [4, 2]];
    assert(arr2d.minElement!"a[1]" == arr2d[1]);
}

/**
Iterates the passed range and returns the maximal element.
A custom mapping function can be passed to `map`.
In other languages this is sometimes called `argmax`.

Complexity:
    Exactly `n - 1` comparisons are needed.

Params:
    map = custom accessor for the comparison key
    r = range from which the maximum will be selected
    seed = custom seed to use as initial element

Returns: The maximal element of the passed-in range.

See_Also:
    $(REF max, std,algorithm,comparison)
*/
auto maxElement(alias map, Range)(Range r)
if (isInputRange!Range && !isInfinite!Range)
{
    return extremum!(map, "a > b")(r);
}

/// ditto
auto maxElement(Range)(Range r)
if (isInputRange!Range && !isInfinite!Range)
{
    return extremum!`a > b`(r);
}

/// ditto
auto maxElement(alias map, Range, RangeElementType = ElementType!Range)
               (Range r, RangeElementType seed)
if (isInputRange!Range && !isInfinite!Range &&
    !is(CommonType!(ElementType!Range, RangeElementType) == void))
{
    return extremum!(map, "a > b")(r, seed);
}

/// ditto
auto maxElement(Range, RangeElementType = ElementType!Range)
               (Range r, RangeElementType seed)
if (isInputRange!Range && !isInfinite!Range &&
    !is(CommonType!(ElementType!Range, RangeElementType) == void))
{
    return extremum!`a > b`(r, seed);
}

///
@safe pure unittest
{
    import std.range : enumerate;
    import std.typecons : tuple;
    assert([2, 1, 4, 3].maxElement == 4);

    // allows to get the index of an element too
    assert([2, 1, 4, 3].enumerate.maxElement!"a.value" == tuple(2, 4));

    // any custom accessor can be passed
    assert([[0, 4], [1, 2]].maxElement!"a[1]" == [0, 4]);

    // can be seeded
    int[] arr;
    assert(arr.minElement(1) == 1);
}

@safe pure unittest
{
    import std.range : enumerate, iota;

    // supports mapping
    assert([3, 4, 5, 1, 2].enumerate.maxElement!"a.value" == tuple(2, 5));
    assert([5, 2, 4].enumerate.maxElement!"a.value" == tuple(0, 5));

    // forward ranges
    assert(iota(1, 5).maxElement() == 4);
    assert(iota(2, 5).enumerate.maxElement!"a.value" == tuple(2, 4));
    assert(iota(4, 14).enumerate.maxElement!"a.value" == tuple(9, 13));

    // should work with const
    const(int)[] immArr = [2, 3, 1];
    assert(immArr.maxElement == 3);

    // should work with immutable
    immutable(int)[] immArr2 = [2, 3, 1];
    assert(immArr2.maxElement == 3);

    // with strings
    assert(["a", "c", "b"].maxElement == "c");

    // with all dummy ranges
    import std.internal.test.dummyrange;
    foreach (DummyType; AllDummyRanges)
    {
        DummyType d;
        assert(d.maxElement == 10);
        assert(d.maxElement!(a => a) == 10);
    }

    // with empty, but seeded ranges
    int[] arr;
    assert(arr.maxElement(42) == 42);
    assert(arr.maxElement!(a => a)(42) == 42);

}

@nogc @safe nothrow pure unittest
{
    static immutable arr = [7, 3, 8, 2, 1, 4];
    assert(arr.maxElement == 8);

    static immutable arr2d = [[1, 3], [3, 9], [4, 2]];
    assert(arr2d.maxElement!"a[1]" == arr2d[1]);
}

// minPos
/**
Computes a subrange of `range` starting at the first occurrence of `range`'s
minimum (respectively maximum) and with the same ending as `range`, or the
empty range if `range` itself is empty.

Formally, the minimum is a value `x` in `range` such that $(D pred(a, x)) is
`false` for all values `a` in `range`. Conversely, the maximum is a value `x` in
`range` such that $(D pred(x, a)) is `false` for all values `a` in `range` (note
the swapped arguments to `pred`).

These functions may be used for computing arbitrary extrema by choosing `pred`
appropriately. For corrrect functioning, `pred` must be a strict partial order,
i.e. transitive (if $(D pred(a, b) && pred(b, c)) then $(D pred(a, c))) and
irreflexive ($(D pred(a, a)) is `false`).

Params:
    pred = The ordering predicate to use to determine the extremum (minimum or
        maximum) element.
    range = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives) to search.

Returns: The position of the minimum (respectively maximum) element of forward
range `range`, i.e. a subrange of `range` starting at the position of  its
smallest (respectively largest) element and with the same ending as `range`.

