Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
/* Memory breakpoint operations for the remote server for GDB.
   Copyright (C) 2002-2020 Free Software Foundation, Inc.

   Contributed by MontaVista Software.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "server.h"
#include "regcache.h"
#include "ax.h"

#define MAX_BREAKPOINT_LEN 8

/* Helper macro used in loops that append multiple items to a singly-linked
   list instead of inserting items at the head of the list, as, say, in the
   breakpoint lists.  LISTPP is a pointer to the pointer that is the head of
   the new list.  ITEMP is a pointer to the item to be added to the list.
   TAILP must be defined to be the same type as ITEMP, and initialized to
   NULL.  */

#define APPEND_TO_LIST(listpp, itemp, tailp) \
	  do \
	    { \
	      if ((tailp) == NULL) \
		*(listpp) = (itemp); \
	      else \
		(tailp)->next = (itemp); \
	      (tailp) = (itemp); \
	    } \
	  while (0)

/* GDB will never try to install multiple breakpoints at the same
   address.  However, we can see GDB requesting to insert a breakpoint
   at an address is had already inserted one previously in a few
   situations.

   - The RSP documentation on Z packets says that to avoid potential
   problems with duplicate packets, the operations should be
   implemented in an idempotent way.

   - A breakpoint is set at ADDR, an address in a shared library.
   Then the shared library is unloaded.  And then another, unrelated,
   breakpoint at ADDR is set.  There is not breakpoint removal request
   between the first and the second breakpoint.

   - When GDB wants to update the target-side breakpoint conditions or
   commands, it re-inserts the breakpoint, with updated
   conditions/commands associated.

   Also, we need to keep track of internal breakpoints too, so we do
   need to be able to install multiple breakpoints at the same address
   transparently.

   We keep track of two different, and closely related structures.  A
   raw breakpoint, which manages the low level, close to the metal
   aspect of a breakpoint.  It holds the breakpoint address, and for
   software breakpoints, a buffer holding a copy of the instructions
   that would be in memory had not been a breakpoint there (we call
   that the shadow memory of the breakpoint).  We occasionally need to
   temporarilly uninsert a breakpoint without the client knowing about
   it (e.g., to step over an internal breakpoint), so we keep an
   `inserted' state associated with this low level breakpoint
   structure.  There can only be one such object for a given address.
   Then, we have (a bit higher level) breakpoints.  This structure
   holds a callback to be called whenever a breakpoint is hit, a
   high-level type, and a link to a low level raw breakpoint.  There
   can be many high-level breakpoints at the same address, and all of
   them will point to the same raw breakpoint, which is reference
   counted.  */

/* The low level, physical, raw breakpoint.  */
struct raw_breakpoint
{
  struct raw_breakpoint *next;

  /* The low level type of the breakpoint (software breakpoint,
     watchpoint, etc.)  */
  enum raw_bkpt_type raw_type;

  /* A reference count.  Each high level breakpoint referencing this
     raw breakpoint accounts for one reference.  */
  int refcount;

  /* The breakpoint's insertion address.  There can only be one raw
     breakpoint for a given PC.  */
  CORE_ADDR pc;

  /* The breakpoint's kind.  This is target specific.  Most
     architectures only use one specific instruction for breakpoints, while
     others may use more than one.  E.g., on ARM, we need to use different
     breakpoint instructions on Thumb, Thumb-2, and ARM code.  Likewise for
     hardware breakpoints -- some architectures (including ARM) need to
     setup debug registers differently depending on mode.  */
  int kind;

  /* The breakpoint's shadow memory.  */
  unsigned char old_data[MAX_BREAKPOINT_LEN];

  /* Positive if this breakpoint is currently inserted in the
     inferior.  Negative if it was, but we've detected that it's now
     gone.  Zero if not inserted.  */
  int inserted;
};

/* The type of a breakpoint.  */
enum bkpt_type
  {
    /* A GDB breakpoint, requested with a Z0 packet.  */
    gdb_breakpoint_Z0,

    /* A GDB hardware breakpoint, requested with a Z1 packet.  */
    gdb_breakpoint_Z1,

    /* A GDB write watchpoint, requested with a Z2 packet.  */
    gdb_breakpoint_Z2,

    /* A GDB read watchpoint, requested with a Z3 packet.  */
    gdb_breakpoint_Z3,

    /* A GDB access watchpoint, requested with a Z4 packet.  */
    gdb_breakpoint_Z4,

    /* A software single-step breakpoint.  */
    single_step_breakpoint,

    /* Any other breakpoint type that doesn't require specific
       treatment goes here.  E.g., an event breakpoint.  */
    other_breakpoint,
  };

struct point_cond_list
{
  /* Pointer to the agent expression that is the breakpoint's
     conditional.  */
  struct agent_expr *cond;

  /* Pointer to the next condition.  */
  struct point_cond_list *next;
};

struct point_command_list
{
  /* Pointer to the agent expression that is the breakpoint's
     commands.  */
  struct agent_expr *cmd;

  /* Flag that is true if this command should run even while GDB is
     disconnected.  */
  int persistence;

  /* Pointer to the next command.  */
  struct point_command_list *next;
};

/* A high level (in gdbserver's perspective) breakpoint.  */
struct breakpoint
{
  struct breakpoint *next;

  /* The breakpoint's type.  */
  enum bkpt_type type;

  /* Link to this breakpoint's raw breakpoint.  This is always
     non-NULL.  */
  struct raw_breakpoint *raw;
};

/* Breakpoint requested by GDB.  */

struct gdb_breakpoint
{
  struct breakpoint base;

  /* Pointer to the condition list that should be evaluated on
     the target or NULL if the breakpoint is unconditional or
     if GDB doesn't want us to evaluate the conditionals on the
     target's side.  */
  struct point_cond_list *cond_list;

  /* Point to the list of commands to run when this is hit.  */
  struct point_command_list *command_list;
};

/* Breakpoint used by GDBserver.  */

struct other_breakpoint
{
  struct breakpoint base;

  /* Function to call when we hit this breakpoint.  If it returns 1,
     the breakpoint shall be deleted; 0 or if this callback is NULL,
     it will be left inserted.  */
  int (*handler) (CORE_ADDR);
};

/* Breakpoint for single step.  */

struct single_step_breakpoint
{
  struct breakpoint base;

  /* Thread the reinsert breakpoint belongs to.  */
  ptid_t ptid;
};

/* Return the breakpoint size from its kind.  */

static int
bp_size (struct raw_breakpoint *bp)
{
  int size = 0;

  the_target->sw_breakpoint_from_kind (bp->kind, &size);
  return size;
}

/* Return the breakpoint opcode from its kind.  */

static const gdb_byte *
bp_opcode (struct raw_breakpoint *bp)
{
  int size = 0;

  return the_target->sw_breakpoint_from_kind (bp->kind, &size);
}

/* See mem-break.h.  */

enum target_hw_bp_type
raw_bkpt_type_to_target_hw_bp_type (enum raw_bkpt_type raw_type)
{
  switch (raw_type)
    {
    case raw_bkpt_type_hw:
      return hw_execute;
    case raw_bkpt_type_write_wp:
      return hw_write;
    case raw_bkpt_type_read_wp:
      return hw_read;
    case raw_bkpt_type_access_wp:
      return hw_access;
    default:
      internal_error (__FILE__, __LINE__,
		      "bad raw breakpoint type %d", (int) raw_type);
    }
}

