Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
// Deque implementation -*- C++ -*-

// Copyright (C) 2001-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file bits/stl_deque.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{deque}
 */

#ifndef _STL_DEQUE_H
#define _STL_DEQUE_H 1

#include <bits/concept_check.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#include <bits/stl_uninitialized.h> // for __is_bitwise_relocatable
#endif
#if __cplusplus > 201703L
# include <compare>
#endif

#include <debug/assertions.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER

  /**
   *  @brief This function controls the size of memory nodes.
   *  @param  __size  The size of an element.
   *  @return   The number (not byte size) of elements per node.
   *
   *  This function started off as a compiler kludge from SGI, but
   *  seems to be a useful wrapper around a repeated constant
   *  expression.  The @b 512 is tunable (and no other code needs to
   *  change), but no investigation has been done since inheriting the
   *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
   *  you are doing, however: changing it breaks the binary
   *  compatibility!!
  */

#ifndef _GLIBCXX_DEQUE_BUF_SIZE
#define _GLIBCXX_DEQUE_BUF_SIZE 512
#endif

  _GLIBCXX_CONSTEXPR inline size_t
  __deque_buf_size(size_t __size)
  { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
	    ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }


  /**
   *  @brief A deque::iterator.
   *
   *  Quite a bit of intelligence here.  Much of the functionality of
   *  deque is actually passed off to this class.  A deque holds two
   *  of these internally, marking its valid range.  Access to
   *  elements is done as offsets of either of those two, relying on
   *  operator overloading in this class.
   *
   *  All the functions are op overloads except for _M_set_node.
  */
  template<typename _Tp, typename _Ref, typename _Ptr>
    struct _Deque_iterator
    {
#if __cplusplus < 201103L
      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>		   iterator;
      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
      typedef _Tp*					   _Elt_pointer;
      typedef _Tp**					   _Map_pointer;
#else
    private:
      template<typename _CvTp>
	using __iter = _Deque_iterator<_Tp, _CvTp&, __ptr_rebind<_Ptr, _CvTp>>;
    public:
      typedef __iter<_Tp>				   iterator;
      typedef __iter<const _Tp>				   const_iterator;
      typedef __ptr_rebind<_Ptr, _Tp>			   _Elt_pointer;
      typedef __ptr_rebind<_Ptr, _Elt_pointer>		   _Map_pointer;
#endif

      static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
      { return __deque_buf_size(sizeof(_Tp)); }

      typedef std::random_access_iterator_tag	iterator_category;
      typedef _Tp				value_type;
      typedef _Ptr				pointer;
      typedef _Ref				reference;
      typedef size_t				size_type;
      typedef ptrdiff_t				difference_type;
      typedef _Deque_iterator			_Self;

      _Elt_pointer _M_cur;
      _Elt_pointer _M_first;
      _Elt_pointer _M_last;
      _Map_pointer _M_node;

      _Deque_iterator(_Elt_pointer __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT
      : _M_cur(__x), _M_first(*__y),
	_M_last(*__y + _S_buffer_size()), _M_node(__y) { }

      _Deque_iterator() _GLIBCXX_NOEXCEPT
      : _M_cur(), _M_first(), _M_last(), _M_node() { }

#if __cplusplus < 201103L
      // Conversion from iterator to const_iterator.
      _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
      : _M_cur(__x._M_cur), _M_first(__x._M_first),
	_M_last(__x._M_last), _M_node(__x._M_node) { }
#else
      // Conversion from iterator to const_iterator.
      template<typename _Iter,
	       typename = _Require<is_same<_Self, const_iterator>,
				   is_same<_Iter, iterator>>>
       _Deque_iterator(const _Iter& __x) noexcept
       : _M_cur(__x._M_cur), _M_first(__x._M_first),
	 _M_last(__x._M_last), _M_node(__x._M_node) { }

      _Deque_iterator(const _Deque_iterator& __x) noexcept
       : _M_cur(__x._M_cur), _M_first(__x._M_first),
	 _M_last(__x._M_last), _M_node(__x._M_node) { }

      _Deque_iterator& operator=(const _Deque_iterator&) = default;
#endif

      iterator
      _M_const_cast() const _GLIBCXX_NOEXCEPT
      { return iterator(_M_cur, _M_node); }

      reference
      operator*() const _GLIBCXX_NOEXCEPT
      { return *_M_cur; }

      pointer
      operator->() const _GLIBCXX_NOEXCEPT
      { return _M_cur; }

      _Self&
      operator++() _GLIBCXX_NOEXCEPT
      {
	++_M_cur;
	if (_M_cur == _M_last)
	  {
	    _M_set_node(_M_node + 1);
	    _M_cur = _M_first;
	  }
	return *this;
      }

      _Self
      operator++(int) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	++*this;
	return __tmp;
      }

      _Self&
      operator--() _GLIBCXX_NOEXCEPT
      {
	if (_M_cur == _M_first)
	  {
	    _M_set_node(_M_node - 1);
	    _M_cur = _M_last;
	  }
	--_M_cur;
	return *this;
      }

      _Self
      operator--(int) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	--*this;
	return __tmp;
      }

      _Self&
      operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
      {
	const difference_type __offset = __n + (_M_cur - _M_first);
	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
	  _M_cur += __n;
	else
	  {
	    const difference_type __node_offset =
	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
			   : -difference_type((-__offset - 1)
					      / _S_buffer_size()) - 1;
	    _M_set_node(_M_node + __node_offset);
	    _M_cur = _M_first + (__offset - __node_offset
				 * difference_type(_S_buffer_size()));
	  }
	return *this;
      }

      _Self&
      operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
      { return *this += -__n; }

      reference
      operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
      { return *(*this + __n); }

      /**
       *  Prepares to traverse new_node.  Sets everything except
       *  _M_cur, which should therefore be set by the caller
       *  immediately afterwards, based on _M_first and _M_last.
       */
      void
      _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT
      {
	_M_node = __new_node;
	_M_first = *__new_node;
	_M_last = _M_first + difference_type(_S_buffer_size());
      }

      friend bool
      operator==(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
      { return __x._M_cur == __y._M_cur; }

      // Note: we also provide overloads whose operands are of the same type in
      // order to avoid ambiguous overload resolution when std::rel_ops
      // operators are in scope (for additional details, see libstdc++/3628)
      template<typename _RefR, typename _PtrR>
	friend bool
	operator==(const _Self& __x,
		   const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
	_GLIBCXX_NOEXCEPT
	{ return __x._M_cur == __y._M_cur; }

#if __cpp_lib_three_way_comparison
      friend strong_ordering
      operator<=>(const _Self& __x, const _Self& __y) noexcept
      {
	if (const auto __cmp = __x._M_node <=> __y._M_node; __cmp != 0)
	  return __cmp;
	return __x._M_cur <=> __y._M_cur;
      }
#else
      friend bool
      operator!=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
      { return !(__x == __y); }

      template<typename _RefR, typename _PtrR>
	friend bool
	operator!=(const _Self& __x,
		   const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
	_GLIBCXX_NOEXCEPT
	{ return !(__x == __y); }

      friend bool
      operator<(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
      {
	return (__x._M_node == __y._M_node)
	  ? (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
      }

      template<typename _RefR, typename _PtrR>
	friend bool
	operator<(const _Self& __x,
		  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
	_GLIBCXX_NOEXCEPT
	{
	  return (__x._M_node == __y._M_node)
	    ? (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
	}

      friend bool
      operator>(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
      { return __y < __x; }

      template<typename _RefR, typename _PtrR>
	friend bool
	operator>(const _Self& __x,
		  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
	_GLIBCXX_NOEXCEPT
	{ return __y < __x; }

      friend bool
      operator<=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
      { return !(__y < __x); }

      template<typename _RefR, typename _PtrR>
	friend bool
	operator<=(const _Self& __x,
		   const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
	_GLIBCXX_NOEXCEPT
	{ return !(__y < __x); }

      friend bool
      operator>=(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
      { return !(__x < __y); }

      template<typename _RefR, typename _PtrR>
	friend bool
	operator>=(const _Self& __x,
		   const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
	_GLIBCXX_NOEXCEPT
	{ return !(__x < __y); }
#endif // three-way comparison

      friend difference_type
      operator-(const _Self& __x, const _Self& __y) _GLIBCXX_NOEXCEPT
      {
	return difference_type(_S_buffer_size())
	  * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
	  + (__y._M_last - __y._M_cur);
      }

