Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
/* Target-dependent code for the CSKY architecture, for GDB.

   Copyright (C) 2010-2020 Free Software Foundation, Inc.

   Contributed by C-SKY Microsystems and Mentor Graphics.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdbsupport/gdb_assert.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "osabi.h"
#include "block.h"
#include "reggroups.h"
#include "elf/csky.h"
#include "elf-bfd.h"
#include "symcat.h"
#include "sim-regno.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "infcall.h"
#include "floatformat.h"
#include "remote.h"
#include "target-descriptions.h"
#include "dwarf2/frame.h"
#include "user-regs.h"
#include "valprint.h"
#include "csky-tdep.h"
#include "regset.h"
#include "opcode/csky.h"
#include <algorithm>
#include <vector>

/* Control debugging information emitted in this file.  */
static bool csky_debug = false;

static struct reggroup *cr_reggroup;
static struct reggroup *fr_reggroup;
static struct reggroup *vr_reggroup;
static struct reggroup *mmu_reggroup;
static struct reggroup *prof_reggroup;

/* Convenience function to print debug messages in prologue analysis.  */

static void
print_savedreg_msg (int regno, int offsets[], bool print_continuing)
{
  fprintf_unfiltered (gdb_stdlog, "csky: r%d saved at offset 0x%x\n",
		      regno, offsets[regno]);
  if (print_continuing)
    fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
}

/*  Check whether the instruction at ADDR is 16-bit or not.  */

static int
csky_pc_is_csky16 (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  gdb_byte target_mem[2];
  int status;
  unsigned int insn;
  int ret = 1;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  status = target_read_memory (addr, target_mem, 2);
  /* Assume a 16-bit instruction if we can't read memory.  */
  if (status)
    return 1;

  /* Get instruction from memory.  */
  insn = extract_unsigned_integer (target_mem, 2, byte_order);
  if ((insn & CSKY_32_INSN_MASK) == CSKY_32_INSN_MASK)
    ret = 0;
  else if (insn == CSKY_BKPT_INSN)
    {
      /* Check for 32-bit bkpt instruction which is all 0.  */
      status = target_read_memory (addr + 2, target_mem, 2);
      if (status)
	return 1;

      insn = extract_unsigned_integer (target_mem, 2, byte_order);
      if (insn == CSKY_BKPT_INSN)
	ret = 0;
    }
  return ret;
}

/* Get one instruction at ADDR and store it in INSN.  Return 2 for
   a 16-bit instruction or 4 for a 32-bit instruction.  */

static int
csky_get_insn (struct gdbarch *gdbarch, CORE_ADDR addr, unsigned int *insn)
{
  gdb_byte target_mem[2];
  unsigned int insn_type;
  int status;
  int insn_len = 2;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  status = target_read_memory (addr, target_mem, 2);
  if (status)
    memory_error (TARGET_XFER_E_IO, addr);

  insn_type = extract_unsigned_integer (target_mem, 2, byte_order);
  if (CSKY_32_INSN_MASK == (insn_type & CSKY_32_INSN_MASK))
    {
      status = target_read_memory (addr + 2, target_mem, 2);
      if (status)
	memory_error (TARGET_XFER_E_IO, addr);
      insn_type = ((insn_type << 16)
		   | extract_unsigned_integer (target_mem, 2, byte_order));
      insn_len = 4;
    }
  *insn = insn_type;
  return insn_len;
}

/* Implement the read_pc gdbarch method.  */

static CORE_ADDR
csky_read_pc (readable_regcache *regcache)
{
  ULONGEST pc;
  regcache->cooked_read (CSKY_PC_REGNUM, &pc);
  return pc;
}

/* Implement the write_pc gdbarch method.  */

static void
csky_write_pc (regcache *regcache, CORE_ADDR val)
{
  regcache_cooked_write_unsigned (regcache, CSKY_PC_REGNUM, val);
}

/* C-Sky ABI register names.  */

static const char *csky_register_names[] =
{
  /* General registers 0 - 31.  */
  "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
  "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
  "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",

  /* DSP hilo registers 36 and 37.  */
  "",      "",    "",     "",     "hi",    "lo",   "",    "",

  /* FPU/VPU general registers 40 - 71.  */
  "fr0", "fr1", "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",
  "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
  "vr0", "vr1", "vr2",  "vr3",  "vr4",  "vr5",  "vr6",  "vr7",
  "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",

  /* Program counter 72.  */
  "pc",

  /* Optional registers (ar) 73 - 88.  */
  "ar0", "ar1", "ar2",  "ar3",  "ar4",  "ar5",  "ar6",  "ar7",
  "ar8", "ar9", "ar10", "ar11", "ar12", "ar13", "ar14", "ar15",

  /* Control registers (cr) 89 - 119.  */
  "psr",  "vbr",  "epsr", "fpsr", "epc",  "fpc",  "ss0",  "ss1",
  "ss2",  "ss3",  "ss4",  "gcr",  "gsr",  "cr13", "cr14", "cr15",
  "cr16", "cr17", "cr18", "cr19", "cr20", "cr21", "cr22", "cr23",
  "cr24", "cr25", "cr26", "cr27", "cr28", "cr29", "cr30", "cr31",

  /* FPU/VPU control registers 121 ~ 123.  */
  /* User sp 127.  */
  "fid", "fcr", "fesr", "", "", "", "usp",

  /* MMU control registers: 128 - 136.  */
  "mcr0", "mcr2", "mcr3", "mcr4", "mcr6", "mcr8", "mcr29", "mcr30",
  "mcr31", "", "", "",

  /* Profiling control registers 140 - 143.  */
  /* Profiling software general registers 144 - 157.  */
  "profcr0",  "profcr1",  "profcr2",  "profcr3",  "profsgr0",  "profsgr1",
  "profsgr2", "profsgr3", "profsgr4", "profsgr5", "profsgr6",  "profsgr7",
  "profsgr8", "profsgr9", "profsgr10","profsgr11","profsgr12", "profsgr13",
  "",	 "",

  /* Profiling architecture general registers 160 - 174.  */
  "profagr0", "profagr1", "profagr2", "profagr3", "profagr4", "profagr5",
  "profagr6", "profagr7", "profagr8", "profagr9", "profagr10","profagr11",
  "profagr12","profagr13","profagr14", "",

  /* Profiling extension general registers 176 - 188.  */
  "profxgr0", "profxgr1", "profxgr2", "profxgr3", "profxgr4", "profxgr5",
  "profxgr6", "profxgr7", "profxgr8", "profxgr9", "profxgr10","profxgr11",
  "profxgr12",

  /* Control registers in bank1.  */
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "cp1cr16", "cp1cr17", "cp1cr18", "cp1cr19", "cp1cr20", "", "", "",
  "", "", "", "", "", "", "", "",

  /* Control registers in bank3 (ICE).  */
  "sepsr", "sevbr", "seepsr", "", "seepc", "", "nsssp", "seusp",
  "sedcr", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", ""
};

/* Implement the register_name gdbarch method.  */

static const char *
csky_register_name (struct gdbarch *gdbarch, int reg_nr)
{
  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_name (gdbarch, reg_nr);

  if (reg_nr < 0)
    return NULL;

  if (reg_nr >= gdbarch_num_regs (gdbarch))
    return NULL;

  return csky_register_names[reg_nr];
}

/* Construct vector type for vrx registers.  */

static struct type *
csky_vector_type (struct gdbarch *gdbarch)
{
  const struct builtin_type *bt = builtin_type (gdbarch);

  struct type *t;

  t = arch_composite_type (gdbarch, "__gdb_builtin_type_vec128i",
			   TYPE_CODE_UNION);

  append_composite_type_field (t, "u32",
			       init_vector_type (bt->builtin_int32, 4));
  append_composite_type_field (t, "u16",
			       init_vector_type (bt->builtin_int16, 8));
  append_composite_type_field (t, "u8",
			       init_vector_type (bt->builtin_int8, 16));

