Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
// <experimental/io_service> -*- C++ -*-

// Copyright (C) 2015-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file experimental/io_context
 *  This is a TS C++ Library header.
 *  @ingroup networking-ts
 */

#ifndef _GLIBCXX_EXPERIMENTAL_IO_SERVICE
#define _GLIBCXX_EXPERIMENTAL_IO_SERVICE 1

#pragma GCC system_header

#if __cplusplus >= 201402L

#include <atomic>
#include <chrono>
#include <forward_list>
#include <functional>
#include <system_error>
#include <thread>
#include <experimental/netfwd>
#include <experimental/executor>
#if _GLIBCXX_HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef _GLIBCXX_HAVE_POLL_H
# include <poll.h>
#endif
#ifdef _GLIBCXX_HAVE_FCNTL_H
# include <fcntl.h>
#endif

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
namespace experimental
{
namespace net
{
inline namespace v1
{

  /** @addtogroup networking-ts
   *  @{
   */

  class __socket_impl;

  /// An ExecutionContext for I/O operations.
  class io_context : public execution_context
  {
  public:
    // types:

    /// An executor for an io_context.
    class executor_type
    {
    public:
      // construct / copy / destroy:

      executor_type(const executor_type& __other) noexcept = default;
      executor_type(executor_type&& __other) noexcept = default;

      executor_type& operator=(const executor_type& __other) noexcept = default;
      executor_type& operator=(executor_type&& __other) noexcept = default;

      // executor operations:

      bool running_in_this_thread() const noexcept
      {
	lock_guard<mutex> __lock(_M_ctx->_M_mtx);
	auto __end = _M_ctx->_M_call_stack.end();
	return std::find(_M_ctx->_M_call_stack.begin(), __end,
			 this_thread::get_id()) != __end;
      }

      io_context& context() const noexcept { return *_M_ctx; }

      void on_work_started() const noexcept { ++_M_ctx->_M_work_count; }
      void on_work_finished() const noexcept { --_M_ctx->_M_work_count; }

      template<typename _Func, typename _ProtoAllocator>
	void
	dispatch(_Func&& __f, const _ProtoAllocator& __a) const
	{
	  if (running_in_this_thread())
	    decay_t<_Func>{std::forward<_Func>(__f)}();
	  else
	    post(std::forward<_Func>(__f), __a);
	}

      template<typename _Func, typename _ProtoAllocator>
	void
	post(_Func&& __f, const _ProtoAllocator& __a) const
	{
	  lock_guard<mutex> __lock(_M_ctx->_M_mtx);
	  // TODO (re-use functionality in system_context)
	  _M_ctx->_M_reactor._M_notify();
	}

      template<typename _Func, typename _ProtoAllocator>
	void
	defer(_Func&& __f, const _ProtoAllocator& __a) const
	{ post(std::forward<_Func>(__f), __a); }

    private:
      friend io_context;

      explicit
      executor_type(io_context& __ctx) : _M_ctx(std::addressof(__ctx)) { }

      io_context* _M_ctx;
    };

    using count_type =  size_t;

    // construct / copy / destroy:

    io_context() : _M_work_count(0) { }

    explicit
    io_context(int __concurrency_hint) : _M_work_count(0) { }

    io_context(const io_context&) = delete;
    io_context& operator=(const io_context&) = delete;

    // io_context operations:

    executor_type get_executor() noexcept { return executor_type(*this); }

    count_type
    run()
    {
      count_type __n = 0;
      while (run_one())
	if (__n != numeric_limits<count_type>::max())
	  ++__n;
      return __n;
    }

    template<typename _Rep, typename _Period>
      count_type
      run_for(const chrono::duration<_Rep, _Period>& __rel_time)
      { return run_until(chrono::steady_clock::now() + __rel_time); }

    template<typename _Clock, typename _Duration>
      count_type
      run_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
      {
	count_type __n = 0;
	while (run_one_until(__abs_time))
	  if (__n != numeric_limits<count_type>::max())
	    ++__n;
	return __n;
      }

