Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
dnl  Power9 mpn_mul_basecase.

dnl  Copyright 1999-2001, 2003-2006, 2008, 2017-2018 Free Software Foundation,
dnl  Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')

C                  cycles/limb
C POWER3/PPC630          -
C POWER4/PPC970          -
C POWER5                 -
C POWER6                 -
C POWER7                 -
C POWER8                 -
C POWER9                 1.62

C TODO
C  * Check if (inner) loop alignment affects performance.
C  * Could we schedule loads less in addmul_2/mul_2? That would save some regs
C    and make the tail code more manageable.
C  * Postpone some register saves to main loop.
C  * Perhaps write more small operands (3x1, 3x2, 3x3) code.
C  * Consider restoring rp,up after loop using arithmetic, eliminating rp2, up2.
C    On the other hand, the current rp,up restore register are useful for OSP.
C  * Do OSP. This should save a lot with the current deep addmul_2 pipeline.

C INPUT PARAMETERS
define(`rp', `r3')
define(`up', `r4')
define(`un', `r5')
define(`vp', `r6')
define(`vn', `r7')

define(`v0', `r0')
define(`v1', `r7')
define(`rp2', `r24')
define(`up2', `r25')

ASM_START()
PROLOGUE(mpn_mul_basecase)
	cmpdi	cr0, un, 2
	bgt	cr0, L(un_gt2)
	cmpdi	cr6, vn, 1
	ld	r7, 0(vp)
	ld	r5, 0(up)
	mulld	r8, r5, r7	C weight 0
	mulhdu	r9, r5, r7	C weight 1
	std	r8, 0(rp)
	beq	cr0, L(2x)
	std	r9, 8(rp)
	blr
	ALIGN(16)
L(2x):	ld	r0, 8(up)
	mulld	r8, r0, r7	C weight 1
	mulhdu	r10, r0, r7	C weight 2
	addc	r9, r9, r8
	addze	r10, r10
	bne	cr6, L(2x2)
	std	r9, 8(rp)
	std	r10, 16(rp)
	blr
	ALIGN(16)
L(2x2):	ld	r6, 8(vp)
	mulld	r8, r5, r6	C weight 1
	mulhdu	r11, r5, r6	C weight 2
	addc	r9, r9, r8
	std	r9, 8(rp)
	adde	r11, r11, r10
	mulld	r12, r0, r6	C weight 2
	mulhdu	r0, r0, r6	C weight 3
	addze	r0, r0
	addc	r11, r11, r12
	addze	r0, r0
	std	r11, 16(rp)
	std	r0, 24(rp)
	blr

L(un_gt2):
	std	r22, -80(r1)
	std	r23, -72(r1)
	std	r24, -64(r1)
	std	r25, -56(r1)
	std	r26, -48(r1)
	std	r27, -40(r1)
	std	r28, -32(r1)
	std	r29, -24(r1)
	std	r30, -16(r1)
	std	r31, -8(r1)
	mr	rp2, r3			C rp
	mr	up2, r4			C up
	srdi	r22, r5, 2		C un
	subfic	r23, r7, 0		C -vn, clear CA
	subfo	r0, r0, r0		C clear OV (and r0)

	cmpdi	cr6, un, 3
	rldicl	r0, un, 0, 63		C r0 = un & 1
	cmpdi	cr7, r0, 0
	rldicl	r0, un, 63, 63		C FIXME: unused for vn = 1
	cmpdi	cr5, r0, 0		C FIXME: unused for vn = 1

	ld	v0, 0(vp)
	rldicl.	r9, vn, 0, 63
	beq	cr0, L(vn_evn)

L(vn_odd):
	addi	r10, un, -2
	ld	r5, 0(up)
	srdi	r10, r10, 1
	mtctr	r10
	bne	cr7, L(m1_b1)

L(m1_b0):
	ld	r10, 8(up)
	mulld	r9, r5, v0
	mulhdu	r11, r5, v0
	ld	r12, 16(up)
	mulld	r8, r10, v0
	mulhdu	r5, r10, v0
	addi	rp, rp, -8
	b	L(m1_mid)

L(m1_b1):
	ld	r12, 8(up)
	mulld	r8, r5, v0
	mulhdu	r5, r5, v0
	ld	r10, 16(up)
	mulld	r9, r12, v0
	mulhdu	r11, r12, v0
	addi	up, up, 8
	beq	cr6, L(m1_end)		C jump taken means un = 3, vn = {1,3}