/* See mem-break.h.  */

static enum bkpt_type
Z_packet_to_bkpt_type (char z_type)
{
  gdb_assert ('0' <= z_type && z_type <= '4');

  return (enum bkpt_type) (gdb_breakpoint_Z0 + (z_type - '0'));
}

/* See mem-break.h.  */

enum raw_bkpt_type
Z_packet_to_raw_bkpt_type (char z_type)
{
  switch (z_type)
    {
    case Z_PACKET_SW_BP:
      return raw_bkpt_type_sw;
    case Z_PACKET_HW_BP:
      return raw_bkpt_type_hw;
    case Z_PACKET_WRITE_WP:
      return raw_bkpt_type_write_wp;
    case Z_PACKET_READ_WP:
      return raw_bkpt_type_read_wp;
    case Z_PACKET_ACCESS_WP:
      return raw_bkpt_type_access_wp;
    default:
      gdb_assert_not_reached ("unhandled Z packet type.");
    }
}

/* Return true if breakpoint TYPE is a GDB breakpoint.  */

static int
is_gdb_breakpoint (enum bkpt_type type)
{
  return (type == gdb_breakpoint_Z0
	  || type == gdb_breakpoint_Z1
	  || type == gdb_breakpoint_Z2
	  || type == gdb_breakpoint_Z3
	  || type == gdb_breakpoint_Z4);
}

bool
any_persistent_commands (process_info *proc)
{
  struct breakpoint *bp;
  struct point_command_list *cl;

  for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
    {
      if (is_gdb_breakpoint (bp->type))
	{
	  struct gdb_breakpoint *gdb_bp = (struct gdb_breakpoint *) bp;

	  for (cl = gdb_bp->command_list; cl != NULL; cl = cl->next)
	    if (cl->persistence)
	      return true;
	}
    }

  return false;
}

/* Find low-level breakpoint of type TYPE at address ADDR that is not
   insert-disabled.  Returns NULL if not found.  */

static struct raw_breakpoint *
find_enabled_raw_code_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if (bp->pc == addr
	&& bp->raw_type == type
	&& bp->inserted >= 0)
      return bp;

  return NULL;
}

/* Find low-level breakpoint of type TYPE at address ADDR.  Returns
   NULL if not found.  */

static struct raw_breakpoint *
find_raw_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type, int kind)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if (bp->pc == addr && bp->raw_type == type && bp->kind == kind)
      return bp;

  return NULL;
}

/* See mem-break.h.  */

int
insert_memory_breakpoint (struct raw_breakpoint *bp)
{
  unsigned char buf[MAX_BREAKPOINT_LEN];
  int err;

  /* Note that there can be fast tracepoint jumps installed in the
     same memory range, so to get at the original memory, we need to
     use read_inferior_memory, which masks those out.  */
  err = read_inferior_memory (bp->pc, buf, bp_size (bp));
  if (err != 0)
    {
      if (debug_threads)
	debug_printf ("Failed to read shadow memory of"
		      " breakpoint at 0x%s (%s).\n",
		      paddress (bp->pc), safe_strerror (err));
    }
  else
    {
      memcpy (bp->old_data, buf, bp_size (bp));

      err = the_target->write_memory (bp->pc, bp_opcode (bp),
				      bp_size (bp));
      if (err != 0)
	{
	  if (debug_threads)
	    debug_printf ("Failed to insert breakpoint at 0x%s (%s).\n",
			  paddress (bp->pc), safe_strerror (err));
	}
    }
  return err != 0 ? -1 : 0;
}

/* See mem-break.h  */

int
remove_memory_breakpoint (struct raw_breakpoint *bp)
{
  unsigned char buf[MAX_BREAKPOINT_LEN];
  int err;

  /* Since there can be trap breakpoints inserted in the same address
     range, we use `target_write_memory', which takes care of
     layering breakpoints on top of fast tracepoints, and on top of
     the buffer we pass it.  This works because the caller has already
     either unlinked the breakpoint or marked it uninserted.  Also
     note that we need to pass the current shadow contents, because
     target_write_memory updates any shadow memory with what we pass
     here, and we want that to be a nop.  */
  memcpy (buf, bp->old_data, bp_size (bp));
  err = target_write_memory (bp->pc, buf, bp_size (bp));
  if (err != 0)
    {
      if (debug_threads)
	debug_printf ("Failed to uninsert raw breakpoint "
		      "at 0x%s (%s) while deleting it.\n",
		      paddress (bp->pc), safe_strerror (err));
    }
  return err != 0 ? -1 : 0;
}

/* Set a RAW breakpoint of type TYPE and kind KIND at WHERE.  On
   success, a pointer to the new breakpoint is returned.  On failure,
   returns NULL and writes the error code to *ERR.  */

static struct raw_breakpoint *
set_raw_breakpoint_at (enum raw_bkpt_type type, CORE_ADDR where, int kind,
		       int *err)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  if (type == raw_bkpt_type_sw || type == raw_bkpt_type_hw)
    {
      bp = find_enabled_raw_code_breakpoint_at (where, type);
      if (bp != NULL && bp->kind != kind)
	{
	  /* A different kind than previously seen.  The previous
	     breakpoint must be gone then.  */
	  if (debug_threads)
	    debug_printf ("Inconsistent breakpoint kind?  Was %d, now %d.\n",
			  bp->kind, kind);
	  bp->inserted = -1;
	  bp = NULL;
	}
    }
  else
    bp = find_raw_breakpoint_at (where, type, kind);

  gdb::unique_xmalloc_ptr<struct raw_breakpoint> bp_holder;
  if (bp == NULL)
    {
      bp_holder.reset (XCNEW (struct raw_breakpoint));
      bp = bp_holder.get ();
      bp->pc = where;
      bp->kind = kind;
      bp->raw_type = type;
    }

  if (!bp->inserted)
    {
      *err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
      if (*err != 0)
	{
	  if (debug_threads)
	    debug_printf ("Failed to insert breakpoint at 0x%s (%d).\n",
			  paddress (where), *err);

	  return NULL;
	}

      bp->inserted = 1;
    }

  /* If the breakpoint was allocated above, we know we want to keep it
     now.  */
  bp_holder.release ();

  /* Link the breakpoint in, if this is the first reference.  */
  if (++bp->refcount == 1)
    {
      bp->next = proc->raw_breakpoints;
      proc->raw_breakpoints = bp;
    }
  return bp;
}

/* Notice that breakpoint traps are always installed on top of fast
   tracepoint jumps.  This is even if the fast tracepoint is installed
   at a later time compared to when the breakpoint was installed.
   This means that a stopping breakpoint or tracepoint has higher
   "priority".  In turn, this allows having fast and slow tracepoints
   (and breakpoints) at the same address behave correctly.  */


/* A fast tracepoint jump.  */

struct fast_tracepoint_jump
{
  struct fast_tracepoint_jump *next;

  /* A reference count.  GDB can install more than one fast tracepoint
     at the same address (each with its own action list, for
     example).  */
  int refcount;

  /* The fast tracepoint's insertion address.  There can only be one
     of these for a given PC.  */
  CORE_ADDR pc;

  /* Non-zero if this fast tracepoint jump is currently inserted in
     the inferior.  */
  int inserted;

  /* The length of the jump instruction.  */
  int length;

  /* A poor-man's flexible array member, holding both the jump
     instruction to insert, and a copy of the instruction that would
     be in memory had not been a jump there (the shadow memory of the
     tracepoint jump).  */
  unsigned char insn_and_shadow[0];
};

/* Fast tracepoint FP's jump instruction to insert.  */
#define fast_tracepoint_jump_insn(fp) \
  ((fp)->insn_and_shadow + 0)

/* The shadow memory of fast tracepoint jump FP.  */
#define fast_tracepoint_jump_shadow(fp) \
  ((fp)->insn_and_shadow + (fp)->length)