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // According to the resolution of DR179 not only the various comparison
      // operators but also operator- must accept mixed iterator/const_iterator
      // parameters.
      template<typename _RefR, typename _PtrR>
	friend difference_type
	operator-(const _Self& __x,
		  const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
	{
	  return difference_type(_S_buffer_size())
	    * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
	    + (__y._M_last - __y._M_cur);
	}

      friend _Self
      operator+(const _Self& __x, difference_type __n) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = __x;
	__tmp += __n;
	return __tmp;
      }

      friend _Self
      operator-(const _Self& __x, difference_type __n) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = __x;
	__tmp -= __n;
	return __tmp;
      }

      friend _Self
      operator+(difference_type __n, const _Self& __x) _GLIBCXX_NOEXCEPT
      { return __x + __n; }
    };

  /**
   *  Deque base class.  This class provides the unified face for %deque's
   *  allocation.  This class's constructor and destructor allocate and
   *  deallocate (but do not initialize) storage.  This makes %exception
   *  safety easier.
   *
   *  Nothing in this class ever constructs or destroys an actual Tp element.
   *  (Deque handles that itself.)  Only/All memory management is performed
   *  here.
  */
  template<typename _Tp, typename _Alloc>
    class _Deque_base
    {
    protected:
      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
	rebind<_Tp>::other _Tp_alloc_type;
      typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>	 _Alloc_traits;

#if __cplusplus < 201103L
      typedef _Tp*					_Ptr;
      typedef const _Tp*				_Ptr_const;
#else
      typedef typename _Alloc_traits::pointer		_Ptr;
      typedef typename _Alloc_traits::const_pointer	_Ptr_const;
#endif

      typedef typename _Alloc_traits::template rebind<_Ptr>::other
	_Map_alloc_type;
      typedef __gnu_cxx::__alloc_traits<_Map_alloc_type> _Map_alloc_traits;

      typedef _Alloc		  allocator_type;

      allocator_type
      get_allocator() const _GLIBCXX_NOEXCEPT
      { return allocator_type(_M_get_Tp_allocator()); }

      typedef _Deque_iterator<_Tp, _Tp&, _Ptr>	  iterator;
      typedef _Deque_iterator<_Tp, const _Tp&, _Ptr_const>   const_iterator;

      _Deque_base()
      : _M_impl()
      { _M_initialize_map(0); }

      _Deque_base(size_t __num_elements)
      : _M_impl()
      { _M_initialize_map(__num_elements); }

      _Deque_base(const allocator_type& __a, size_t __num_elements)
      : _M_impl(__a)
      { _M_initialize_map(__num_elements); }

      _Deque_base(const allocator_type& __a)
      : _M_impl(__a)
      { /* Caller must initialize map. */ }

#if __cplusplus >= 201103L
      _Deque_base(_Deque_base&& __x)
      : _M_impl(std::move(__x._M_get_Tp_allocator()))
      {
	_M_initialize_map(0);
	if (__x._M_impl._M_map)
	  this->_M_impl._M_swap_data(__x._M_impl);
      }

      _Deque_base(_Deque_base&& __x, const allocator_type& __a)
      : _M_impl(std::move(__x._M_impl), _Tp_alloc_type(__a))
      { __x._M_initialize_map(0); }

      _Deque_base(_Deque_base&& __x, const allocator_type& __a, size_t __n)
      : _M_impl(__a)
      {
	if (__x.get_allocator() == __a)
	  {
	    if (__x._M_impl._M_map)
	      {
		_M_initialize_map(0);
		this->_M_impl._M_swap_data(__x._M_impl);
	      }
	  }
	else
	  {
	    _M_initialize_map(__n);
	  }
      }
#endif

      ~_Deque_base() _GLIBCXX_NOEXCEPT;

      typedef typename iterator::_Map_pointer _Map_pointer;

      struct _Deque_impl_data
      {
	_Map_pointer _M_map;
	size_t _M_map_size;
	iterator _M_start;
	iterator _M_finish;

	_Deque_impl_data() _GLIBCXX_NOEXCEPT
	: _M_map(), _M_map_size(), _M_start(), _M_finish()
	{ }

#if __cplusplus >= 201103L
	_Deque_impl_data(const _Deque_impl_data&) = default;
	_Deque_impl_data&
	operator=(const _Deque_impl_data&) = default;

	_Deque_impl_data(_Deque_impl_data&& __x) noexcept
	: _Deque_impl_data(__x)
	{ __x = _Deque_impl_data(); }
#endif

	void
	_M_swap_data(_Deque_impl_data& __x) _GLIBCXX_NOEXCEPT
	{
	  // Do not use std::swap(_M_start, __x._M_start), etc as it loses
	  // information used by TBAA.
	  std::swap(*this, __x);
	}
      };

      // This struct encapsulates the implementation of the std::deque
      // standard container and at the same time makes use of the EBO
      // for empty allocators.
      struct _Deque_impl
      : public _Tp_alloc_type, public _Deque_impl_data
      {
	_Deque_impl() _GLIBCXX_NOEXCEPT_IF(
	  is_nothrow_default_constructible<_Tp_alloc_type>::value)
	: _Tp_alloc_type()
	{ }

	_Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
	: _Tp_alloc_type(__a)
	{ }

#if __cplusplus >= 201103L
	_Deque_impl(_Deque_impl&&) = default;

	_Deque_impl(_Tp_alloc_type&& __a) noexcept
	: _Tp_alloc_type(std::move(__a))
	{ }

	_Deque_impl(_Deque_impl&& __d, _Tp_alloc_type&& __a)
	: _Tp_alloc_type(std::move(__a)), _Deque_impl_data(std::move(__d))
	{ }
#endif
      };

      _Tp_alloc_type&
      _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
      { return this->_M_impl; }

      const _Tp_alloc_type&
      _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl; }

      _Map_alloc_type
      _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
      { return _Map_alloc_type(_M_get_Tp_allocator()); }

      _Ptr
      _M_allocate_node()
      {
	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
	return _Traits::allocate(_M_impl, __deque_buf_size(sizeof(_Tp)));
      }

      void
      _M_deallocate_node(_Ptr __p) _GLIBCXX_NOEXCEPT
      {
	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
	_Traits::deallocate(_M_impl, __p, __deque_buf_size(sizeof(_Tp)));
      }

      _Map_pointer
      _M_allocate_map(size_t __n)
      {
	_Map_alloc_type __map_alloc = _M_get_map_allocator();
	return _Map_alloc_traits::allocate(__map_alloc, __n);
      }

      void
      _M_deallocate_map(_Map_pointer __p, size_t __n) _GLIBCXX_NOEXCEPT
      {
	_Map_alloc_type __map_alloc = _M_get_map_allocator();
	_Map_alloc_traits::deallocate(__map_alloc, __p, __n);
      }

      void _M_initialize_map(size_t);
      void _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish);
      void _M_destroy_nodes(_Map_pointer __nstart,
			    _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT;
      enum { _S_initial_map_size = 8 };

      _Deque_impl _M_impl;
    };

  template<typename _Tp, typename _Alloc>
    _Deque_base<_Tp, _Alloc>::
    ~_Deque_base() _GLIBCXX_NOEXCEPT
    {
      if (this->_M_impl._M_map)
	{
	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
			   this->_M_impl._M_finish._M_node + 1);
	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
	}
    }

  /**
   *  @brief Layout storage.
   *  @param  __num_elements  The count of T's for which to allocate space
   *                          at first.
   *  @return   Nothing.
   *
   *  The initial underlying memory layout is a bit complicated...
  */
  template<typename _Tp, typename _Alloc>
    void
    _Deque_base<_Tp, _Alloc>::
    _M_initialize_map(size_t __num_elements)
    {
      const size_t __num_nodes = (__num_elements / __deque_buf_size(sizeof(_Tp))
				  + 1);

      this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
					   size_t(__num_nodes + 2));
      this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);

      // For "small" maps (needing less than _M_map_size nodes), allocation
      // starts in the middle elements and grows outwards.  So nstart may be
      // the beginning of _M_map, but for small maps it may be as far in as
      // _M_map+3.