*/
Range minPos(alias pred = "a < b", Range)(Range range)
if (isForwardRange!Range && !isInfinite!Range &&
    is(typeof(binaryFun!pred(range.front, range.front))))
{
    static if (hasSlicing!Range && isRandomAccessRange!Range && hasLength!Range)
    {
        // Prefer index-based access
        size_t pos = 0;
        foreach (i; 1 .. range.length)
        {
            if (binaryFun!pred(range[i], range[pos]))
            {
                pos = i;
            }
        }
        return range[pos .. range.length];
    }
    else
    {
        auto result = range.save;
        if (range.empty) return result;
        for (range.popFront(); !range.empty; range.popFront())
        {
            // Note: Unlike minCount, we do not care to find equivalence, so a
            // single pred call is enough.
            if (binaryFun!pred(range.front, result.front))
            {
                // change the min
                result = range.save;
            }
        }
        return result;
    }
}

/// Ditto
Range maxPos(alias pred = "a < b", Range)(Range range)
if (isForwardRange!Range && !isInfinite!Range &&
    is(typeof(binaryFun!pred(range.front, range.front))))
{
    return range.minPos!((a, b) => binaryFun!pred(b, a));
}

///
@safe unittest
{
    int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
    // Minimum is 1 and first occurs in position 3
    assert(a.minPos == [ 1, 2, 4, 1, 1, 2 ]);
    // Maximum is 4 and first occurs in position 2
    assert(a.maxPos == [ 4, 1, 2, 4, 1, 1, 2 ]);
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.internal.test.dummyrange;

    int[] a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
    //Test that an empty range works
    int[] b = a[$..$];
    assert(equal(minPos(b), b));

    //test with reference range.
    assert( equal( minPos(new ReferenceForwardRange!int([1, 2, 1, 0, 2, 0])), [0, 2, 0] ) );
}

@system unittest
{
    //Rvalue range
    import std.algorithm.comparison : equal;
    import std.container : Array;

    assert(Array!int(2, 3, 4, 1, 2, 4, 1, 1, 2)
               []
               .minPos()
               .equal([ 1, 2, 4, 1, 1, 2 ]));
}

@safe unittest
{
    //BUG 9299
    immutable a = [ 2, 3, 4, 1, 2, 4, 1, 1, 2 ];
    // Minimum is 1 and first occurs in position 3
    assert(minPos(a) == [ 1, 2, 4, 1, 1, 2 ]);
    // Maximum is 4 and first occurs in position 5
    assert(minPos!("a > b")(a) == [ 4, 1, 2, 4, 1, 1, 2 ]);

    immutable(int[])[] b = [ [4], [2, 4], [4], [4] ];
    assert(minPos!("a[0] < b[0]")(b) == [ [2, 4], [4], [4] ]);
}

/**
Computes the index of the first occurrence of `range`'s minimum element.

Params:
    pred = The ordering predicate to use to determine the minimum element.
    range = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
    to search.

Complexity: O(n)
    Exactly `n - 1` comparisons are needed.

Returns:
    The index of the first encounter of the minimum element in `range`. If the
    `range` is empty, -1 is returned.

See_Also:
    $(REF min, std,algorithm,comparison), $(LREF minCount), $(LREF minElement), $(LREF minPos)
 */
sizediff_t minIndex(alias pred = "a < b", Range)(Range range)
if (isForwardRange!Range && !isInfinite!Range &&
    is(typeof(binaryFun!pred(range.front, range.front))))
{
    if (range.empty) return -1;

    sizediff_t minPos = 0;

    static if (isRandomAccessRange!Range && hasLength!Range)
    {
        foreach (i; 1 .. range.length)
        {
            if (binaryFun!pred(range[i], range[minPos]))
            {
                minPos = i;
            }
        }
    }
    else
    {
        sizediff_t curPos = 0;
        Unqual!(typeof(range.front)) min = range.front;
        for (range.popFront(); !range.empty; range.popFront())
        {
            ++curPos;
            if (binaryFun!pred(range.front, min))
            {
                min = range.front;
                minPos = curPos;
            }
        }
    }
    return minPos;
}

///
@safe pure nothrow unittest
{
    int[] a = [2, 3, 4, 1, 2, 4, 1, 1, 2];

    // Minimum is 1 and first occurs in position 3
    assert(a.minIndex == 3);
    // Get maximum index with minIndex
    assert(a.minIndex!"a > b" == 2);

    // Range is empty, so return value is -1
    int[] b;
    assert(b.minIndex == -1);