  TYPE_VECTOR (t) = 1;
  t->set_name ("builtin_type_vec128i");

  return t;
}

/* Return the GDB type object for the "standard" data type
   of data in register N.  */

static struct type *
csky_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  /* PC, EPC, FPC is a text pointer.  */
  if ((reg_nr == CSKY_PC_REGNUM)  || (reg_nr == CSKY_EPC_REGNUM)
      || (reg_nr == CSKY_FPC_REGNUM))
    return builtin_type (gdbarch)->builtin_func_ptr;

  /* VBR is a data pointer.  */
  if (reg_nr == CSKY_VBR_REGNUM)
    return builtin_type (gdbarch)->builtin_data_ptr;

  /* Float register has 64 bits, and only in ck810.  */
  if ((reg_nr >=CSKY_FR0_REGNUM) && (reg_nr <= CSKY_FR0_REGNUM + 15))
      return arch_float_type (gdbarch, 64, "builtin_type_csky_ext",
			      floatformats_ieee_double);

  /* Vector register has 128 bits, and only in ck810.  */
  if ((reg_nr >= CSKY_VR0_REGNUM) && (reg_nr <= CSKY_VR0_REGNUM + 15))
    return csky_vector_type (gdbarch);

  /* Profiling general register has 48 bits, we use 64bit.  */
  if ((reg_nr >= CSKY_PROFGR_REGNUM) && (reg_nr <= CSKY_PROFGR_REGNUM + 44))
    return builtin_type (gdbarch)->builtin_uint64;

  if (reg_nr == CSKY_SP_REGNUM)
    return builtin_type (gdbarch)->builtin_data_ptr;

  /* Others are 32 bits.  */
  return builtin_type (gdbarch)->builtin_int32;
}

/* Data structure to marshall items in a dummy stack frame when
   calling a function in the inferior.  */

struct stack_item
{
  stack_item (int len_, const gdb_byte *data_)
  : len (len_), data (data_)
  {}

  int len;
  const gdb_byte *data;
};

/* Implement the push_dummy_call gdbarch method.  */

static CORE_ADDR
csky_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr,
		      int nargs, struct value **args, CORE_ADDR sp,
		      function_call_return_method return_method,
		      CORE_ADDR struct_addr)
{
  int argnum;
  int argreg = CSKY_ABI_A0_REGNUM;
  int last_arg_regnum = CSKY_ABI_LAST_ARG_REGNUM;
  int need_dummy_stack = 0;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  std::vector<stack_item> stack_items;

  /* Set the return address.  For CSKY, the return breakpoint is
     always at BP_ADDR.  */
  regcache_cooked_write_unsigned (regcache, CSKY_LR_REGNUM, bp_addr);

  /* The struct_return pointer occupies the first parameter
     passing register.  */
  if (return_method == return_method_struct)
    {
      if (csky_debug)
	{
	  fprintf_unfiltered (gdb_stdlog,
			      "csky: struct return in %s = %s\n",
			      gdbarch_register_name (gdbarch, argreg),
			      paddress (gdbarch, struct_addr));
	}
      regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
      argreg++;
    }

  /* Put parameters into argument registers in REGCACHE.
     In ABI argument registers are r0 through r3.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      int len;
      struct type *arg_type;
      const gdb_byte *val;

      arg_type = check_typedef (value_type (args[argnum]));
      len = TYPE_LENGTH (arg_type);
      val = value_contents (args[argnum]);

      /* Copy the argument to argument registers or the dummy stack.
	 Large arguments are split between registers and stack.

	 If len < 4, there is no need to worry about endianness since
	 the arguments will always be stored in the low address.  */
      if (len < 4)
	{
	  CORE_ADDR regval
	    = extract_unsigned_integer (val, len, byte_order);
	  regcache_cooked_write_unsigned (regcache, argreg, regval);
	  argreg++;
	}
      else
	{
	  while (len > 0)
	    {
	      int partial_len = len < 4 ? len : 4;
	      if (argreg <= last_arg_regnum)
		{
		  /* The argument is passed in an argument register.  */
		  CORE_ADDR regval
		    = extract_unsigned_integer (val, partial_len,
						byte_order);
		  if (byte_order == BFD_ENDIAN_BIG)
		    regval <<= (4 - partial_len) * 8;

		  /* Put regval into register in REGCACHE.  */
		  regcache_cooked_write_unsigned (regcache, argreg,
						  regval);
		  argreg++;
		}
	      else
		{
		  /* The argument should be pushed onto the dummy stack.  */
		  stack_items.emplace_back (4, val);
		  need_dummy_stack += 4;
		}
	      len -= partial_len;
	      val += partial_len;
	    }
	}
    }

  /* Transfer the dummy stack frame to the target.  */
  std::vector<stack_item>::reverse_iterator iter;
  for (iter = stack_items.rbegin (); iter != stack_items.rend (); ++iter)
    {
      sp -= iter->len;
      write_memory (sp, iter->data, iter->len);
    }

  /* Finally, update the SP register.  */
  regcache_cooked_write_unsigned (regcache, CSKY_SP_REGNUM, sp);
  return sp;
}

/* Implement the return_value gdbarch method.  */

static enum return_value_convention
csky_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *valtype, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  CORE_ADDR regval;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (valtype);
  unsigned int ret_regnum = CSKY_RET_REGNUM;

  /* Csky abi specifies that return values larger than 8 bytes
     are put on the stack.  */
  if (len > 8)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else
    {
      if (readbuf != NULL)
	{
	  ULONGEST tmp;
	  /* By using store_unsigned_integer we avoid having to do
	     anything special for small big-endian values.  */
	  regcache->cooked_read (ret_regnum, &tmp);
	  store_unsigned_integer (readbuf, (len > 4 ? 4 : len),
				  byte_order, tmp);
	  if (len > 4)
	    {
	      regcache->cooked_read (ret_regnum + 1, &tmp);
	      store_unsigned_integer (readbuf + 4,  4, byte_order, tmp);
	    }
	}
      if (writebuf != NULL)
	{
	  regval = extract_unsigned_integer (writebuf, len > 4 ? 4 : len,
					     byte_order);
	  regcache_cooked_write_unsigned (regcache, ret_regnum, regval);
	  if (len > 4)
	    {
	      regval = extract_unsigned_integer ((gdb_byte *) writebuf + 4,
						 4, byte_order);
	      regcache_cooked_write_unsigned (regcache, ret_regnum + 1,
					      regval);
	    }

	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
}

/* Implement the frame_align gdbarch method.

   Adjust the address downward (direction of stack growth) so that it
   is correctly aligned for a new stack frame.  */

static CORE_ADDR
csky_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return align_down (addr, 4);
}

/* Unwind cache used for gdbarch fallback unwinder.  */

struct csky_unwind_cache
{
  /* The stack pointer at the time this frame was created; i.e. the
     caller's stack pointer when this function was called.  It is used
     to identify this frame.  */
  CORE_ADDR prev_sp;

  /* The frame base for this frame is just prev_sp - frame size.
     FRAMESIZE is the distance from the frame pointer to the
     initial stack pointer.  */
  int framesize;

  /* The register used to hold the frame pointer for this frame.  */
  int framereg;

  /* Saved register offsets.  */
  struct trad_frame_saved_reg *saved_regs;
};

/* Do prologue analysis, returning the PC of the first instruction
   after the function prologue.  */

static CORE_ADDR
csky_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR start_pc,
		       CORE_ADDR limit_pc,
		       CORE_ADDR end_pc,
		       struct frame_info *this_frame,
		       struct csky_unwind_cache *this_cache,
		       lr_type_t lr_type)
{
  CORE_ADDR addr;
  unsigned int insn, rn;
  int framesize = 0;
  int stacksize = 0;
  int register_offsets[CSKY_NUM_GREGS_SAVED_GREGS];
  int insn_len;
  /* For adjusting fp.  */
  int is_fp_saved = 0;
  int adjust_fp = 0;