      _Map_pointer __nstart = (this->_M_impl._M_map
			       + (this->_M_impl._M_map_size - __num_nodes) / 2);
      _Map_pointer __nfinish = __nstart + __num_nodes;

      __try
	{ _M_create_nodes(__nstart, __nfinish); }
      __catch(...)
	{
	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
	  this->_M_impl._M_map = _Map_pointer();
	  this->_M_impl._M_map_size = 0;
	  __throw_exception_again;
	}

      this->_M_impl._M_start._M_set_node(__nstart);
      this->_M_impl._M_finish._M_set_node(__nfinish - 1);
      this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
      this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
					+ __num_elements
					% __deque_buf_size(sizeof(_Tp)));
    }

  template<typename _Tp, typename _Alloc>
    void
    _Deque_base<_Tp, _Alloc>::
    _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish)
    {
      _Map_pointer __cur;
      __try
	{
	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
	    *__cur = this->_M_allocate_node();
	}
      __catch(...)
	{
	  _M_destroy_nodes(__nstart, __cur);
	  __throw_exception_again;
	}
    }

  template<typename _Tp, typename _Alloc>
    void
    _Deque_base<_Tp, _Alloc>::
    _M_destroy_nodes(_Map_pointer __nstart,
		     _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT
    {
      for (_Map_pointer __n = __nstart; __n < __nfinish; ++__n)
	_M_deallocate_node(*__n);
    }

  /**
   *  @brief  A standard container using fixed-size memory allocation and
   *  constant-time manipulation of elements at either end.
   *
   *  @ingroup sequences
   *
   *  @tparam _Tp  Type of element.
   *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and a
   *  <a href="tables.html#67">sequence</a>, including the
   *  <a href="tables.html#68">optional sequence requirements</a>.
   *
   *  In previous HP/SGI versions of deque, there was an extra template
   *  parameter so users could control the node size.  This extension turned
   *  out to violate the C++ standard (it can be detected using template
   *  template parameters), and it was removed.
   *
   *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
   *
   *  - Tp**        _M_map
   *  - size_t      _M_map_size
   *  - iterator    _M_start, _M_finish
   *
   *  map_size is at least 8.  %map is an array of map_size
   *  pointers-to-@a nodes.  (The name %map has nothing to do with the
   *  std::map class, and @b nodes should not be confused with
   *  std::list's usage of @a node.)
   *
   *  A @a node has no specific type name as such, but it is referred
   *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
   *  is very large, there will be one Tp element per node (i.e., an
   *  @a array of one).  For non-huge Tp's, node size is inversely
   *  related to Tp size: the larger the Tp, the fewer Tp's will fit
   *  in a node.  The goal here is to keep the total size of a node
   *  relatively small and constant over different Tp's, to improve
   *  allocator efficiency.
   *
   *  Not every pointer in the %map array will point to a node.  If
   *  the initial number of elements in the deque is small, the
   *  /middle/ %map pointers will be valid, and the ones at the edges
   *  will be unused.  This same situation will arise as the %map
   *  grows: available %map pointers, if any, will be on the ends.  As
   *  new nodes are created, only a subset of the %map's pointers need
   *  to be copied @a outward.
   *
   *  Class invariants:
   * - For any nonsingular iterator i:
   *    - i.node points to a member of the %map array.  (Yes, you read that
   *      correctly:  i.node does not actually point to a node.)  The member of
   *      the %map array is what actually points to the node.
   *    - i.first == *(i.node)    (This points to the node (first Tp element).)
   *    - i.last  == i.first + node_size
   *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
   *      the implication of this is that i.cur is always a dereferenceable
   *      pointer, even if i is a past-the-end iterator.
   * - Start and Finish are always nonsingular iterators.  NOTE: this
   * means that an empty deque must have one node, a deque with <N
   * elements (where N is the node buffer size) must have one node, a
   * deque with N through (2N-1) elements must have two nodes, etc.
   * - For every node other than start.node and finish.node, every
   * element in the node is an initialized object.  If start.node ==
   * finish.node, then [start.cur, finish.cur) are initialized
   * objects, and the elements outside that range are uninitialized
   * storage.  Otherwise, [start.cur, start.last) and [finish.first,
   * finish.cur) are initialized objects, and [start.first, start.cur)
   * and [finish.cur, finish.last) are uninitialized storage.
   * - [%map, %map + map_size) is a valid, non-empty range.
   * - [start.node, finish.node] is a valid range contained within
   *   [%map, %map + map_size).
   * - A pointer in the range [%map, %map + map_size) points to an allocated
   *   node if and only if the pointer is in the range
   *   [start.node, finish.node].
   *
   *  Here's the magic:  nothing in deque is @b aware of the discontiguous
   *  storage!
   *
   *  The memory setup and layout occurs in the parent, _Base, and the iterator
   *  class is entirely responsible for @a leaping from one node to the next.
   *  All the implementation routines for deque itself work only through the
   *  start and finish iterators.  This keeps the routines simple and sane,
   *  and we can use other standard algorithms as well.
  */
  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
    class deque : protected _Deque_base<_Tp, _Alloc>
    {
#ifdef _GLIBCXX_CONCEPT_CHECKS
      // concept requirements
      typedef typename _Alloc::value_type	_Alloc_value_type;
# if __cplusplus < 201103L
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif
      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
#endif

#if __cplusplus >= 201103L
      static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,
	  "std::deque must have a non-const, non-volatile value_type");
# if __cplusplus > 201703L || defined __STRICT_ANSI__
      static_assert(is_same<typename _Alloc::value_type, _Tp>::value,
	  "std::deque must have the same value_type as its allocator");
# endif
#endif

      typedef _Deque_base<_Tp, _Alloc>			_Base;
      typedef typename _Base::_Tp_alloc_type		_Tp_alloc_type;
      typedef typename _Base::_Alloc_traits		_Alloc_traits;
      typedef typename _Base::_Map_pointer		_Map_pointer;

    public:
      typedef _Tp					value_type;
      typedef typename _Alloc_traits::pointer		pointer;
      typedef typename _Alloc_traits::const_pointer	const_pointer;
      typedef typename _Alloc_traits::reference		reference;
      typedef typename _Alloc_traits::const_reference	const_reference;
      typedef typename _Base::iterator			iterator;
      typedef typename _Base::const_iterator		const_iterator;
      typedef std::reverse_iterator<const_iterator>	const_reverse_iterator;
      typedef std::reverse_iterator<iterator>		reverse_iterator;
      typedef size_t					size_type;
      typedef ptrdiff_t					difference_type;
      typedef _Alloc					allocator_type;

    private:
      static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
      { return __deque_buf_size(sizeof(_Tp)); }