/* Return the fast tracepoint jump set at WHERE.  */

static struct fast_tracepoint_jump *
find_fast_tracepoint_jump_at (CORE_ADDR where)
{
  struct process_info *proc = current_process ();
  struct fast_tracepoint_jump *jp;

  for (jp = proc->fast_tracepoint_jumps; jp != NULL; jp = jp->next)
    if (jp->pc == where)
      return jp;

  return NULL;
}

int
fast_tracepoint_jump_here (CORE_ADDR where)
{
  struct fast_tracepoint_jump *jp = find_fast_tracepoint_jump_at (where);

  return (jp != NULL);
}

int
delete_fast_tracepoint_jump (struct fast_tracepoint_jump *todel)
{
  struct fast_tracepoint_jump *bp, **bp_link;
  int ret;
  struct process_info *proc = current_process ();

  bp = proc->fast_tracepoint_jumps;
  bp_link = &proc->fast_tracepoint_jumps;

  while (bp)
    {
      if (bp == todel)
	{
	  if (--bp->refcount == 0)
	    {
	      struct fast_tracepoint_jump *prev_bp_link = *bp_link;
	      unsigned char *buf;

	      /* Unlink it.  */
	      *bp_link = bp->next;

	      /* Since there can be breakpoints inserted in the same
		 address range, we use `target_write_memory', which
		 takes care of layering breakpoints on top of fast
		 tracepoints, and on top of the buffer we pass it.
		 This works because we've already unlinked the fast
		 tracepoint jump above.  Also note that we need to
		 pass the current shadow contents, because
		 target_write_memory updates any shadow memory with
		 what we pass here, and we want that to be a nop.  */
	      buf = (unsigned char *) alloca (bp->length);
	      memcpy (buf, fast_tracepoint_jump_shadow (bp), bp->length);
	      ret = target_write_memory (bp->pc, buf, bp->length);
	      if (ret != 0)
		{
		  /* Something went wrong, relink the jump.  */
		  *bp_link = prev_bp_link;

		  if (debug_threads)
		    debug_printf ("Failed to uninsert fast tracepoint jump "
				  "at 0x%s (%s) while deleting it.\n",
				  paddress (bp->pc), safe_strerror (ret));
		  return ret;
		}

	      free (bp);
	    }

	  return 0;
	}
      else
	{
	  bp_link = &bp->next;
	  bp = *bp_link;
	}
    }

  warning ("Could not find fast tracepoint jump in list.");
  return ENOENT;
}

void
inc_ref_fast_tracepoint_jump (struct fast_tracepoint_jump *jp)
{
  jp->refcount++;
}

struct fast_tracepoint_jump *
set_fast_tracepoint_jump (CORE_ADDR where,
			  unsigned char *insn, ULONGEST length)
{
  struct process_info *proc = current_process ();
  struct fast_tracepoint_jump *jp;
  int err;
  unsigned char *buf;

  /* We refcount fast tracepoint jumps.  Check if we already know
     about a jump at this address.  */
  jp = find_fast_tracepoint_jump_at (where);
  if (jp != NULL)
    {
      jp->refcount++;
      return jp;
    }

  /* We don't, so create a new object.  Double the length, because the
     flexible array member holds both the jump insn, and the
     shadow.  */
  jp = (struct fast_tracepoint_jump *) xcalloc (1, sizeof (*jp) + (length * 2));
  jp->pc = where;
  jp->length = length;
  memcpy (fast_tracepoint_jump_insn (jp), insn, length);
  jp->refcount = 1;
  buf = (unsigned char *) alloca (length);

  /* Note that there can be trap breakpoints inserted in the same
     address range.  To access the original memory contents, we use
     `read_inferior_memory', which masks out breakpoints.  */
  err = read_inferior_memory (where, buf, length);
  if (err != 0)
    {
      if (debug_threads)
	debug_printf ("Failed to read shadow memory of"
		      " fast tracepoint at 0x%s (%s).\n",
		      paddress (where), safe_strerror (err));
      free (jp);
      return NULL;
    }
  memcpy (fast_tracepoint_jump_shadow (jp), buf, length);

  /* Link the jump in.  */
  jp->inserted = 1;
  jp->next = proc->fast_tracepoint_jumps;
  proc->fast_tracepoint_jumps = jp;

  /* Since there can be trap breakpoints inserted in the same address
     range, we use use `target_write_memory', which takes care of
     layering breakpoints on top of fast tracepoints, on top of the
     buffer we pass it.  This works because we've already linked in
     the fast tracepoint jump above.  Also note that we need to pass
     the current shadow contents, because target_write_memory
     updates any shadow memory with what we pass here, and we want
     that to be a nop.  */
  err = target_write_memory (where, buf, length);
  if (err != 0)
    {
      if (debug_threads)
	debug_printf ("Failed to insert fast tracepoint jump at 0x%s (%s).\n",
		      paddress (where), safe_strerror (err));

      /* Unlink it.  */
      proc->fast_tracepoint_jumps = jp->next;
      free (jp);

      return NULL;
    }

  return jp;
}

void
uninsert_fast_tracepoint_jumps_at (CORE_ADDR pc)
{
  struct fast_tracepoint_jump *jp;
  int err;

  jp = find_fast_tracepoint_jump_at (pc);
  if (jp == NULL)
    {
      /* This can happen when we remove all breakpoints while handling
	 a step-over.  */
      if (debug_threads)
	debug_printf ("Could not find fast tracepoint jump at 0x%s "
		      "in list (uninserting).\n",
		      paddress (pc));
      return;
    }

  if (jp->inserted)
    {
      unsigned char *buf;

      jp->inserted = 0;

      /* Since there can be trap breakpoints inserted in the same
	 address range, we use use `target_write_memory', which
	 takes care of layering breakpoints on top of fast
	 tracepoints, and on top of the buffer we pass it.  This works
	 because we've already marked the fast tracepoint fast
	 tracepoint jump uninserted above.  Also note that we need to
	 pass the current shadow contents, because
	 target_write_memory updates any shadow memory with what we
	 pass here, and we want that to be a nop.  */
      buf = (unsigned char *) alloca (jp->length);
      memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
      err = target_write_memory (jp->pc, buf, jp->length);
      if (err != 0)
	{
	  jp->inserted = 1;

	  if (debug_threads)
	    debug_printf ("Failed to uninsert fast tracepoint jump at"
			  " 0x%s (%s).\n",
			  paddress (pc), safe_strerror (err));
	}
    }
}

void
reinsert_fast_tracepoint_jumps_at (CORE_ADDR where)
{
  struct fast_tracepoint_jump *jp;
  int err;
  unsigned char *buf;

  jp = find_fast_tracepoint_jump_at (where);
  if (jp == NULL)
    {
      /* This can happen when we remove breakpoints when a tracepoint
	 hit causes a tracing stop, while handling a step-over.  */
      if (debug_threads)
	debug_printf ("Could not find fast tracepoint jump at 0x%s "
		      "in list (reinserting).\n",
		      paddress (where));
      return;
    }

  if (jp->inserted)
    error ("Jump already inserted at reinsert time.");

  jp->inserted = 1;

  /* Since there can be trap breakpoints inserted in the same address
     range, we use `target_write_memory', which takes care of
     layering breakpoints on top of fast tracepoints, and on top of
     the buffer we pass it.  This works because we've already marked
     the fast tracepoint jump inserted above.  Also note that we need
     to pass the current shadow contents, because
     target_write_memory updates any shadow memory with what we pass
     here, and we want that to be a nop.  */
  buf = (unsigned char *) alloca (jp->length);
  memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
  err = target_write_memory (where, buf, jp->length);
  if (err != 0)
    {
      jp->inserted = 0;

      if (debug_threads)
	debug_printf ("Failed to reinsert fast tracepoint jump at"
		      " 0x%s (%s).\n",
		      paddress (where), safe_strerror (err));
    }
}