    count_type
    run_one()
    { return _M_do_one(chrono::milliseconds{-1}); }

    template<typename _Rep, typename _Period>
      count_type
      run_one_for(const chrono::duration<_Rep, _Period>& __rel_time)
      { return run_one_until(chrono::steady_clock::now() + __rel_time); }

    template<typename _Clock, typename _Duration>
      count_type
      run_one_until(const chrono::time_point<_Clock, _Duration>& __abs_time)
      {
	auto __now = _Clock::now();
	while (__now < __abs_time)
	  {
	    using namespace std::chrono;
	    auto __ms = duration_cast<milliseconds>(__abs_time - __now);
	    if (_M_do_one(__ms))
	      return 1;
	    __now = _Clock::now();
	  }
	return 0;
      }

    count_type
    poll()
    {
      count_type __n = 0;
      while (poll_one())
	if (__n != numeric_limits<count_type>::max())
	  ++__n;
      return __n;
    }

    count_type
    poll_one()
    { return _M_do_one(chrono::milliseconds{0}); }

    void stop()
    {
      lock_guard<mutex> __lock(_M_mtx);
      _M_stopped = true;
      _M_reactor._M_notify();
    }

    bool stopped() const noexcept
    {
      lock_guard<mutex> __lock(_M_mtx);
      return _M_stopped;
    }

    void restart()
    {
      _M_stopped = false;
    }

  private:

    template<typename _Clock, typename _WaitTraits>
      friend class basic_waitable_timer;

    friend __socket_impl;

    template<typename _Protocol>
      friend class __basic_socket_impl;

    template<typename _Protocol>
      friend class basic_socket;

    template<typename _Protocol>
      friend class basic_datagram_socket;

    template<typename _Protocol>
      friend class basic_stream_socket;

    template<typename _Protocol>
      friend class basic_socket_acceptor;

    count_type
    _M_outstanding_work() const
    { return _M_work_count + !_M_ops.empty(); }

    struct __timer_queue_base : execution_context::service
    {
      // return milliseconds until next timer expires, or milliseconds::max()
      virtual chrono::milliseconds _M_next() const = 0;
      virtual bool run_one() = 0;

    protected:
      explicit
      __timer_queue_base(execution_context& __ctx) : service(__ctx)
      {
	auto& __ioc = static_cast<io_context&>(__ctx);
	lock_guard<mutex> __lock(__ioc._M_mtx);
	__ioc._M_timers.push_back(this);
      }

      mutable mutex	_M_qmtx;
    };

    template<typename _Timer, typename _Key = typename _Timer::_Key>
      struct __timer_queue : __timer_queue_base
      {
	using key_type = __timer_queue;

	explicit
	__timer_queue(execution_context& __ctx) : __timer_queue_base(__ctx)
	{ }

	void shutdown() noexcept { }

	io_context& context() noexcept
	{ return static_cast<io_context&>(service::context()); }

	// Start an asynchronous wait.
	void
	push(const _Timer& __t, function<void(error_code)> __h)
	{
	  context().get_executor().on_work_started();
	  lock_guard<mutex> __lock(_M_qmtx);
	  _M_queue.emplace(__t, _M_next_id++, std::move(__h));
	  // no need to notify reactor unless this timer went to the front?
	}

	// Cancel all outstanding waits for __t
	size_t
	cancel(const _Timer& __t)
	{
	  lock_guard<mutex> __lock(_M_qmtx);
	  size_t __count = 0;
	  auto __last = _M_queue.end();
	  for (auto __it = _M_queue.begin(), __end = __last; __it != __end;
	      ++__it)
	    {
	      if (__it->_M_key == __t._M_key.get())
		{
		  __it->cancel();
		  __last = __it;
		  ++__count;
		}
	    }
	  if (__count)
	    _M_queue._M_sort_to(__last);
	  return __count;
	}