      // Functions controlling memory layout, and nothing else.
      using _Base::_M_initialize_map;
      using _Base::_M_create_nodes;
      using _Base::_M_destroy_nodes;
      using _Base::_M_allocate_node;
      using _Base::_M_deallocate_node;
      using _Base::_M_allocate_map;
      using _Base::_M_deallocate_map;
      using _Base::_M_get_Tp_allocator;

      /**
       *  A total of four data members accumulated down the hierarchy.
       *  May be accessed via _M_impl.*
       */
      using _Base::_M_impl;

    public:
      // [23.2.1.1] construct/copy/destroy
      // (assign() and get_allocator() are also listed in this section)

      /**
       *  @brief  Creates a %deque with no elements.
       */
#if __cplusplus >= 201103L
      deque() = default;
#else
      deque() { }
#endif

      /**
       *  @brief  Creates a %deque with no elements.
       *  @param  __a  An allocator object.
       */
      explicit
      deque(const allocator_type& __a)
      : _Base(__a, 0) { }

#if __cplusplus >= 201103L
      /**
       *  @brief  Creates a %deque with default constructed elements.
       *  @param  __n  The number of elements to initially create.
       *  @param  __a  An allocator.
       *
       *  This constructor fills the %deque with @a n default
       *  constructed elements.
       */
      explicit
      deque(size_type __n, const allocator_type& __a = allocator_type())
      : _Base(__a, _S_check_init_len(__n, __a))
      { _M_default_initialize(); }

      /**
       *  @brief  Creates a %deque with copies of an exemplar element.
       *  @param  __n  The number of elements to initially create.
       *  @param  __value  An element to copy.
       *  @param  __a  An allocator.
       *
       *  This constructor fills the %deque with @a __n copies of @a __value.
       */
      deque(size_type __n, const value_type& __value,
	    const allocator_type& __a = allocator_type())
      : _Base(__a, _S_check_init_len(__n, __a))
      { _M_fill_initialize(__value); }
#else
      /**
       *  @brief  Creates a %deque with copies of an exemplar element.
       *  @param  __n  The number of elements to initially create.
       *  @param  __value  An element to copy.
       *  @param  __a  An allocator.
       *
       *  This constructor fills the %deque with @a __n copies of @a __value.
       */
      explicit
      deque(size_type __n, const value_type& __value = value_type(),
	    const allocator_type& __a = allocator_type())
      : _Base(__a, _S_check_init_len(__n, __a))
      { _M_fill_initialize(__value); }
#endif

      /**
       *  @brief  %Deque copy constructor.
       *  @param  __x  A %deque of identical element and allocator types.
       *
       *  The newly-created %deque uses a copy of the allocator object used
       *  by @a __x (unless the allocator traits dictate a different object).
       */
      deque(const deque& __x)
      : _Base(_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()),
	      __x.size())
      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
				    this->_M_impl._M_start,
				    _M_get_Tp_allocator()); }

#if __cplusplus >= 201103L
      /**
       *  @brief  %Deque move constructor.
       *
       *  The newly-created %deque contains the exact contents of the
       *  moved instance.
       *  The contents of the moved instance are a valid, but unspecified
       *  %deque.
       */
      deque(deque&&) = default;

      /// Copy constructor with alternative allocator
      deque(const deque& __x, const allocator_type& __a)
      : _Base(__a, __x.size())
      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
				    this->_M_impl._M_start,
				    _M_get_Tp_allocator()); }

      /// Move constructor with alternative allocator
      deque(deque&& __x, const allocator_type& __a)
      : deque(std::move(__x), __a, typename _Alloc_traits::is_always_equal{})
      { }

    private:
      deque(deque&& __x, const allocator_type& __a, true_type)
      : _Base(std::move(__x), __a)
      { }

      deque(deque&& __x, const allocator_type& __a, false_type)
      : _Base(std::move(__x), __a, __x.size())
      {
	if (__x.get_allocator() != __a && !__x.empty())
	  {
	    std::__uninitialized_move_a(__x.begin(), __x.end(),
					this->_M_impl._M_start,
					_M_get_Tp_allocator());
	    __x.clear();
	  }
      }

    public:
      /**
       *  @brief  Builds a %deque from an initializer list.
       *  @param  __l  An initializer_list.
       *  @param  __a  An allocator object.
       *
       *  Create a %deque consisting of copies of the elements in the
       *  initializer_list @a __l.
       *
       *  This will call the element type's copy constructor N times
       *  (where N is __l.size()) and do no memory reallocation.
       */
      deque(initializer_list<value_type> __l,
	    const allocator_type& __a = allocator_type())
      : _Base(__a)
      {
	_M_range_initialize(__l.begin(), __l.end(),
			    random_access_iterator_tag());
      }
#endif

      /**
       *  @brief  Builds a %deque from a range.
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *  @param  __a  An allocator object.
       *
       *  Create a %deque consisting of copies of the elements from [__first,
       *  __last).
       *
       *  If the iterators are forward, bidirectional, or random-access, then
       *  this will call the elements' copy constructor N times (where N is
       *  distance(__first,__last)) and do no memory reallocation.  But if only
       *  input iterators are used, then this will do at most 2N calls to the
       *  copy constructor, and logN memory reallocations.
       */
#if __cplusplus >= 201103L
      template<typename _InputIterator,
	       typename = std::_RequireInputIter<_InputIterator>>
	deque(_InputIterator __first, _InputIterator __last,
	      const allocator_type& __a = allocator_type())
	: _Base(__a)
	{
	  _M_range_initialize(__first, __last,
			      std::__iterator_category(__first));
	}
#else
      template<typename _InputIterator>
	deque(_InputIterator __first, _InputIterator __last,
	      const allocator_type& __a = allocator_type())
	: _Base(__a)
	{
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_initialize_dispatch(__first, __last, _Integral());
	}
#endif

      /**
       *  The dtor only erases the elements, and note that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibility.
       */
      ~deque()
      { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }

      /**
       *  @brief  %Deque assignment operator.
       *  @param  __x  A %deque of identical element and allocator types.
       *
       *  All the elements of @a x are copied.
       *
       *  The newly-created %deque uses a copy of the allocator object used
       *  by @a __x (unless the allocator traits dictate a different object).
       */
      deque&
      operator=(const deque& __x);

#if __cplusplus >= 201103L
      /**
       *  @brief  %Deque move assignment operator.
       *  @param  __x  A %deque of identical element and allocator types.
       *
       *  The contents of @a __x are moved into this deque (without copying,
       *  if the allocators permit it).
       *  @a __x is a valid, but unspecified %deque.
       */
      deque&
      operator=(deque&& __x) noexcept(_Alloc_traits::_S_always_equal())
      {
	using __always_equal = typename _Alloc_traits::is_always_equal;
	_M_move_assign1(std::move(__x), __always_equal{});
	return *this;
      }

      /**
       *  @brief  Assigns an initializer list to a %deque.
       *  @param  __l  An initializer_list.
       *
       *  This function fills a %deque with copies of the elements in the
       *  initializer_list @a __l.
       *
       *  Note that the assignment completely changes the %deque and that the
       *  resulting %deque's size is the same as the number of elements
       *  assigned.
       */
      deque&
      operator=(initializer_list<value_type> __l)
      {
	_M_assign_aux(__l.begin(), __l.end(),
		      random_access_iterator_tag());
	return *this;
      }
#endif

      /**
       *  @brief  Assigns a given value to a %deque.
       *  @param  __n  Number of elements to be assigned.
       *  @param  __val  Value to be assigned.
       *
       *  This function fills a %deque with @a n copies of the given
       *  value.  Note that the assignment completely changes the
       *  %deque and that the resulting %deque's size is the same as
       *  the number of elements assigned.
       */
      void
      assign(size_type __n, const value_type& __val)
      { _M_fill_assign(__n, __val); }