/* Set a high-level breakpoint of type TYPE, with low level type
   RAW_TYPE and kind KIND, at WHERE.  On success, a pointer to the new
   breakpoint is returned.  On failure, returns NULL and writes the
   error code to *ERR.  HANDLER is called when the breakpoint is hit.
   HANDLER should return 1 if the breakpoint should be deleted, 0
   otherwise.  */

static struct breakpoint *
set_breakpoint (enum bkpt_type type, enum raw_bkpt_type raw_type,
		CORE_ADDR where, int kind,
		int (*handler) (CORE_ADDR), int *err)
{
  struct process_info *proc = current_process ();
  struct breakpoint *bp;
  struct raw_breakpoint *raw;

  raw = set_raw_breakpoint_at (raw_type, where, kind, err);

  if (raw == NULL)
    {
      /* warn? */
      return NULL;
    }

  if (is_gdb_breakpoint (type))
    {
      struct gdb_breakpoint *gdb_bp = XCNEW (struct gdb_breakpoint);

      bp = (struct breakpoint *) gdb_bp;
      gdb_assert (handler == NULL);
    }
  else if (type == other_breakpoint)
    {
      struct other_breakpoint *other_bp = XCNEW (struct other_breakpoint);

      other_bp->handler = handler;
      bp = (struct breakpoint *) other_bp;
    }
  else if (type == single_step_breakpoint)
    {
      struct single_step_breakpoint *ss_bp
	= XCNEW (struct single_step_breakpoint);

      bp = (struct breakpoint *) ss_bp;
    }
  else
    gdb_assert_not_reached ("unhandled breakpoint type");

  bp->type = type;
  bp->raw = raw;

  bp->next = proc->breakpoints;
  proc->breakpoints = bp;

  return bp;
}

/* Set breakpoint of TYPE on address WHERE with handler HANDLER.  */

static struct breakpoint *
set_breakpoint_type_at (enum bkpt_type type, CORE_ADDR where,
			int (*handler) (CORE_ADDR))
{
  int err_ignored;
  CORE_ADDR placed_address = where;
  int breakpoint_kind = target_breakpoint_kind_from_pc (&placed_address);

  return set_breakpoint (type, raw_bkpt_type_sw,
			 placed_address, breakpoint_kind, handler,
			 &err_ignored);
}

/* See mem-break.h  */

struct breakpoint *
set_breakpoint_at (CORE_ADDR where, int (*handler) (CORE_ADDR))
{
  return set_breakpoint_type_at (other_breakpoint, where, handler);
}


static int
delete_raw_breakpoint (struct process_info *proc, struct raw_breakpoint *todel)
{
  struct raw_breakpoint *bp, **bp_link;
  int ret;

  bp = proc->raw_breakpoints;
  bp_link = &proc->raw_breakpoints;

  while (bp)
    {
      if (bp == todel)
	{
	  if (bp->inserted > 0)
	    {
	      struct raw_breakpoint *prev_bp_link = *bp_link;

	      *bp_link = bp->next;

	      ret = the_target->remove_point (bp->raw_type, bp->pc,
					      bp->kind, bp);
	      if (ret != 0)
		{
		  /* Something went wrong, relink the breakpoint.  */
		  *bp_link = prev_bp_link;

		  if (debug_threads)
		    debug_printf ("Failed to uninsert raw breakpoint "
				  "at 0x%s while deleting it.\n",
				  paddress (bp->pc));
		  return ret;
		}
	    }
	  else
	    *bp_link = bp->next;

	  free (bp);
	  return 0;
	}
      else
	{
	  bp_link = &bp->next;
	  bp = *bp_link;
	}
    }

  warning ("Could not find raw breakpoint in list.");
  return ENOENT;
}

static int
release_breakpoint (struct process_info *proc, struct breakpoint *bp)
{
  int newrefcount;
  int ret;

  newrefcount = bp->raw->refcount - 1;
  if (newrefcount == 0)
    {
      ret = delete_raw_breakpoint (proc, bp->raw);
      if (ret != 0)
	return ret;
    }
  else
    bp->raw->refcount = newrefcount;

  free (bp);

  return 0;
}

static int
delete_breakpoint_1 (struct process_info *proc, struct breakpoint *todel)
{
  struct breakpoint *bp, **bp_link;
  int err;

  bp = proc->breakpoints;
  bp_link = &proc->breakpoints;

  while (bp)
    {
      if (bp == todel)
	{
	  *bp_link = bp->next;

	  err = release_breakpoint (proc, bp);
	  if (err != 0)
	    return err;

	  bp = *bp_link;
	  return 0;
	}
      else
	{
	  bp_link = &bp->next;
	  bp = *bp_link;
	}
    }

  warning ("Could not find breakpoint in list.");
  return ENOENT;
}

int
delete_breakpoint (struct breakpoint *todel)
{
  struct process_info *proc = current_process ();
  return delete_breakpoint_1 (proc, todel);
}

/* Locate a GDB breakpoint of type Z_TYPE and kind KIND placed at
   address ADDR and return a pointer to its structure.  If KIND is -1,
   the breakpoint's kind is ignored.  */

static struct gdb_breakpoint *
find_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
{
  struct process_info *proc = current_process ();
  struct breakpoint *bp;
  enum bkpt_type type = Z_packet_to_bkpt_type (z_type);

  for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
    if (bp->type == type && bp->raw->pc == addr
	&& (kind == -1 || bp->raw->kind == kind))
      return (struct gdb_breakpoint *) bp;

  return NULL;
}

static int
z_type_supported (char z_type)
{
  return (z_type >= '0' && z_type <= '4'
	  && the_target->supports_z_point_type (z_type));
}

/* Create a new GDB breakpoint of type Z_TYPE at ADDR with kind KIND.
   Returns a pointer to the newly created breakpoint on success.  On
   failure returns NULL and sets *ERR to either -1 for error, or 1 if
   Z_TYPE breakpoints are not supported on this target.  */

static struct gdb_breakpoint *
set_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind, int *err)
{
  struct gdb_breakpoint *bp;
  enum bkpt_type type;
  enum raw_bkpt_type raw_type;

  /* If we see GDB inserting a second code breakpoint at the same
     address, then either: GDB is updating the breakpoint's conditions
     or commands; or, the first breakpoint must have disappeared due
     to a shared library unload.  On targets where the shared
     libraries are handled by userspace, like SVR4, for example,
     GDBserver can't tell if a library was loaded or unloaded.  Since
     we refcount raw breakpoints, we must be careful to make sure GDB
     breakpoints never contribute more than one reference.  if we
     didn't do this, in case the previous breakpoint is gone due to a
     shared library unload, we'd just increase the refcount of the
     previous breakpoint at this address, but the trap was not planted
     in the inferior anymore, thus the breakpoint would never be hit.
     Note this must be careful to not create a window where
     breakpoints are removed from the target, for non-stop, in case
     the target can poke at memory while the program is running.  */
  if (z_type == Z_PACKET_SW_BP
      || z_type == Z_PACKET_HW_BP)
    {
      bp = find_gdb_breakpoint (z_type, addr, -1);

      if (bp != NULL)
	{
	  if (bp->base.raw->kind != kind)
	    {
	      /* A different kind than previously seen.  The previous
		 breakpoint must be gone then.  */
	      bp->base.raw->inserted = -1;
	      delete_breakpoint ((struct breakpoint *) bp);
	      bp = NULL;
	    }
	  else if (z_type == Z_PACKET_SW_BP)
	    {
	      /* Check if the breakpoint is actually gone from the
		 target, due to an solib unload, for example.  Might
		 as well validate _all_ breakpoints.  */
	      validate_breakpoints ();

