Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
   Copyright (C) 2004-2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */


#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "solib.h"
#include "solist.h"
#include "frv-tdep.h"
#include "objfiles.h"
#include "symtab.h"
#include "language.h"
#include "command.h"
#include "gdbcmd.h"
#include "elf/frv.h"
#include "gdb_bfd.h"

/* Flag which indicates whether internal debug messages should be printed.  */
static unsigned int solib_frv_debug;

/* FR-V pointers are four bytes wide.  */
enum { FRV_PTR_SIZE = 4 };

/* Representation of loadmap and related structs for the FR-V FDPIC ABI.  */

/* External versions; the size and alignment of the fields should be
   the same as those on the target.  When loaded, the placement of
   the bits in each field will be the same as on the target.  */
typedef gdb_byte ext_Elf32_Half[2];
typedef gdb_byte ext_Elf32_Addr[4];
typedef gdb_byte ext_Elf32_Word[4];

struct ext_elf32_fdpic_loadseg
{
  /* Core address to which the segment is mapped.  */
  ext_Elf32_Addr addr;
  /* VMA recorded in the program header.  */
  ext_Elf32_Addr p_vaddr;
  /* Size of this segment in memory.  */
  ext_Elf32_Word p_memsz;
};

struct ext_elf32_fdpic_loadmap {
  /* Protocol version number, must be zero.  */
  ext_Elf32_Half version;
  /* Number of segments in this map.  */
  ext_Elf32_Half nsegs;
  /* The actual memory map.  */
  struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
};

/* Internal versions; the types are GDB types and the data in each
   of the fields is (or will be) decoded from the external struct
   for ease of consumption.  */
struct int_elf32_fdpic_loadseg
{
  /* Core address to which the segment is mapped.  */
  CORE_ADDR addr;
  /* VMA recorded in the program header.  */
  CORE_ADDR p_vaddr;
  /* Size of this segment in memory.  */
  long p_memsz;
};

struct int_elf32_fdpic_loadmap {
  /* Protocol version number, must be zero.  */
  int version;
  /* Number of segments in this map.  */
  int nsegs;
  /* The actual memory map.  */
  struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
};

/* Given address LDMADDR, fetch and decode the loadmap at that address.
   Return NULL if there is a problem reading the target memory or if
   there doesn't appear to be a loadmap at the given address.  The
   allocated space (representing the loadmap) returned by this
   function may be freed via a single call to xfree().  */

static struct int_elf32_fdpic_loadmap *
fetch_loadmap (CORE_ADDR ldmaddr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
  struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
  struct int_elf32_fdpic_loadmap *int_ldmbuf;
  int ext_ldmbuf_size, int_ldmbuf_size;
  int version, seg, nsegs;

  /* Fetch initial portion of the loadmap.  */
  if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
                          sizeof ext_ldmbuf_partial))
    {
      /* Problem reading the target's memory.  */
      return NULL;
    }

  /* Extract the version.  */
  version = extract_unsigned_integer (ext_ldmbuf_partial.version,
                                      sizeof ext_ldmbuf_partial.version,
				      byte_order);
  if (version != 0)
    {
      /* We only handle version 0.  */
      return NULL;
    }

  /* Extract the number of segments.  */
  nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
                                    sizeof ext_ldmbuf_partial.nsegs,
				    byte_order);

  if (nsegs <= 0)
    return NULL;

  /* Allocate space for the complete (external) loadmap.  */
  ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
               + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
  ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);

  /* Copy over the portion of the loadmap that's already been read.  */
  memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);

  /* Read the rest of the loadmap from the target.  */
  if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
                          (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
                          ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
    {
      /* Couldn't read rest of the loadmap.  */
      xfree (ext_ldmbuf);
      return NULL;
    }

  /* Allocate space into which to put information extract from the
     external loadsegs.  I.e, allocate the internal loadsegs.  */
  int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
               + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
  int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);