      /**
       *  @brief  Assigns a range to a %deque.
       *  @param  __first  An input iterator.
       *  @param  __last   An input iterator.
       *
       *  This function fills a %deque with copies of the elements in the
       *  range [__first,__last).
       *
       *  Note that the assignment completely changes the %deque and that the
       *  resulting %deque's size is the same as the number of elements
       *  assigned.
       */
#if __cplusplus >= 201103L
      template<typename _InputIterator,
	       typename = std::_RequireInputIter<_InputIterator>>
	void
	assign(_InputIterator __first, _InputIterator __last)
	{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
#else
      template<typename _InputIterator>
	void
	assign(_InputIterator __first, _InputIterator __last)
	{
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_assign_dispatch(__first, __last, _Integral());
	}
#endif

#if __cplusplus >= 201103L
      /**
       *  @brief  Assigns an initializer list to a %deque.
       *  @param  __l  An initializer_list.
       *
       *  This function fills a %deque with copies of the elements in the
       *  initializer_list @a __l.
       *
       *  Note that the assignment completely changes the %deque and that the
       *  resulting %deque's size is the same as the number of elements
       *  assigned.
       */
      void
      assign(initializer_list<value_type> __l)
      { _M_assign_aux(__l.begin(), __l.end(), random_access_iterator_tag()); }
#endif

      /// Get a copy of the memory allocation object.
      allocator_type
      get_allocator() const _GLIBCXX_NOEXCEPT
      { return _Base::get_allocator(); }

      // iterators
      /**
       *  Returns a read/write iterator that points to the first element in the
       *  %deque.  Iteration is done in ordinary element order.
       */
      iterator
      begin() _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_start; }

      /**
       *  Returns a read-only (constant) iterator that points to the first
       *  element in the %deque.  Iteration is done in ordinary element order.
       */
      const_iterator
      begin() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_start; }

      /**
       *  Returns a read/write iterator that points one past the last
       *  element in the %deque.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      end() _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish; }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %deque.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      end() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish; }

      /**
       *  Returns a read/write reverse iterator that points to the
       *  last element in the %deque.  Iteration is done in reverse
       *  element order.
       */
      reverse_iterator
      rbegin() _GLIBCXX_NOEXCEPT
      { return reverse_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %deque.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      rbegin() const _GLIBCXX_NOEXCEPT
      { return const_reverse_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read/write reverse iterator that points to one
       *  before the first element in the %deque.  Iteration is done
       *  in reverse element order.
       */
      reverse_iterator
      rend() _GLIBCXX_NOEXCEPT
      { return reverse_iterator(this->_M_impl._M_start); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %deque.  Iteration is
       *  done in reverse element order.
       */
      const_reverse_iterator
      rend() const _GLIBCXX_NOEXCEPT
      { return const_reverse_iterator(this->_M_impl._M_start); }

#if __cplusplus >= 201103L
      /**
       *  Returns a read-only (constant) iterator that points to the first
       *  element in the %deque.  Iteration is done in ordinary element order.
       */
      const_iterator
      cbegin() const noexcept
      { return this->_M_impl._M_start; }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %deque.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      cend() const noexcept
      { return this->_M_impl._M_finish; }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %deque.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      crbegin() const noexcept
      { return const_reverse_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %deque.  Iteration is
       *  done in reverse element order.
       */
      const_reverse_iterator
      crend() const noexcept
      { return const_reverse_iterator(this->_M_impl._M_start); }
#endif

      // [23.2.1.2] capacity
      /**  Returns the number of elements in the %deque.  */
      size_type
      size() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish - this->_M_impl._M_start; }

      /**  Returns the size() of the largest possible %deque.  */
      size_type
      max_size() const _GLIBCXX_NOEXCEPT
      { return _S_max_size(_M_get_Tp_allocator()); }

#if __cplusplus >= 201103L
      /**
       *  @brief  Resizes the %deque to the specified number of elements.
       *  @param  __new_size  Number of elements the %deque should contain.
       *
       *  This function will %resize the %deque to the specified
       *  number of elements.  If the number is smaller than the
       *  %deque's current size the %deque is truncated, otherwise
       *  default constructed elements are appended.
       */
      void
      resize(size_type __new_size)
      {
	const size_type __len = size();
	if (__new_size > __len)
	  _M_default_append(__new_size - __len);
	else if (__new_size < __len)
	  _M_erase_at_end(this->_M_impl._M_start
			  + difference_type(__new_size));
      }

      /**
       *  @brief  Resizes the %deque to the specified number of elements.
       *  @param  __new_size  Number of elements the %deque should contain.
       *  @param  __x  Data with which new elements should be populated.
       *
       *  This function will %resize the %deque to the specified
       *  number of elements.  If the number is smaller than the
       *  %deque's current size the %deque is truncated, otherwise the
       *  %deque is extended and new elements are populated with given
       *  data.
       */
      void
      resize(size_type __new_size, const value_type& __x)
#else
      /**
       *  @brief  Resizes the %deque to the specified number of elements.
       *  @param  __new_size  Number of elements the %deque should contain.
       *  @param  __x  Data with which new elements should be populated.
       *
       *  This function will %resize the %deque to the specified
       *  number of elements.  If the number is smaller than the
       *  %deque's current size the %deque is truncated, otherwise the
       *  %deque is extended and new elements are populated with given
       *  data.
       */
      void
      resize(size_type __new_size, value_type __x = value_type())
#endif
      {
	const size_type __len = size();
	if (__new_size > __len)
	  _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);
	else if (__new_size < __len)
	  _M_erase_at_end(this->_M_impl._M_start
			  + difference_type(__new_size));
      }

#if __cplusplus >= 201103L
      /**  A non-binding request to reduce memory use.  */
      void
      shrink_to_fit() noexcept
      { _M_shrink_to_fit(); }
#endif

      /**
       *  Returns true if the %deque is empty.  (Thus begin() would
       *  equal end().)
       */
      _GLIBCXX_NODISCARD bool
      empty() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish == this->_M_impl._M_start; }

      // element access
      /**
       *  @brief Subscript access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      reference
      operator[](size_type __n) _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_subscript(__n);
	return this->_M_impl._M_start[difference_type(__n)];
      }

      /**
       *  @brief Subscript access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      const_reference
      operator[](size_type __n) const _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_subscript(__n);
	return this->_M_impl._M_start[difference_type(__n)];
      }

    protected:
      /// Safety check used only from at().
      void
      _M_range_check(size_type __n) const
      {
	if (__n >= this->size())
	  __throw_out_of_range_fmt(__N("deque::_M_range_check: __n "
				       "(which is %zu)>= this->size() "
				       "(which is %zu)"),
				   __n, this->size());
      }

    public:
      /**
       *  @brief  Provides access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *  @throw  std::out_of_range  If @a __n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the deque.  The
       *  function throws out_of_range if the check fails.
       */
      reference
      at(size_type __n)
      {
	_M_range_check(__n);
	return (*this)[__n];
      }

      /**
       *  @brief  Provides access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *  @throw  std::out_of_range  If @a __n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter is first
       *  checked that it is in the range of the deque.  The function throws
       *  out_of_range if the check fails.
       */
      const_reference
      at(size_type __n) const
      {
	_M_range_check(__n);
	return (*this)[__n];
      }

      /**
       *  Returns a read/write reference to the data at the first
       *  element of the %deque.
       */
      reference
      front() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	return *begin();
      }

      /**
       *  Returns a read-only (constant) reference to the data at the first
       *  element of the %deque.
       */
      const_reference
      front() const _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	return *begin();
      }

      /**
       *  Returns a read/write reference to the data at the last element of the
       *  %deque.
       */
      reference
      back() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	iterator __tmp = end();
	--__tmp;
	return *__tmp;
      }