	// Cancel oldest outstanding wait for __t
	bool
	cancel_one(const _Timer& __t)
	{
	  lock_guard<mutex> __lock(_M_qmtx);
	  const auto __end = _M_queue.end();
	  auto __oldest = __end;
	  for (auto __it = _M_queue.begin(); __it != __end; ++__it)
	    if (__it->_M_key == __t._M_key.get())
	      if (__oldest == __end || __it->_M_id < __oldest->_M_id)
		__oldest = __it;
	  if (__oldest == __end)
	    return false;
	  __oldest->cancel();
	  _M_queue._M_sort_to(__oldest);
	  return true;
	}

	chrono::milliseconds
	_M_next() const override
	{
	  typename _Timer::time_point __exp;
	  {
	    lock_guard<mutex> __lock(_M_qmtx);
	    if (_M_queue.empty())
	      return chrono::milliseconds::max();  // no pending timers
	    if (_M_queue.top()._M_key == nullptr)
	      return chrono::milliseconds::zero(); // cancelled, run now
	    __exp = _M_queue.top()._M_expiry;
	  }
	  auto __dur = _Timer::traits_type::to_wait_duration(__exp);
	  if (__dur < __dur.zero())
	    __dur = __dur.zero();
	  return chrono::duration_cast<chrono::milliseconds>(__dur);
	}

      private:

	bool run_one() override
	{
	  auto __now = _Timer::clock_type::now();
	  function<void(error_code)> __h;
	  error_code __ec;
	  {
	    lock_guard<mutex> __lock(_M_qmtx);

	    if (_M_queue.top()._M_key == nullptr) // cancelled
	      {
		__h = std::move(_M_queue.top()._M_h);
		__ec = std::make_error_code(errc::operation_canceled);
		_M_queue.pop();
	      }
	    else if (_M_queue.top()._M_expiry <= _Timer::clock_type::now())
	      {
		__h = std::move(_M_queue.top()._M_h);
		_M_queue.pop();
	      }
	  }
	  if (__h)
	    {
	      __h(__ec);
	      context().get_executor().on_work_finished();
	      return true;
	    }
	  return false;
	}

	using __timer_id_type = uint64_t;

	struct __pending_timer
	{
	  __pending_timer(const _Timer& __t, uint64_t __id,
			  function<void(error_code)> __h)
	  : _M_expiry(__t.expiry()), _M_key(__t._M_key.get()), _M_id(__id),
	    _M_h(std::move(__h))
	  { }

	  typename _Timer::time_point _M_expiry;
	  _Key* _M_key;
	  __timer_id_type _M_id;
	  function<void(error_code)> _M_h;

	  void cancel() { _M_expiry = _M_expiry.min(); _M_key = nullptr; }

	  bool
	  operator<(const __pending_timer& __rhs) const
	  { return _M_expiry < __rhs._M_expiry; }
	};

	struct __queue : priority_queue<__pending_timer>
	{
	  using iterator =
	    typename priority_queue<__pending_timer>::container_type::iterator;

	  // expose begin/end/erase for direct access to underlying container
	  iterator begin() { return this->c.begin(); }
	  iterator end() { return this->c.end(); }
	  iterator erase(iterator __it) { return this->c.erase(__it); }

	  void
	  _M_sort_to(iterator __it)
	  { std::stable_sort(this->c.begin(), ++__it); }
	};

	__queue	_M_queue;
	__timer_id_type _M_next_id = 0;
      };

    template<typename _Timer, typename _CompletionHandler>
      void
      async_wait(const _Timer& __timer, _CompletionHandler&& __h)
      {
	auto& __queue = use_service<__timer_queue<_Timer>>(*this);
	__queue.push(__timer, std::move(__h));
	_M_reactor._M_notify();
      }

    // Cancel all wait operations initiated by __timer.
    template<typename _Timer>
      size_t
      cancel(const _Timer& __timer)
      {
	if (!has_service<__timer_queue<_Timer>>(*this))
	  return 0;

	auto __c = use_service<__timer_queue<_Timer>>(*this).cancel(__timer);
	if (__c != 0)
	  _M_reactor._M_notify();
	return __c;
      }

