Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
dnl  Intel Pentium-4 mpn_divrem_1 -- mpn by limb division.

dnl  Copyright 1999-2004 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')


C P4: 32 cycles/limb integer part, 30 cycles/limb fraction part.


C mp_limb_t mpn_divrem_1 (mp_ptr dst, mp_size_t xsize,
C                         mp_srcptr src, mp_size_t size,
C                         mp_limb_t divisor);
C mp_limb_t mpn_divrem_1c (mp_ptr dst, mp_size_t xsize,
C                          mp_srcptr src, mp_size_t size,
C                          mp_limb_t divisor, mp_limb_t carry);
C mp_limb_t mpn_preinv_divrem_1 (mp_ptr dst, mp_size_t xsize,
C                                mp_srcptr src, mp_size_t size,
C                                mp_limb_t divisor, mp_limb_t inverse,
C                                unsigned shift);
C
C Algorithm:
C
C The method and nomenclature follow part 8 of "Division by Invariant
C Integers using Multiplication" by Granlund and Montgomery, reference in
C gmp.texi.
C
C "m" is written for what is m' in the paper, and "d" for d_norm, which
C won't cause any confusion since it's only the normalized divisor that's of
C any use in the code.  "b" is written for 2^N, the size of a limb, N being
C 32 here.
C
C The step "sdword dr = n - 2^N*d + (2^N-1-q1) * d" is instead done as
C "n-d - q1*d".  This rearrangement gives the same two-limb answer but lets
C us have just a psubq on the dependent chain.
C
C For reference, the way the k7 code uses "n-(q1+1)*d" would not suit here,
C detecting an overflow of q1+1 when q1=0xFFFFFFFF would cost too much.
C
C Notes:
C
C mpn_divrem_1 and mpn_preinv_divrem_1 avoid one division if the src high
C limb is less than the divisor.  mpn_divrem_1c doesn't check for a zero
C carry, since in normal circumstances that will be a very rare event.
C
C The test for skipping a division is branch free (once size>=1 is tested).
C The store to the destination high limb is 0 when a divide is skipped, or
C if it's not skipped then a copy of the src high limb is stored.  The
C latter is in case src==dst.
C
C There's a small bias towards expecting xsize==0, by having code for
C xsize==0 in a straight line and xsize!=0 under forward jumps.
C
C Enhancements:
C
C The loop measures 32 cycles, but the dependent chain would suggest it
C could be done with 30.  Not sure where to start looking for the extras.
C
C Alternatives:
C
C If the divisor is normalized (high bit set) then a division step can
C always be skipped, since the high destination limb is always 0 or 1 in
C that case.  It doesn't seem worth checking for this though, since it
C probably occurs infrequently.


dnl  MUL_THRESHOLD is the value of xsize+size at which the multiply by
dnl  inverse method is used, rather than plain "divl"s.  Minimum value 1.
dnl
dnl  The inverse takes about 80-90 cycles to calculate, but after that the
dnl  multiply is 32 c/l versus division at about 58 c/l.
dnl
dnl  At 4 limbs the div is a touch faster than the mul (and of course
dnl  simpler), so start the mul from 5 limbs.

deflit(MUL_THRESHOLD, 5)


defframe(PARAM_PREINV_SHIFT,   28)  dnl mpn_preinv_divrem_1
defframe(PARAM_PREINV_INVERSE, 24)  dnl mpn_preinv_divrem_1
defframe(PARAM_CARRY,  24)          dnl mpn_divrem_1c
defframe(PARAM_DIVISOR,20)
defframe(PARAM_SIZE,   16)
defframe(PARAM_SRC,    12)
defframe(PARAM_XSIZE,  8)
defframe(PARAM_DST,    4)

dnl  re-use parameter space
define(SAVE_ESI,`PARAM_SIZE')
define(SAVE_EBP,`PARAM_SRC')
define(SAVE_EDI,`PARAM_DIVISOR')
define(SAVE_EBX,`PARAM_DST')

	TEXT

	ALIGN(16)
PROLOGUE(mpn_preinv_divrem_1)
deflit(`FRAME',0)

	movl	PARAM_SIZE, %ecx
	xorl	%edx, %edx		C carry if can't skip a div

	movl	%esi, SAVE_ESI
	movl	PARAM_SRC, %esi

	movl	%ebp, SAVE_EBP
	movl	PARAM_DIVISOR, %ebp

	movl	%edi, SAVE_EDI
	movl	PARAM_DST, %edi

	movl	-4(%esi,%ecx,4), %eax	C src high limb

	movl	%ebx, SAVE_EBX
	movl	PARAM_XSIZE, %ebx

	movd	PARAM_PREINV_INVERSE, %mm4

	movd	PARAM_PREINV_SHIFT, %mm7  C l
	cmpl	%ebp, %eax		C high cmp divisor

	cmovc(	%eax, %edx)		C high is carry if high<divisor
	movd	%edx, %mm0		C carry

	movd	%edx, %mm1		C carry
	movl	$0, %edx

	movd	%ebp, %mm5		C d
	cmovnc(	%eax, %edx)		C 0 if skip div, src high if not
					C (the latter in case src==dst)
	leal	-4(%edi,%ebx,4), %edi	C &dst[xsize-1]

