Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
// Written in the D programming language.

/**
This module defines generic containers.

Construction:

To implement the different containers both struct and class based
approaches have been used. $(REF make, std,_container,util) allows for
uniform construction with either approach.

---
import std.container;
// Construct a red-black tree and an array both containing the values 1, 2, 3.
// RedBlackTree should typically be allocated using `new`
RedBlackTree!int rbTree = new RedBlackTree!int(1, 2, 3);
// But `new` should not be used with Array
Array!int array = Array!int(1, 2, 3);
// `make` hides the differences
RedBlackTree!int rbTree2 = make!(RedBlackTree!int)(1, 2, 3);
Array!int array2 = make!(Array!int)(1, 2, 3);
---

Note that $(D make) can infer the element type from the given arguments.

---
import std.container;
auto rbTree = make!RedBlackTree(1, 2, 3); // RedBlackTree!int
auto array = make!Array("1", "2", "3"); // Array!string
---

Reference_semantics:

All containers have reference semantics, which means that after
assignment both variables refer to the same underlying data.

To make a copy of a _container, use the $(D c._dup) _container primitive.
---
import std.container, std.range;
Array!int originalArray = make!(Array!int)(1, 2, 3);
Array!int secondArray = originalArray;
assert(equal(originalArray[], secondArray[]));

// changing one instance changes the other one as well!
originalArray[0] = 12;
assert(secondArray[0] == 12);

// secondArray now refers to an independent copy of originalArray
secondArray = originalArray.dup;
secondArray[0] = 1;
// assert that originalArray has not been affected
assert(originalArray[0] == 12);
---

$(B Attention:) If the _container is implemented as a class, using an
uninitialized instance can cause a null pointer dereference.

---
import std.container;

RedBlackTree!int rbTree;
rbTree.insert(5); // null pointer dereference
---

Using an uninitialized struct-based _container will work, because the struct
intializes itself upon use; however, up to this point the _container will not
have an identity and assignment does not create two references to the same
data.

---
import std.container;

// create an uninitialized array
Array!int array1;
// array2 does _not_ refer to array1
Array!int array2 = array1;
array2.insertBack(42);
// thus array1 will not be affected
assert(array1.empty);

// after initialization reference semantics work as expected
array1 = array2;
// now affects array2 as well
array1.removeBack();
assert(array2.empty);
---
It is therefore recommended to always construct containers using
$(REF make, std,_container,util).

This is in fact necessary to put containers into another _container.
For example, to construct an $(D Array) of ten empty $(D Array)s, use
the following that calls $(D make) ten times.

---
import std.container, std.range;

auto arrOfArrs = make!Array(generate!(() => make!(Array!int)).take(10));
---

Submodules:

This module consists of the following submodules:

$(UL
    $(LI
        The $(MREF std, _container, array) module provides
        an array type with deterministic control of memory, not reliant on
        the GC unlike built-in arrays.
    )
    $(LI
        The $(MREF std, _container, binaryheap) module
        provides a binary heap implementation that can be applied to any
        user-provided random-access range.
    )
    $(LI
        The $(MREF std, _container, dlist) module provides
        a doubly-linked list implementation.
    )
    $(LI
        The $(MREF std, _container, rbtree) module
        implements red-black trees.
    )
    $(LI
        The $(MREF std, _container, slist) module
        implements singly-linked lists.
    )
    $(LI
        The $(MREF std, _container, util) module contains
        some generic tools commonly used by _container implementations.
    )
)

The_primary_range_of_a_container:

While some _containers offer direct access to their elements e.g. via
$(D opIndex), $(D c.front) or $(D c.back), access
and modification of a _container's contents is generally done through
its primary $(MREF_ALTTEXT range, std, range) type,
which is aliased as $(D C.Range). For example, the primary range type of
$(D Array!int) is $(D Array!int.Range).

If the documentation of a member function of a _container takes
a parameter of type $(D Range), then it refers to the primary range type of
this _container. Oftentimes $(D Take!Range) will be used, in which case
the range refers to a span of the elements in the _container. Arguments to
these parameters $(B must) be obtained from the same _container instance
as the one being worked with. It is important to note that many generic range
algorithms return the same range type as their input range.