    // Cancel the oldest wait operation initiated by __timer.
    template<typename _Timer>
      size_t
      cancel_one(const _Timer& __timer)
      {
	if (!has_service<__timer_queue<_Timer>>(*this))
	  return 0;

	if (use_service<__timer_queue<_Timer>>(*this).cancel_one(__timer))
	  {
	    _M_reactor._M_notify();
	    return 1;
	  }
	return 0;
      }

    template<typename _Op>
      void
      async_wait(int __fd, int __w, _Op&& __op)
      {
	lock_guard<mutex> __lock(_M_mtx);
	// TODO need push_back, use std::list not std::forward_list
	auto __tail = _M_ops.before_begin(), __it = _M_ops.begin();
	while (__it != _M_ops.end())
	  {
	    ++__it;
	    ++__tail;
	  }
	using __type = __async_operation_impl<_Op>;
	_M_ops.emplace_after(__tail,
			     make_unique<__type>(std::move(__op), __fd, __w));
	_M_reactor._M_fd_interest(__fd, __w);
      }

    void _M_add_fd(int __fd) { _M_reactor._M_add_fd(__fd); }
    void _M_remove_fd(int __fd) { _M_reactor._M_remove_fd(__fd); }

    void cancel(int __fd, error_code&)
    {
      lock_guard<mutex> __lock(_M_mtx);
      const auto __end = _M_ops.end();
      auto __it = _M_ops.begin();
      auto __prev = _M_ops.before_begin();
      while (__it != __end && (*__it)->_M_is_cancelled())
	{
	  ++__it;
	  ++__prev;
	}
      auto __cancelled = __prev;
      while (__it != __end)
	{
	  if ((*__it)->_M_fd == __fd)
	    {
	      (*__it)->cancel();
	      ++__it;
	      _M_ops.splice_after(__cancelled, _M_ops, __prev);
	      ++__cancelled;
	    }
	  else
	    {
	      ++__it;
	      ++__prev;
	    }
	}
      _M_reactor._M_not_interested(__fd);
    }

    struct __async_operation
    {
      __async_operation(int __fd, int __ev) : _M_fd(__fd), _M_ev(__ev) { }

      virtual ~__async_operation() = default;

      int _M_fd;
      short _M_ev;

      void cancel() { _M_fd = -1; }
      bool _M_is_cancelled() const { return _M_fd == -1; }
      virtual void run(io_context&) = 0;
    };

    template<typename _Op>
      struct __async_operation_impl : __async_operation
      {
	__async_operation_impl(_Op&& __op, int __fd, int __ev)
	: __async_operation{__fd, __ev}, _M_op(std::move(__op)) { }

	_Op _M_op;

	void run(io_context& __ctx)
	{
	  if (_M_is_cancelled())
	    _M_op(std::make_error_code(errc::operation_canceled));
	  else
	    _M_op(error_code{});
	}
      };

    atomic<count_type>		_M_work_count;
    mutable mutex		_M_mtx;
    queue<function<void()>>	_M_op;
    bool			_M_stopped = false;

    struct __monitor
    {
      __monitor(io_context& __c) : _M_ctx(__c)
      {
	lock_guard<mutex> __lock(_M_ctx._M_mtx);
	_M_ctx._M_call_stack.push_back(this_thread::get_id());
      }

      ~__monitor()
      {
	lock_guard<mutex> __lock(_M_ctx._M_mtx);
	_M_ctx._M_call_stack.pop_back();
	if (_M_ctx._M_outstanding_work() == 0)
	  {
	    _M_ctx._M_stopped = true;
	    _M_ctx._M_reactor._M_notify();
	  }
      }

      __monitor(__monitor&&) = delete;

      io_context& _M_ctx;
    };

    bool
    _M_do_one(chrono::milliseconds __timeout)
    {
      const bool __block = __timeout != chrono::milliseconds::zero();