	movl	%edx, (%edi,%ecx,4)	C dst high limb
	sbbl	$0, %ecx		C skip one division if high<divisor
	movl	$32, %eax

	subl	PARAM_PREINV_SHIFT, %eax
	psllq	%mm7, %mm5		C d normalized
	leal	(%edi,%ecx,4), %edi	C &dst[xsize+size-1]
	leal	-4(%esi,%ecx,4), %esi	C &src[size-1]

	movd	%eax, %mm6		C 32-l
	jmp	L(start_preinv)

EPILOGUE()


	ALIGN(16)
PROLOGUE(mpn_divrem_1c)
deflit(`FRAME',0)

	movl	PARAM_CARRY, %edx

	movl	PARAM_SIZE, %ecx

	movl	%esi, SAVE_ESI
	movl	PARAM_SRC, %esi

	movl	%ebp, SAVE_EBP
	movl	PARAM_DIVISOR, %ebp

	movl	%edi, SAVE_EDI
	movl	PARAM_DST, %edi

	movl	%ebx, SAVE_EBX
	movl	PARAM_XSIZE, %ebx

	leal	-4(%edi,%ebx,4), %edi	C &dst[xsize-1]
	jmp	L(start_1c)

EPILOGUE()


	ALIGN(16)
PROLOGUE(mpn_divrem_1)
deflit(`FRAME',0)

	movl	PARAM_SIZE, %ecx
	xorl	%edx, %edx		C initial carry (if can't skip a div)

	movl	%esi, SAVE_ESI
	movl	PARAM_SRC, %esi

	movl	%ebp, SAVE_EBP
	movl	PARAM_DIVISOR, %ebp

	movl	%edi, SAVE_EDI
	movl	PARAM_DST, %edi

	movl	%ebx, SAVE_EBX
	movl	PARAM_XSIZE, %ebx
	leal	-4(%edi,%ebx,4), %edi	C &dst[xsize-1]

	orl	%ecx, %ecx		C size
	jz	L(no_skip_div)		C if size==0
	movl	-4(%esi,%ecx,4), %eax	C src high limb

	cmpl	%ebp, %eax		C high cmp divisor

	cmovnc(	%eax, %edx)		C 0 if skip div, src high if not
	movl	%edx, (%edi,%ecx,4)	C dst high limb

	movl	$0, %edx
	cmovc(	%eax, %edx)		C high is carry if high<divisor

	sbbl	$0, %ecx		C size-1 if high<divisor
L(no_skip_div):


L(start_1c):
	C eax
	C ebx	xsize
	C ecx	size
	C edx	carry
	C esi	src
	C edi	&dst[xsize-1]
	C ebp	divisor

	leal	(%ebx,%ecx), %eax	C size+xsize
	leal	-4(%esi,%ecx,4), %esi	C &src[size-1]
	leal	(%edi,%ecx,4), %edi	C &dst[size+xsize-1]

	cmpl	$MUL_THRESHOLD, %eax
	jae	L(mul_by_inverse)


	orl	%ecx, %ecx
	jz	L(divide_no_integer)	C if size==0

L(divide_integer):
	C eax	scratch (quotient)
	C ebx	xsize
	C ecx	counter
	C edx	carry
	C esi	src, decrementing
	C edi	dst, decrementing
	C ebp	divisor

	movl	(%esi), %eax
	subl	$4, %esi

	divl	%ebp

	movl	%eax, (%edi)
	subl	$4, %edi

	subl	$1, %ecx
	jnz	L(divide_integer)


L(divide_no_integer):
	orl	%ebx, %ebx
	jnz	L(divide_fraction)	C if xsize!=0

L(divide_done):
	movl	SAVE_ESI, %esi
	movl	SAVE_EDI, %edi
	movl	SAVE_EBX, %ebx
	movl	SAVE_EBP, %ebp
	movl	%edx, %eax
	ret


L(divide_fraction):
	C eax	scratch (quotient)
	C ebx	counter
	C ecx
	C edx	carry
	C esi
	C edi	dst, decrementing
	C ebp	divisor

	movl	$0, %eax

	divl	%ebp

	movl	%eax, (%edi)
	subl	$4, %edi

	subl	$1, %ebx
	jnz	L(divide_fraction)

	jmp	L(divide_done)