    // Works with more custom types
    struct Dog { int age; }
    Dog[] dogs = [Dog(10), Dog(5), Dog(15)];
    assert(dogs.minIndex!"a.age < b.age" == 1);
}

@safe pure unittest
{
    // should work with const
    const(int)[] immArr = [2, 1, 3];
    assert(immArr.minIndex == 1);

    // Works for const ranges too
    const int[] c = [2, 5, 4, 1, 2, 3];
    assert(c.minIndex == 3);

    // should work with immutable
    immutable(int)[] immArr2 = [2, 1, 3];
    assert(immArr2.minIndex == 1);

    // with strings
    assert(["b", "a", "c"].minIndex == 1);

    // infinite range
    import std.range : cycle;
    static assert(!__traits(compiles, cycle([1]).minIndex));

    // with all dummy ranges
    import std.internal.test.dummyrange : AllDummyRanges;
    foreach (DummyType; AllDummyRanges)
    {
        static if (isForwardRange!DummyType && !isInfinite!DummyType)
        {
            DummyType d;
            d.arr = [5, 3, 7, 2, 1, 4];
            assert(d.minIndex == 4);

            d.arr = [];
            assert(d.minIndex == -1);
        }
    }
}

@nogc @safe nothrow pure unittest
{
    static immutable arr = [7, 3, 8, 2, 1, 4];
    assert(arr.minIndex == 4);

    static immutable arr2d = [[1, 3], [3, 9], [4, 2]];
    assert(arr2d.minIndex!"a[1] < b[1]" == 2);
}

/**
Computes the index of the first occurrence of `range`'s maximum element.

Complexity: O(n)
    Exactly `n - 1` comparisons are needed.

Params:
    pred = The ordering predicate to use to determine the maximum element.
    range = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives) to search.

Returns:
    The index of the first encounter of the maximum in `range`. If the
    `range` is empty, -1 is returned.

See_Also:
    $(REF max, std,algorithm,comparison), $(LREF maxCount), $(LREF maxElement), $(LREF maxPos)
 */
sizediff_t maxIndex(alias pred = "a < b", Range)(Range range)
if (isInputRange!Range && !isInfinite!Range &&
    is(typeof(binaryFun!pred(range.front, range.front))))
{
    return range.minIndex!((a, b) => binaryFun!pred(b, a));
}

///
@safe pure nothrow unittest
{
    // Maximum is 4 and first occurs in position 2
    int[] a = [2, 3, 4, 1, 2, 4, 1, 1, 2];
    assert(a.maxIndex == 2);

    // Empty range
    int[] b;
    assert(b.maxIndex == -1);

    // Works with more custom types
    struct Dog { int age; }
    Dog[] dogs = [Dog(10), Dog(15), Dog(5)];
    assert(dogs.maxIndex!"a.age < b.age" == 1);
}

@safe pure unittest
{
    // should work with const
    const(int)[] immArr = [5, 1, 3];
    assert(immArr.maxIndex == 0);

    // Works for const ranges too
    const int[] c = [2, 5, 4, 1, 2, 3];
    assert(c.maxIndex == 1);


    // should work with immutable
    immutable(int)[] immArr2 = [2, 1, 3];
    assert(immArr2.maxIndex == 2);

    // with strings
    assert(["b", "a", "c"].maxIndex == 2);

    // infinite range
    import std.range : cycle;
    static assert(!__traits(compiles, cycle([1]).maxIndex));

    // with all dummy ranges
    import std.internal.test.dummyrange : AllDummyRanges;
    foreach (DummyType; AllDummyRanges)
    {
        static if (isForwardRange!DummyType && !isInfinite!DummyType)
        {
            DummyType d;

            d.arr = [5, 3, 7, 2, 1, 4];
            assert(d.maxIndex == 2);

            d.arr = [];
            assert(d.maxIndex == -1);
        }
    }
}

@nogc @safe nothrow pure unittest
{
    static immutable arr = [7, 3, 8, 2, 1, 4];
    assert(arr.maxIndex == 2);

    static immutable arr2d = [[1, 3], [3, 9], [4, 2]];
    assert(arr2d.maxIndex!"a[1] < b[1]" == 1);
}

/**
Skip over the initial portion of the first given range that matches the second
range, or if no second range is given skip over the elements that fullfil pred.
Do nothing if there is no match.

Params:
    pred = The predicate that determines whether elements from each respective
        range match. Defaults to equality $(D "a == b").
    r1 = The $(REF_ALTTEXT forward range, isForwardRange, std,range,primitives) to
        move forward.
    r2 = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives)
        representing the initial segment of $(D r1) to skip over.