  /* Place extracted information in internal structs.  */
  int_ldmbuf->version = version;
  int_ldmbuf->nsegs = nsegs;
  for (seg = 0; seg < nsegs; seg++)
    {
      int_ldmbuf->segs[seg].addr
	= extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
	                            sizeof (ext_ldmbuf->segs[seg].addr),
				    byte_order);
      int_ldmbuf->segs[seg].p_vaddr
	= extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
	                            sizeof (ext_ldmbuf->segs[seg].p_vaddr),
				    byte_order);
      int_ldmbuf->segs[seg].p_memsz
	= extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
	                            sizeof (ext_ldmbuf->segs[seg].p_memsz),
				    byte_order);
    }

  xfree (ext_ldmbuf);
  return int_ldmbuf;
}

/* External link_map and elf32_fdpic_loadaddr struct definitions.  */

typedef gdb_byte ext_ptr[4];

struct ext_elf32_fdpic_loadaddr
{
  ext_ptr map;			/* struct elf32_fdpic_loadmap *map; */
  ext_ptr got_value;		/* void *got_value; */
};

struct ext_link_map
{
  struct ext_elf32_fdpic_loadaddr l_addr;

  /* Absolute file name object was found in.  */
  ext_ptr l_name;		/* char *l_name; */

  /* Dynamic section of the shared object.  */
  ext_ptr l_ld;			/* ElfW(Dyn) *l_ld; */

  /* Chain of loaded objects.  */
  ext_ptr l_next, l_prev;	/* struct link_map *l_next, *l_prev; */
};

/* Link map info to include in an allocated so_list entry.  */

struct lm_info_frv : public lm_info_base
{
  ~lm_info_frv ()
  {
    xfree (this->map);
    xfree (this->dyn_syms);
    xfree (this->dyn_relocs);
  }

  /* The loadmap, digested into an easier to use form.  */
  int_elf32_fdpic_loadmap *map = NULL;
  /* The GOT address for this link map entry.  */
  CORE_ADDR got_value = 0;
  /* The link map address, needed for frv_fetch_objfile_link_map().  */
  CORE_ADDR lm_addr = 0;

  /* Cached dynamic symbol table and dynamic relocs initialized and
     used only by find_canonical_descriptor_in_load_object().

     Note: kevinb/2004-02-26: It appears that calls to
     bfd_canonicalize_dynamic_reloc() will use the same symbols as
     those supplied to the first call to this function.  Therefore,
     it's important to NOT free the asymbol ** data structure
     supplied to the first call.  Thus the caching of the dynamic
     symbols (dyn_syms) is critical for correct operation.  The
     caching of the dynamic relocations could be dispensed with.  */
  asymbol **dyn_syms = NULL;
  arelent **dyn_relocs = NULL;
  int dyn_reloc_count = 0;	/* Number of dynamic relocs.  */
};

/* The load map, got value, etc. are not available from the chain
   of loaded shared objects.  ``main_executable_lm_info'' provides
   a way to get at this information so that it doesn't need to be
   frequently recomputed.  Initialized by frv_relocate_main_executable().  */
static lm_info_frv *main_executable_lm_info;

static void frv_relocate_main_executable (void);
static CORE_ADDR main_got (void);
static int enable_break2 (void);

/* Implement the "open_symbol_file_object" target_so_ops method.  */

static int
open_symbol_file_object (int from_tty)
{
  /* Unimplemented.  */
  return 0;
}

/* Cached value for lm_base(), below.  */
static CORE_ADDR lm_base_cache = 0;

/* Link map address for main module.  */
static CORE_ADDR main_lm_addr = 0;

/* Return the address from which the link map chain may be found.  On
   the FR-V, this may be found in a number of ways.  Assuming that the
   main executable has already been relocated, the easiest way to find
   this value is to look up the address of _GLOBAL_OFFSET_TABLE_.  A
   pointer to the start of the link map will be located at the word found
   at _GLOBAL_OFFSET_TABLE_ + 8.  (This is part of the dynamic linker
   reserve area mandated by the ABI.)  */

static CORE_ADDR
lm_base (void)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  struct bound_minimal_symbol got_sym;
  CORE_ADDR addr;
  gdb_byte buf[FRV_PTR_SIZE];