  /* REGISTER_OFFSETS will contain offsets from the top of the frame
     (NOT the frame pointer) for the various saved registers, or -1
     if the register is not saved.  */
  for (rn = 0; rn < CSKY_NUM_GREGS_SAVED_GREGS; rn++)
    register_offsets[rn] = -1;

  /* Analyze the prologue.  Things we determine from analyzing the
     prologue include the size of the frame and which registers are
     saved (and where).  */
  if (csky_debug)
    {
      fprintf_unfiltered (gdb_stdlog,
			  "csky: Scanning prologue: start_pc = 0x%x,"
			  "limit_pc = 0x%x\n", (unsigned int) start_pc,
			  (unsigned int) limit_pc);
    }

  /* Default to 16 bit instruction.  */
  insn_len = 2;
  stacksize = 0;
  for (addr = start_pc; addr < limit_pc; addr += insn_len)
    {
      /* Get next insn.  */
      insn_len = csky_get_insn (gdbarch, addr, &insn);

      /* Check if 32 bit.  */
      if (insn_len == 4)
	{
	  /* subi32 sp,sp oimm12.  */
	  if (CSKY_32_IS_SUBI0 (insn))
	    {
	      /* Got oimm12.  */
	      int offset = CSKY_32_SUBI_IMM (insn);
	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: got subi sp,%d; continuing\n",
				      offset);
		}
	      stacksize += offset;
	      continue;
	    }
	  /* stm32 ry-rz,(sp).  */
	  else if (CSKY_32_IS_STMx0 (insn))
	    {
	      /* Spill register(s).  */
	      int start_register;
	      int reg_count;
	      int offset;

	      /* BIG WARNING! The CKCore ABI does not restrict functions
		 to taking only one stack allocation.  Therefore, when
		 we save a register, we record the offset of where it was
		 saved relative to the current stacksize.  This will
		 then give an offset from the SP upon entry to our
		 function.  Remember, stacksize is NOT constant until
		 we're done scanning the prologue.  */
	      start_register = CSKY_32_STM_VAL_REGNUM (insn);
	      reg_count = CSKY_32_STM_SIZE (insn);
	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: got stm r%d-r%d,(sp)\n",
				      start_register,
				      start_register + reg_count);
		}

	      for (rn = start_register, offset = 0;
		   rn <= start_register + reg_count;
		   rn++, offset += 4)
		{
		  register_offsets[rn] = stacksize - offset;
		  if (csky_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog,
					  "csky: r%d saved at 0x%x"
					  " (offset %d)\n",
					  rn, register_offsets[rn],
					  offset);
		    }
		}
	      if (csky_debug)
		fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
	      continue;
	    }
	  /* stw ry,(sp,disp).  */
	  else if (CSKY_32_IS_STWx0 (insn))
	    {
	      /* Spill register: see note for IS_STM above.  */
	      int disp;

	      rn = CSKY_32_ST_VAL_REGNUM (insn);
	      disp = CSKY_32_ST_OFFSET (insn);
	      register_offsets[rn] = stacksize - disp;
	      if (csky_debug)
		print_savedreg_msg (rn, register_offsets, true);
	      continue;
	    }
	  else if (CSKY_32_IS_MOV_FP_SP (insn))
	    {
	      /* SP is saved to FP reg, means code afer prologue may
		 modify SP.  */
	      is_fp_saved = 1;
	      adjust_fp = stacksize;
	      continue;
	    }
	  else if (CSKY_32_IS_MFCR_EPSR (insn))
	    {
	      unsigned int insn2;
	      addr += 4;
	      int mfcr_regnum = insn & 0x1f;
	      insn_len = csky_get_insn (gdbarch, addr, &insn2);
	      if (insn_len == 2)
		{
		  int stw_regnum = (insn2 >> 5) & 0x7;
		  if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
		    {
		      int offset;

		      /* CSKY_EPSR_REGNUM.  */
		      rn  = CSKY_NUM_GREGS;
		      offset = CSKY_16_STWx0_OFFSET (insn2);
		      register_offsets[rn] = stacksize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	      else
		{
		  /* INSN_LEN == 4.  */
		  int stw_regnum = (insn2 >> 21) & 0x1f;
		  if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
		    {
		      int offset;

		      /* CSKY_EPSR_REGNUM.  */
		      rn  = CSKY_NUM_GREGS;
		      offset = CSKY_32_ST_OFFSET (insn2);
		      register_offsets[rn] = framesize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	    }
	  else if (CSKY_32_IS_MFCR_FPSR (insn))
	    {
	      unsigned int insn2;
	      addr += 4;
	      int mfcr_regnum = insn & 0x1f;
	      insn_len = csky_get_insn (gdbarch, addr, &insn2);
	      if (insn_len == 2)
		{
		  int stw_regnum = (insn2 >> 5) & 0x7;
		  if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum
						 == stw_regnum))
		    {
		      int offset;

		      /* CSKY_FPSR_REGNUM.  */
		      rn  = CSKY_NUM_GREGS + 1;
		      offset = CSKY_16_STWx0_OFFSET (insn2);
		      register_offsets[rn] = stacksize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	      else
		{
		  /* INSN_LEN == 4.  */
		  int stw_regnum = (insn2 >> 21) & 0x1f;
		  if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
		    {
		      int offset;

		      /* CSKY_FPSR_REGNUM.  */
		      rn  = CSKY_NUM_GREGS + 1;
		      offset = CSKY_32_ST_OFFSET (insn2);
		      register_offsets[rn] = framesize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	    }
	  else if (CSKY_32_IS_MFCR_EPC (insn))
	    {
	      unsigned int insn2;
	      addr += 4;
	      int mfcr_regnum = insn & 0x1f;
	      insn_len = csky_get_insn (gdbarch, addr, &insn2);
	      if (insn_len == 2)
		{
		  int stw_regnum = (insn2 >> 5) & 0x7;
		  if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
		    {
		      int offset;

		      /* CSKY_EPC_REGNUM.  */
		      rn  = CSKY_NUM_GREGS + 2;
		      offset = CSKY_16_STWx0_OFFSET (insn2);
		      register_offsets[rn] = stacksize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	      else
		{
		  /* INSN_LEN == 4.  */
		  int stw_regnum = (insn2 >> 21) & 0x1f;
		  if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
		    {
		      int offset;

		      /* CSKY_EPC_REGNUM.  */
		      rn  = CSKY_NUM_GREGS + 2;
		      offset = CSKY_32_ST_OFFSET (insn2);
		      register_offsets[rn] = framesize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	    }
	  else if (CSKY_32_IS_MFCR_FPC (insn))
	    {
	      unsigned int insn2;
	      addr += 4;
	      int mfcr_regnum = insn & 0x1f;
	      insn_len = csky_get_insn (gdbarch, addr, &insn2);
	      if (insn_len == 2)
		{
		  int stw_regnum = (insn2 >> 5) & 0x7;
		  if (CSKY_16_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
		    {
		      int offset;

		      /* CSKY_FPC_REGNUM.  */
		      rn  = CSKY_NUM_GREGS + 3;
		      offset = CSKY_16_STWx0_OFFSET (insn2);
		      register_offsets[rn] = stacksize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	      else
		{
		  /* INSN_LEN == 4.  */
		  int stw_regnum = (insn2 >> 21) & 0x1f;
		  if (CSKY_32_IS_STWx0 (insn2) && (mfcr_regnum == stw_regnum))
		    {
		      int offset;