---
import std.algorithm.comparison : equal;
import std.algorithm.iteration : find;
import std.container;
import std.range : take;

auto array = make!Array(1, 2, 3);

// `find` returns an Array!int.Range advanced to the element "2"
array.linearRemove(array[].find(2));

assert(array[].equal([1]));

array = make!Array(1, 2, 3);

// the range given to `linearRemove` is a Take!(Array!int.Range)
// spanning just the element "2"
array.linearRemove(array[].find(2).take(1));

assert(array[].equal([1, 3]));
---

When any $(MREF_ALTTEXT range, std, range) can be passed as an argument to
a member function, the documention usually refers to the parameter's templated
type as $(D Stuff).

---
import std.algorithm.comparison : equal;
import std.container;
import std.range : iota;

auto array = make!Array(1, 2);

// the range type returned by `iota` is completely unrelated to Array,
// which is fine for Array.insertBack:
array.insertBack(iota(3, 10));

assert(array[].equal([1, 2, 3, 4, 5, 6, 7, 8, 9]));
---

Container_primitives:

Containers do not form a class hierarchy, instead they implement a
common set of primitives (see table below). These primitives each guarantee
a specific worst case complexity and thus allow generic code to be written
independently of the _container implementation.

For example the primitives $(D c.remove(r)) and $(D c.linearRemove(r)) both
remove the sequence of elements in range $(D r) from the _container $(D c).
The primitive $(D c.remove(r)) guarantees
$(BIGOH n$(SUBSCRIPT r) log n$(SUBSCRIPT c)) complexity in the worst case and
$(D c.linearRemove(r)) relaxes this guarantee to $(BIGOH n$(SUBSCRIPT c)).

Since a sequence of elements can be removed from a $(MREF_ALTTEXT doubly linked list,std,_container,dlist)
in constant time, $(D DList) provides the primitive $(D c.remove(r))
as well as $(D c.linearRemove(r)). On the other hand
$(MREF_ALTTEXT Array, std,_container, array) only offers $(D c.linearRemove(r)).

The following table describes the common set of primitives that containers
implement.  A _container need not implement all primitives, but if a
primitive is implemented, it must support the syntax described in the $(B
syntax) column with the semantics described in the $(B description) column, and
it must not have a worst-case complexity worse than denoted in big-O notation in
the $(BIGOH ·) column.  Below, $(D C) means a _container type, $(D c) is
a value of _container type, $(D n$(SUBSCRIPT x)) represents the effective length of
value $(D x), which could be a single element (in which case $(D n$(SUBSCRIPT x)) is
$(D 1)), a _container, or a range.