  /* One of our assumptions is that the main executable has been relocated.
     Bail out if this has not happened.  (Note that post_create_inferior()
     in infcmd.c will call solib_add prior to solib_create_inferior_hook().
     If we allow this to happen, lm_base_cache will be initialized with
     a bogus value.  */
  if (main_executable_lm_info == 0)
    return 0;

  /* If we already have a cached value, return it.  */
  if (lm_base_cache)
    return lm_base_cache;

  got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
                                   symfile_objfile);
  if (got_sym.minsym == 0)
    {
      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
	                    "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
      return 0;
    }

  addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;

  if (solib_frv_debug)
    fprintf_unfiltered (gdb_stdlog,
			"lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
			hex_string_custom (addr, 8));

  if (target_read_memory (addr, buf, sizeof buf) != 0)
    return 0;
  lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);

  if (solib_frv_debug)
    fprintf_unfiltered (gdb_stdlog,
			"lm_base: lm_base_cache = %s\n",
			hex_string_custom (lm_base_cache, 8));

  return lm_base_cache;
}


/* Implement the "current_sos" target_so_ops method.  */

static struct so_list *
frv_current_sos (void)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  CORE_ADDR lm_addr, mgot;
  struct so_list *sos_head = NULL;
  struct so_list **sos_next_ptr = &sos_head;

  /* Make sure that the main executable has been relocated.  This is
     required in order to find the address of the global offset table,
     which in turn is used to find the link map info.  (See lm_base()
     for details.)

     Note that the relocation of the main executable is also performed
     by solib_create_inferior_hook(), however, in the case of core
     files, this hook is called too late in order to be of benefit to
     solib_add.  solib_add eventually calls this this function,
     frv_current_sos, and also precedes the call to
     solib_create_inferior_hook().   (See post_create_inferior() in
     infcmd.c.)  */
  if (main_executable_lm_info == 0 && core_bfd != NULL)
    frv_relocate_main_executable ();

  /* Fetch the GOT corresponding to the main executable.  */
  mgot = main_got ();

  /* Locate the address of the first link map struct.  */
  lm_addr = lm_base ();

  /* We have at least one link map entry.  Fetch the lot of them,
     building the solist chain.  */
  while (lm_addr)
    {
      struct ext_link_map lm_buf;
      CORE_ADDR got_addr;

      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "current_sos: reading link_map entry at %s\n",
			    hex_string_custom (lm_addr, 8));

      if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
			      sizeof (lm_buf)) != 0)
	{
	  warning (_("frv_current_sos: Unable to read link map entry.  "
		     "Shared object chain may be incomplete."));
	  break;
	}

      got_addr
	= extract_unsigned_integer (lm_buf.l_addr.got_value,
				    sizeof (lm_buf.l_addr.got_value),
				    byte_order);
      /* If the got_addr is the same as mgotr, then we're looking at the
	 entry for the main executable.  By convention, we don't include
	 this in the list of shared objects.  */
      if (got_addr != mgot)
	{
	  struct int_elf32_fdpic_loadmap *loadmap;
	  struct so_list *sop;
	  CORE_ADDR addr;

	  /* Fetch the load map address.  */
	  addr = extract_unsigned_integer (lm_buf.l_addr.map,
					   sizeof lm_buf.l_addr.map,
					   byte_order);
	  loadmap = fetch_loadmap (addr);
	  if (loadmap == NULL)
	    {
	      warning (_("frv_current_sos: Unable to fetch load map.  "
			 "Shared object chain may be incomplete."));
	      break;
	    }

	  sop = XCNEW (struct so_list);
	  lm_info_frv *li = new lm_info_frv;
	  sop->lm_info = li;
	  li->map = loadmap;
	  li->got_value = got_addr;
	  li->lm_addr = lm_addr;
	  /* Fetch the name.  */
	  addr = extract_unsigned_integer (lm_buf.l_name,
					   sizeof (lm_buf.l_name),
					   byte_order);
	  gdb::unique_xmalloc_ptr<char> name_buf
	    = target_read_string (addr, SO_NAME_MAX_PATH_SIZE - 1);

	  if (solib_frv_debug)
	    fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
	                        name_buf.get ());
	  
	  if (name_buf == nullptr)
	    warning (_("Can't read pathname for link map entry."));
	  else
	    {
	      strncpy (sop->so_name, name_buf.get (),
		       SO_NAME_MAX_PATH_SIZE - 1);
	      sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
	      strcpy (sop->so_original_name, sop->so_name);
	    }