		      /* CSKY_FPC_REGNUM.  */
		      rn  = CSKY_NUM_GREGS + 3;
		      offset = CSKY_32_ST_OFFSET (insn2);
		      register_offsets[rn] = framesize - offset;
		      if (csky_debug)
			print_savedreg_msg (rn, register_offsets, true);
		      continue;
		    }
		  break;
		}
	    }
	  else if (CSKY_32_IS_PUSH (insn))
	    {
	      /* Push for 32_bit.  */
	      int offset = 0;
	      if (CSKY_32_IS_PUSH_R29 (insn))
		{
		  stacksize += 4;
		  register_offsets[29] = stacksize;
		  if (csky_debug)
		    print_savedreg_msg (29, register_offsets, false);
		  offset += 4;
		}
	      if (CSKY_32_PUSH_LIST2 (insn))
		{
		  int num = CSKY_32_PUSH_LIST2 (insn);
		  int tmp = 0;
		  stacksize += num * 4;
		  offset += num * 4;
		  if (csky_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog,
					  "csky: push regs_array: r16-r%d\n",
					  16 + num - 1);
		    }
		  for (rn = 16; rn <= 16 + num - 1; rn++)
		    {
		       register_offsets[rn] = stacksize - tmp;
		       if (csky_debug)
			 {
			   fprintf_unfiltered (gdb_stdlog,
					       "csky: r%d saved at 0x%x"
					       " (offset %d)\n", rn,
					       register_offsets[rn], tmp);
			 }
		       tmp += 4;
		    }
		}
	      if (CSKY_32_IS_PUSH_R15 (insn))
		{
		  stacksize += 4;
		  register_offsets[15] = stacksize;
		  if (csky_debug)
		    print_savedreg_msg (15, register_offsets, false);
		  offset += 4;
		}
	      if (CSKY_32_PUSH_LIST1 (insn))
		{
		  int num = CSKY_32_PUSH_LIST1 (insn);
		  int tmp = 0;
		  stacksize += num * 4;
		  offset += num * 4;
		  if (csky_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog,
					  "csky: push regs_array: r4-r%d\n",
					  4 + num - 1);
		    }
		  for (rn = 4; rn <= 4 + num - 1; rn++)
		    {
		       register_offsets[rn] = stacksize - tmp;
		       if (csky_debug)
			 {
			   fprintf_unfiltered (gdb_stdlog,
					       "csky: r%d saved at 0x%x"
					       " (offset %d)\n", rn,
					       register_offsets[rn], tmp);
			 }
			tmp += 4;
		    }
		}

	      framesize = stacksize;
	      if (csky_debug)
		fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
	      continue;
	    }
	  else if (CSKY_32_IS_LRW4 (insn) || CSKY_32_IS_MOVI4 (insn)
		   || CSKY_32_IS_MOVIH4 (insn) || CSKY_32_IS_BMASKI4 (insn))
	    {
	      int adjust = 0;
	      int offset = 0;
	      unsigned int insn2;

	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: looking at large frame\n");
		}
	      if (CSKY_32_IS_LRW4 (insn))
		{
		  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
		  int literal_addr = (addr + ((insn & 0xffff) << 2))
				     & 0xfffffffc;
		  adjust = read_memory_unsigned_integer (literal_addr, 4,
							 byte_order);
		}
	      else if (CSKY_32_IS_MOVI4 (insn))
		adjust = (insn  & 0xffff);
	      else if (CSKY_32_IS_MOVIH4 (insn))
		adjust = (insn & 0xffff) << 16;
	      else
		{
		  /* CSKY_32_IS_BMASKI4 (insn).  */
		  adjust = (1 << (((insn & 0x3e00000) >> 21) + 1)) - 1;
		}

	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: base stacksize=0x%x\n", adjust);

		  /* May have zero or more insns which modify r4.  */
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: looking for r4 adjusters...\n");
		}

	      offset = 4;
	      insn_len = csky_get_insn (gdbarch, addr + offset, &insn2);
	      while (CSKY_IS_R4_ADJUSTER (insn2))
		{
		  if (CSKY_32_IS_ADDI4 (insn2))
		    {
		      int imm = (insn2 & 0xfff) + 1;
		      adjust += imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: addi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_SUBI4 (insn2))
		    {
		      int imm = (insn2 & 0xfff) + 1;
		      adjust -= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: subi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_NOR4 (insn2))
		    {
		      adjust = ~adjust;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: nor r4,r4,r4\n");
			}
		    }
		  else if (CSKY_32_IS_ROTLI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      int temp = adjust >> (32 - imm);
		      adjust <<= imm;
		      adjust |= temp;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: rotli r4,r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_LISI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      adjust <<= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: lsli r4,r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_BSETI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      adjust |= (1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bseti r4,r4 %d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_BCLRI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      adjust &= ~(1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bclri r4,r4 %d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_IXH4 (insn2))
		    {
		      adjust *= 3;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: ixh r4,r4,r4\n");
			}
		    }
		  else if (CSKY_32_IS_IXW4 (insn2))
		    {
		      adjust *= 5;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: ixw r4,r4,r4\n");
			}
		    }
		  else if (CSKY_16_IS_ADDI4 (insn2))
		    {
		      int imm = (insn2 & 0xff) + 1;
		      adjust += imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: addi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_SUBI4 (insn2))
		    {
		      int imm = (insn2 & 0xff) + 1;
		      adjust -= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: subi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_NOR4 (insn2))
		    {
		      adjust = ~adjust;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: nor r4,r4\n");
			}
		    }
		  else if (CSKY_16_IS_BSETI4 (insn2))
		    {
		      int imm = (insn2 & 0x1f);
		      adjust |= (1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bseti r4, %d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_BCLRI4 (insn2))
		    {
		      int imm = (insn2 & 0x1f);
		      adjust &= ~(1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bclri r4, %d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_LSLI4 (insn2))
		    {
		      int imm = (insn2 & 0x1f);
		      adjust <<= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: lsli r4,r4, %d\n", imm);
			}
		    }

		  offset += insn_len;
		  insn_len =  csky_get_insn (gdbarch, addr + offset, &insn2);
		};

	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog, "csky: done looking for"
				      " r4 adjusters\n");
		}

	      /* If the next insn adjusts the stack pointer, we keep
		 everything; if not, we scrap it and we've found the
		 end of the prologue.  */
	      if (CSKY_IS_SUBU4 (insn2))
		{
		  addr += offset;
		  stacksize += adjust;
		  if (csky_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog,
					  "csky: found stack adjustment of"
					  " 0x%x bytes.\n", adjust);
		      fprintf_unfiltered (gdb_stdlog,
					  "csky: skipping to new address %s\n",
					  core_addr_to_string_nz (addr));
		      fprintf_unfiltered (gdb_stdlog,
					  "csky: continuing\n");
		    }
		  continue;
		}

	      /* None of these instructions are prologue, so don't touch
		 anything.  */
	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: no subu sp,sp,r4; NOT altering"
				      " stacksize.\n");
		}
	      break;
	    }
	}
      else
	{
	  /* insn_len != 4.  */

	  /* subi.sp sp,disp.  */
	  if (CSKY_16_IS_SUBI0 (insn))
	    {
	      int offset = CSKY_16_SUBI_IMM (insn);
	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: got subi r0,%d; continuing\n",
				      offset);
		}
	      stacksize += offset;
	      continue;
	    }
	  /* stw.16 rz,(sp,disp).  */
	  else if (CSKY_16_IS_STWx0 (insn))
	    {
	      /* Spill register: see note for IS_STM above.  */
	      int disp;

	      rn = CSKY_16_ST_VAL_REGNUM (insn);
	      disp = CSKY_16_ST_OFFSET (insn);
	      register_offsets[rn] = stacksize - disp;
	      if (csky_debug)
		print_savedreg_msg (rn, register_offsets, true);
	      continue;
	    }
	  else if (CSKY_16_IS_MOV_FP_SP (insn))
	    {
	      /* SP is saved to FP reg, means prologue may modify SP.  */
	      is_fp_saved = 1;
	      adjust_fp = stacksize;
	      continue;
	    }
	  else if (CSKY_16_IS_PUSH (insn))
	    {
	      /* Push for 16_bit.  */
	      int offset = 0;
	      if (CSKY_16_IS_PUSH_R15 (insn))
		{
		  stacksize += 4;
		  register_offsets[15] = stacksize;
		  if (csky_debug)
		    print_savedreg_msg (15, register_offsets, false);
		  offset += 4;
		 }
	      if (CSKY_16_PUSH_LIST1 (insn))
		{
		  int num = CSKY_16_PUSH_LIST1 (insn);
		  int tmp = 0;
		  stacksize += num * 4;
		  offset += num * 4;
		  if (csky_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog,
					  "csky: push regs_array: r4-r%d\n",
					  4 + num - 1);
		    }
		  for (rn = 4; rn <= 4 + num - 1; rn++)
		    {
		       register_offsets[rn] = stacksize - tmp;
		       if (csky_debug)
			 {
			   fprintf_unfiltered (gdb_stdlog,
					       "csky: r%d saved at 0x%x"
					       " (offset %d)\n", rn,
					       register_offsets[rn], offset);
			 }
		       tmp += 4;
		    }
		}

	      framesize = stacksize;
	      if (csky_debug)
		fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
	      continue;
	    }
	  else if (CSKY_16_IS_LRW4 (insn) || CSKY_16_IS_MOVI4 (insn))
	    {
	      int adjust = 0;
	      unsigned int insn2;