	ALIGN(16)
L(m1_top):
	ld	r12, 16(up)
	std	r8, 0(rp)
	adde	r9, r5, r9
	mulld	r8, r10, v0
	mulhdu	r5, r10, v0
L(m1_mid):
	ld	r10, 24(up)
	std	r9, 8(rp)
	adde	r8, r11, r8
	mulld	r9, r12, v0
	mulhdu	r11, r12, v0
	addi	rp, rp, 16
	addi	up, up, 16
	bdnz	L(m1_top)

L(m1_end):
	std	r8, 0(rp)
	mulld	r8, r10, v0
	adde	r9, r5, r9
	mulhdu	r5, r10, v0
	std	r9, 8(rp)
	adde	r8, r11, r8
	std	r8, 16(rp)
	addze	r10, r5
	std	r10, 24(rp)

	addi	rp2, rp2, 8
	addi	vp, vp, 8
	addic.	r23, r23, 1
	b	L(do_outer)

L(vn_evn):
	ld	v1, 8(vp)
	addi	r23, r23, 2
	mtctr	r22
	bne	cr7, L(m2_bx1)

L(m2_bx0):
	ld	r8, 0(up)
	ld	r9, 8(up)
	li	r11, 0
	mulld	r28, r8, v0
	mulhdu	r31, r8, v0
	mulld	r5, r8, v1
	mulhdu	r10, r8, v1
	li	r12, 0
	bne	cr5, L(m2_b10)

L(m2_b00):
	addi	up, up, -8
	addi	rp, rp, -24
	b	L(m2_lo0)

L(m2_b10):
	addi	up, up, 8
	addi	rp, rp, -8
	b	L(m2_lo2)

L(m2_bx1):
	ld	r9, 0(up)
	ld	r8, 8(up)
	li	r10, 0
	mulld	r29, r9, v0
	mulhdu	r30, r9, v0
	mulld	r12, r9, v1
	mulhdu	r11, r9, v1
	li	r5, 0
	bne	cr5, L(m2_b11)

L(m2_b01):
	addi	rp, rp, -16
	b	L(m2_lo1)
L(m2_b11):
	addi	up, up, 16
	beq	cr6, L(m2_end)		C taken means un = 3, vn = 2. We're done.

L(m2_top):
	ld	r9, 0(up)
	maddld(	r28, r8, v0, r10)
	maddhdu(r31, r8, v0, r10)
	adde	r5, r29, r5
	std	r5, 0(rp)
	mulld	r5, r8, v1
	mulhdu	r10, r8, v1
	addex(	r12, r12, r30, 0)
L(m2_lo2):
	ld	r8, 8(up)
	maddld(	r29, r9, v0, r11)
	maddhdu(r30, r9, v0, r11)
	adde	r12, r28, r12
	std	r12, 8(rp)
	mulld	r12, r9, v1
	mulhdu	r11, r9, v1
	addex(	r5, r5, r31, 0)
L(m2_lo1):
	ld	r9, 16(up)
	maddld(	r28, r8, v0, r10)
	maddhdu(r31, r8, v0, r10)
	adde	r5, r29, r5
	std	r5, 16(rp)
	mulld	r5, r8, v1
	mulhdu	r10, r8, v1
	addex(	r12, r12, r30, 0)
L(m2_lo0):
	ld	r8, 24(up)
	maddld(	r29, r9, v0, r11)
	maddhdu(r30, r9, v0, r11)
	adde	r12, r28, r12
	std	r12, 24(rp)
	mulld	r12, r9, v1
	mulhdu	r11, r9, v1
	addex(	r5, r5, r31, 0)
	addi	up, up, 32
	addi	rp, rp, 32
	bdnz	L(m2_top)

L(m2_end):
	ld	r9, 0(up)
	maddld(	r28, r8, v0, r10)
	maddhdu(r31, r8, v0, r10)
	adde	r5, r29, r5
	std	r5, 0(rp)
	mulld	r5, r8, v1
	mulhdu	r10, r8, v1
	b	L(cj)

L(outer):
	ld	v0, 0(vp)
	ld	v1, 8(vp)
	addi	r23, r23, 2
	mtctr	r22
	bne	cr7, L(bx1)