	      /* Breakpoints that don't pass validation are
		 deleted.  */
	      bp = find_gdb_breakpoint (z_type, addr, -1);
	    }
	}
    }
  else
    {
      /* Data breakpoints for the same address but different kind are
	 expected.  GDB doesn't merge these.  The backend gets to do
	 that if it wants/can.  */
      bp = find_gdb_breakpoint (z_type, addr, kind);
    }

  if (bp != NULL)
    {
      /* We already know about this breakpoint, there's nothing else
	 to do - GDB's reference is already accounted for.  Note that
	 whether the breakpoint inserted is left as is - we may be
	 stepping over it, for example, in which case we don't want to
	 force-reinsert it.  */
      return bp;
    }

  raw_type = Z_packet_to_raw_bkpt_type (z_type);
  type = Z_packet_to_bkpt_type (z_type);
  return (struct gdb_breakpoint *) set_breakpoint (type, raw_type, addr,
						   kind, NULL, err);
}

static int
check_gdb_bp_preconditions (char z_type, int *err)
{
  /* As software/memory breakpoints work by poking at memory, we need
     to prepare to access memory.  If that operation fails, we need to
     return error.  Seeing an error, if this is the first breakpoint
     of that type that GDB tries to insert, GDB would then assume the
     breakpoint type is supported, but it may actually not be.  So we
     need to check whether the type is supported at all before
     preparing to access memory.  */
  if (!z_type_supported (z_type))
    {
      *err = 1;
      return 0;
    }

  return 1;
}

/* See mem-break.h.  This is a wrapper for set_gdb_breakpoint_1 that
   knows to prepare to access memory for Z0 breakpoints.  */

struct gdb_breakpoint *
set_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind, int *err)
{
  struct gdb_breakpoint *bp;

  if (!check_gdb_bp_preconditions (z_type, err))
    return NULL;

  /* If inserting a software/memory breakpoint, need to prepare to
     access memory.  */
  if (z_type == Z_PACKET_SW_BP)
    {
      if (prepare_to_access_memory () != 0)
	{
	  *err = -1;
	  return NULL;
	}
    }

  bp = set_gdb_breakpoint_1 (z_type, addr, kind, err);

  if (z_type == Z_PACKET_SW_BP)
    done_accessing_memory ();

  return bp;
}

/* Delete a GDB breakpoint of type Z_TYPE and kind KIND previously
   inserted at ADDR with set_gdb_breakpoint_at.  Returns 0 on success,
   -1 on error, and 1 if Z_TYPE breakpoints are not supported on this
   target.  */

static int
delete_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind)
{
  struct gdb_breakpoint *bp;
  int err;

  bp = find_gdb_breakpoint (z_type, addr, kind);
  if (bp == NULL)
    return -1;

  /* Before deleting the breakpoint, make sure to free its condition
     and command lists.  */
  clear_breakpoint_conditions_and_commands (bp);
  err = delete_breakpoint ((struct breakpoint *) bp);
  if (err != 0)
    return -1;

  return 0;
}

/* See mem-break.h.  This is a wrapper for delete_gdb_breakpoint that
   knows to prepare to access memory for Z0 breakpoints.  */

int
delete_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
{
  int ret;

  if (!check_gdb_bp_preconditions (z_type, &ret))
    return ret;

  /* If inserting a software/memory breakpoint, need to prepare to
     access memory.  */
  if (z_type == Z_PACKET_SW_BP)
    {
      int err;

      err = prepare_to_access_memory ();
      if (err != 0)
	return -1;
    }

  ret = delete_gdb_breakpoint_1 (z_type, addr, kind);

  if (z_type == Z_PACKET_SW_BP)
    done_accessing_memory ();

  return ret;
}

/* Clear all conditions associated with a breakpoint.  */

static void
clear_breakpoint_conditions (struct gdb_breakpoint *bp)
{
  struct point_cond_list *cond;

  if (bp->cond_list == NULL)
    return;

  cond = bp->cond_list;

  while (cond != NULL)
    {
      struct point_cond_list *cond_next;

      cond_next = cond->next;
      gdb_free_agent_expr (cond->cond);
      free (cond);
      cond = cond_next;
    }

  bp->cond_list = NULL;
}

/* Clear all commands associated with a breakpoint.  */

static void
clear_breakpoint_commands (struct gdb_breakpoint *bp)
{
  struct point_command_list *cmd;

  if (bp->command_list == NULL)
    return;

  cmd = bp->command_list;

  while (cmd != NULL)
    {
      struct point_command_list *cmd_next;

      cmd_next = cmd->next;
      gdb_free_agent_expr (cmd->cmd);
      free (cmd);
      cmd = cmd_next;
    }

  bp->command_list = NULL;
}

void
clear_breakpoint_conditions_and_commands (struct gdb_breakpoint *bp)
{
  clear_breakpoint_conditions (bp);
  clear_breakpoint_commands (bp);
}

/* Add condition CONDITION to GDBserver's breakpoint BP.  */

static void
add_condition_to_breakpoint (struct gdb_breakpoint *bp,
			     struct agent_expr *condition)
{
  struct point_cond_list *new_cond;

  /* Create new condition.  */
  new_cond = XCNEW (struct point_cond_list);
  new_cond->cond = condition;

  /* Add condition to the list.  */
  new_cond->next = bp->cond_list;
  bp->cond_list = new_cond;
}

/* Add a target-side condition CONDITION to a breakpoint.  */

int
add_breakpoint_condition (struct gdb_breakpoint *bp, const char **condition)
{
  const char *actparm = *condition;
  struct agent_expr *cond;

  if (condition == NULL)
    return 1;

  if (bp == NULL)
    return 0;

  cond = gdb_parse_agent_expr (&actparm);

  if (cond == NULL)
    {
      warning ("Condition evaluation failed. Assuming unconditional.");
      return 0;
    }

  add_condition_to_breakpoint (bp, cond);

  *condition = actparm;

  return 1;
}

/* Evaluate condition (if any) at breakpoint BP.  Return 1 if
   true and 0 otherwise.  */

static int
gdb_condition_true_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
{
  /* Fetch registers for the current inferior.  */
  struct gdb_breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
  ULONGEST value = 0;
  struct point_cond_list *cl;
  int err = 0;
  struct eval_agent_expr_context ctx;

  if (bp == NULL)
    return 0;

  /* Check if the breakpoint is unconditional.  If it is,
     the condition always evaluates to TRUE.  */
  if (bp->cond_list == NULL)
    return 1;

  ctx.regcache = get_thread_regcache (current_thread, 1);
  ctx.tframe = NULL;
  ctx.tpoint = NULL;

  /* Evaluate each condition in the breakpoint's list of conditions.
     Return true if any of the conditions evaluates to TRUE.