	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: looking at large frame\n");
		}
	      if (CSKY_16_IS_LRW4 (insn))
		{
		  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
		  int offset = ((insn & 0x300) >> 3) | (insn & 0x1f);
		  int literal_addr = (addr + ( offset << 2)) & 0xfffffffc;
		  adjust = read_memory_unsigned_integer (literal_addr, 4,
							 byte_order);
		}
	      else
		{
		  /* CSKY_16_IS_MOVI4 (insn).  */
		  adjust = (insn  & 0xff);
		}

	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: base stacksize=0x%x\n", adjust);
		}

	      /* May have zero or more instructions which modify r4.  */
	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog,
				      "csky: looking for r4 adjusters...\n");
		}
	      int offset = 2;
	      insn_len = csky_get_insn (gdbarch, addr + offset, &insn2);
	      while (CSKY_IS_R4_ADJUSTER (insn2))
		{
		  if (CSKY_32_IS_ADDI4 (insn2))
		    {
		      int imm = (insn2 & 0xfff) + 1;
		      adjust += imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: addi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_SUBI4 (insn2))
		    {
		      int imm = (insn2 & 0xfff) + 1;
		      adjust -= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: subi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_NOR4 (insn2))
		    {
		      adjust = ~adjust;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: nor r4,r4,r4\n");
			}
		    }
		  else if (CSKY_32_IS_ROTLI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      int temp = adjust >> (32 - imm);
		      adjust <<= imm;
		      adjust |= temp;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: rotli r4,r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_LISI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      adjust <<= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: lsli r4,r4,%d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_BSETI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      adjust |= (1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bseti r4,r4 %d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_BCLRI4 (insn2))
		    {
		      int imm = ((insn2 >> 21) & 0x1f);
		      adjust &= ~(1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bclri r4,r4 %d\n", imm);
			}
		    }
		  else if (CSKY_32_IS_IXH4 (insn2))
		    {
		      adjust *= 3;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: ixh r4,r4,r4\n");
			}
		    }
		  else if (CSKY_32_IS_IXW4 (insn2))
		    {
		      adjust *= 5;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: ixw r4,r4,r4\n");
			}
		    }
		  else if (CSKY_16_IS_ADDI4 (insn2))
		    {
		      int imm = (insn2 & 0xff) + 1;
		      adjust += imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: addi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_SUBI4 (insn2))
		    {
		      int imm = (insn2 & 0xff) + 1;
		      adjust -= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: subi r4,%d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_NOR4 (insn2))
		    {
		      adjust = ~adjust;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: nor r4,r4\n");
			}
		    }
		  else if (CSKY_16_IS_BSETI4 (insn2))
		    {
		      int imm = (insn2 & 0x1f);
		      adjust |= (1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bseti r4, %d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_BCLRI4 (insn2))
		    {
		      int imm = (insn2 & 0x1f);
		      adjust &= ~(1 << imm);
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: bclri r4, %d\n", imm);
			}
		    }
		  else if (CSKY_16_IS_LSLI4 (insn2))
		    {
		      int imm = (insn2 & 0x1f);
		      adjust <<= imm;
		      if (csky_debug)
			{
			  fprintf_unfiltered (gdb_stdlog,
					      "csky: lsli r4,r4, %d\n", imm);
			}
		    }

		  offset += insn_len;
		  insn_len = csky_get_insn (gdbarch, addr + offset, &insn2);
		};

	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog, "csky: "
				      "done looking for r4 adjusters\n");
		}

	      /* If the next instruction adjusts the stack pointer, we keep
		 everything; if not, we scrap it and we've found the end
		 of the prologue.  */
	      if (CSKY_IS_SUBU4 (insn2))
		{
		  addr += offset;
		  stacksize += adjust;
		  if (csky_debug)
		    {
		      fprintf_unfiltered (gdb_stdlog, "csky: "
					  "found stack adjustment of 0x%x"
					  " bytes.\n", adjust);
		      fprintf_unfiltered (gdb_stdlog, "csky: "
					  "skipping to new address %s\n",
					  core_addr_to_string_nz (addr));
		      fprintf_unfiltered (gdb_stdlog, "csky: continuing\n");
		    }
		  continue;
		}

	      /* None of these instructions are prologue, so don't touch
		 anything.  */
	      if (csky_debug)
		{
		  fprintf_unfiltered (gdb_stdlog, "csky: no subu sp,r4; "
				      "NOT altering stacksize.\n");
		}
	      break;
	    }
	}

      /* This is not a prologue instruction, so stop here.  */
      if (csky_debug)
	{
	  fprintf_unfiltered (gdb_stdlog, "csky: insn is not a prologue"
			      " insn -- ending scan\n");
	}
      break;
    }

  if (this_cache)
    {
      CORE_ADDR unwound_fp;
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      this_cache->framesize = framesize;

      if (is_fp_saved)
	{
	  this_cache->framereg = CSKY_FP_REGNUM;
	  unwound_fp = get_frame_register_unsigned (this_frame,
						    this_cache->framereg);
	  this_cache->prev_sp = unwound_fp + adjust_fp;
	}
      else
	{
	  this_cache->framereg = CSKY_SP_REGNUM;
	  unwound_fp = get_frame_register_unsigned (this_frame,
						    this_cache->framereg);
	  this_cache->prev_sp = unwound_fp + stacksize;
	}

      /* Note where saved registers are stored.  The offsets in
	 REGISTER_OFFSETS are computed relative to the top of the frame.  */
      for (rn = 0; rn < CSKY_NUM_GREGS; rn++)
	{
	  if (register_offsets[rn] >= 0)
	    {
	      this_cache->saved_regs[rn].addr
		= this_cache->prev_sp - register_offsets[rn];
	      if (csky_debug)
		{
		  CORE_ADDR rn_value = read_memory_unsigned_integer (
		    this_cache->saved_regs[rn].addr, 4, byte_order);
		  fprintf_unfiltered (gdb_stdlog, "Saved register %s "
				      "stored at 0x%08lx, value=0x%08lx\n",
				      csky_register_names[rn],
				      (unsigned long)
					this_cache->saved_regs[rn].addr,
				      (unsigned long) rn_value);
		}
	    }
	}
      if (lr_type == LR_TYPE_EPC)
	{
	  /* rte || epc .  */
	  this_cache->saved_regs[CSKY_PC_REGNUM]
	    = this_cache->saved_regs[CSKY_EPC_REGNUM];
	}
      else if (lr_type == LR_TYPE_FPC)
	{
	  /* rfi || fpc .  */
	  this_cache->saved_regs[CSKY_PC_REGNUM]
	    = this_cache->saved_regs[CSKY_FPC_REGNUM];
	}
      else
	{
	  this_cache->saved_regs[CSKY_PC_REGNUM]
	    = this_cache->saved_regs[CSKY_LR_REGNUM];
	}
    }

  return addr;
}

/* Detect whether PC is at a point where the stack frame has been
   destroyed.  */

static int
csky_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  unsigned int insn;
  CORE_ADDR addr;
  CORE_ADDR func_start, func_end;

  if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
    return 0;

  bool fp_saved = false;
  int insn_len;
  for (addr = func_start; addr < func_end; addr += insn_len)
    {
      /* Get next insn.  */
      insn_len = csky_get_insn (gdbarch, addr, &insn);

      if (insn_len == 2)
	{
	  /* Is sp is saved to fp.  */
	  if (CSKY_16_IS_MOV_FP_SP (insn))
	    fp_saved = true;
	  /* If sp was saved to fp and now being restored from
	     fp then it indicates the start of epilog.  */
	  else if (fp_saved && CSKY_16_IS_MOV_SP_FP (insn))
	    return pc >= addr;
	}
    }
  return 0;
}