	  *sos_next_ptr = sop;
	  sos_next_ptr = &sop->next;
	}
      else
	{
	  main_lm_addr = lm_addr;
	}

      lm_addr = extract_unsigned_integer (lm_buf.l_next,
					  sizeof (lm_buf.l_next), byte_order);
    }

  enable_break2 ();

  return sos_head;
}


/* Return 1 if PC lies in the dynamic symbol resolution code of the
   run time loader.  */

static CORE_ADDR interp_text_sect_low;
static CORE_ADDR interp_text_sect_high;
static CORE_ADDR interp_plt_sect_low;
static CORE_ADDR interp_plt_sect_high;

static int
frv_in_dynsym_resolve_code (CORE_ADDR pc)
{
  return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
	  || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
	  || in_plt_section (pc));
}

/* Given a loadmap and an address, return the displacement needed
   to relocate the address.  */

static CORE_ADDR
displacement_from_map (struct int_elf32_fdpic_loadmap *map,
                       CORE_ADDR addr)
{
  int seg;

  for (seg = 0; seg < map->nsegs; seg++)
    {
      if (map->segs[seg].p_vaddr <= addr
          && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
	{
	  return map->segs[seg].addr - map->segs[seg].p_vaddr;
	}
    }

  return 0;
}

/* Print a warning about being unable to set the dynamic linker
   breakpoint.  */

static void
enable_break_failure_warning (void)
{
  warning (_("Unable to find dynamic linker breakpoint function.\n"
           "GDB will be unable to debug shared library initializers\n"
	   "and track explicitly loaded dynamic code."));
}

/* Helper function for gdb_bfd_lookup_symbol.  */

static int
cmp_name (const asymbol *sym, const void *data)
{
  return (strcmp (sym->name, (const char *) data) == 0);
}

/* Arrange for dynamic linker to hit breakpoint.

   The dynamic linkers has, as part of its debugger interface, support
   for arranging for the inferior to hit a breakpoint after mapping in
   the shared libraries.  This function enables that breakpoint.

   On the FR-V, using the shared library (FDPIC) ABI, the symbol
   _dl_debug_addr points to the r_debug struct which contains
   a field called r_brk.  r_brk is the address of the function
   descriptor upon which a breakpoint must be placed.  Being a
   function descriptor, we must extract the entry point in order
   to set the breakpoint.

   Our strategy will be to get the .interp section from the
   executable.  This section will provide us with the name of the
   interpreter.  We'll open the interpreter and then look up
   the address of _dl_debug_addr.  We then relocate this address
   using the interpreter's loadmap.  Once the relocated address
   is known, we fetch the value (address) corresponding to r_brk
   and then use that value to fetch the entry point of the function
   we're interested in.  */

static int enable_break2_done = 0;

static int
enable_break2 (void)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  asection *interp_sect;

  if (enable_break2_done)
    return 1;

  interp_text_sect_low = interp_text_sect_high = 0;
  interp_plt_sect_low = interp_plt_sect_high = 0;

  /* Find the .interp section; if not found, warn the user and drop
     into the old breakpoint at symbol code.  */
  interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
  if (interp_sect)
    {
      unsigned int interp_sect_size;
      char *buf;
      int status;
      CORE_ADDR addr, interp_loadmap_addr;
      gdb_byte addr_buf[FRV_PTR_SIZE];
      struct int_elf32_fdpic_loadmap *ldm;

      /* Read the contents of the .interp section into a local buffer;
         the contents specify the dynamic linker this program uses.  */
      interp_sect_size = bfd_section_size (interp_sect);
      buf = (char *) alloca (interp_sect_size);
      bfd_get_section_contents (exec_bfd, interp_sect,
				buf, 0, interp_sect_size);

      /* Now we need to figure out where the dynamic linker was
         loaded so that we can load its symbols and place a breakpoint
         in the dynamic linker itself.