C -----------------------------------------------------------------------------

L(mul_by_inverse):
	C eax
	C ebx	xsize
	C ecx	size
	C edx	carry
	C esi	&src[size-1]
	C edi	&dst[size+xsize-1]
	C ebp	divisor

	bsrl	%ebp, %eax		C 31-l
	movd	%edx, %mm0		C carry
	movd	%edx, %mm1		C carry
	movl	%ecx, %edx		C size
	movl	$31, %ecx

	C

	xorl	%eax, %ecx		C l = leading zeros on d
	addl	$1, %eax

	shll	%cl, %ebp		C d normalized
	movd	%ecx, %mm7		C l
	movl	%edx, %ecx		C size

	movd	%eax, %mm6		C 32-l
	movl	$-1, %edx
	movl	$-1, %eax

	C

	subl	%ebp, %edx		C (b-d)-1 so  edx:eax = b*(b-d)-1

	divl	%ebp			C floor (b*(b-d)-1 / d)
	movd	%ebp, %mm5		C d

	C

	movd	%eax, %mm4		C m


L(start_preinv):
	C eax	inverse
	C ebx	xsize
	C ecx	size
	C edx
	C esi	&src[size-1]
	C edi	&dst[size+xsize-1]
	C ebp
	C
	C mm0	carry
	C mm1	carry
	C mm2
	C mm4	m
	C mm5	d
	C mm6	31-l
	C mm7	l

	psllq	%mm7, %mm0		C n2 = carry << l, for size==0

	subl	$1, %ecx
	jb	L(integer_none)

	movd	(%esi), %mm0		C src high limb
	punpckldq %mm1, %mm0
	psrlq	%mm6, %mm0		C n2 = high (carry:srchigh << l)
	jz	L(integer_last)


C The dependent chain here consists of
C
C	2   paddd    n1+n2
C	8   pmuludq  m*(n1+n2)
C	2   paddq    n2:nadj + m*(n1+n2)
C	2   psrlq    q1
C	8   pmuludq  d*q1
C	2   psubq    (n-d)-q1*d
C	2   psrlq    high n-(q1+1)*d mask
C	2   pand     d masked
C	2   paddd    n2+d addback
C	--
C	30
C
C But it seems to run at 32 cycles, so presumably there's something else
C going on.

	ALIGN(16)
L(integer_top):
	C eax
	C ebx
	C ecx	counter, size-1 to 0
	C edx
	C esi	src, decrementing
	C edi	dst, decrementing
	C
	C mm0	n2
	C mm4	m
	C mm5	d
	C mm6	32-l
	C mm7	l

	ASSERT(b,`C n2<d
	 movd	%mm0, %eax
	 movd	%mm5, %edx
	 cmpl	%edx, %eax')

	movd	-4(%esi), %mm1		C next src limbs
	movd	(%esi), %mm2
	leal	-4(%esi), %esi

	punpckldq %mm2, %mm1
	psrlq	%mm6, %mm1		C n10

	movq	%mm1, %mm2		C n10
	movq	%mm1, %mm3		C n10
	psrad	$31, %mm1		C -n1
	pand	%mm5, %mm1		C -n1 & d
	paddd	%mm2, %mm1		C nadj = n10+(-n1&d), ignore overflow

	psrld	$31, %mm2		C n1
	paddd	%mm0, %mm2		C n2+n1
	punpckldq %mm0, %mm1		C n2:nadj

	pmuludq	%mm4, %mm2		C m*(n2+n1)

	C

	paddq	%mm2, %mm1		C n2:nadj + m*(n2+n1)
	pxor	%mm2, %mm2		C break dependency, saves 4 cycles
	pcmpeqd	%mm2, %mm2		C FF...FF
	psrlq	$63, %mm2		C 1

	psrlq	$32, %mm1		C q1 = high(n2:nadj + m*(n2+n1))

	paddd	%mm1, %mm2		C q1+1
	pmuludq	%mm5, %mm1		C q1*d

	punpckldq %mm0, %mm3		C n = n2:n10
	pxor	%mm0, %mm0

	psubq	%mm5, %mm3		C n - d

	C

	psubq	%mm1, %mm3		C n - (q1+1)*d

	por	%mm3, %mm0		C copy remainder -> new n2
	psrlq	$32, %mm3		C high n - (q1+1)*d, 0 or -1

	ASSERT(be,`C 0 or -1
	 movd	%mm3, %eax
	 addl	$1, %eax
	 cmpl	$1, %eax')

	paddd	%mm3, %mm2		C q
	pand	%mm5, %mm3		C mask & d

	paddd	%mm3, %mm0		C addback if necessary
	movd	%mm2, (%edi)
	leal	-4(%edi), %edi

	subl	$1, %ecx
	ja	L(integer_top)