$(BOOKTABLE Container primitives,
$(TR
    $(TH Syntax)
    $(TH $(BIGOH ·))
    $(TH Description)
)
$(TR
    $(TDNW $(D C(x)))
    $(TDNW $(D n$(SUBSCRIPT x)))
    $(TD Creates a _container of type $(D C) from either another _container or a range.
    The created _container must not be a null reference even if x is empty.)
)
$(TR
    $(TDNW $(D c.dup))
    $(TDNW $(D n$(SUBSCRIPT c)))
    $(TD Returns a duplicate of the _container.)
)
$(TR
    $(TDNW $(D c ~ x))
    $(TDNW $(D n$(SUBSCRIPT c) + n$(SUBSCRIPT x)))
    $(TD Returns the concatenation of $(D c) and $(D r). $(D x) may be a single
        element or an input range.)
)
$(TR
    $(TDNW $(D x ~ c))
    $(TDNW $(D n$(SUBSCRIPT c) + n$(SUBSCRIPT x)))
    $(TD Returns the concatenation of $(D x) and $(D c).  $(D x) may be a
        single element or an input range type.)
)
$(LEADINGROWN 3, Iteration
)
$(TR
    $(TD $(D c.Range))
    $(TD)
    $(TD The primary range type associated with the _container.)
)
$(TR
    $(TD $(D c[]))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns a range
         iterating over the entire _container, in a _container-defined order.)
)
$(TR
    $(TDNW $(D c[a .. b]))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Fetches a portion of the _container from key $(D a) to key $(D b).)
)
$(LEADINGROWN 3, Capacity
)
$(TR
    $(TD $(D c.empty))
    $(TD $(D 1))
    $(TD Returns $(D true) if the _container has no elements, $(D false) otherwise.)
)
$(TR
    $(TD $(D c.length))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns the number of elements in the _container.)
)
$(TR
    $(TDNW $(D c.length = n))
    $(TDNW $(D n$(SUBSCRIPT c) + n))
    $(TD Forces the number of elements in the _container to $(D n).
        If the _container ends up growing, the added elements are initialized
        in a _container-dependent manner (usually with $(D T.init)).)
)
$(TR
    $(TD $(D c.capacity))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns the maximum number of elements that can be stored in the
    _container without triggering a reallocation.)
)
$(TR
    $(TD $(D c.reserve(x)))
    $(TD $(D n$(SUBSCRIPT c)))
    $(TD Forces $(D capacity) to at least $(D x) without reducing it.)
)
$(LEADINGROWN 3, Access
)
$(TR
    $(TDNW $(D c.front))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns the first element of the _container, in a _container-defined order.)
)
$(TR
    $(TDNW $(D c.moveFront))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Destructively reads and returns the first element of the
         _container. The slot is not removed from the _container; it is left
         initialized with $(D T.init). This routine need not be defined if $(D
         front) returns a $(D ref).)
)
$(TR
    $(TDNW $(D c.front = v))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Assigns $(D v) to the first element of the _container.)
)
$(TR
    $(TDNW $(D c.back))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns the last element of the _container, in a _container-defined order.)
)
$(TR
    $(TDNW $(D c.moveBack))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Destructively reads and returns the last element of the
         _container. The slot is not removed from the _container; it is left
         initialized with $(D T.init). This routine need not be defined if $(D
         front) returns a $(D ref).)
)
$(TR
    $(TDNW $(D c.back = v))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Assigns $(D v) to the last element of the _container.)
)
$(TR
    $(TDNW $(D c[x]))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Provides indexed access into the _container. The index type is
         _container-defined. A _container may define several index types (and
         consequently overloaded indexing).)
)
$(TR
    $(TDNW $(D c.moveAt(x)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Destructively reads and returns the value at position $(D x). The slot
         is not removed from the _container; it is left initialized with $(D
         T.init).)
)
$(TR
    $(TDNW $(D c[x] = v))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Sets element at specified index into the _container.)
)
$(TR
    $(TDNW $(D c[x] $(I op)= v))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Performs read-modify-write operation at specified index into the
        _container.)
)
$(LEADINGROWN 3, Operations
)
$(TR
    $(TDNW $(D e in c))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns nonzero if e is found in $(D c).)
)
$(TR
    $(TDNW $(D c.lowerBound(v)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns a range of all elements strictly less than $(D v).)
)
$(TR
    $(TDNW $(D c.upperBound(v)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns a range of all elements strictly greater than $(D v).)
)
$(TR
    $(TDNW $(D c.equalRange(v)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Returns a range of all elements in $(D c) that are equal to $(D v).)
)
$(LEADINGROWN 3, Modifiers
)
$(TR
    $(TDNW $(D c ~= x))
    $(TDNW $(D n$(SUBSCRIPT c) + n$(SUBSCRIPT x)))
    $(TD Appends $(D x) to $(D c). $(D x) may be a single element or an input range type.)
)
$(TR
    $(TDNW $(D c.clear()))
    $(TDNW $(D n$(SUBSCRIPT c)))
    $(TD Removes all elements in $(D c).)
)
$(TR
    $(TDNW $(D c.insert(x)))
    $(TDNW $(D n$(SUBSCRIPT x) * log n$(SUBSCRIPT c)))
    $(TD Inserts $(D x) in $(D c) at a position (or positions) chosen by $(D c).)
)
$(TR
    $(TDNW $(D c.stableInsert(x)))
    $(TDNW $(D n$(SUBSCRIPT x) * log n$(SUBSCRIPT c)))
    $(TD Same as $(D c.insert(x)), but is guaranteed to not invalidate any ranges.)
)
$(TR
    $(TDNW $(D c.linearInsert(v)))
    $(TDNW $(D n$(SUBSCRIPT c)))
    $(TD Same as $(D c.insert(v)) but relaxes complexity to linear.)
)
$(TR
    $(TDNW $(D c.stableLinearInsert(v)))
    $(TDNW $(D n$(SUBSCRIPT c)))
    $(TD Same as $(D c.stableInsert(v)) but relaxes complexity to linear.)
)
$(TR
    $(TDNW $(D c.removeAny()))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Removes some element from $(D c) and returns it.)
)
$(TR
    $(TDNW $(D c.stableRemoveAny()))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Same as $(D c.removeAny()), but is guaranteed to not invalidate any
         iterators.)
)
$(TR
    $(TDNW $(D c.insertFront(v)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Inserts $(D v) at the front of $(D c).)
)
$(TR
    $(TDNW $(D c.stableInsertFront(v)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Same as $(D c.insertFront(v)), but guarantees no ranges will be
         invalidated.)
)
$(TR
    $(TDNW $(D c.insertBack(v)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Inserts $(D v) at the back of $(D c).)
)
$(TR
    $(TDNW $(D c.stableInsertBack(v)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Same as $(D c.insertBack(v)), but guarantees no ranges will be
         invalidated.)
)
$(TR
    $(TDNW $(D c.removeFront()))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Removes the element at the front of $(D c).)
)
$(TR
    $(TDNW $(D c.stableRemoveFront()))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Same as $(D c.removeFront()), but guarantees no ranges will be
         invalidated.)
)
$(TR
    $(TDNW $(D c.removeBack()))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Removes the value at the back of $(D c).)
)
$(TR
    $(TDNW $(D c.stableRemoveBack()))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Same as $(D c.removeBack()), but guarantees no ranges will be
         invalidated.)
)
$(TR
    $(TDNW $(D c.remove(r)))
    $(TDNW $(D n$(SUBSCRIPT r) * log n$(SUBSCRIPT c)))
    $(TD Removes range $(D r) from $(D c).)
)
$(TR
    $(TDNW $(D c.stableRemove(r)))
    $(TDNW $(D n$(SUBSCRIPT r) * log n$(SUBSCRIPT c)))
    $(TD Same as $(D c.remove(r)), but guarantees iterators are not
         invalidated.)
)
$(TR
    $(TDNW $(D c.linearRemove(r)))
    $(TDNW $(D n$(SUBSCRIPT c)))
    $(TD Removes range $(D r) from $(D c).)
)
$(TR
    $(TDNW $(D c.stableLinearRemove(r)))
    $(TDNW $(D n$(SUBSCRIPT c)))
    $(TD Same as $(D c.linearRemove(r)), but guarantees iterators are not
         invalidated.)
)
$(TR
    $(TDNW $(D c.removeKey(k)))
    $(TDNW $(D log n$(SUBSCRIPT c)))
    $(TD Removes an element from $(D c) by using its key $(D k).
         The key's type is defined by the _container.)
)
$(TR
    $(TDNW $(D ))
    $(TDNW $(D ))
    $(TD )
)
)