         This address is stored on the stack.  However, I've been unable
         to find any magic formula to find it for Solaris (appears to
         be trivial on GNU/Linux).  Therefore, we have to try an alternate
         mechanism to find the dynamic linker's base address.  */

      gdb_bfd_ref_ptr tmp_bfd;
      try
        {
          tmp_bfd = solib_bfd_open (buf);
        }
      catch (const gdb_exception &ex)
	{
	}

      if (tmp_bfd == NULL)
	{
	  enable_break_failure_warning ();
	  return 0;
	}

      status = frv_fdpic_loadmap_addresses (target_gdbarch (),
                                            &interp_loadmap_addr, 0);
      if (status < 0)
	{
	  warning (_("Unable to determine dynamic linker loadmap address."));
	  enable_break_failure_warning ();
	  return 0;
	}

      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
	                    "enable_break: interp_loadmap_addr = %s\n",
			    hex_string_custom (interp_loadmap_addr, 8));

      ldm = fetch_loadmap (interp_loadmap_addr);
      if (ldm == NULL)
	{
	  warning (_("Unable to load dynamic linker loadmap at address %s."),
	           hex_string_custom (interp_loadmap_addr, 8));
	  enable_break_failure_warning ();
	  return 0;
	}

      /* Record the relocated start and end address of the dynamic linker
         text and plt section for svr4_in_dynsym_resolve_code.  */
      interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
      if (interp_sect)
	{
	  interp_text_sect_low = bfd_section_vma (interp_sect);
	  interp_text_sect_low
	    += displacement_from_map (ldm, interp_text_sect_low);
	  interp_text_sect_high
	    = interp_text_sect_low + bfd_section_size (interp_sect);
	}
      interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
      if (interp_sect)
	{
	  interp_plt_sect_low = bfd_section_vma (interp_sect);
	  interp_plt_sect_low
	    += displacement_from_map (ldm, interp_plt_sect_low);
	  interp_plt_sect_high =
	    interp_plt_sect_low + bfd_section_size (interp_sect);
	}

      addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");

      if (addr == 0)
	{
	  warning (_("Could not find symbol _dl_debug_addr "
		     "in dynamic linker"));
	  enable_break_failure_warning ();
	  return 0;
	}

      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "enable_break: _dl_debug_addr "
			    "(prior to relocation) = %s\n",
			    hex_string_custom (addr, 8));

      addr += displacement_from_map (ldm, addr);

      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "enable_break: _dl_debug_addr "
			    "(after relocation) = %s\n",
			    hex_string_custom (addr, 8));

      /* Fetch the address of the r_debug struct.  */
      if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
	{
	  warning (_("Unable to fetch contents of _dl_debug_addr "
		     "(at address %s) from dynamic linker"),
	           hex_string_custom (addr, 8));
	}
      addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);

      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
	                    "enable_break: _dl_debug_addr[0..3] = %s\n",
	                    hex_string_custom (addr, 8));

      /* If it's zero, then the ldso hasn't initialized yet, and so
         there are no shared libs yet loaded.  */
      if (addr == 0)
	{
	  if (solib_frv_debug)
	    fprintf_unfiltered (gdb_stdlog,
	                        "enable_break: ldso not yet initialized\n");
	  /* Do not warn, but mark to run again.  */
	  return 0;
	}

      /* Fetch the r_brk field.  It's 8 bytes from the start of
         _dl_debug_addr.  */
      if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
	{
	  warning (_("Unable to fetch _dl_debug_addr->r_brk "
		     "(at address %s) from dynamic linker"),
	           hex_string_custom (addr + 8, 8));
	  enable_break_failure_warning ();
	  return 0;
	}
      addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);

      /* Now fetch the function entry point.  */
      if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
	{
	  warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
		     "(at address %s) from dynamic linker"),
	           hex_string_custom (addr, 8));
	  enable_break_failure_warning ();
	  return 0;
	}
      addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);

      /* We're done with the loadmap.  */
      xfree (ldm);

      /* Remove all the solib event breakpoints.  Their addresses
         may have changed since the last time we ran the program.  */
      remove_solib_event_breakpoints ();