Returns:
true if the initial segment of $(D r1) matches $(D r2) or $(D pred) evaluates to true,
and $(D r1) has been advanced to the point past this segment; otherwise false, and
$(D r1) is left in its original position.
 */
bool skipOver(R1, R2)(ref R1 r1, R2 r2)
if (isForwardRange!R1 && isInputRange!R2
    && is(typeof(r1.front == r2.front)))
{
    static if (is(typeof(r1[0 .. $] == r2) : bool)
        && is(typeof(r2.length > r1.length) : bool)
        && is(typeof(r1 = r1[r2.length .. $])))
    {
        if (r2.length > r1.length || r1[0 .. r2.length] != r2)
        {
            return false;
        }
        r1 = r1[r2.length .. $];
        return true;
    }
    else
    {
        return skipOver!((a, b) => a == b)(r1, r2);
    }
}

/// Ditto
bool skipOver(alias pred, R1, R2)(ref R1 r1, R2 r2)
if (is(typeof(binaryFun!pred(r1.front, r2.front))) &&
    isForwardRange!R1 &&
    isInputRange!R2)
{
    static if (hasLength!R1 && hasLength!R2)
    {
        // Shortcut opportunity!
        if (r2.length > r1.length)
            return false;
    }
    auto r = r1.save;
    while (!r2.empty && !r.empty && binaryFun!pred(r.front, r2.front))
    {
        r.popFront();
        r2.popFront();
    }
    if (r2.empty)
        r1 = r;
    return r2.empty;
}

/// Ditto
bool skipOver(alias pred, R)(ref R r1)
if (isForwardRange!R &&
    ifTestable!(typeof(r1.front), unaryFun!pred))
{
    if (r1.empty || !unaryFun!pred(r1.front))
        return false;

    do
        r1.popFront();
    while (!r1.empty && unaryFun!pred(r1.front));
    return true;
}

///
@safe unittest
{
    import std.algorithm.comparison : equal;

    auto s1 = "Hello world";
    assert(!skipOver(s1, "Ha"));
    assert(s1 == "Hello world");
    assert(skipOver(s1, "Hell") && s1 == "o world");

    string[]  r1 = ["abc", "def", "hij"];
    dstring[] r2 = ["abc"d];
    assert(!skipOver!((a, b) => a.equal(b))(r1, ["def"d]));
    assert(r1 == ["abc", "def", "hij"]);
    assert(skipOver!((a, b) => a.equal(b))(r1, r2));
    assert(r1 == ["def", "hij"]);

    import std.ascii : isWhite;
    import std.range.primitives : empty;

    auto s2 = "\t\tvalue";
    auto s3 = "";
    auto s4 = "\t\t\t";
    assert(s2.skipOver!isWhite && s2 == "value");
    assert(!s3.skipOver!isWhite);
    assert(s4.skipOver!isWhite && s3.empty);
}

/**
Skip over the first element of the given range if it matches the given element,
otherwise do nothing.

Params:
    pred = The predicate that determines whether an element from the range
        matches the given element.

    r = The $(REF_ALTTEXT input range, isInputRange, std,range,primitives) to skip
        over.

    e = The element to match.

Returns:
true if the first element matches the given element according to the given
predicate, and the range has been advanced by one element; otherwise false, and
the range is left untouched.
 */
bool skipOver(R, E)(ref R r, E e)
if (isInputRange!R && is(typeof(r.front == e) : bool))
{
    return skipOver!((a, b) => a == b)(r, e);
}

/// Ditto
bool skipOver(alias pred, R, E)(ref R r, E e)
if (is(typeof(binaryFun!pred(r.front, e))) && isInputRange!R)
{
    if (r.empty || !binaryFun!pred(r.front, e))
        return false;
    r.popFront();
    return true;
}

///
@safe unittest
{
    import std.algorithm.comparison : equal;

    auto s1 = "Hello world";
    assert(!skipOver(s1, 'a'));
    assert(s1 == "Hello world");
    assert(skipOver(s1, 'H') && s1 == "ello world");

    string[] r = ["abc", "def", "hij"];
    dstring e = "abc"d;
    assert(!skipOver!((a, b) => a.equal(b))(r, "def"d));
    assert(r == ["abc", "def", "hij"]);
    assert(skipOver!((a, b) => a.equal(b))(r, e));
    assert(r == ["def", "hij"]);

    auto s2 = "";
    assert(!s2.skipOver('a'));
}

/**
Checks whether the given
$(REF_ALTTEXT input range, isInputRange, std,range,primitives) starts with (one
of) the given needle(s) or, if no needles are given,
if its front element fulfils predicate $(D pred).