      /**
       *  Returns a read-only (constant) reference to the data at the last
       *  element of the %deque.
       */
      const_reference
      back() const _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	const_iterator __tmp = end();
	--__tmp;
	return *__tmp;
      }

      // [23.2.1.2] modifiers
      /**
       *  @brief  Add data to the front of the %deque.
       *  @param  __x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an
       *  element at the front of the %deque and assigns the given
       *  data to it.  Due to the nature of a %deque this operation
       *  can be done in constant time.
       */
      void
      push_front(const value_type& __x)
      {
	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
	  {
	    _Alloc_traits::construct(this->_M_impl,
				     this->_M_impl._M_start._M_cur - 1,
				     __x);
	    --this->_M_impl._M_start._M_cur;
	  }
	else
	  _M_push_front_aux(__x);
      }

#if __cplusplus >= 201103L
      void
      push_front(value_type&& __x)
      { emplace_front(std::move(__x)); }

      template<typename... _Args>
#if __cplusplus > 201402L
	reference
#else
	void
#endif
	emplace_front(_Args&&... __args);
#endif

      /**
       *  @brief  Add data to the end of the %deque.
       *  @param  __x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an
       *  element at the end of the %deque and assigns the given data
       *  to it.  Due to the nature of a %deque this operation can be
       *  done in constant time.
       */
      void
      push_back(const value_type& __x)
      {
	if (this->_M_impl._M_finish._M_cur
	    != this->_M_impl._M_finish._M_last - 1)
	  {
	    _Alloc_traits::construct(this->_M_impl,
				     this->_M_impl._M_finish._M_cur, __x);
	    ++this->_M_impl._M_finish._M_cur;
	  }
	else
	  _M_push_back_aux(__x);
      }

#if __cplusplus >= 201103L
      void
      push_back(value_type&& __x)
      { emplace_back(std::move(__x)); }

      template<typename... _Args>
#if __cplusplus > 201402L
	reference
#else
	void
#endif
	emplace_back(_Args&&... __args);
#endif

      /**
       *  @brief  Removes first element.
       *
       *  This is a typical stack operation.  It shrinks the %deque by one.
       *
       *  Note that no data is returned, and if the first element's data is
       *  needed, it should be retrieved before pop_front() is called.
       */
      void
      pop_front() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	if (this->_M_impl._M_start._M_cur
	    != this->_M_impl._M_start._M_last - 1)
	  {
	    _Alloc_traits::destroy(_M_get_Tp_allocator(),
				   this->_M_impl._M_start._M_cur);
	    ++this->_M_impl._M_start._M_cur;
	  }
	else
	  _M_pop_front_aux();
      }

      /**
       *  @brief  Removes last element.
       *
       *  This is a typical stack operation.  It shrinks the %deque by one.
       *
       *  Note that no data is returned, and if the last element's data is
       *  needed, it should be retrieved before pop_back() is called.
       */
      void
      pop_back() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	if (this->_M_impl._M_finish._M_cur
	    != this->_M_impl._M_finish._M_first)
	  {
	    --this->_M_impl._M_finish._M_cur;
	    _Alloc_traits::destroy(_M_get_Tp_allocator(),
				   this->_M_impl._M_finish._M_cur);
	  }
	else
	  _M_pop_back_aux();
      }

#if __cplusplus >= 201103L
      /**
       *  @brief  Inserts an object in %deque before specified iterator.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __args  Arguments.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert an object of type T constructed
       *  with T(std::forward<Args>(args)...) before the specified location.
       */
      template<typename... _Args>
	iterator
	emplace(const_iterator __position, _Args&&... __args);

      /**
       *  @brief  Inserts given value into %deque before specified iterator.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before the
       *  specified location.
       */
      iterator
      insert(const_iterator __position, const value_type& __x);
#else
      /**
       *  @brief  Inserts given value into %deque before specified iterator.
       *  @param  __position  An iterator into the %deque.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before the
       *  specified location.
       */
      iterator
      insert(iterator __position, const value_type& __x);
#endif

#if __cplusplus >= 201103L
      /**
       *  @brief  Inserts given rvalue into %deque before specified iterator.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given rvalue before the
       *  specified location.
       */
      iterator
      insert(const_iterator __position, value_type&& __x)
      { return emplace(__position, std::move(__x)); }

      /**
       *  @brief  Inserts an initializer list into the %deque.
       *  @param  __p  An iterator into the %deque.
       *  @param  __l  An initializer_list.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert copies of the data in the
       *  initializer_list @a __l into the %deque before the location
       *  specified by @a __p.  This is known as <em>list insert</em>.
       */
      iterator
      insert(const_iterator __p, initializer_list<value_type> __l)
      {
	auto __offset = __p - cbegin();
	_M_range_insert_aux(__p._M_const_cast(), __l.begin(), __l.end(),
			    std::random_access_iterator_tag());
	return begin() + __offset;
      }

      /**
       *  @brief  Inserts a number of copies of given data into the %deque.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __n  Number of elements to be inserted.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a specified number of copies of the given
       *  data before the location specified by @a __position.
       */
      iterator
      insert(const_iterator __position, size_type __n, const value_type& __x)
      {
	difference_type __offset = __position - cbegin();
	_M_fill_insert(__position._M_const_cast(), __n, __x);
	return begin() + __offset;
      }
#else
      /**
       *  @brief  Inserts a number of copies of given data into the %deque.
       *  @param  __position  An iterator into the %deque.
       *  @param  __n  Number of elements to be inserted.
       *  @param  __x  Data to be inserted.
       *
       *  This function will insert a specified number of copies of the given
       *  data before the location specified by @a __position.
       */
      void
      insert(iterator __position, size_type __n, const value_type& __x)
      { _M_fill_insert(__position, __n, __x); }
#endif

#if __cplusplus >= 201103L
      /**
       *  @brief  Inserts a range into the %deque.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __first  An input iterator.
       *  @param  __last   An input iterator.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert copies of the data in the range
       *  [__first,__last) into the %deque before the location specified
       *  by @a __position.  This is known as <em>range insert</em>.
       */
      template<typename _InputIterator,
	       typename = std::_RequireInputIter<_InputIterator>>
	iterator
	insert(const_iterator __position, _InputIterator __first,
	       _InputIterator __last)
	{
	  difference_type __offset = __position - cbegin();
	  _M_range_insert_aux(__position._M_const_cast(), __first, __last,
			      std::__iterator_category(__first));
	  return begin() + __offset;
	}
#else
      /**
       *  @brief  Inserts a range into the %deque.
       *  @param  __position  An iterator into the %deque.
       *  @param  __first  An input iterator.
       *  @param  __last   An input iterator.
       *
       *  This function will insert copies of the data in the range
       *  [__first,__last) into the %deque before the location specified
       *  by @a __position.  This is known as <em>range insert</em>.
       */
      template<typename _InputIterator>
	void
	insert(iterator __position, _InputIterator __first,
	       _InputIterator __last)
	{
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_insert_dispatch(__position, __first, __last, _Integral());
	}
#endif

      /**
       *  @brief  Remove element at given position.
       *  @param  __position  Iterator pointing to element to be erased.
       *  @return  An iterator pointing to the next element (or end()).
       *
       *  This function will erase the element at the given position and thus
       *  shorten the %deque by one.
       *
       *  The user is cautioned that
       *  this function only erases the element, and that if the element is
       *  itself a pointer, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibility.
       */
      iterator
#if __cplusplus >= 201103L
      erase(const_iterator __position)
#else
      erase(iterator __position)
#endif
      { return _M_erase(__position._M_const_cast()); }