Source: $(PHOBOSSRC std/_container/package.d)

Copyright: Red-black tree code copyright (C) 2008- by Steven Schveighoffer. Other code
copyright 2010- Andrei Alexandrescu. All rights reserved by the respective holders.

License: Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at $(HTTP
boost.org/LICENSE_1_0.txt)).

Authors: Steven Schveighoffer, $(HTTP erdani.com, Andrei Alexandrescu)
 */

module std.container;

public import std.container.array;
public import std.container.binaryheap;
public import std.container.dlist;
public import std.container.rbtree;
public import std.container.slist;

import std.meta;


/* The following documentation and type $(D TotalContainer) are
intended for developers only.

$(D TotalContainer) is an unimplemented container that illustrates a
host of primitives that a container may define. It is to some extent
the bottom of the conceptual container hierarchy. A given container
most often will choose to only implement a subset of these primitives,
and define its own additional ones. Adhering to the standard primitive
names below allows generic code to work independently of containers.

Things to remember: any container must be a reference type, whether
implemented as a $(D class) or $(D struct). No primitive below
requires the container to escape addresses of elements, which means
that compliant containers can be defined to use reference counting or
other deterministic memory management techniques.

A container may choose to define additional specific operations. The
only requirement is that those operations bear different names than
the ones below, lest user code gets confused.