/* Implement the skip_prologue gdbarch hook.  */

static CORE_ADDR
csky_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;
  const int default_search_limit = 128;

  /* See if we can find the end of the prologue using the symbol table.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);

      if (post_prologue_pc != 0)
	return std::max (pc, post_prologue_pc);
    }
  else
    func_end = pc + default_search_limit;

  /* Find the end of prologue.  Default lr_type.  */
  return csky_analyze_prologue (gdbarch, pc, func_end, func_end,
				NULL, NULL, LR_TYPE_R15);
}

/* Implement the breakpoint_kind_from_pc gdbarch method.  */

static int
csky_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  if (csky_pc_is_csky16 (gdbarch, *pcptr))
    return CSKY_INSN_SIZE16;
  else
    return CSKY_INSN_SIZE32;
}

/* Implement the sw_breakpoint_from_kind gdbarch method.  */

static const gdb_byte *
csky_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  *size = kind;
  if (kind == CSKY_INSN_SIZE16)
    {
      static gdb_byte csky_16_breakpoint[] = { 0, 0 };
      return csky_16_breakpoint;
    }
  else
    {
      static gdb_byte csky_32_breakpoint[] = { 0, 0, 0, 0 };
      return csky_32_breakpoint;
    }
}

/* Implement the memory_insert_breakpoint gdbarch method.  */

static int
csky_memory_insert_breakpoint (struct gdbarch *gdbarch,
			       struct bp_target_info *bp_tgt)
{
  int val;
  const unsigned char *bp;
  gdb_byte bp_write_record1[] = { 0, 0, 0, 0 };
  gdb_byte bp_write_record2[] = { 0, 0, 0, 0 };
  gdb_byte bp_record[] = { 0, 0, 0, 0 };

  /* Sanity-check bp_address.  */
  if (bp_tgt->reqstd_address % 2)
    warning (_("Invalid breakpoint address 0x%x is an odd number."),
	     (unsigned int) bp_tgt->reqstd_address);
  scoped_restore restore_memory
    = make_scoped_restore_show_memory_breakpoints (1);

  /* Determine appropriate breakpoint_kind for this address.  */
  bp_tgt->kind = csky_breakpoint_kind_from_pc (gdbarch,
					       &bp_tgt->reqstd_address);

  /* Save the memory contents.  */
  bp_tgt->shadow_len = bp_tgt->kind;

  /* Fill bp_tgt->placed_address.  */
  bp_tgt->placed_address = bp_tgt->reqstd_address;

  if (bp_tgt->kind == CSKY_INSN_SIZE16)
    {
      if ((bp_tgt->reqstd_address % 4) == 0)
	{
	  /* Read two bytes.  */
	  val = target_read_memory (bp_tgt->reqstd_address,
				    bp_tgt->shadow_contents, 2);
	  if (val)
	    return val;

	  /* Read two bytes.  */
	  val = target_read_memory (bp_tgt->reqstd_address + 2,
				    bp_record, 2);
	  if (val)
	    return val;

	  /* Write the breakpoint.  */
	  bp_write_record1[2] = bp_record[0];
	  bp_write_record1[3] = bp_record[1];
	  bp = bp_write_record1;
	  val = target_write_raw_memory (bp_tgt->reqstd_address, bp,
					 CSKY_WR_BKPT_MODE);
	}
      else
	{
	  val = target_read_memory (bp_tgt->reqstd_address,
				    bp_tgt->shadow_contents, 2);
	  if (val)
	    return val;

	  val = target_read_memory (bp_tgt->reqstd_address - 2,
				    bp_record, 2);
	  if (val)
	    return val;

	  /* Write the breakpoint.  */
	  bp_write_record1[0] = bp_record[0];
	  bp_write_record1[1] = bp_record[1];
	  bp = bp_write_record1;
	  val = target_write_raw_memory (bp_tgt->reqstd_address - 2,
					 bp, CSKY_WR_BKPT_MODE);
	}
    }
  else
    {
      if (bp_tgt->placed_address % 4 == 0)
	{
	  val = target_read_memory (bp_tgt->reqstd_address,
				    bp_tgt->shadow_contents,
				    CSKY_WR_BKPT_MODE);
	  if (val)
	    return val;

	  /* Write the breakpoint.  */
	  bp = bp_write_record1;
	  val = target_write_raw_memory (bp_tgt->reqstd_address,
					 bp, CSKY_WR_BKPT_MODE);
	}
      else
	{
	  val = target_read_memory (bp_tgt->reqstd_address,
				    bp_tgt->shadow_contents,
				    CSKY_WR_BKPT_MODE);
	  if (val)
	    return val;

	  val = target_read_memory (bp_tgt->reqstd_address - 2,
				    bp_record, 2);
	  if (val)
	    return val;

	  val = target_read_memory (bp_tgt->reqstd_address + 4,
				    bp_record + 2, 2);
	  if (val)
	    return val;

	  bp_write_record1[0] = bp_record[0];
	  bp_write_record1[1] = bp_record[1];
	  bp_write_record2[2] = bp_record[2];
	  bp_write_record2[3] = bp_record[3];

	  /* Write the breakpoint.  */
	  bp = bp_write_record1;
	  val = target_write_raw_memory (bp_tgt->reqstd_address - 2, bp,
					 CSKY_WR_BKPT_MODE);
	  if (val)
	    return val;

	  /* Write the breakpoint.  */
	  bp = bp_write_record2;
	  val = target_write_raw_memory (bp_tgt->reqstd_address + 2, bp,
					 CSKY_WR_BKPT_MODE);
	}
    }
  return val;
}

/* Restore the breakpoint shadow_contents to the target.  */

static int
csky_memory_remove_breakpoint (struct gdbarch *gdbarch,
			       struct bp_target_info *bp_tgt)
{
  int val;
  gdb_byte bp_record[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
  /* Different for shadow_len 2 or 4.  */
  if (bp_tgt->shadow_len == 2)
    {
      /* Do word-sized writes on word-aligned boundaries and read
	 padding bytes as necessary.  */
      if (bp_tgt->reqstd_address % 4 == 0)
	{
	  val = target_read_memory (bp_tgt->reqstd_address + 2,
				    bp_record + 2, 2);
	  if (val)
	    return val;
	  bp_record[0] = bp_tgt->shadow_contents[0];
	  bp_record[1] = bp_tgt->shadow_contents[1];
	  return target_write_raw_memory (bp_tgt->reqstd_address,
					  bp_record, CSKY_WR_BKPT_MODE);
	}
      else
	{
	  val = target_read_memory (bp_tgt->reqstd_address - 2,
				    bp_record, 2);
	  if (val)
	    return val;
	  bp_record[2] = bp_tgt->shadow_contents[0];
	  bp_record[3] = bp_tgt->shadow_contents[1];
	  return target_write_raw_memory (bp_tgt->reqstd_address - 2,
					  bp_record, CSKY_WR_BKPT_MODE);
	}
    }
  else
    {
      /* Do word-sized writes on word-aligned boundaries and read
	 padding bytes as necessary.  */
      if (bp_tgt->placed_address % 4 == 0)
	{
	  return target_write_raw_memory (bp_tgt->reqstd_address,
					  bp_tgt->shadow_contents,
					  CSKY_WR_BKPT_MODE);
	}
      else
	{
	  val = target_read_memory (bp_tgt->reqstd_address - 2,
				    bp_record, 2);
	  if (val)
	    return val;
	  val = target_read_memory (bp_tgt->reqstd_address + 4,
				    bp_record+6, 2);
	  if (val)
	    return val;

	  bp_record[2] = bp_tgt->shadow_contents[0];
	  bp_record[3] = bp_tgt->shadow_contents[1];
	  bp_record[4] = bp_tgt->shadow_contents[2];
	  bp_record[5] = bp_tgt->shadow_contents[3];

	  return target_write_raw_memory (bp_tgt->reqstd_address - 2,
					  bp_record,
					  CSKY_WR_BKPT_MODE * 2);
	}
    }
}