      __reactor::__fdvec __fds;

      __monitor __mon{*this};

      __timer_queue_base* __timerq = nullptr;
      unique_ptr<__async_operation> __async_op;

      while (true)
	{
	  if (__timerq)
	    {
	      if (__timerq->run_one())
		return true;
	      else
		__timerq = nullptr;
	    }

	  if (__async_op)
	    {
	      __async_op->run(*this);
	      // TODO need to unregister __async_op
	      return true;
	    }

	  chrono::milliseconds __ms{0};

	  {
	    lock_guard<mutex> __lock(_M_mtx);

	    if (_M_stopped)
	      return false;

	    // find first timer with something to do
	    for (auto __q : _M_timers)
	      {
		auto __next = __q->_M_next();
		if (__next == __next.zero())  // ready to run immediately
		  {
		    __timerq = __q;
		    __ms = __next;
		    break;
		  }
		else if (__next != __next.max() && __block
		    && (__next < __ms || __timerq == nullptr))
		  {
		    __timerq = __q;
		    __ms = __next;
		  }
	      }

	    if (__timerq && __ms == __ms.zero())
	      continue;  // restart loop to run a timer immediately

	    if (!_M_ops.empty() && _M_ops.front()->_M_is_cancelled())
	      {
		_M_ops.front().swap(__async_op);
		_M_ops.pop_front();
		continue;
	      }

	    // TODO run any posted items

	    if (__block)
	      {
		if (__timerq == nullptr)
		  __ms = __timeout;
		else if (__ms.zero() <= __timeout && __timeout < __ms)
		  __ms = __timeout;
		else if (__ms.count() > numeric_limits<int>::max())
		  __ms = chrono::milliseconds{numeric_limits<int>::max()};
	      }
	    // else __ms == 0 and poll() will return immediately

	  }

	  auto __res = _M_reactor.wait(__fds, __ms);

	  if (__res == __reactor::_S_retry)
	    continue;

	  if (__res == __reactor::_S_timeout)
	    {
	      if (__timerq == nullptr)
		return false;
	      else
		continue;  // timed out, so restart loop and process the timer
	    }

	  __timerq = nullptr;

	  if (__fds.empty()) // nothing to do
	    return false;

	  lock_guard<mutex> __lock(_M_mtx);
	  for (auto __it = _M_ops.begin(), __end = _M_ops.end(),
	      __prev = _M_ops.before_begin(); __it != __end; ++__it, ++__prev)
	    {
	      auto& __op = **__it;
	      auto __pos = std::lower_bound(__fds.begin(), __fds.end(),
		  __op._M_fd,
		  [](const auto& __p, int __fd) { return __p.fd < __fd; });
	      if (__pos != __fds.end() && __pos->fd == __op._M_fd
		  && __pos->revents & __op._M_ev)
		{
		  __it->swap(__async_op);
		  _M_ops.erase_after(__prev);
		  break;  // restart loop and run op
		}
	    }
	}
    }

    struct __reactor
    {
      __reactor() : _M_fds(1)
      {
	int __pipe[2];
	if (::pipe(__pipe) == -1)
	  __throw_system_error(errno);
	if (::fcntl(__pipe[0], F_SETFL, O_NONBLOCK) == -1
	    || ::fcntl(__pipe[1], F_SETFL, O_NONBLOCK) == -1)
	  {
	    int __e = errno;
	    ::close(__pipe[0]);
	    ::close(__pipe[1]);
	    __throw_system_error(__e);
	  }
	_M_fds.back().events	= POLLIN;
	_M_fds.back().fd	= __pipe[0];
	_M_notify_wr		= __pipe[1];
      }

      ~__reactor()
      {
	::close(_M_fds.back().fd);
	::close(_M_notify_wr);
      }

      // write a notification byte to the pipe (ignoring errors)
      void _M_notify()
      {
	int __n;
	do {
	  __n = ::write(_M_notify_wr, "", 1);
	} while (__n == -1 && errno == EINTR);
      }