Complexity of operations should be interpreted as "at least as good
as". If an operation is required to have $(BIGOH n) complexity, it
could have anything lower than that, e.g. $(BIGOH log(n)). Unless
specified otherwise, $(D n) inside a $(BIGOH) expression stands for
the number of elements in the container.
 */
struct TotalContainer(T)
{
/**
If the container has a notion of key-value mapping, $(D KeyType)
defines the type of the key of the container.
 */
    alias KeyType = T;

/**
If the container has a notion of multikey-value mapping, $(D
KeyTypes[k]), where $(D k) is a zero-based unsigned number, defines
the type of the $(D k)th key of the container.

A container may define both $(D KeyType) and $(D KeyTypes), e.g. in
the case it has the notion of primary/preferred key.
 */
    alias KeyTypes = AliasSeq!T;

/**
If the container has a notion of key-value mapping, $(D ValueType)
defines the type of the value of the container. Typically, a map-style
container mapping values of type $(D K) to values of type $(D V)
defines $(D KeyType) to be $(D K) and $(D ValueType) to be $(D V).
 */
    alias ValueType = T;

/**
Defines the container's primary range, which embodies one of the
ranges defined in $(MREF std,range).

Generally a container may define several types of ranges.
 */
    struct Range
    {
        /++
        Range primitives.
        +/
        @property bool empty()
        {
            assert(0);
        }
        /// Ditto
        @property ref T front() //ref return optional
        {
            assert(0);
        }
        /// Ditto
        @property void front(T value) //Only when front does not return by ref
        {
            assert(0);
        }
        /// Ditto
        T moveFront()
        {
            assert(0);
        }
        /// Ditto
        void popFront()
        {
            assert(0);
        }
        /// Ditto
        @property ref T back() //ref return optional
        {
            assert(0);
        }
        /// Ditto
        @property void back(T value) //Only when front does not return by ref
        {
            assert(0);
        }
        /// Ditto
        T moveBack()
        {
            assert(0);
        }
        /// Ditto
        void popBack()
        {
            assert(0);
        }
        /// Ditto
        T opIndex(size_t i) //ref return optional
        {
            assert(0);
        }
        /// Ditto
        void opIndexAssign(size_t i, T value) //Only when front does not return by ref
        {
            assert(0);
        }
        /// Ditto
        T opIndexUnary(string op)(size_t i) //Only when front does not return by ref
        {
            assert(0);
        }
        /// Ditto
        void opIndexOpAssign(string op)(size_t i, T value) //Only when front does not return by ref
        {
            assert(0);
        }
        /// Ditto
        T moveAt(size_t i)
        {
            assert(0);
        }
        /// Ditto
        @property size_t length()
        {
            assert(0);
        }
    }

/**
Property returning $(D true) if and only if the container has no
elements.

Complexity: $(BIGOH 1)
 */
    @property bool empty()
    {
        assert(0);
    }

/**
Returns a duplicate of the container. The elements themselves are not
transitively duplicated.

Complexity: $(BIGOH n).
 */
    @property TotalContainer dup()
    {
        assert(0);
    }

/**
Returns the number of elements in the container.

Complexity: $(BIGOH log(n)).
*/
    @property size_t length()
    {
        assert(0);
    }

/**
Returns the maximum number of elements the container can store without
(a) allocating memory, (b) invalidating iterators upon insertion.

Complexity: $(BIGOH log(n)).
 */
    @property size_t capacity()
    {
        assert(0);
    }

/**
Ensures sufficient capacity to accommodate $(D n) elements.

Postcondition: $(D capacity >= n)

Complexity: $(BIGOH log(e - capacity)) if $(D e > capacity), otherwise
$(BIGOH 1).
 */
    void reserve(size_t e)
    {
        assert(0);
    }

/**
Returns a range that iterates over all elements of the container, in a
container-defined order. The container should choose the most
convenient and fast method of iteration for $(D opSlice()).

Complexity: $(BIGOH log(n))
 */
    Range opSlice()
    {
        assert(0);
    }

    /**
       Returns a range that iterates the container between two
       specified positions.

       Complexity: $(BIGOH log(n))
     */
    Range opSlice(size_t a, size_t b)
    {
        assert(0);
    }

/**
Forward to $(D opSlice().front) and $(D opSlice().back), respectively.