L(integer_last):
	C eax
	C ebx	xsize
	C ecx
	C edx
	C esi	&src[0]
	C edi	&dst[xsize]
	C
	C mm0	n2
	C mm4	m
	C mm5	d
	C mm6
	C mm7	l

	ASSERT(b,`C n2<d
	 movd	%mm0, %eax
	 movd	%mm5, %edx
	 cmpl	%edx, %eax')

	movd	(%esi), %mm1		C src[0]
	psllq	%mm7, %mm1		C n10

	movq	%mm1, %mm2		C n10
	movq	%mm1, %mm3		C n10
	psrad	$31, %mm1		C -n1
	pand	%mm5, %mm1		C -n1 & d
	paddd	%mm2, %mm1		C nadj = n10+(-n1&d), ignore overflow

	psrld	$31, %mm2		C n1
	paddd	%mm0, %mm2		C n2+n1
	punpckldq %mm0, %mm1		C n2:nadj

	pmuludq	%mm4, %mm2		C m*(n2+n1)

	C

	paddq	%mm2, %mm1		C n2:nadj + m*(n2+n1)
	pcmpeqd	%mm2, %mm2		C FF...FF
	psrlq	$63, %mm2		C 1

	psrlq	$32, %mm1		C q1 = high(n2:nadj + m*(n2+n1))
	paddd	%mm1, %mm2		C q1

	pmuludq	%mm5, %mm1		C q1*d
	punpckldq %mm0, %mm3		C n
	psubq	%mm5, %mm3		C n - d
	pxor	%mm0, %mm0

	C

	psubq	%mm1, %mm3		C n - (q1+1)*d

	por	%mm3, %mm0		C remainder -> n2
	psrlq	$32, %mm3		C high n - (q1+1)*d, 0 or -1

	ASSERT(be,`C 0 or -1
	 movd	%mm3, %eax
	 addl	$1, %eax
	 cmpl	$1, %eax')

	paddd	%mm3, %mm2		C q
	pand	%mm5, %mm3		C mask & d

	paddd	%mm3, %mm0		C addback if necessary
	movd	%mm2, (%edi)
	leal	-4(%edi), %edi


L(integer_none):
	C eax
	C ebx	xsize

	orl	%ebx, %ebx
	jnz	L(fraction_some)	C if xsize!=0


L(fraction_done):
	movl	SAVE_EBP, %ebp
	psrld	%mm7, %mm0		C remainder

	movl	SAVE_EDI, %edi
	movd	%mm0, %eax

	movl	SAVE_ESI, %esi
	movl	SAVE_EBX, %ebx
	emms
	ret



C -----------------------------------------------------------------------------
C

L(fraction_some):
	C eax
	C ebx	xsize
	C ecx
	C edx
	C esi
	C edi	&dst[xsize-1]
	C ebp


L(fraction_top):
	C eax
	C ebx	counter, xsize iterations
	C ecx
	C edx
	C esi	src, decrementing
	C edi	dst, decrementing
	C
	C mm0	n2
	C mm4	m
	C mm5	d
	C mm6	32-l
	C mm7	l

	ASSERT(b,`C n2<d
	 movd	%mm0, %eax
	 movd	%mm5, %edx
	 cmpl	%edx, %eax')

	movq	%mm0, %mm1		C n2
	pmuludq	%mm4, %mm0		C m*n2

	pcmpeqd	%mm2, %mm2
	psrlq	$63, %mm2

	C

	psrlq	$32, %mm0		C high(m*n2)

	paddd	%mm1, %mm0		C q1 = high(n2:0 + m*n2)

	paddd	%mm0, %mm2		C q1+1
	pmuludq	%mm5, %mm0		C q1*d

	psllq	$32, %mm1		C n = n2:0
	psubq	%mm5, %mm1		C n - d

	C

	psubq	%mm0, %mm1		C r = n - (q1+1)*d
	pxor	%mm0, %mm0

	por	%mm1, %mm0		C r -> n2
	psrlq	$32, %mm1		C high n - (q1+1)*d, 0 or -1

	ASSERT(be,`C 0 or -1
	 movd	%mm1, %eax
	 addl	$1, %eax
	 cmpl	$1, %eax')

	paddd	%mm1, %mm2		C q
	pand	%mm5, %mm1		C mask & d

	paddd	%mm1, %mm0		C addback if necessary
	movd	%mm2, (%edi)
	leal	-4(%edi), %edi

	subl	$1, %ebx
	jne	L(fraction_top)


	jmp	L(fraction_done)

EPILOGUE()