     If we failed to evaluate the expression, TRUE is returned.  This
     forces GDB to reevaluate the conditions.  */
  for (cl = bp->cond_list;
       cl && !value && !err; cl = cl->next)
    {
      /* Evaluate the condition.  */
      err = gdb_eval_agent_expr (&ctx, cl->cond, &value);
    }

  if (err)
    return 1;

  return (value != 0);
}

int
gdb_condition_true_at_breakpoint (CORE_ADDR where)
{
  /* Only check code (software or hardware) breakpoints.  */
  return (gdb_condition_true_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
	  || gdb_condition_true_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
}

/* Add commands COMMANDS to GDBserver's breakpoint BP.  */

static void
add_commands_to_breakpoint (struct gdb_breakpoint *bp,
			    struct agent_expr *commands, int persist)
{
  struct point_command_list *new_cmd;

  /* Create new command.  */
  new_cmd = XCNEW (struct point_command_list);
  new_cmd->cmd = commands;
  new_cmd->persistence = persist;

  /* Add commands to the list.  */
  new_cmd->next = bp->command_list;
  bp->command_list = new_cmd;
}

/* Add a target-side command COMMAND to the breakpoint at ADDR.  */

int
add_breakpoint_commands (struct gdb_breakpoint *bp, const char **command,
			 int persist)
{
  const char *actparm = *command;
  struct agent_expr *cmd;

  if (command == NULL)
    return 1;

  if (bp == NULL)
    return 0;

  cmd = gdb_parse_agent_expr (&actparm);

  if (cmd == NULL)
    {
      warning ("Command evaluation failed. Disabling.");
      return 0;
    }

  add_commands_to_breakpoint (bp, cmd, persist);

  *command = actparm;

  return 1;
}

/* Return true if there are no commands to run at this location,
   which likely means we want to report back to GDB.  */

static int
gdb_no_commands_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
{
  struct gdb_breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);

  if (bp == NULL)
    return 1;

  if (debug_threads)
    debug_printf ("at 0x%s, type Z%c, bp command_list is 0x%s\n",
		  paddress (addr), z_type,
		  phex_nz ((uintptr_t) bp->command_list, 0));
  return (bp->command_list == NULL);
}

/* Return true if there are no commands to run at this location,
   which likely means we want to report back to GDB.  */

int
gdb_no_commands_at_breakpoint (CORE_ADDR where)
{
  /* Only check code (software or hardware) breakpoints.  */
  return (gdb_no_commands_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
	  && gdb_no_commands_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
}

/* Run a breakpoint's commands.  Returns 0 if there was a problem
   running any command, 1 otherwise.  */

static int
run_breakpoint_commands_z_type (char z_type, CORE_ADDR addr)
{
  /* Fetch registers for the current inferior.  */
  struct gdb_breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
  ULONGEST value = 0;
  struct point_command_list *cl;
  int err = 0;
  struct eval_agent_expr_context ctx;

  if (bp == NULL)
    return 1;

  ctx.regcache = get_thread_regcache (current_thread, 1);
  ctx.tframe = NULL;
  ctx.tpoint = NULL;

  for (cl = bp->command_list;
       cl && !value && !err; cl = cl->next)
    {
      /* Run the command.  */
      err = gdb_eval_agent_expr (&ctx, cl->cmd, &value);

      /* If one command has a problem, stop digging the hole deeper.  */
      if (err)
	return 0;
    }

  return 1;
}

void
run_breakpoint_commands (CORE_ADDR where)
{
  /* Only check code (software or hardware) breakpoints.  If one
     command has a problem, stop digging the hole deeper.  */
  if (run_breakpoint_commands_z_type (Z_PACKET_SW_BP, where))
    run_breakpoint_commands_z_type (Z_PACKET_HW_BP, where);
}

/* See mem-break.h.  */

int
gdb_breakpoint_here (CORE_ADDR where)
{
  /* Only check code (software or hardware) breakpoints.  */
  return (find_gdb_breakpoint (Z_PACKET_SW_BP, where, -1) != NULL
	  || find_gdb_breakpoint (Z_PACKET_HW_BP, where, -1) != NULL);
}

void
set_single_step_breakpoint (CORE_ADDR stop_at, ptid_t ptid)
{
  struct single_step_breakpoint *bp;

  gdb_assert (current_ptid.pid () == ptid.pid ());

  bp = (struct single_step_breakpoint *) set_breakpoint_type_at (single_step_breakpoint,
								stop_at, NULL);
  bp->ptid = ptid;
}

void
delete_single_step_breakpoints (struct thread_info *thread)
{
  struct process_info *proc = get_thread_process (thread);
  struct breakpoint *bp, **bp_link;

  bp = proc->breakpoints;
  bp_link = &proc->breakpoints;

  while (bp)
    {
      if (bp->type == single_step_breakpoint
	  && ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
	{
	  struct thread_info *saved_thread = current_thread;

	  current_thread = thread;
	  *bp_link = bp->next;
	  release_breakpoint (proc, bp);
	  bp = *bp_link;
	  current_thread = saved_thread;
	}
      else
	{
	  bp_link = &bp->next;
	  bp = *bp_link;
	}
    }
}

static void
uninsert_raw_breakpoint (struct raw_breakpoint *bp)
{
  if (bp->inserted < 0)
    {
      if (debug_threads)
	debug_printf ("Breakpoint at %s is marked insert-disabled.\n",
		      paddress (bp->pc));
    }
  else if (bp->inserted > 0)
    {
      int err;

      bp->inserted = 0;

      err = the_target->remove_point (bp->raw_type, bp->pc, bp->kind, bp);
      if (err != 0)
	{
	  bp->inserted = 1;

	  if (debug_threads)
	    debug_printf ("Failed to uninsert raw breakpoint at 0x%s.\n",
			  paddress (bp->pc));
	}
    }
}

void
uninsert_breakpoints_at (CORE_ADDR pc)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;
  int found = 0;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if ((bp->raw_type == raw_bkpt_type_sw
	 || bp->raw_type == raw_bkpt_type_hw)
	&& bp->pc == pc)
      {
	found = 1;

	if (bp->inserted)
	  uninsert_raw_breakpoint (bp);
      }

  if (!found)
    {
      /* This can happen when we remove all breakpoints while handling
	 a step-over.  */
      if (debug_threads)
	debug_printf ("Could not find breakpoint at 0x%s "
		      "in list (uninserting).\n",
		      paddress (pc));
    }
}

void
uninsert_all_breakpoints (void)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if ((bp->raw_type == raw_bkpt_type_sw
	 || bp->raw_type == raw_bkpt_type_hw)
	&& bp->inserted)
      uninsert_raw_breakpoint (bp);
}

void
uninsert_single_step_breakpoints (struct thread_info *thread)
{
  struct process_info *proc = get_thread_process (thread);
  struct breakpoint *bp;

  for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
    {
    if (bp->type == single_step_breakpoint
	&& ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
      {
	gdb_assert (bp->raw->inserted > 0);

	/* Only uninsert the raw breakpoint if it only belongs to a
	   reinsert breakpoint.  */
	if (bp->raw->refcount == 1)
	  {
	    struct thread_info *saved_thread = current_thread;

	    current_thread = thread;
	    uninsert_raw_breakpoint (bp->raw);
	    current_thread = saved_thread;
	  }
      }
    }
}

static void
reinsert_raw_breakpoint (struct raw_breakpoint *bp)
{
  int err;

  if (bp->inserted)
    return;

  err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
  if (err == 0)
    bp->inserted = 1;
  else if (debug_threads)
    debug_printf ("Failed to reinsert breakpoint at 0x%s (%d).\n",
		  paddress (bp->pc), err);
}

void
reinsert_breakpoints_at (CORE_ADDR pc)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;
  int found = 0;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if ((bp->raw_type == raw_bkpt_type_sw
	 || bp->raw_type == raw_bkpt_type_hw)
	&& bp->pc == pc)
      {
	found = 1;

	reinsert_raw_breakpoint (bp);
      }

  if (!found)
    {
      /* This can happen when we remove all breakpoints while handling
	 a step-over.  */
      if (debug_threads)
	debug_printf ("Could not find raw breakpoint at 0x%s "
		      "in list (reinserting).\n",
		      paddress (pc));
    }
}

int
has_single_step_breakpoints (struct thread_info *thread)
{
  struct process_info *proc = get_thread_process (thread);
  struct breakpoint *bp, **bp_link;

  bp = proc->breakpoints;
  bp_link = &proc->breakpoints;

  while (bp)
    {
      if (bp->type == single_step_breakpoint
	  && ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
	return 1;
      else
	{
	  bp_link = &bp->next;
	  bp = *bp_link;
	}
    }

  return 0;
}

void
reinsert_all_breakpoints (void)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if ((bp->raw_type == raw_bkpt_type_sw
	 || bp->raw_type == raw_bkpt_type_hw)
	&& !bp->inserted)
      reinsert_raw_breakpoint (bp);
}