      /* Now (finally!) create the solib breakpoint.  */
      create_solib_event_breakpoint (target_gdbarch (), addr);

      enable_break2_done = 1;

      return 1;
    }

  /* Tell the user we couldn't set a dynamic linker breakpoint.  */
  enable_break_failure_warning ();

  /* Failure return.  */
  return 0;
}

static int
enable_break (void)
{
  asection *interp_sect;
  CORE_ADDR entry_point;

  if (symfile_objfile == NULL)
    {
      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "enable_break: No symbol file found.\n");
      return 0;
    }

  if (!entry_point_address_query (&entry_point))
    {
      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "enable_break: Symbol file has no entry point.\n");
      return 0;
    }

  /* Check for the presence of a .interp section.  If there is no
     such section, the executable is statically linked.  */

  interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");

  if (interp_sect == NULL)
    {
      if (solib_frv_debug)
	fprintf_unfiltered (gdb_stdlog,
			    "enable_break: No .interp section found.\n");
      return 0;
    }

  create_solib_event_breakpoint (target_gdbarch (), entry_point);

  if (solib_frv_debug)
    fprintf_unfiltered (gdb_stdlog,
			"enable_break: solib event breakpoint "
			"placed at entry point: %s\n",
			hex_string_custom (entry_point, 8));
  return 1;
}

static void
frv_relocate_main_executable (void)
{
  int status;
  CORE_ADDR exec_addr, interp_addr;
  struct int_elf32_fdpic_loadmap *ldm;
  int changed;
  struct obj_section *osect;

  status = frv_fdpic_loadmap_addresses (target_gdbarch (),
                                        &interp_addr, &exec_addr);

  if (status < 0 || (exec_addr == 0 && interp_addr == 0))
    {
      /* Not using FDPIC ABI, so do nothing.  */
      return;
    }

  /* Fetch the loadmap located at ``exec_addr''.  */
  ldm = fetch_loadmap (exec_addr);
  if (ldm == NULL)
    error (_("Unable to load the executable's loadmap."));

  delete main_executable_lm_info;
  main_executable_lm_info = new lm_info_frv;
  main_executable_lm_info->map = ldm;

  section_offsets new_offsets (symfile_objfile->section_offsets.size ());
  changed = 0;

  ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
    {
      CORE_ADDR orig_addr, addr, offset;
      int osect_idx;
      int seg;
      
      osect_idx = osect - symfile_objfile->sections;

      /* Current address of section.  */
      addr = obj_section_addr (osect);
      /* Offset from where this section started.  */
      offset = symfile_objfile->section_offsets[osect_idx];
      /* Original address prior to any past relocations.  */
      orig_addr = addr - offset;

      for (seg = 0; seg < ldm->nsegs; seg++)
	{
	  if (ldm->segs[seg].p_vaddr <= orig_addr
	      && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
	    {
	      new_offsets[osect_idx]
		= ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;

	      if (new_offsets[osect_idx] != offset)
		changed = 1;
	      break;
	    }
	}
    }

  if (changed)
    objfile_relocate (symfile_objfile, new_offsets);

  /* Now that symfile_objfile has been relocated, we can compute the
     GOT value and stash it away.  */
  main_executable_lm_info->got_value = main_got ();
}

/* Implement the "create_inferior_hook" target_solib_ops method.

   For the FR-V shared library ABI (FDPIC), the main executable needs
   to be relocated.  The shared library breakpoints also need to be
   enabled.  */

static void
frv_solib_create_inferior_hook (int from_tty)
{
  /* Relocate main executable.  */
  frv_relocate_main_executable ();

