//===-- sanitizer_common.cc -----------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries.
//===----------------------------------------------------------------------===//
#include "sanitizer_common.h"
#include "sanitizer_allocator_interface.h"
#include "sanitizer_allocator_internal.h"
#include "sanitizer_atomic.h"
#include "sanitizer_flags.h"
#include "sanitizer_libc.h"
#include "sanitizer_placement_new.h"
namespace __sanitizer {
const char *SanitizerToolName = "SanitizerTool";
atomic_uint32_t current_verbosity;
uptr PageSizeCached;
u32 NumberOfCPUsCached;
// PID of the tracer task in StopTheWorld. It shares the address space with the
// main process, but has a different PID and thus requires special handling.
uptr stoptheworld_tracer_pid = 0;
// Cached pid of parent process - if the parent process dies, we want to keep
// writing to the same log file.
uptr stoptheworld_tracer_ppid = 0;
void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
const char *mmap_type, error_t err,
bool raw_report) {
static int recursion_count;
if (SANITIZER_RTEMS || raw_report || recursion_count) {
// If we are on RTEMS or raw report is requested or we went into recursion,
// just die. The Report() and CHECK calls below may call mmap recursively
// and fail.
RawWrite("ERROR: Failed to mmap\n");
Die();
}
recursion_count++;
Report("ERROR: %s failed to "
"%s 0x%zx (%zd) bytes of %s (error code: %d)\n",
SanitizerToolName, mmap_type, size, size, mem_type, err);
#if !SANITIZER_GO
DumpProcessMap();
#endif
UNREACHABLE("unable to mmap");
}
typedef bool UptrComparisonFunction(const uptr &a, const uptr &b);
typedef bool U32ComparisonFunction(const u32 &a, const u32 &b);
const char *StripPathPrefix(const char *filepath,
const char *strip_path_prefix) {
if (!filepath) return nullptr;
if (!strip_path_prefix) return filepath;
const char *res = filepath;
if (const char *pos = internal_strstr(filepath, strip_path_prefix))
res = pos + internal_strlen(strip_path_prefix);
if (res[0] == '.' && res[1] == '/')
res += 2;
return res;
}
const char *StripModuleName(const char *module) {
if (!module)
return nullptr;
if (SANITIZER_WINDOWS) {
// On Windows, both slash and backslash are possible.
// Pick the one that goes last.
if (const char *bslash_pos = internal_strrchr(module, '\\'))
return StripModuleName(bslash_pos + 1);
}
if (const char *slash_pos = internal_strrchr(module, '/')) {
return slash_pos + 1;
}
return module;
}
void ReportErrorSummary(const char *error_message, const char *alt_tool_name) {
if (!common_flags()->print_summary)
return;
InternalScopedString buff(kMaxSummaryLength);
buff.append("SUMMARY: %s: %s",
alt_tool_name ? alt_tool_name : SanitizerToolName, error_message);
__sanitizer_report_error_summary(buff.data());
}
// Removes the ANSI escape sequences from the input string (in-place).
void RemoveANSIEscapeSequencesFromString(char *str) {
if (!str)
return;
// We are going to remove the escape sequences in place.
char *s = str;
char *z = str;
while (*s != '\0') {
CHECK_GE(s, z);
// Skip over ANSI escape sequences with pointer 's'.
if (*s == '\033' && *(s + 1) == '[') {
s = internal_strchrnul(s, 'm');
if (*s == '\0') {
break;
}
s++;
continue;
}
// 's' now points at a character we want to keep. Copy over the buffer
// content if the escape sequence has been perviously skipped andadvance
// both pointers.
if (s != z)
*z = *s;
// If we have not seen an escape sequence, just advance both pointers.
z++;
s++;
}
// Null terminate the string.
*z = '\0';
}
void LoadedModule::set(const char *module_name, uptr base_address) {
clear();
full_name_ = internal_strdup(module_name);
base_address_ = base_address;
}
void LoadedModule::set(const char *module_name, uptr base_address,
ModuleArch arch, u8 uuid[kModuleUUIDSize],
bool instrumented) {
set(module_name, base_address);
arch_ = arch;
internal_memcpy(uuid_, uuid, sizeof(uuid_));
instrumented_ = instrumented;
}
void LoadedModule::clear() {
InternalFree(full_name_);
base_address_ = 0;
max_executable_address_ = 0;
full_name_ = nullptr;
arch_ = kModuleArchUnknown;
internal_memset(uuid_, 0, kModuleUUIDSize);
instrumented_ = false;
while (!ranges_.empty()) {
AddressRange *r = ranges_.front();
ranges_.pop_front();
InternalFree(r);
}
}
void LoadedModule::addAddressRange(uptr beg, uptr end, bool executable,
bool writable, const char *name) {
void *mem = InternalAlloc(sizeof(AddressRange));
AddressRange *r =
new(mem) AddressRange(beg, end, executable, writable, name);
ranges_.push_back(r);
if (executable && end > max_executable_address_)
max_executable_address_ = end;
}
bool LoadedModule::containsAddress(uptr address) const {
for (const AddressRange &r : ranges()) {
if (r.beg <= address && address < r.end)
return true;
}
return false;
}
static atomic_uintptr_t g_total_mmaped;
void IncreaseTotalMmap(uptr size) {
if (!common_flags()->mmap_limit_mb) return;
uptr total_mmaped =
atomic_fetch_add(&g_total_mmaped, size, memory_order_relaxed) + size;
// Since for now mmap_limit_mb is not a user-facing flag, just kill
// a program. Use RAW_CHECK to avoid extra mmaps in reporting.