Params:

    pred = Predicate to use in comparing the elements of the haystack and the
        needle(s). Mandatory if no needles are given.

    doesThisStart = The input range to check.

    withOneOfThese = The needles against which the range is to be checked,
        which may be individual elements or input ranges of elements.

    withThis = The single needle to check, which may be either a single element
        or an input range of elements.

Returns:

0 if the needle(s) do not occur at the beginning of the given range;
otherwise the position of the matching needle, that is, 1 if the range starts
with $(D withOneOfThese[0]), 2 if it starts with $(D withOneOfThese[1]), and so
on.

In the case where $(D doesThisStart) starts with multiple of the ranges or
elements in $(D withOneOfThese), then the shortest one matches (if there are
two which match which are of the same length (e.g. $(D "a") and $(D 'a')), then
the left-most of them in the argument
list matches).

In the case when no needle parameters are given, return $(D true) iff front of
$(D doesThisStart) fulfils predicate $(D pred).
 */
uint startsWith(alias pred = "a == b", Range, Needles...)(Range doesThisStart, Needles withOneOfThese)
if (isInputRange!Range && Needles.length > 1 &&
    is(typeof(.startsWith!pred(doesThisStart, withOneOfThese[0])) : bool ) &&
    is(typeof(.startsWith!pred(doesThisStart, withOneOfThese[1 .. $])) : uint))
{
    alias haystack = doesThisStart;
    alias needles  = withOneOfThese;

    // Make one pass looking for empty ranges in needles
    foreach (i, Unused; Needles)
    {
        // Empty range matches everything
        static if (!is(typeof(binaryFun!pred(haystack.front, needles[i])) : bool))
        {
            if (needles[i].empty) return i + 1;
        }
    }

    for (; !haystack.empty; haystack.popFront())
    {
        foreach (i, Unused; Needles)
        {
            static if (is(typeof(binaryFun!pred(haystack.front, needles[i])) : bool))
            {
                // Single-element
                if (binaryFun!pred(haystack.front, needles[i]))
                {
                    // found, but instead of returning, we just stop searching.
                    // This is to account for one-element
                    // range matches (consider startsWith("ab", "a",
                    // 'a') should return 1, not 2).
                    break;
                }
            }
            else
            {
                if (binaryFun!pred(haystack.front, needles[i].front))
                {
                    continue;
                }
            }

            // This code executed on failure to match
            // Out with this guy, check for the others
            uint result = startsWith!pred(haystack, needles[0 .. i], needles[i + 1 .. $]);
            if (result > i) ++result;
            return result;
        }

        // If execution reaches this point, then the front matches for all
        // needle ranges, or a needle element has been matched.
        // What we need to do now is iterate, lopping off the front of
        // the range and checking if the result is empty, or finding an
        // element needle and returning.
        // If neither happens, we drop to the end and loop.
        foreach (i, Unused; Needles)
        {
            static if (is(typeof(binaryFun!pred(haystack.front, needles[i])) : bool))
            {
                // Test has passed in the previous loop
                return i + 1;
            }
            else
            {
                needles[i].popFront();
                if (needles[i].empty) return i + 1;
            }
        }
    }
    return 0;
}

/// Ditto
bool startsWith(alias pred = "a == b", R1, R2)(R1 doesThisStart, R2 withThis)
if (isInputRange!R1 &&
    isInputRange!R2 &&
    is(typeof(binaryFun!pred(doesThisStart.front, withThis.front)) : bool))
{
    alias haystack = doesThisStart;
    alias needle   = withThis;

    static if (is(typeof(pred) : string))
        enum isDefaultPred = pred == "a == b";
    else
        enum isDefaultPred = false;

    //Note: While narrow strings don't have a "true" length, for a narrow string to start with another
    //narrow string *of the same type*, it must have *at least* as many code units.
    static if ((hasLength!R1 && hasLength!R2) ||
        (isNarrowString!R1 && isNarrowString!R2 && ElementEncodingType!R1.sizeof == ElementEncodingType!R2.sizeof))
    {
        if (haystack.length < needle.length)
            return false;
    }

    static if (isDefaultPred && isArray!R1 && isArray!R2 &&
               is(Unqual!(ElementEncodingType!R1) == Unqual!(ElementEncodingType!R2)))
    {
        //Array slice comparison mode
        return haystack[0 .. needle.length] == needle;
    }
    else static if (isRandomAccessRange!R1 && isRandomAccessRange!R2 && hasLength!R2)
    {
        //RA dual indexing mode
        foreach (j; 0 .. needle.length)
        {
            if (!binaryFun!pred(haystack[j], needle[j]))
                // not found
                return false;
        }
        // found!
        return true;
    }
    else
    {
        //Standard input range mode
        if (needle.empty) return true;
        static if (hasLength!R1 && hasLength!R2)
        {
            //We have previously checked that haystack.length > needle.length,
            //So no need to check haystack.empty during iteration
            for ( ; ; haystack.popFront() )
            {
                if (!binaryFun!pred(haystack.front, needle.front)) break;
                needle.popFront();
                if (needle.empty) return true;
            }
        }
        else
        {
            for ( ; !haystack.empty ; haystack.popFront() )
            {
                if (!binaryFun!pred(haystack.front, needle.front)) break;
                needle.popFront();
                if (needle.empty) return true;
            }
        }
        return false;
    }
}