  /* Enable shared library breakpoints.  */
  if (!enable_break ())
    {
      warning (_("shared library handler failed to enable breakpoint"));
      return;
    }
}

static void
frv_clear_solib (void)
{
  lm_base_cache = 0;
  enable_break2_done = 0;
  main_lm_addr = 0;

  delete main_executable_lm_info;
  main_executable_lm_info = NULL;
}

static void
frv_free_so (struct so_list *so)
{
  lm_info_frv *li = (lm_info_frv *) so->lm_info;

  delete li;
}

static void
frv_relocate_section_addresses (struct so_list *so,
                                 struct target_section *sec)
{
  int seg;
  lm_info_frv *li = (lm_info_frv *) so->lm_info;
  int_elf32_fdpic_loadmap *map = li->map;

  for (seg = 0; seg < map->nsegs; seg++)
    {
      if (map->segs[seg].p_vaddr <= sec->addr
          && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
	{
	  CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;

	  sec->addr += displ;
	  sec->endaddr += displ;
	  break;
	}
    }
}

/* Return the GOT address associated with the main executable.  Return
   0 if it can't be found.  */

static CORE_ADDR
main_got (void)
{
  struct bound_minimal_symbol got_sym;

  got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
				   NULL, symfile_objfile);
  if (got_sym.minsym == 0)
    return 0;

  return BMSYMBOL_VALUE_ADDRESS (got_sym);
}

/* Find the global pointer for the given function address ADDR.  */

CORE_ADDR
frv_fdpic_find_global_pointer (CORE_ADDR addr)
{
  for (struct so_list *so : current_program_space->solibs ())
    {
      int seg;
      lm_info_frv *li = (lm_info_frv *) so->lm_info;
      int_elf32_fdpic_loadmap *map = li->map;

      for (seg = 0; seg < map->nsegs; seg++)
	{
	  if (map->segs[seg].addr <= addr
	      && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
	    return li->got_value;
	}
    }

  /* Didn't find it in any of the shared objects.  So assume it's in the
     main executable.  */
  return main_got ();
}

/* Forward declarations for frv_fdpic_find_canonical_descriptor().  */
static CORE_ADDR find_canonical_descriptor_in_load_object
  (CORE_ADDR, CORE_ADDR, const char *, bfd *, lm_info_frv *);

/* Given a function entry point, attempt to find the canonical descriptor
   associated with that entry point.  Return 0 if no canonical descriptor
   could be found.  */

CORE_ADDR
frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
{
  const char *name;
  CORE_ADDR addr;
  CORE_ADDR got_value;
  struct symbol *sym;

  /* Fetch the corresponding global pointer for the entry point.  */
  got_value = frv_fdpic_find_global_pointer (entry_point);

  /* Attempt to find the name of the function.  If the name is available,
     it'll be used as an aid in finding matching functions in the dynamic
     symbol table.  */
  sym = find_pc_function (entry_point);
  if (sym == 0)
    name = 0;
  else
    name = sym->linkage_name ();

  /* Check the main executable.  */
  addr = find_canonical_descriptor_in_load_object
           (entry_point, got_value, name, symfile_objfile->obfd,
	    main_executable_lm_info);

  /* If descriptor not found via main executable, check each load object
     in list of shared objects.  */
  if (addr == 0)
    {
      for (struct so_list *so : current_program_space->solibs ())
	{
	  lm_info_frv *li = (lm_info_frv *) so->lm_info;

	  addr = find_canonical_descriptor_in_load_object
		   (entry_point, got_value, name, so->abfd, li);

	  if (addr != 0)
	    break;
	}
    }

  return addr;
}

static CORE_ADDR
find_canonical_descriptor_in_load_object
  (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
   lm_info_frv *lm)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  arelent *rel;
  unsigned int i;
  CORE_ADDR addr = 0;

  /* Nothing to do if no bfd.  */
  if (abfd == 0)
    return 0;

  /* Nothing to do if no link map.  */
  if (lm == 0)
    return 0;

  /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
     (More about this later.)  But in order to fetch the relocs, we
     need to first fetch the dynamic symbols.  These symbols need to
     be cached due to the way that bfd_canonicalize_dynamic_reloc()
     works.  (See the comments in the declaration of struct lm_info
     for more information.)  */
  if (lm->dyn_syms == NULL)
    {
      long storage_needed;
      unsigned int number_of_symbols;

      /* Determine amount of space needed to hold the dynamic symbol table.  */
      storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);

      /* If there are no dynamic symbols, there's nothing to do.  */
      if (storage_needed <= 0)
	return 0;

      /* Allocate space for the dynamic symbol table.  */
      lm->dyn_syms = (asymbol **) xmalloc (storage_needed);