Complexity: $(BIGOH log(n))
 */
    @property ref T front() //ref return optional
    {
        assert(0);
    }
    /// Ditto
    @property void front(T value) //Only when front does not return by ref
    {
        assert(0);
    }
    /// Ditto
    T moveFront()
    {
        assert(0);
    }
    /// Ditto
    @property ref T back() //ref return optional
    {
        assert(0);
    }
    /// Ditto
    @property void back(T value) //Only when front does not return by ref
    {
        assert(0);
    }
    /// Ditto
    T moveBack()
    {
        assert(0);
    }

/**
Indexing operators yield or modify the value at a specified index.
 */
    ref T opIndex(KeyType) //ref return optional
    {
        assert(0);
    }
    /// ditto
    void opIndexAssign(KeyType i, T value) //Only when front does not return by ref
    {
        assert(0);
    }
    /// ditto
    T opIndexUnary(string op)(KeyType i) //Only when front does not return by ref
    {
        assert(0);
    }
    /// ditto
    void opIndexOpAssign(string op)(KeyType i, T value) //Only when front does not return by ref
    {
        assert(0);
    }
    /// ditto
    T moveAt(KeyType i)
    {
        assert(0);
    }

/**
$(D k in container) returns true if the given key is in the container.
 */
    bool opBinaryRight(string op)(KeyType k) if (op == "in")
    {
        assert(0);
    }

/**
Returns a range of all elements containing $(D k) (could be empty or a
singleton range).
 */
    Range equalRange(KeyType k)
    {
        assert(0);
    }

/**
Returns a range of all elements with keys less than $(D k) (could be
empty or a singleton range). Only defined by containers that store
data sorted at all times.
 */
    Range lowerBound(KeyType k)
    {
        assert(0);
    }

/**
Returns a range of all elements with keys larger than $(D k) (could be
empty or a singleton range).  Only defined by containers that store
data sorted at all times.
 */
    Range upperBound(KeyType k)
    {
        assert(0);
    }

/**
Returns a new container that's the concatenation of $(D this) and its
argument. $(D opBinaryRight) is only defined if $(D Stuff) does not
define $(D opBinary).

Complexity: $(BIGOH n + m), where m is the number of elements in $(D
stuff)
 */
    TotalContainer opBinary(string op)(Stuff rhs) if (op == "~")
    {
        assert(0);
    }

    /// ditto
    TotalContainer opBinaryRight(string op)(Stuff lhs) if (op == "~")
    {
        assert(0);
    }

/**
Forwards to $(D insertAfter(this[], stuff)).
 */
    void opOpAssign(string op)(Stuff stuff) if (op == "~")
    {
        assert(0);
    }

/**
Removes all contents from the container. The container decides how $(D
capacity) is affected.

Postcondition: $(D empty)

Complexity: $(BIGOH n)
 */
    void clear()
    {
        assert(0);
    }

/**
Sets the number of elements in the container to $(D newSize). If $(D
newSize) is greater than $(D length), the added elements are added to
unspecified positions in the container and initialized with $(D
.init).

Complexity: $(BIGOH abs(n - newLength))

Postcondition: $(D _length == newLength)
 */
    @property void length(size_t newLength)
    {
        assert(0);
    }

/**
Inserts $(D stuff) in an unspecified position in the
container. Implementations should choose whichever insertion means is
the most advantageous for the container, but document the exact
behavior. $(D stuff) can be a value convertible to the element type of
the container, or a range of values convertible to it.

The $(D stable) version guarantees that ranges iterating over the
container are never invalidated. Client code that counts on
non-invalidating insertion should use $(D stableInsert). Such code would
not compile against containers that don't support it.

Returns: The number of elements added.

Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements in $(D stuff)
 */
    size_t insert(Stuff)(Stuff stuff)
    {
        assert(0);
    }
    ///ditto
    size_t stableInsert(Stuff)(Stuff stuff)
    {
        assert(0);
    }

/**
Same as $(D insert(stuff)) and $(D stableInsert(stuff)) respectively,
but relax the complexity constraint to linear.
 */
    size_t linearInsert(Stuff)(Stuff stuff)
    {
        assert(0);
    }
    ///ditto
    size_t stableLinearInsert(Stuff)(Stuff stuff)
    {
        assert(0);
    }

/**
Picks one value in an unspecified position in the container, removes
it from the container, and returns it. Implementations should pick the
value that's the most advantageous for the container. The stable version
behaves the same, but guarantees that ranges iterating over the container
are never invalidated.