/// Ditto
bool startsWith(alias pred = "a == b", R, E)(R doesThisStart, E withThis)
if (isInputRange!R &&
    is(typeof(binaryFun!pred(doesThisStart.front, withThis)) : bool))
{
    if (doesThisStart.empty)
        return false;

    alias predFunc = binaryFun!pred;

    // auto-decoding special case
    static if (isNarrowString!R)
    {
        // specialize for ASCII as to not change previous behavior
        if (withThis <= 0x7F)
            return predFunc(doesThisStart[0], withThis);
        else
            return predFunc(doesThisStart.front, withThis);
    }
    else
    {
        return predFunc(doesThisStart.front, withThis);
    }
}

/// Ditto
bool startsWith(alias pred, R)(R doesThisStart)
if (isInputRange!R &&
    ifTestable!(typeof(doesThisStart.front), unaryFun!pred))
{
    return !doesThisStart.empty && unaryFun!pred(doesThisStart.front);
}

///
@safe unittest
{
    import std.ascii : isAlpha;

    assert("abc".startsWith!(a => a.isAlpha));
    assert("abc".startsWith!isAlpha);
    assert(!"1ab".startsWith!(a => a.isAlpha));
    assert(!"".startsWith!(a => a.isAlpha));

    import std.algorithm.comparison : among;
    assert("abc".startsWith!(a => a.among('a', 'b') != 0));
    assert(!"abc".startsWith!(a => a.among('b', 'c') != 0));

    assert(startsWith("abc", ""));
    assert(startsWith("abc", "a"));
    assert(!startsWith("abc", "b"));
    assert(startsWith("abc", 'a', "b") == 1);
    assert(startsWith("abc", "b", "a") == 2);
    assert(startsWith("abc", "a", "a") == 1);
    assert(startsWith("abc", "ab", "a") == 2);
    assert(startsWith("abc", "x", "a", "b") == 2);
    assert(startsWith("abc", "x", "aa", "ab") == 3);
    assert(startsWith("abc", "x", "aaa", "sab") == 0);
    assert(startsWith("abc", "x", "aaa", "a", "sab") == 3);

    import std.typecons : Tuple;
    alias C = Tuple!(int, "x", int, "y");
    assert(startsWith!"a.x == b"([ C(1,1), C(1,2), C(2,2) ], [1, 1]));
    assert(startsWith!"a.x == b"([ C(1,1), C(2,1), C(2,2) ], [1, 1], [1, 2], [1, 3]) == 2);
}

@safe unittest
{
    import std.algorithm.iteration : filter;
    import std.conv : to;
    import std.meta : AliasSeq;
    import std.range;

    foreach (S; AliasSeq!(char[], wchar[], dchar[], string, wstring, dstring))
    {
        assert(!startsWith(to!S("abc"), 'c'));
        assert(startsWith(to!S("abc"), 'a', 'c') == 1);
        assert(!startsWith(to!S("abc"), 'x', 'n', 'b'));
        assert(startsWith(to!S("abc"), 'x', 'n', 'a') == 3);
        assert(startsWith(to!S("\uFF28abc"), 'a', '\uFF28', 'c') == 2);

        foreach (T; AliasSeq!(char[], wchar[], dchar[], string, wstring, dstring))
        (){ // avoid slow optimizations for large functions @@@BUG@@@ 2396
            //Lots of strings
            assert(startsWith(to!S("abc"), to!T("")));
            assert(startsWith(to!S("ab"), to!T("a")));
            assert(startsWith(to!S("abc"), to!T("a")));
            assert(!startsWith(to!S("abc"), to!T("b")));
            assert(!startsWith(to!S("abc"), to!T("b"), "bc", "abcd", "xyz"));
            assert(startsWith(to!S("abc"), to!T("ab"), 'a') == 2);
            assert(startsWith(to!S("abc"), to!T("a"), "b") == 1);
            assert(startsWith(to!S("abc"), to!T("b"), "a") == 2);
            assert(startsWith(to!S("abc"), to!T("a"), 'a') == 1);
            assert(startsWith(to!S("abc"), 'a', to!T("a")) == 1);
            assert(startsWith(to!S("abc"), to!T("x"), "a", "b") == 2);
            assert(startsWith(to!S("abc"), to!T("x"), "aa", "ab") == 3);
            assert(startsWith(to!S("abc"), to!T("x"), "aaa", "sab") == 0);
            assert(startsWith(to!S("abc"), 'a'));
            assert(!startsWith(to!S("abc"), to!T("sab")));
            assert(startsWith(to!S("abc"), 'x', to!T("aaa"), 'a', "sab") == 3);