/* Determine link register type.  */

static lr_type_t
csky_analyze_lr_type (struct gdbarch *gdbarch,
		      CORE_ADDR start_pc, CORE_ADDR end_pc)
{
  CORE_ADDR addr;
  unsigned int insn, insn_len;
  insn_len = 2;

  for (addr = start_pc; addr < end_pc; addr += insn_len)
    {
      insn_len = csky_get_insn (gdbarch, addr, &insn);
      if (insn_len == 4)
	{
	  if (CSKY_32_IS_MFCR_EPSR (insn) || CSKY_32_IS_MFCR_EPC (insn)
	      || CSKY_32_IS_RTE (insn))
	    return LR_TYPE_EPC;
	}
      else if (CSKY_32_IS_MFCR_FPSR (insn) || CSKY_32_IS_MFCR_FPC (insn)
	       || CSKY_32_IS_RFI (insn))
	return LR_TYPE_FPC;
      else if (CSKY_32_IS_JMP (insn) || CSKY_32_IS_BR (insn)
	       || CSKY_32_IS_JMPIX (insn) || CSKY_32_IS_JMPI (insn))
	return LR_TYPE_R15;
      else
	{
	  /* 16 bit instruction.  */
	  if (CSKY_16_IS_JMP (insn) || CSKY_16_IS_BR (insn)
	      || CSKY_16_IS_JMPIX (insn))
	    return LR_TYPE_R15;
	}
    }
    return LR_TYPE_R15;
}

/* Heuristic unwinder.  */

static struct csky_unwind_cache *
csky_frame_unwind_cache (struct frame_info *this_frame)
{
  CORE_ADDR prologue_start, prologue_end, func_end, prev_pc, block_addr;
  struct csky_unwind_cache *cache;
  const struct block *bl;
  unsigned long func_size = 0;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  unsigned int sp_regnum = CSKY_SP_REGNUM;

  /* Default lr type is r15.  */
  lr_type_t lr_type = LR_TYPE_R15;

  cache = FRAME_OBSTACK_ZALLOC (struct csky_unwind_cache);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Assume there is no frame until proven otherwise.  */
  cache->framereg = sp_regnum;

  cache->framesize = 0;

  prev_pc = get_frame_pc (this_frame);
  block_addr = get_frame_address_in_block (this_frame);
  if (find_pc_partial_function (block_addr, NULL, &prologue_start,
				&func_end) == 0)
    /* We couldn't find a function containing block_addr, so bail out
       and hope for the best.  */
    return cache;

  /* Get the (function) symbol matching prologue_start.  */
  bl = block_for_pc (prologue_start);
  if (bl != NULL)
    func_size = bl->endaddr - bl->startaddr;
  else
    {
      struct bound_minimal_symbol msymbol
	= lookup_minimal_symbol_by_pc (prologue_start);
      if (msymbol.minsym != NULL)
	func_size = MSYMBOL_SIZE (msymbol.minsym);
    }

  /* If FUNC_SIZE is 0 we may have a special-case use of lr
     e.g. exception or interrupt.  */
  if (func_size == 0)
    lr_type = csky_analyze_lr_type (gdbarch, prologue_start, func_end);

  prologue_end = std::min (func_end, prev_pc);

  /* Analyze the function prologue.  */
  csky_analyze_prologue (gdbarch, prologue_start, prologue_end,
			    func_end, this_frame, cache, lr_type);

  /* gdbarch_sp_regnum contains the value and not the address.  */
  trad_frame_set_value (cache->saved_regs, sp_regnum, cache->prev_sp);
  return cache;
}

/* Implement the this_id function for the normal unwinder.  */

static void
csky_frame_this_id (struct frame_info *this_frame,
		    void **this_prologue_cache, struct frame_id *this_id)
{
  struct csky_unwind_cache *cache;
  struct frame_id id;

  if (*this_prologue_cache == NULL)
    *this_prologue_cache = csky_frame_unwind_cache (this_frame);
  cache = (struct csky_unwind_cache *) *this_prologue_cache;

  /* This marks the outermost frame.  */
  if (cache->prev_sp == 0)
    return;

  id = frame_id_build (cache->prev_sp, get_frame_func (this_frame));
  *this_id = id;
}

/* Implement the prev_register function for the normal unwinder.  */

static struct value *
csky_frame_prev_register (struct frame_info *this_frame,
			  void **this_prologue_cache, int regnum)
{
  struct csky_unwind_cache *cache;

  if (*this_prologue_cache == NULL)
    *this_prologue_cache = csky_frame_unwind_cache (this_frame);
  cache = (struct csky_unwind_cache *) *this_prologue_cache;

  return trad_frame_get_prev_register (this_frame, cache->saved_regs,
				       regnum);
}

/* Data structures for the normal prologue-analysis-based
   unwinder.  */

static const struct frame_unwind csky_unwind_cache = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  csky_frame_this_id,
  csky_frame_prev_register,
  NULL,
  default_frame_sniffer,
  NULL,
  NULL
};



static int
csky_stub_unwind_sniffer (const struct frame_unwind *self,
			 struct frame_info *this_frame,
			 void **this_prologue_cache)
{
  CORE_ADDR addr_in_block;

  addr_in_block = get_frame_address_in_block (this_frame);

  if (find_pc_partial_function (addr_in_block, NULL, NULL, NULL) == 0
      || in_plt_section (addr_in_block))
    return 1;

  return 0;
}

static struct csky_unwind_cache *
csky_make_stub_cache (struct frame_info *this_frame)
{
  struct csky_unwind_cache *cache;

  cache = FRAME_OBSTACK_ZALLOC (struct csky_unwind_cache);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
  cache->prev_sp = get_frame_register_unsigned (this_frame, CSKY_SP_REGNUM);

  return cache;
}

static void
csky_stub_this_id (struct frame_info *this_frame,
		  void **this_cache,
		  struct frame_id *this_id)
{
  struct csky_unwind_cache *cache;

  if (*this_cache == NULL)
    *this_cache = csky_make_stub_cache (this_frame);
  cache = (struct csky_unwind_cache *) *this_cache;

  /* Our frame ID for a stub frame is the current SP and LR.  */
  *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
}

static struct value *
csky_stub_prev_register (struct frame_info *this_frame,
			    void **this_cache,
			    int prev_regnum)
{
  struct csky_unwind_cache *cache;

  if (*this_cache == NULL)
    *this_cache = csky_make_stub_cache (this_frame);
  cache = (struct csky_unwind_cache *) *this_cache;

  /* If we are asked to unwind the PC, then return the LR.  */
  if (prev_regnum == CSKY_PC_REGNUM)
    {
      CORE_ADDR lr;

      lr = frame_unwind_register_unsigned (this_frame, CSKY_LR_REGNUM);
      return frame_unwind_got_constant (this_frame, prev_regnum, lr);
    }

  if (prev_regnum == CSKY_SP_REGNUM)
    return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);

  return trad_frame_get_prev_register (this_frame, cache->saved_regs,
				       prev_regnum);
}

struct frame_unwind csky_stub_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  csky_stub_this_id,
  csky_stub_prev_register,
  NULL,
  csky_stub_unwind_sniffer
};