L(bx0):	ld	r26, 0(rp2)
	ld	r8, 0(up2)
	ld	r11, 8(rp2)
	ld	r9, 8(up2)
	maddld(	r28, r8, v0, r26)
	maddhdu(r31, r8, v0, r26)
	ld	r26, 16(rp2)
	mulld	r5, r8, v1
	mulhdu	r10, r8, v1
	li	r12, 0
	bne	cr5, L(b10)

L(b00):	addi	up, up2, -8
	addi	rp, rp2, -24
	b	L(lo0)

L(b10):	addi	up, up2, 8
	addi	rp, rp2, -8
	b	L(lo2)

L(bx1):	ld	r27, 0(rp2)
	ld	r9, 0(up2)
	ld	r10, 8(rp2)
	ld	r8, 8(up2)
	maddld(	r29, r9, v0, r27)
	maddhdu(r30, r9, v0, r27)
	ld	r27, 16(rp2)
	mulld	r12, r9, v1
	mulhdu	r11, r9, v1
	li	r5, 0
	bne	cr5, L(b11)

L(b01):	addi	up, up2, 0
	addi	rp, rp2, -16
	b	L(lo1)
L(b11):	addi	up, up2, 16
	addi	rp, rp2, 0
	beq	cr6, L(end)		C taken means un = 3, vn = 3. We're done.

L(top):	ld	r9, 0(up)
	maddld(	r28, r8, v0, r10)
	maddhdu(r31, r8, v0, r10)
	adde	r5, r29, r5
	ld	r26, 24(rp)
	std	r5, 0(rp)
	maddld(	r5, r8, v1, r27)
	maddhdu(r10, r8, v1, r27)
	addex(	r12, r12, r30, 0)
L(lo2):	ld	r8, 8(up)
	maddld(	r29, r9, v0, r11)
	maddhdu(r30, r9, v0, r11)
	adde	r12, r28, r12
	ld	r27, 32(rp)
	std	r12, 8(rp)
	maddld(	r12, r9, v1, r26)
	maddhdu(r11, r9, v1, r26)
	addex(	r5, r5, r31, 0)
L(lo1):	ld	r9, 16(up)
	maddld(	r28, r8, v0, r10)
	maddhdu(r31, r8, v0, r10)
	adde	r5, r29, r5
	ld	r26, 40(rp)
	std	r5, 16(rp)
	maddld(	r5, r8, v1, r27)
	maddhdu(r10, r8, v1, r27)
	addex(	r12, r12, r30, 0)
L(lo0):	ld	r8, 24(up)
	maddld(	r29, r9, v0, r11)
	maddhdu(r30, r9, v0, r11)
	adde	r12, r28, r12
	ld	r27, 48(rp)
	std	r12, 24(rp)
	maddld(	r12, r9, v1, r26)
	maddhdu(r11, r9, v1, r26)
	addex(	r5, r5, r31, 0)
	addi	up, up, 32
	addi	rp, rp, 32
	bdnz	L(top)

L(end):	ld	r9, 0(up)
	maddld(	r28, r8, v0, r10)
	maddhdu(r31, r8, v0, r10)
	adde	r5, r29, r5
	std	r5, 0(rp)
	maddld(	r5, r8, v1, r27)
	maddhdu(r10, r8, v1, r27)
L(cj):	addex(	r12, r12, r30, 0)
	maddld(	r29, r9, v0, r11)
	maddhdu(r30, r9, v0, r11)
	adde	r12, r28, r12
	std	r12, 8(rp)
	mulld	r12, r9, v1
	mulhdu	r11, r9, v1
	addex(	r5, r5, r31, 0)
	adde	r5, r29, r5
	std	r5, 16(rp)
	addex(	r12, r12, r30, 0)
	adde	r12, r12, r10
	std	r12, 24(rp)
	li	r4, 0
	addze	r5, r11
	addex(	r5, r5, r4, 0)
	std	r5, 32(rp)

	cmpdi	cr0, r23, 0
	addi	rp2, rp2, 16
	addi	vp, vp, 16
L(do_outer):
	bne	cr0, L(outer)
L(ret):
	ld	r22, -80(r1)
	ld	r23, -72(r1)
	ld	r24, -64(r1)
	ld	r25, -56(r1)
	ld	r26, -48(r1)
	ld	r27, -40(r1)
	ld	r28, -32(r1)
	ld	r29, -24(r1)
	ld	r30, -16(r1)
	ld	r31, -8(r1)
	blr
EPILOGUE()
ASM_END()