            //Unicode
            assert(startsWith(to!S("\uFF28el\uFF4co"), to!T("\uFF28el")));
            assert(startsWith(to!S("\uFF28el\uFF4co"), to!T("Hel"), to!T("\uFF28el")) == 2);
            assert(startsWith(to!S("日本語"), to!T("日本")));
            assert(startsWith(to!S("日本語"), to!T("日本語")));
            assert(!startsWith(to!S("日本"), to!T("日本語")));

            //Empty
            assert(startsWith(to!S(""),  T.init));
            assert(!startsWith(to!S(""), 'a'));
            assert(startsWith(to!S("a"), T.init));
            assert(startsWith(to!S("a"), T.init, "") == 1);
            assert(startsWith(to!S("a"), T.init, 'a') == 1);
            assert(startsWith(to!S("a"), 'a', T.init) == 2);
        }();
    }

    //Length but no RA
    assert(!startsWith("abc".takeExactly(3), "abcd".takeExactly(4)));
    assert(startsWith("abc".takeExactly(3), "abcd".takeExactly(3)));
    assert(startsWith("abc".takeExactly(3), "abcd".takeExactly(1)));

    foreach (T; AliasSeq!(int, short))
    {
        immutable arr = cast(T[])[0, 1, 2, 3, 4, 5];

        //RA range
        assert(startsWith(arr, cast(int[]) null));
        assert(!startsWith(arr, 5));
        assert(!startsWith(arr, 1));
        assert(startsWith(arr, 0));
        assert(startsWith(arr, 5, 0, 1) == 2);
        assert(startsWith(arr, [0]));
        assert(startsWith(arr, [0, 1]));
        assert(startsWith(arr, [0, 1], 7) == 1);
        assert(!startsWith(arr, [0, 1, 7]));
        assert(startsWith(arr, [0, 1, 7], [0, 1, 2]) == 2);

        //Normal input range
        assert(!startsWith(filter!"true"(arr), 1));
        assert(startsWith(filter!"true"(arr), 0));
        assert(startsWith(filter!"true"(arr), [0]));
        assert(startsWith(filter!"true"(arr), [0, 1]));
        assert(startsWith(filter!"true"(arr), [0, 1], 7) == 1);
        assert(!startsWith(filter!"true"(arr), [0, 1, 7]));
        assert(startsWith(filter!"true"(arr), [0, 1, 7], [0, 1, 2]) == 2);
        assert(startsWith(arr, filter!"true"([0, 1])));
        assert(startsWith(arr, filter!"true"([0, 1]), 7) == 1);
        assert(!startsWith(arr, filter!"true"([0, 1, 7])));
        assert(startsWith(arr, [0, 1, 7], filter!"true"([0, 1, 2])) == 2);

        //Non-default pred
        assert(startsWith!("a%10 == b%10")(arr, [10, 11]));
        assert(!startsWith!("a%10 == b%10")(arr, [10, 12]));
    }
}

/* (Not yet documented.)
Consume all elements from $(D r) that are equal to one of the elements
$(D es).
 */
private void skipAll(alias pred = "a == b", R, Es...)(ref R r, Es es)
//if (is(typeof(binaryFun!pred(r1.front, es[0]))))
{
  loop:
    for (; !r.empty; r.popFront())
    {
        foreach (i, E; Es)
        {
            if (binaryFun!pred(r.front, es[i]))
            {
                continue loop;
            }
        }
        break;
    }
}

@safe unittest
{
    auto s1 = "Hello world";
    skipAll(s1, 'H', 'e');
    assert(s1 == "llo world");
}

/**
Interval option specifier for `until` (below) and others.

If set to $(D OpenRight.yes), then the interval is open to the right
(last element is not included).

Otherwise if set to $(D OpenRight.no), then the interval is closed to the right
(last element included).
 */
alias OpenRight = Flag!"openRight";

/**
Lazily iterates $(D range) _until the element $(D e) for which
$(D pred(e, sentinel)) is true.

This is similar to `takeWhile` in other languages.