void
reinsert_single_step_breakpoints (struct thread_info *thread)
{
  struct process_info *proc = get_thread_process (thread);
  struct breakpoint *bp;

  for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
    {
      if (bp->type == single_step_breakpoint
	  && ((struct single_step_breakpoint *) bp)->ptid == ptid_of (thread))
	{
	  gdb_assert (bp->raw->inserted > 0);

	  if (bp->raw->refcount == 1)
	    {
	      struct thread_info *saved_thread = current_thread;

	      current_thread = thread;
	      reinsert_raw_breakpoint (bp->raw);
	      current_thread = saved_thread;
	    }
	}
    }
}

void
check_breakpoints (CORE_ADDR stop_pc)
{
  struct process_info *proc = current_process ();
  struct breakpoint *bp, **bp_link;

  bp = proc->breakpoints;
  bp_link = &proc->breakpoints;

  while (bp)
    {
      struct raw_breakpoint *raw = bp->raw;

      if ((raw->raw_type == raw_bkpt_type_sw
	   || raw->raw_type == raw_bkpt_type_hw)
	  && raw->pc == stop_pc)
	{
	  if (!raw->inserted)
	    {
	      warning ("Hit a removed breakpoint?");
	      return;
	    }

	  if (bp->type == other_breakpoint)
	    {
	      struct other_breakpoint *other_bp
		= (struct other_breakpoint *) bp;

	      if (other_bp->handler != NULL && (*other_bp->handler) (stop_pc))
		{
		  *bp_link = bp->next;

		  release_breakpoint (proc, bp);

		  bp = *bp_link;
		  continue;
		}
	    }
	}

      bp_link = &bp->next;
      bp = *bp_link;
    }
}

int
breakpoint_here (CORE_ADDR addr)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if ((bp->raw_type == raw_bkpt_type_sw
	 || bp->raw_type == raw_bkpt_type_hw)
	&& bp->pc == addr)
      return 1;

  return 0;
}

int
breakpoint_inserted_here (CORE_ADDR addr)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if ((bp->raw_type == raw_bkpt_type_sw
	 || bp->raw_type == raw_bkpt_type_hw)
	&& bp->pc == addr
	&& bp->inserted)
      return 1;

  return 0;
}

/* See mem-break.h.  */

int
software_breakpoint_inserted_here (CORE_ADDR addr)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if (bp->raw_type == raw_bkpt_type_sw
	&& bp->pc == addr
	&& bp->inserted)
      return 1;

  return 0;
}

/* See mem-break.h.  */

int
hardware_breakpoint_inserted_here (CORE_ADDR addr)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp;

  for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
    if (bp->raw_type == raw_bkpt_type_hw
	&& bp->pc == addr
	&& bp->inserted)
      return 1;

  return 0;
}

/* See mem-break.h.  */

int
single_step_breakpoint_inserted_here (CORE_ADDR addr)
{
  struct process_info *proc = current_process ();
  struct breakpoint *bp;

  for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
    if (bp->type == single_step_breakpoint
	&& bp->raw->pc == addr
	&& bp->raw->inserted)
      return 1;

  return 0;
}

static int
validate_inserted_breakpoint (struct raw_breakpoint *bp)
{
  unsigned char *buf;
  int err;

  gdb_assert (bp->inserted);
  gdb_assert (bp->raw_type == raw_bkpt_type_sw);

  buf = (unsigned char *) alloca (bp_size (bp));
  err = the_target->read_memory (bp->pc, buf, bp_size (bp));
  if (err || memcmp (buf, bp_opcode (bp), bp_size (bp)) != 0)
    {
      /* Tag it as gone.  */
      bp->inserted = -1;
      return 0;
    }

  return 1;
}

static void
delete_disabled_breakpoints (void)
{
  struct process_info *proc = current_process ();
  struct breakpoint *bp, *next;

  for (bp = proc->breakpoints; bp != NULL; bp = next)
    {
      next = bp->next;
      if (bp->raw->inserted < 0)
	{
	  /* If single_step_breakpoints become disabled, that means the
	     manipulations (insertion and removal) of them are wrong.  */
	  gdb_assert (bp->type != single_step_breakpoint);
	  delete_breakpoint_1 (proc, bp);
	}
    }
}

/* Check if breakpoints we inserted still appear to be inserted.  They
   may disappear due to a shared library unload, and worse, a new
   shared library may be reloaded at the same address as the
   previously unloaded one.  If that happens, we should make sure that
   the shadow memory of the old breakpoints isn't used when reading or
   writing memory.  */

void
validate_breakpoints (void)
{
  struct process_info *proc = current_process ();
  struct breakpoint *bp;

  for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
    {
      struct raw_breakpoint *raw = bp->raw;

      if (raw->raw_type == raw_bkpt_type_sw && raw->inserted > 0)
	validate_inserted_breakpoint (raw);
    }

  delete_disabled_breakpoints ();
}

void
check_mem_read (CORE_ADDR mem_addr, unsigned char *buf, int mem_len)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp = proc->raw_breakpoints;
  struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
  CORE_ADDR mem_end = mem_addr + mem_len;
  int disabled_one = 0;

  for (; jp != NULL; jp = jp->next)
    {
      CORE_ADDR bp_end = jp->pc + jp->length;
      CORE_ADDR start, end;
      int copy_offset, copy_len, buf_offset;

      gdb_assert (fast_tracepoint_jump_shadow (jp) >= buf + mem_len
		  || buf >= fast_tracepoint_jump_shadow (jp) + (jp)->length);

      if (mem_addr >= bp_end)
	continue;
      if (jp->pc >= mem_end)
	continue;

      start = jp->pc;
      if (mem_addr > start)
	start = mem_addr;

      end = bp_end;
      if (end > mem_end)
	end = mem_end;

      copy_len = end - start;
      copy_offset = start - jp->pc;
      buf_offset = start - mem_addr;

      if (jp->inserted)
	memcpy (buf + buf_offset,
		fast_tracepoint_jump_shadow (jp) + copy_offset,
		copy_len);
    }

  for (; bp != NULL; bp = bp->next)
    {
      CORE_ADDR bp_end = bp->pc + bp_size (bp);
      CORE_ADDR start, end;
      int copy_offset, copy_len, buf_offset;

      if (bp->raw_type != raw_bkpt_type_sw)
	continue;

      gdb_assert (bp->old_data >= buf + mem_len
		  || buf >= &bp->old_data[sizeof (bp->old_data)]);

      if (mem_addr >= bp_end)
	continue;
      if (bp->pc >= mem_end)
	continue;

      start = bp->pc;
      if (mem_addr > start)
	start = mem_addr;

      end = bp_end;
      if (end > mem_end)
	end = mem_end;

      copy_len = end - start;
      copy_offset = start - bp->pc;
      buf_offset = start - mem_addr;

      if (bp->inserted > 0)
	{
	  if (validate_inserted_breakpoint (bp))
	    memcpy (buf + buf_offset, bp->old_data + copy_offset, copy_len);
	  else
	    disabled_one = 1;
	}
    }

  if (disabled_one)
    delete_disabled_breakpoints ();
}

void
check_mem_write (CORE_ADDR mem_addr, unsigned char *buf,
		 const unsigned char *myaddr, int mem_len)
{
  struct process_info *proc = current_process ();
  struct raw_breakpoint *bp = proc->raw_breakpoints;
  struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
  CORE_ADDR mem_end = mem_addr + mem_len;
  int disabled_one = 0;