RAW_CHECK((total_mmaped >> 20) < common_flags()->mmap_limit_mb);
}
void DecreaseTotalMmap(uptr size) {
if (!common_flags()->mmap_limit_mb) return;
atomic_fetch_sub(&g_total_mmaped, size, memory_order_relaxed);
}
bool TemplateMatch(const char *templ, const char *str) {
if ((!str) || str[0] == 0)
return false;
bool start = false;
if (templ && templ[0] == '^') {
start = true;
templ++;
}
bool asterisk = false;
while (templ && templ[0]) {
if (templ[0] == '*') {
templ++;
start = false;
asterisk = true;
continue;
}
if (templ[0] == '$')
return str[0] == 0 || asterisk;
if (str[0] == 0)
return false;
char *tpos = (char*)internal_strchr(templ, '*');
char *tpos1 = (char*)internal_strchr(templ, '$');
if ((!tpos) || (tpos1 && tpos1 < tpos))
tpos = tpos1;
if (tpos)
tpos[0] = 0;
const char *str0 = str;
const char *spos = internal_strstr(str, templ);
str = spos + internal_strlen(templ);
templ = tpos;
if (tpos)
tpos[0] = tpos == tpos1 ? '$' : '*';
if (!spos)
return false;
if (start && spos != str0)
return false;
start = false;
asterisk = false;
}
return true;
}
static char binary_name_cache_str[kMaxPathLength];
static char process_name_cache_str[kMaxPathLength];
const char *GetProcessName() {
return process_name_cache_str;
}
static uptr ReadProcessName(/*out*/ char *buf, uptr buf_len) {
ReadLongProcessName(buf, buf_len);
char *s = const_cast<char *>(StripModuleName(buf));
uptr len = internal_strlen(s);
if (s != buf) {
internal_memmove(buf, s, len);
buf[len] = '\0';
}
return len;
}
void UpdateProcessName() {
ReadProcessName(process_name_cache_str, sizeof(process_name_cache_str));
}
// Call once to make sure that binary_name_cache_str is initialized
void CacheBinaryName() {
if (binary_name_cache_str[0] != '\0')
return;
ReadBinaryName(binary_name_cache_str, sizeof(binary_name_cache_str));
ReadProcessName(process_name_cache_str, sizeof(process_name_cache_str));
}
uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len) {
CacheBinaryName();
uptr name_len = internal_strlen(binary_name_cache_str);
name_len = (name_len < buf_len - 1) ? name_len : buf_len - 1;
if (buf_len == 0)
return 0;
internal_memcpy(buf, binary_name_cache_str, name_len);
buf[name_len] = '\0';
return name_len;
}
void PrintCmdline() {
char **argv = GetArgv();
if (!argv) return;
Printf("\nCommand: ");
for (uptr i = 0; argv[i]; ++i)
Printf("%s ", argv[i]);
Printf("\n\n");
}
// Malloc hooks.
static const int kMaxMallocFreeHooks = 5;
struct MallocFreeHook {
void (*malloc_hook)(const void *, uptr);
void (*free_hook)(const void *);
};
static MallocFreeHook MFHooks[kMaxMallocFreeHooks];
void RunMallocHooks(const void *ptr, uptr size) {
for (int i = 0; i < kMaxMallocFreeHooks; i++) {
auto hook = MFHooks[i].malloc_hook;
if (!hook) return;
hook(ptr, size);
}
}
void RunFreeHooks(const void *ptr) {
for (int i = 0; i < kMaxMallocFreeHooks; i++) {
auto hook = MFHooks[i].free_hook;
if (!hook) return;
hook(ptr);
}
}
static int InstallMallocFreeHooks(void (*malloc_hook)(const void *, uptr),
void (*free_hook)(const void *)) {
if (!malloc_hook || !free_hook) return 0;
for (int i = 0; i < kMaxMallocFreeHooks; i++) {
if (MFHooks[i].malloc_hook == nullptr) {
MFHooks[i].malloc_hook = malloc_hook;
MFHooks[i].free_hook = free_hook;
return i + 1;
}
}
return 0;
}
} // namespace __sanitizer
using namespace __sanitizer; // NOLINT
extern "C" {
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_report_error_summary,
const char *error_summary) {
Printf("%s\n", error_summary);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __sanitizer_acquire_crash_state() {
static atomic_uint8_t in_crash_state = {};
return !atomic_exchange(&in_crash_state, 1, memory_order_relaxed);
}
SANITIZER_INTERFACE_ATTRIBUTE
int __sanitizer_install_malloc_and_free_hooks(void (*malloc_hook)(const void *,
uptr),
void (*free_hook)(const void *)) {
return InstallMallocFreeHooks(malloc_hook, free_hook);
}
} // extern "C"