Params:
    pred = Predicate to determine when to stop.
    range = The $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives)
    to iterate over.
    sentinel = The element to stop at.
    openRight = Determines whether the element for which the given predicate is
        true should be included in the resulting range ($(D No.openRight)), or
        not ($(D Yes.openRight)).

Returns:
    An $(REF_ALTTEXT input _range, isInputRange, std,_range,primitives) that
    iterates over the original range's elements, but ends when the specified
    predicate becomes true. If the original range is a
    $(REF_ALTTEXT forward _range, isForwardRange, std,_range,primitives) or
    higher, this range will be a forward range.
 */
Until!(pred, Range, Sentinel)
until(alias pred = "a == b", Range, Sentinel)
(Range range, Sentinel sentinel, OpenRight openRight = Yes.openRight)
if (!is(Sentinel == OpenRight))
{
    return typeof(return)(range, sentinel, openRight);
}

/// Ditto
Until!(pred, Range, void)
until(alias pred, Range)
(Range range, OpenRight openRight = Yes.openRight)
{
    return typeof(return)(range, openRight);
}

/// ditto
struct Until(alias pred, Range, Sentinel)
if (isInputRange!Range)
{
    private Range _input;
    static if (!is(Sentinel == void))
        private Sentinel _sentinel;
    private OpenRight _openRight;
    private bool _done;

    static if (!is(Sentinel == void))
        ///
        this(Range input, Sentinel sentinel,
                OpenRight openRight = Yes.openRight)
        {
            _input = input;
            _sentinel = sentinel;
            _openRight = openRight;
            _done = _input.empty || openRight && predSatisfied();
        }
    else
        ///
        this(Range input, OpenRight openRight = Yes.openRight)
        {
            _input = input;
            _openRight = openRight;
            _done = _input.empty || openRight && predSatisfied();
        }

    ///
    @property bool empty()
    {
        return _done;
    }

    ///
    @property auto ref front()
    {
        assert(!empty);
        return _input.front;
    }

    private bool predSatisfied()
    {
        static if (is(Sentinel == void))
            return cast(bool) unaryFun!pred(_input.front);
        else
            return cast(bool) startsWith!pred(_input, _sentinel);
    }

    ///
    void popFront()
    {
        assert(!empty);
        if (!_openRight)
        {
            _done = predSatisfied();
            _input.popFront();
            _done = _done || _input.empty;
        }
        else
        {
            _input.popFront();
            _done = _input.empty || predSatisfied();
        }
    }

    static if (isForwardRange!Range)
    {
        static if (!is(Sentinel == void))
            ///
            @property Until save()
            {
                Until result = this;
                result._input     = _input.save;
                result._sentinel  = _sentinel;
                result._openRight = _openRight;
                result._done      = _done;
                return result;
            }
        else
            ///
            @property Until save()
            {
                Until result = this;
                result._input     = _input.save;
                result._openRight = _openRight;
                result._done      = _done;
                return result;
            }
    }
}

///
@safe unittest
{
    import std.algorithm.comparison : equal;
    import std.typecons : No;
    int[] a = [ 1, 2, 4, 7, 7, 2, 4, 7, 3, 5];
    assert(equal(a.until(7), [1, 2, 4]));
    assert(equal(a.until(7, No.openRight), [1, 2, 4, 7]));
}

@safe unittest
{
    import std.algorithm.comparison : equal;
    int[] a = [ 1, 2, 4, 7, 7, 2, 4, 7, 3, 5];

    static assert(isForwardRange!(typeof(a.until(7))));
    static assert(isForwardRange!(typeof(until!"a == 2"(a, No.openRight))));

    assert(equal(a.until(7), [1, 2, 4]));
    assert(equal(a.until([7, 2]), [1, 2, 4, 7]));
    assert(equal(a.until(7, No.openRight), [1, 2, 4, 7]));
    assert(equal(until!"a == 2"(a, No.openRight), [1, 2]));
}

@system unittest // bugzilla 13171
{
    import std.algorithm.comparison : equal;
    import std.range;
    auto a = [1, 2, 3, 4];
    assert(equal(refRange(&a).until(3, No.openRight), [1, 2, 3]));
    assert(a == [4]);
}

@safe unittest // Issue 10460
{
    import std.algorithm.comparison : equal;
    auto a = [1, 2, 3, 4];
    foreach (ref e; a.until(3))
        e = 0;
    assert(equal(a, [0, 0, 3, 4]));
}

@safe unittest // Issue 13124
{
    import std.algorithm.comparison : among, equal;
    auto s = "hello how\nare you";
    assert(equal(s.until!(c => c.among!('\n', '\r')), "hello how"));
}