/* Implement the this_base, this_locals, and this_args hooks
   for the normal unwinder.  */

static CORE_ADDR
csky_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct csky_unwind_cache *cache;

  if (*this_cache == NULL)
    *this_cache = csky_frame_unwind_cache (this_frame);
  cache = (struct csky_unwind_cache *) *this_cache;

  return cache->prev_sp - cache->framesize;
}

static const struct frame_base csky_frame_base = {
  &csky_unwind_cache,
  csky_frame_base_address,
  csky_frame_base_address,
  csky_frame_base_address
};

/* Initialize register access method.  */

static void
csky_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
			    struct dwarf2_frame_state_reg *reg,
			    struct frame_info *this_frame)
{
  if (regnum == gdbarch_pc_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_RA;
  else if (regnum == gdbarch_sp_regnum (gdbarch))
    reg->how = DWARF2_FRAME_REG_CFA;
}

/* Create csky register groups.  */

static void
csky_init_reggroup ()
{
  cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
  fr_reggroup = reggroup_new ("fr", USER_REGGROUP);
  vr_reggroup = reggroup_new ("vr", USER_REGGROUP);
  mmu_reggroup = reggroup_new ("mmu", USER_REGGROUP);
  prof_reggroup = reggroup_new ("profiling", USER_REGGROUP);
}

/* Add register groups into reggroup list.  */

static void
csky_add_reggroups (struct gdbarch *gdbarch)
{
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, cr_reggroup);
  reggroup_add (gdbarch, fr_reggroup);
  reggroup_add (gdbarch, vr_reggroup);
  reggroup_add (gdbarch, mmu_reggroup);
  reggroup_add (gdbarch, prof_reggroup);
}

/* Return the groups that a CSKY register can be categorised into.  */

static int
csky_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *reggroup)
{
  int raw_p;

  if (gdbarch_register_name (gdbarch, regnum) == NULL
      || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
    return 0;

  if (reggroup == all_reggroup)
    return 1;

  raw_p = regnum < gdbarch_num_regs (gdbarch);
  if (reggroup == save_reggroup || reggroup == restore_reggroup)
    return raw_p;

  if (((regnum >= CSKY_R0_REGNUM) && (regnum <= CSKY_R0_REGNUM + 31))
      && (reggroup == general_reggroup))
    return 1;

  if (((regnum == CSKY_PC_REGNUM)
       || ((regnum >= CSKY_CR0_REGNUM)
	   && (regnum <= CSKY_CR0_REGNUM + 30)))
      && (reggroup == cr_reggroup))
    return 2;

  if ((((regnum >= CSKY_VR0_REGNUM) && (regnum <= CSKY_VR0_REGNUM + 15))
       || ((regnum >= CSKY_VCR0_REGNUM)
	   && (regnum <= CSKY_VCR0_REGNUM + 2)))
      && (reggroup == vr_reggroup))
    return 3;

  if (((regnum >= CSKY_MMU_REGNUM) && (regnum <= CSKY_MMU_REGNUM + 8))
      && (reggroup == mmu_reggroup))
    return 4;

  if (((regnum >= CSKY_PROFCR_REGNUM)
       && (regnum <= CSKY_PROFCR_REGNUM + 48))
      && (reggroup == prof_reggroup))
    return 5;

  if ((((regnum >= CSKY_FR0_REGNUM) && (regnum <= CSKY_FR0_REGNUM + 15))
       || ((regnum >= CSKY_VCR0_REGNUM) && (regnum <= CSKY_VCR0_REGNUM + 2)))
      && (reggroup == fr_reggroup))
    return 6;

  return 0;
}

/* Implement the dwarf2_reg_to_regnum gdbarch method.  */

static int
csky_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
{
  if (dw_reg < 0 || dw_reg >= CSKY_NUM_REGS)
    return -1;
  return dw_reg;
}

/* Override interface for command: info register.  */

static void
csky_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
			   struct frame_info *frame, int regnum, int all)
{
  /* Call default print_registers_info function.  */
  default_print_registers_info (gdbarch, file, frame, regnum, all);

  /* For command: info register.  */
  if (regnum == -1 && all == 0)
    {
      default_print_registers_info (gdbarch, file, frame,
				    CSKY_PC_REGNUM, 0);
      default_print_registers_info (gdbarch, file, frame,
				    CSKY_EPC_REGNUM, 0);
      default_print_registers_info (gdbarch, file, frame,
				    CSKY_CR0_REGNUM, 0);
      default_print_registers_info (gdbarch, file, frame,
				    CSKY_EPSR_REGNUM, 0);
    }
  return;
}

/* Initialize the current architecture based on INFO.  If possible,
   re-use an architecture from ARCHES, which is a list of
   architectures already created during this debugging session.

   Called at program startup, when reading a core file, and when
   reading a binary file.  */

static struct gdbarch *
csky_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  /* Find a candidate among the list of pre-declared architectures.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found, create a new architecture from the information
     provided.  */
  tdep = XCNEW (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  /* Target data types.  */
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_addr_bit (gdbarch, 32);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);

  /* Information about the target architecture.  */
  set_gdbarch_return_value (gdbarch, csky_return_value);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch, csky_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, csky_sw_breakpoint_from_kind);

  /* Register architecture.  */
  set_gdbarch_num_regs (gdbarch, CSKY_NUM_REGS);
  set_gdbarch_pc_regnum (gdbarch, CSKY_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, CSKY_SP_REGNUM);
  set_gdbarch_register_name (gdbarch, csky_register_name);
  set_gdbarch_register_type (gdbarch, csky_register_type);
  set_gdbarch_read_pc (gdbarch, csky_read_pc);
  set_gdbarch_write_pc (gdbarch, csky_write_pc);
  set_gdbarch_print_registers_info (gdbarch, csky_print_registers_info);
  csky_add_reggroups (gdbarch);
  set_gdbarch_register_reggroup_p (gdbarch, csky_register_reggroup_p);
  set_gdbarch_stab_reg_to_regnum (gdbarch, csky_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, csky_dwarf_reg_to_regnum);
  dwarf2_frame_set_init_reg (gdbarch, csky_dwarf2_frame_init_reg);

  /* Functions to analyze frames.  */
  frame_base_set_default (gdbarch, &csky_frame_base);
  set_gdbarch_skip_prologue (gdbarch, csky_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_frame_align (gdbarch, csky_frame_align);
  set_gdbarch_stack_frame_destroyed_p (gdbarch, csky_stack_frame_destroyed_p);

  /* Functions handling dummy frames.  */
  set_gdbarch_push_dummy_call (gdbarch, csky_push_dummy_call);

  /* Frame unwinders.  Use DWARF debug info if available,
     otherwise use our own unwinder.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &csky_stub_unwind);
  frame_unwind_append_unwinder (gdbarch, &csky_unwind_cache);

  /* Breakpoints.  */
  set_gdbarch_memory_insert_breakpoint (gdbarch,
					csky_memory_insert_breakpoint);
  set_gdbarch_memory_remove_breakpoint (gdbarch,
					csky_memory_remove_breakpoint);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  /* Support simple overlay manager.  */
  set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
  set_gdbarch_char_signed (gdbarch, 0);
  return gdbarch;
}

void _initialize_csky_tdep ();
void
_initialize_csky_tdep ()
{

  register_gdbarch_init (bfd_arch_csky, csky_gdbarch_init);

  csky_init_reggroup ();

  /* Allow debugging this file's internals.  */
  add_setshow_boolean_cmd ("csky", class_maintenance, &csky_debug,
			   _("Set C-Sky debugging."),
			   _("Show C-Sky debugging."),
			   _("When on, C-Sky specific debugging is enabled."),
			   NULL,
			   NULL,
			   &setdebuglist, &showdebuglist);
}