      // read all notification bytes from the pipe
      void _M_on_notify()
      {
	// Drain the pipe.
	char __buf[64];
	ssize_t __n;
	do {
	  __n = ::read(_M_fds.back().fd, __buf, sizeof(__buf));
	} while (__n != -1 || errno == EINTR);
      }

      void
      _M_add_fd(int __fd)
      {
	auto __pos = _M_lower_bound(__fd);
	if (__pos->fd == __fd)
	  __throw_system_error((int)errc::invalid_argument);
	_M_fds.insert(__pos, __fdvec::value_type{})->fd = __fd;
	_M_notify();
      }

      void
      _M_remove_fd(int __fd)
      {
	auto __pos = _M_lower_bound(__fd);
	if (__pos->fd == __fd)
	  _M_fds.erase(__pos);
	// else bug!
	_M_notify();
      }

      void
      _M_fd_interest(int __fd, int __w)
      {
	auto __pos = _M_lower_bound(__fd);
	if (__pos->fd == __fd)
	  __pos->events |= __w;
	// else bug!
	_M_notify();
      }

      void
      _M_not_interested(int __fd)
      {
	auto __pos = _M_lower_bound(__fd);
	if (__pos->fd == __fd)
	  __pos->events = 0;
	_M_notify();
      }

# ifdef _GLIBCXX_HAVE_POLL_H
      using __fdvec = vector<::pollfd>;

      // Find first element p such that !(p.fd < __fd)
      // N.B. always returns a dereferencable iterator.
      __fdvec::iterator
      _M_lower_bound(int __fd)
      {
	return std::lower_bound(_M_fds.begin(), _M_fds.end() - 1,
	    __fd, [](const auto& __p, int __fd) { return __p.fd < __fd; });
      }

      enum __status { _S_retry, _S_timeout, _S_ok, _S_error };

      __status
      wait(__fdvec& __fds, chrono::milliseconds __timeout)
      {
	// XXX not thread-safe!
	__fds = _M_fds;  // take snapshot to pass to poll()

	int __res = ::poll(__fds.data(), __fds.size(), __timeout.count());

	if (__res == -1)
	  {
	    __fds.clear();
	    if (errno == EINTR)
	      return _S_retry;
	    return _S_error; // XXX ???
	  }
	else if (__res == 0)
	  {
	    __fds.clear();
	    return _S_timeout;
	  }
	else if (__fds.back().revents != 0) // something changed, restart
	  {
	    __fds.clear();
	    _M_on_notify();
	    return _S_retry;
	  }

	auto __part = std::stable_partition(__fds.begin(), __fds.end() - 1,
	      [](const __fdvec::value_type& __p) { return __p.revents != 0; });
	__fds.erase(__part, __fds.end());

	return _S_ok;
      }

      __fdvec _M_fds;	// _M_fds.back() is the read end of the self-pipe
#endif
      int _M_notify_wr;	// write end of the self-pipe
    };

    __reactor _M_reactor;

    vector<__timer_queue_base*>			_M_timers;
    forward_list<unique_ptr<__async_operation>>	_M_ops;

    vector<thread::id>	_M_call_stack;
  };

  inline bool
  operator==(const io_context::executor_type& __a,
	     const io_context::executor_type& __b) noexcept
  {
    // https://github.com/chriskohlhoff/asio-tr2/issues/201
    using executor_type = io_context::executor_type;
    return std::addressof(executor_type(__a).context())
      == std::addressof(executor_type(__b).context());
  }

  inline bool
  operator!=(const io_context::executor_type& __a,
	     const io_context::executor_type& __b) noexcept
  { return !(__a == __b); }

  template<> struct is_executor<io_context::executor_type> : true_type {};

  /// @}

} // namespace v1
} // namespace net
} // namespace experimental
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++14

#endif // _GLIBCXX_EXPERIMENTAL_IO_SERVICE