Precondition: $(D !empty)

Returns: The element removed.

Complexity: $(BIGOH log(n)).
 */
    T removeAny()
    {
        assert(0);
    }
    /// ditto
    T stableRemoveAny()
    {
        assert(0);
    }

/**
Inserts $(D value) to the front or back of the container. $(D stuff)
can be a value convertible to the container's element type or a range
of values convertible to it. The stable version behaves the same, but
guarantees that ranges iterating over the container are never
invalidated.

Returns: The number of elements inserted

Complexity: $(BIGOH log(n)).
 */
    size_t insertFront(Stuff)(Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t stableInsertFront(Stuff)(Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t insertBack(Stuff)(Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t stableInsertBack(T value)
    {
        assert(0);
    }

/**
Removes the value at the front or back of the container. The stable
version behaves the same, but guarantees that ranges iterating over
the container are never invalidated. The optional parameter $(D
howMany) instructs removal of that many elements. If $(D howMany > n),
all elements are removed and no exception is thrown.

Precondition: $(D !empty)

Complexity: $(BIGOH log(n)).
 */
    void removeFront()
    {
        assert(0);
    }
    /// ditto
    void stableRemoveFront()
    {
        assert(0);
    }
    /// ditto
    void removeBack()
    {
        assert(0);
    }
    /// ditto
    void stableRemoveBack()
    {
        assert(0);
    }

/**
Removes $(D howMany) values at the front or back of the
container. Unlike the unparameterized versions above, these functions
do not throw if they could not remove $(D howMany) elements. Instead,
if $(D howMany > n), all elements are removed. The returned value is
the effective number of elements removed. The stable version behaves
the same, but guarantees that ranges iterating over the container are
never invalidated.

Returns: The number of elements removed

Complexity: $(BIGOH howMany * log(n)).
 */
    size_t removeFront(size_t howMany)
    {
        assert(0);
    }
    /// ditto
    size_t stableRemoveFront(size_t howMany)
    {
        assert(0);
    }
    /// ditto
    size_t removeBack(size_t howMany)
    {
        assert(0);
    }
    /// ditto
    size_t stableRemoveBack(size_t howMany)
    {
        assert(0);
    }

/**
Removes all values corresponding to key $(D k).

Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements with the same key.

Returns: The number of elements removed.
 */
    size_t removeKey(KeyType k)
    {
        assert(0);
    }

/**
Inserts $(D stuff) before, after, or instead range $(D r), which must
be a valid range previously extracted from this container. $(D stuff)
can be a value convertible to the container's element type or a range
of objects convertible to it. The stable version behaves the same, but
guarantees that ranges iterating over the container are never
invalidated.

Returns: The number of values inserted.

Complexity: $(BIGOH n + m), where $(D m) is the length of $(D stuff)
 */
    size_t insertBefore(Stuff)(Range r, Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t stableInsertBefore(Stuff)(Range r, Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t insertAfter(Stuff)(Range r, Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t stableInsertAfter(Stuff)(Range r, Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t replace(Stuff)(Range r, Stuff stuff)
    {
        assert(0);
    }
    /// ditto
    size_t stableReplace(Stuff)(Range r, Stuff stuff)
    {
        assert(0);
    }

/**
Removes all elements belonging to $(D r), which must be a range
obtained originally from this container. The stable version behaves the
same, but guarantees that ranges iterating over the container are
never invalidated.

Returns: A range spanning the remaining elements in the container that
initially were right after $(D r).

Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements in $(D r)
 */
    Range remove(Range r)
    {
        assert(0);
    }
    /// ditto
    Range stableRemove(Range r)
    {
        assert(0);
    }

/**
Same as $(D remove) above, but has complexity relaxed to linear.

Returns: A range spanning the remaining elements in the container that
initially were right after $(D r).

Complexity: $(BIGOH n)
 */
    Range linearRemove(Range r)
    {
        assert(0);
    }
    /// ditto
    Range stableLinearRemove(Range r)
    {
        assert(0);
    }
}

@safe unittest
{
    TotalContainer!int test;
}