      /**
       *  @brief  Remove a range of elements.
       *  @param  __first  Iterator pointing to the first element to be erased.
       *  @param  __last  Iterator pointing to one past the last element to be
       *                erased.
       *  @return  An iterator pointing to the element pointed to by @a last
       *           prior to erasing (or end()).
       *
       *  This function will erase the elements in the range
       *  [__first,__last) and shorten the %deque accordingly.
       *
       *  The user is cautioned that
       *  this function only erases the elements, and that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibility.
       */
      iterator
#if __cplusplus >= 201103L
      erase(const_iterator __first, const_iterator __last)
#else
      erase(iterator __first, iterator __last)
#endif
      { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }

      /**
       *  @brief  Swaps data with another %deque.
       *  @param  __x  A %deque of the same element and allocator types.
       *
       *  This exchanges the elements between two deques in constant time.
       *  (Four pointers, so it should be quite fast.)
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(d1,d2) will feed to this function.
       *
       *  Whether the allocators are swapped depends on the allocator traits.
       */
      void
      swap(deque& __x) _GLIBCXX_NOEXCEPT
      {
#if __cplusplus >= 201103L
	__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
			 || _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
#endif
	_M_impl._M_swap_data(__x._M_impl);
	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
				  __x._M_get_Tp_allocator());
      }

      /**
       *  Erases all the elements.  Note that this function only erases the
       *  elements, and that if the elements themselves are pointers, the
       *  pointed-to memory is not touched in any way.  Managing the pointer is
       *  the user's responsibility.
       */
      void
      clear() _GLIBCXX_NOEXCEPT
      { _M_erase_at_end(begin()); }

    protected:
      // Internal constructor functions follow.

#if __cplusplus < 201103L
      // called by the range constructor to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
	void
	_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
	{
	  _M_initialize_map(_S_check_init_len(static_cast<size_type>(__n),
					      _M_get_Tp_allocator()));
	  _M_fill_initialize(__x);
	}

      // called by the range constructor to implement [23.1.1]/9
      template<typename _InputIterator>
	void
	_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
			       __false_type)
	{
	  _M_range_initialize(__first, __last,
			      std::__iterator_category(__first));
	}
#endif

      static size_t
      _S_check_init_len(size_t __n, const allocator_type& __a)
      {
	if (__n > _S_max_size(__a))
	  __throw_length_error(
	      __N("cannot create std::deque larger than max_size()"));
	return __n;
      }

      static size_type
      _S_max_size(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
      {
	const size_t __diffmax = __gnu_cxx::__numeric_traits<ptrdiff_t>::__max;
	const size_t __allocmax = _Alloc_traits::max_size(__a);
	return (std::min)(__diffmax, __allocmax);
      }

      // called by the second initialize_dispatch above
      ///@{
      /**
       *  @brief Fills the deque with whatever is in [first,last).
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *  @return   Nothing.
       *
       *  If the iterators are actually forward iterators (or better), then the
       *  memory layout can be done all at once.  Else we move forward using
       *  push_back on each value from the iterator.
       */
      template<typename _InputIterator>
	void
	_M_range_initialize(_InputIterator __first, _InputIterator __last,
			    std::input_iterator_tag);

      // called by the second initialize_dispatch above
      template<typename _ForwardIterator>
	void
	_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
			    std::forward_iterator_tag);
      ///@}

      /**
       *  @brief Fills the %deque with copies of value.
       *  @param  __value  Initial value.
       *  @return   Nothing.
       *  @pre _M_start and _M_finish have already been initialized,
       *  but none of the %deque's elements have yet been constructed.
       *
       *  This function is called only when the user provides an explicit size
       *  (with or without an explicit exemplar value).
       */
      void
      _M_fill_initialize(const value_type& __value);

#if __cplusplus >= 201103L
      // called by deque(n).
      void
      _M_default_initialize();
#endif

      // Internal assign functions follow.  The *_aux functions do the actual
      // assignment work for the range versions.

#if __cplusplus < 201103L
      // called by the range assign to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
	void
	_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
	{ _M_fill_assign(__n, __val); }

      // called by the range assign to implement [23.1.1]/9
      template<typename _InputIterator>
	void
	_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
			   __false_type)
	{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
#endif

      // called by the second assign_dispatch above
      template<typename _InputIterator>
	void
	_M_assign_aux(_InputIterator __first, _InputIterator __last,
		      std::input_iterator_tag);

      // called by the second assign_dispatch above
      template<typename _ForwardIterator>
	void
	_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
		      std::forward_iterator_tag)
	{
	  const size_type __len = std::distance(__first, __last);
	  if (__len > size())
	    {
	      _ForwardIterator __mid = __first;
	      std::advance(__mid, size());
	      std::copy(__first, __mid, begin());
	      _M_range_insert_aux(end(), __mid, __last,
				  std::__iterator_category(__first));
	    }
	  else
	    _M_erase_at_end(std::copy(__first, __last, begin()));
	}

      // Called by assign(n,t), and the range assign when it turns out
      // to be the same thing.
      void
      _M_fill_assign(size_type __n, const value_type& __val)
      {
	if (__n > size())
	  {
	    std::fill(begin(), end(), __val);
	    _M_fill_insert(end(), __n - size(), __val);
	  }
	else
	  {
	    _M_erase_at_end(begin() + difference_type(__n));
	    std::fill(begin(), end(), __val);
	  }
      }

      ///@{
      /// Helper functions for push_* and pop_*.
#if __cplusplus < 201103L
      void _M_push_back_aux(const value_type&);

      void _M_push_front_aux(const value_type&);
#else
      template<typename... _Args>
	void _M_push_back_aux(_Args&&... __args);

      template<typename... _Args>
	void _M_push_front_aux(_Args&&... __args);
#endif

      void _M_pop_back_aux();

      void _M_pop_front_aux();
      ///@}

      // Internal insert functions follow.  The *_aux functions do the actual
      // insertion work when all shortcuts fail.

#if __cplusplus < 201103L
      // called by the range insert to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
	void
	_M_insert_dispatch(iterator __pos,
			   _Integer __n, _Integer __x, __true_type)
	{ _M_fill_insert(__pos, __n, __x); }

      // called by the range insert to implement [23.1.1]/9
      template<typename _InputIterator>
	void
	_M_insert_dispatch(iterator __pos,
			   _InputIterator __first, _InputIterator __last,
			   __false_type)
	{
	  _M_range_insert_aux(__pos, __first, __last,
			      std::__iterator_category(__first));
	}
#endif

      // called by the second insert_dispatch above
      template<typename _InputIterator>
	void
	_M_range_insert_aux(iterator __pos, _InputIterator __first,
			    _InputIterator __last, std::input_iterator_tag);

      // called by the second insert_dispatch above
      template<typename _ForwardIterator>
	void
	_M_range_insert_aux(iterator __pos, _ForwardIterator __first,
			    _ForwardIterator __last, std::forward_iterator_tag);

      // Called by insert(p,n,x), and the range insert when it turns out to be
      // the same thing.  Can use fill functions in optimal situations,
      // otherwise passes off to insert_aux(p,n,x).
      void
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);

      // called by insert(p,x)
#if __cplusplus < 201103L
      iterator
      _M_insert_aux(iterator __pos, const value_type& __x);
#else
      template<typename... _Args>
	iterator
	_M_insert_aux(iterator __pos, _Args&&... __args);
#endif

      // called by insert(p,n,x) via fill_insert
      void
      _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);

      // called by range_insert_aux for forward iterators
      template<typename _ForwardIterator>
	void
	_M_insert_aux(iterator __pos,
		      _ForwardIterator __first, _ForwardIterator __last,
		      size_type __n);


      // Internal erase functions follow.

      void
      _M_destroy_data_aux(iterator __first, iterator __last);

      // Called by ~deque().
      // NB: Doesn't deallocate the nodes.
      template<typename _Alloc1>
	void
	_M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
	{ _M_destroy_data_aux(__first, __last); }

      void
      _M_destroy_data(iterator __first, iterator __last,
		      const std::allocator<_Tp>&)
      {
	if (!__has_trivial_destructor(value_type))
	  _M_destroy_data_aux(__first, __last);
      }