  /* First fast tracepoint jumps, then breakpoint traps on top.  */

  for (; jp != NULL; jp = jp->next)
    {
      CORE_ADDR jp_end = jp->pc + jp->length;
      CORE_ADDR start, end;
      int copy_offset, copy_len, buf_offset;

      gdb_assert (fast_tracepoint_jump_shadow (jp) >= myaddr + mem_len
		  || myaddr >= fast_tracepoint_jump_shadow (jp) + (jp)->length);
      gdb_assert (fast_tracepoint_jump_insn (jp) >= buf + mem_len
		  || buf >= fast_tracepoint_jump_insn (jp) + (jp)->length);

      if (mem_addr >= jp_end)
	continue;
      if (jp->pc >= mem_end)
	continue;

      start = jp->pc;
      if (mem_addr > start)
	start = mem_addr;

      end = jp_end;
      if (end > mem_end)
	end = mem_end;

      copy_len = end - start;
      copy_offset = start - jp->pc;
      buf_offset = start - mem_addr;

      memcpy (fast_tracepoint_jump_shadow (jp) + copy_offset,
	      myaddr + buf_offset, copy_len);
      if (jp->inserted)
	memcpy (buf + buf_offset,
		fast_tracepoint_jump_insn (jp) + copy_offset, copy_len);
    }

  for (; bp != NULL; bp = bp->next)
    {
      CORE_ADDR bp_end = bp->pc + bp_size (bp);
      CORE_ADDR start, end;
      int copy_offset, copy_len, buf_offset;

      if (bp->raw_type != raw_bkpt_type_sw)
	continue;

      gdb_assert (bp->old_data >= myaddr + mem_len
		  || myaddr >= &bp->old_data[sizeof (bp->old_data)]);

      if (mem_addr >= bp_end)
	continue;
      if (bp->pc >= mem_end)
	continue;

      start = bp->pc;
      if (mem_addr > start)
	start = mem_addr;

      end = bp_end;
      if (end > mem_end)
	end = mem_end;

      copy_len = end - start;
      copy_offset = start - bp->pc;
      buf_offset = start - mem_addr;

      memcpy (bp->old_data + copy_offset, myaddr + buf_offset, copy_len);
      if (bp->inserted > 0)
	{
	  if (validate_inserted_breakpoint (bp))
	    memcpy (buf + buf_offset, bp_opcode (bp) + copy_offset, copy_len);
	  else
	    disabled_one = 1;
	}
    }

  if (disabled_one)
    delete_disabled_breakpoints ();
}

/* Delete all breakpoints, and un-insert them from the inferior.  */

void
delete_all_breakpoints (void)
{
  struct process_info *proc = current_process ();

  while (proc->breakpoints)
    delete_breakpoint_1 (proc, proc->breakpoints);
}

/* Clear the "inserted" flag in all breakpoints.  */

void
mark_breakpoints_out (struct process_info *proc)
{
  struct raw_breakpoint *raw_bp;

  for (raw_bp = proc->raw_breakpoints; raw_bp != NULL; raw_bp = raw_bp->next)
    raw_bp->inserted = 0;
}

/* Release all breakpoints, but do not try to un-insert them from the
   inferior.  */

void
free_all_breakpoints (struct process_info *proc)
{
  mark_breakpoints_out (proc);

  /* Note: use PROC explicitly instead of deferring to
     delete_all_breakpoints --- CURRENT_INFERIOR may already have been
     released when we get here.  There should be no call to
     current_process from here on.  */
  while (proc->breakpoints)
    delete_breakpoint_1 (proc, proc->breakpoints);
}

/* Clone an agent expression.  */

static struct agent_expr *
clone_agent_expr (const struct agent_expr *src_ax)
{
  struct agent_expr *ax;

  ax = XCNEW (struct agent_expr);
  ax->length = src_ax->length;
  ax->bytes = (unsigned char *) xcalloc (ax->length, 1);
  memcpy (ax->bytes, src_ax->bytes, ax->length);
  return ax;
}

/* Deep-copy the contents of one breakpoint to another.  */

static struct breakpoint *
clone_one_breakpoint (const struct breakpoint *src, ptid_t ptid)
{
  struct breakpoint *dest;
  struct raw_breakpoint *dest_raw;

  /* Clone the raw breakpoint.  */
  dest_raw = XCNEW (struct raw_breakpoint);
  dest_raw->raw_type = src->raw->raw_type;
  dest_raw->refcount = src->raw->refcount;
  dest_raw->pc = src->raw->pc;
  dest_raw->kind = src->raw->kind;
  memcpy (dest_raw->old_data, src->raw->old_data, MAX_BREAKPOINT_LEN);
  dest_raw->inserted = src->raw->inserted;

  /* Clone the high-level breakpoint.  */
  if (is_gdb_breakpoint (src->type))
    {
      struct gdb_breakpoint *gdb_dest = XCNEW (struct gdb_breakpoint);
      struct point_cond_list *current_cond;
      struct point_cond_list *new_cond;
      struct point_cond_list *cond_tail = NULL;
      struct point_command_list *current_cmd;
      struct point_command_list *new_cmd;
      struct point_command_list *cmd_tail = NULL;

      /* Clone the condition list.  */
      for (current_cond = ((struct gdb_breakpoint *) src)->cond_list;
	   current_cond != NULL;
	   current_cond = current_cond->next)
	{
	  new_cond = XCNEW (struct point_cond_list);
	  new_cond->cond = clone_agent_expr (current_cond->cond);
	  APPEND_TO_LIST (&gdb_dest->cond_list, new_cond, cond_tail);
	}

      /* Clone the command list.  */
      for (current_cmd = ((struct gdb_breakpoint *) src)->command_list;
	   current_cmd != NULL;
	   current_cmd = current_cmd->next)
	{
	  new_cmd = XCNEW (struct point_command_list);
	  new_cmd->cmd = clone_agent_expr (current_cmd->cmd);
	  new_cmd->persistence = current_cmd->persistence;
	  APPEND_TO_LIST (&gdb_dest->command_list, new_cmd, cmd_tail);
	}

      dest = (struct breakpoint *) gdb_dest;
    }
  else if (src->type == other_breakpoint)
    {
      struct other_breakpoint *other_dest = XCNEW (struct other_breakpoint);

      other_dest->handler = ((struct other_breakpoint *) src)->handler;
      dest = (struct breakpoint *) other_dest;
    }
  else if (src->type == single_step_breakpoint)
    {
      struct single_step_breakpoint *ss_dest
	= XCNEW (struct single_step_breakpoint);

      dest = (struct breakpoint *) ss_dest;
      /* Since single-step breakpoint is thread specific, don't copy
	 thread id from SRC, use ID instead.  */
      ss_dest->ptid = ptid;
    }
  else
    gdb_assert_not_reached ("unhandled breakpoint type");

  dest->type = src->type;
  dest->raw = dest_raw;

  return dest;
}

/* See mem-break.h.  */

void
clone_all_breakpoints (struct thread_info *child_thread,
		       const struct thread_info *parent_thread)
{
  const struct breakpoint *bp;
  struct breakpoint *new_bkpt;
  struct breakpoint *bkpt_tail = NULL;
  struct raw_breakpoint *raw_bkpt_tail = NULL;
  struct process_info *child_proc = get_thread_process (child_thread);
  struct process_info *parent_proc = get_thread_process (parent_thread);
  struct breakpoint **new_list = &child_proc->breakpoints;
  struct raw_breakpoint **new_raw_list = &child_proc->raw_breakpoints;

  for (bp = parent_proc->breakpoints; bp != NULL; bp = bp->next)
    {
      new_bkpt = clone_one_breakpoint (bp, ptid_of (child_thread));
      APPEND_TO_LIST (new_list, new_bkpt, bkpt_tail);
      APPEND_TO_LIST (new_raw_list, new_bkpt->raw, raw_bkpt_tail);
    }
}