      /* Fetch the dynamic symbol table.  */
      number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);

      if (number_of_symbols == 0)
	return 0;
    }

  /* Fetch the dynamic relocations if not already cached.  */
  if (lm->dyn_relocs == NULL)
    {
      long storage_needed;

      /* Determine amount of space needed to hold the dynamic relocs.  */
      storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);

      /* Bail out if there are no dynamic relocs.  */
      if (storage_needed <= 0)
	return 0;

      /* Allocate space for the relocs.  */
      lm->dyn_relocs = (arelent **) xmalloc (storage_needed);

      /* Fetch the dynamic relocs.  */
      lm->dyn_reloc_count 
	= bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
    }

  /* Search the dynamic relocs.  */
  for (i = 0; i < lm->dyn_reloc_count; i++)
    {
      rel = lm->dyn_relocs[i];

      /* Relocs of interest are those which meet the following
         criteria:

	   - the names match (assuming the caller could provide
	     a name which matches ``entry_point'').
	   - the relocation type must be R_FRV_FUNCDESC.  Relocs
	     of this type are used (by the dynamic linker) to
	     look up the address of a canonical descriptor (allocating
	     it if need be) and initializing the GOT entry referred
	     to by the offset to the address of the descriptor.

	 These relocs of interest may be used to obtain a
	 candidate descriptor by first adjusting the reloc's
	 address according to the link map and then dereferencing
	 this address (which is a GOT entry) to obtain a descriptor
	 address.  */
      if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
          && rel->howto->type == R_FRV_FUNCDESC)
	{
	  gdb_byte buf [FRV_PTR_SIZE];

	  /* Compute address of address of candidate descriptor.  */
	  addr = rel->address + displacement_from_map (lm->map, rel->address);

	  /* Fetch address of candidate descriptor.  */
	  if (target_read_memory (addr, buf, sizeof buf) != 0)
	    continue;
	  addr = extract_unsigned_integer (buf, sizeof buf, byte_order);

	  /* Check for matching entry point.  */
	  if (target_read_memory (addr, buf, sizeof buf) != 0)
	    continue;
	  if (extract_unsigned_integer (buf, sizeof buf, byte_order)
	      != entry_point)
	    continue;

	  /* Check for matching got value.  */
	  if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
	    continue;
	  if (extract_unsigned_integer (buf, sizeof buf, byte_order)
	      != got_value)
	    continue;

	  /* Match was successful!  Exit loop.  */
	  break;
	}
    }

  return addr;
}

/* Given an objfile, return the address of its link map.  This value is
   needed for TLS support.  */
CORE_ADDR
frv_fetch_objfile_link_map (struct objfile *objfile)
{
  /* Cause frv_current_sos() to be run if it hasn't been already.  */
  if (main_lm_addr == 0)
    solib_add (0, 0, 1);

  /* frv_current_sos() will set main_lm_addr for the main executable.  */
  if (objfile == symfile_objfile)
    return main_lm_addr;

  /* The other link map addresses may be found by examining the list
     of shared libraries.  */
  for (struct so_list *so : current_program_space->solibs ())
    {
      lm_info_frv *li = (lm_info_frv *) so->lm_info;

      if (so->objfile == objfile)
	return li->lm_addr;
    }

  /* Not found!  */
  return 0;
}

struct target_so_ops frv_so_ops;

void _initialize_frv_solib ();
void
_initialize_frv_solib ()
{
  frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
  frv_so_ops.free_so = frv_free_so;
  frv_so_ops.clear_solib = frv_clear_solib;
  frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
  frv_so_ops.current_sos = frv_current_sos;
  frv_so_ops.open_symbol_file_object = open_symbol_file_object;
  frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
  frv_so_ops.bfd_open = solib_bfd_open;

  /* Debug this file's internals.  */
  add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
			     &solib_frv_debug, _("\
Set internal debugging of shared library code for FR-V."), _("\
Show internal debugging of shared library code for FR-V."), _("\
When non-zero, FR-V solib specific internal debugging is enabled."),
			     NULL,
			     NULL, /* FIXME: i18n: */
			     &setdebuglist, &showdebuglist);
}