      // Called by erase(q1, q2).
      void
      _M_erase_at_begin(iterator __pos)
      {
	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
	this->_M_impl._M_start = __pos;
      }

      // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
      // _M_fill_assign, operator=.
      void
      _M_erase_at_end(iterator __pos)
      {
	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
	_M_destroy_nodes(__pos._M_node + 1,
			 this->_M_impl._M_finish._M_node + 1);
	this->_M_impl._M_finish = __pos;
      }

      iterator
      _M_erase(iterator __pos);

      iterator
      _M_erase(iterator __first, iterator __last);

#if __cplusplus >= 201103L
      // Called by resize(sz).
      void
      _M_default_append(size_type __n);

      bool
      _M_shrink_to_fit();
#endif

      ///@{
      /// Memory-handling helpers for the previous internal insert functions.
      iterator
      _M_reserve_elements_at_front(size_type __n)
      {
	const size_type __vacancies = this->_M_impl._M_start._M_cur
				      - this->_M_impl._M_start._M_first;
	if (__n > __vacancies)
	  _M_new_elements_at_front(__n - __vacancies);
	return this->_M_impl._M_start - difference_type(__n);
      }

      iterator
      _M_reserve_elements_at_back(size_type __n)
      {
	const size_type __vacancies = (this->_M_impl._M_finish._M_last
				       - this->_M_impl._M_finish._M_cur) - 1;
	if (__n > __vacancies)
	  _M_new_elements_at_back(__n - __vacancies);
	return this->_M_impl._M_finish + difference_type(__n);
      }

      void
      _M_new_elements_at_front(size_type __new_elements);

      void
      _M_new_elements_at_back(size_type __new_elements);
      ///@}


      ///@{
      /**
       *  @brief Memory-handling helpers for the major %map.
       *
       *  Makes sure the _M_map has space for new nodes.  Does not
       *  actually add the nodes.  Can invalidate _M_map pointers.
       *  (And consequently, %deque iterators.)
       */
      void
      _M_reserve_map_at_back(size_type __nodes_to_add = 1)
      {
	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
	  _M_reallocate_map(__nodes_to_add, false);
      }

      void
      _M_reserve_map_at_front(size_type __nodes_to_add = 1)
      {
	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
				       - this->_M_impl._M_map))
	  _M_reallocate_map(__nodes_to_add, true);
      }

      void
      _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
      ///@}

#if __cplusplus >= 201103L
      // Constant-time, nothrow move assignment when source object's memory
      // can be moved because the allocators are equal.
      void
      _M_move_assign1(deque&& __x, /* always equal: */ true_type) noexcept
      {
	this->_M_impl._M_swap_data(__x._M_impl);
	__x.clear();
	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
      }

      // When the allocators are not equal the operation could throw, because
      // we might need to allocate a new map for __x after moving from it
      // or we might need to allocate new elements for *this.
      void
      _M_move_assign1(deque&& __x, /* always equal: */ false_type)
      {
	constexpr bool __move_storage =
	  _Alloc_traits::_S_propagate_on_move_assign();
	_M_move_assign2(std::move(__x), __bool_constant<__move_storage>());
      }

      // Destroy all elements and deallocate all memory, then replace
      // with elements created from __args.
      template<typename... _Args>
      void
      _M_replace_map(_Args&&... __args)
      {
	// Create new data first, so if allocation fails there are no effects.
	deque __newobj(std::forward<_Args>(__args)...);
	// Free existing storage using existing allocator.
	clear();
	_M_deallocate_node(*begin()._M_node); // one node left after clear()
	_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
	this->_M_impl._M_map = nullptr;
	this->_M_impl._M_map_size = 0;
	// Take ownership of replacement memory.
	this->_M_impl._M_swap_data(__newobj._M_impl);
      }

      // Do move assignment when the allocator propagates.
      void
      _M_move_assign2(deque&& __x, /* propagate: */ true_type)
      {
	// Make a copy of the original allocator state.
	auto __alloc = __x._M_get_Tp_allocator();
	// The allocator propagates so storage can be moved from __x,
	// leaving __x in a valid empty state with a moved-from allocator.
	_M_replace_map(std::move(__x));
	// Move the corresponding allocator state too.
	_M_get_Tp_allocator() = std::move(__alloc);
      }

      // Do move assignment when it may not be possible to move source
      // object's memory, resulting in a linear-time operation.
      void
      _M_move_assign2(deque&& __x, /* propagate: */ false_type)
      {
	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
	  {
	    // The allocators are equal so storage can be moved from __x,
	    // leaving __x in a valid empty state with its current allocator.
	    _M_replace_map(std::move(__x), __x.get_allocator());
	  }
	else
	  {
	    // The rvalue's allocator cannot be moved and is not equal,
	    // so we need to individually move each element.
	    _M_assign_aux(std::make_move_iterator(__x.begin()),
			  std::make_move_iterator(__x.end()),
			  std::random_access_iterator_tag());
	    __x.clear();
	  }
      }
#endif
    };

#if __cpp_deduction_guides >= 201606
  template<typename _InputIterator, typename _ValT
	     = typename iterator_traits<_InputIterator>::value_type,
	   typename _Allocator = allocator<_ValT>,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireAllocator<_Allocator>>
    deque(_InputIterator, _InputIterator, _Allocator = _Allocator())
      -> deque<_ValT, _Allocator>;
#endif

  /**
   *  @brief  Deque equality comparison.
   *  @param  __x  A %deque.
   *  @param  __y  A %deque of the same type as @a __x.
   *  @return  True iff the size and elements of the deques are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  deques.  Deques are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator==(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y)
    { return __x.size() == __y.size()
	     && std::equal(__x.begin(), __x.end(), __y.begin()); }

#if __cpp_lib_three_way_comparison
  /**
   *  @brief  Deque ordering relation.
   *  @param  __x  A `deque`.
   *  @param  __y  A `deque` of the same type as `__x`.
   *  @return  A value indicating whether `__x` is less than, equal to,
   *           greater than, or incomparable with `__y`.
   *
   *  See `std::lexicographical_compare_three_way()` for how the determination
   *  is made. This operator is used to synthesize relational operators like
   *  `<` and `>=` etc.
  */
  template<typename _Tp, typename _Alloc>
    inline __detail::__synth3way_t<_Tp>
    operator<=>(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y)
    {
      return std::lexicographical_compare_three_way(__x.begin(), __x.end(),
						    __y.begin(), __y.end(),
						    __detail::__synth3way);
    }
#else
  /**
   *  @brief  Deque ordering relation.
   *  @param  __x  A %deque.
   *  @param  __y  A %deque of the same type as @a __x.
   *  @return  True iff @a x is lexicographically less than @a __y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  deques.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y)
    { return std::lexicographical_compare(__x.begin(), __x.end(),
					  __y.begin(), __y.end()); }

  /// Based on operator==
  template<typename _Tp, typename _Alloc>
    inline bool
    operator!=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>=(const deque<_Tp, _Alloc>& __x, const deque<_Tp, _Alloc>& __y)
    { return !(__x < __y); }
#endif // three-way comparison

  /// See std::deque::swap().
  template<typename _Tp, typename _Alloc>
    inline void
    swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
    { __x.swap(__y); }

#undef _GLIBCXX_DEQUE_BUF_SIZE

_GLIBCXX_END_NAMESPACE_CONTAINER

#if __cplusplus >= 201103L
  // std::allocator is safe, but it is not the only allocator
  // for which this is valid.
  template<class _Tp>
    struct __is_bitwise_relocatable<_GLIBCXX_STD_C::deque<_Tp>>
    : true_type { };
#endif

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif /* _STL_DEQUE_H */