dnl X64-64 mpn_mullo_basecase optimised for AMD Zen.
dnl Contributed to the GNU project by Torbjorn Granlund.
dnl Copyright 2017 Free Software Foundation, Inc.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C The inner loops of this code are the result of running a code generation and
C optimisation tool suite written by David Harvey and Torbjorn Granlund.
define(`rp', `%rdi')
define(`up', `%rsi')
define(`vp_param', `%rdx')
define(`n', `%rcx')
define(`vp', `%r11')
define(`nn', `%rbp')
C TODO
C * Rearrange feed-in jumps for short branch forms.
C * Roll out the heavy artillery and 4-way unroll outer loop. Since feed-in
C code implodes, the blow-up will not be more than perhaps 2.5x.
C * Micro-optimise critical lead-in code blocks.
C * Clean up register use, e.g. r15 vs vp, disuse of nn, etc.
C * Write n < 4 code specifically for Zen (current code is for Haswell).
ABI_SUPPORT(DOS64)
ABI_SUPPORT(STD64)
ASM_START()
TEXT
ALIGN(32)
PROLOGUE(mpn_mullo_basecase)
FUNC_ENTRY(4)
cmp $4, R32(n)
jae L(big)
mov vp_param, vp
mov (up), %rdx
cmp $2, R32(n)
jae L(gt1)
L(n1): imul (vp), %rdx
mov %rdx, (rp)
FUNC_EXIT()
ret
L(gt1): ja L(gt2)
L(n2): mov (vp), %r9
mulx( %r9, %rax, %rdx)
mov %rax, (rp)
mov 8(up), %rax
imul %r9, %rax
add %rax, %rdx
mov 8(vp), %r9
mov (up), %rcx
imul %r9, %rcx
add %rcx, %rdx
mov %rdx, 8(rp)
FUNC_EXIT()
ret
L(gt2):
L(n3): mov (vp), %r9
mulx( %r9, %rax, %r10) C u0 x v0
mov %rax, (rp)
mov 8(up), %rdx
mulx( %r9, %rax, %rdx) C u1 x v0
imul 16(up), %r9 C u2 x v0
add %rax, %r10
adc %rdx, %r9
mov 8(vp), %r8
mov (up), %rdx
mulx( %r8, %rax, %rdx) C u0 x v1
add %rax, %r10
adc %rdx, %r9
imul 8(up), %r8 C u1 x v1
add %r8, %r9
mov %r10, 8(rp)
mov 16(vp), %r10
mov (up), %rax
imul %rax, %r10 C u0 x v2
add %r10, %r9
mov %r9, 16(rp)
FUNC_EXIT()
ret
ALIGN(16)
L(big): push %r15
push %r14
push %r13
push %r12
push %rbp
push %rbx
mov (up), %r9
lea -8(up,n,8), up
lea -40(rp,n,8), rp
mov $4, R32(%r14)
sub n, %r14
mov -8(vp_param,n,8), %rbp
imul %r9, %rbp
lea 8(vp_param), %r15
mov (vp_param), %rdx
test $1, R8(%r14)
jnz L(mx0)
L(mx1): test $2, R8(%r14)
jz L(mb3)
L(mb1): mulx( %r9, %rbx, %rax)
lea -2(%r14), n
.byte 0xc4,0x22,0xb3,0xf6,0x44,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%r9,%r8
.byte 0xc4,0x22,0xa3,0xf6,0x54,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r11,%r10
jmp L(mlo1)
L(mb3): mulx( %r9, %r11, %r10)
.byte 0xc4,0x22,0x93,0xf6,0x64,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%r13,%r12
.byte 0xc4,0xa2,0xe3,0xf6,0x44,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%rbx,%rax
lea (%r14), n
jrcxz L(x)
jmp L(mlo3)
L(x): jmp L(mcor)
L(mb2): mulx( %r9, %r13, %r12)
.byte 0xc4,0xa2,0xe3,0xf6,0x44,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%rbx,%rax
lea -1(%r14), n
.byte 0xc4,0x22,0xb3,0xf6,0x44,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r9,%r8
jmp L(mlo2)
L(mx0): test $2, R8(%r14)
jz L(mb2)
L(mb0): mulx( %r9, %r9, %r8)
.byte 0xc4,0x22,0xa3,0xf6,0x54,0xf6,0xf0 C mulx -0x10(%rsi,%r14,8),%r11,%r10
.byte 0xc4,0x22,0x93,0xf6,0x64,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r13,%r12
lea -3(%r14), n
jmp L(mlo0)
ALIGN(16)
L(mtop):jrcxz L(mend)
adc %r8, %r11
mov %r9, (rp,n,8)
L(mlo3):.byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8
adc %r10, %r13
mov %r11, 8(rp,n,8)
L(mlo2):.byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10
adc %r12, %rbx
mov %r13, 16(rp,n,8)
L(mlo1):.byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12
adc %rax, %r9
mov %rbx, 24(rp,n,8)
L(mlo0):.byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax
lea 4(n), n
jmp L(mtop)
L(mend):mov %r9, (rp)
adc %r8, %r11
mov %r11, 8(rp)
adc %r10, %r13
mov %r13, 16(rp)
adc %r12, %rbx
mov %rbx, 24(rp)
L(outer):
mulx( (up), %r10, %r8) C FIXME r8 unused (use imul?)
adc %rax, %rbp
add %r10, %rbp
mov (%r15), %rdx
add $8, %r15
mov -24(up,%r14,8), %r8
lea -8(up), up
test $1, R8(%r14)
jz L(x0)
L(x1): test $2, R8(%r14)
jnz L(b3)
L(b1): mulx( %r8, %rbx, %rax)
lea -1(%r14), n
.byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (%rsi,%rcx,8),%r9,%r8
.byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 0x8(%rsi,%rcx,8),%r11,%r10
jmp L(lo1)
L(x0): test $2, R8(%r14)
jz L(b2)
L(b0): mulx( %r8, %r9, %r8)
lea -2(%r14), n
.byte 0xc4,0x22,0xa3,0xf6,0x54,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r11,%r10
.byte 0xc4,0x22,0x93,0xf6,0x24,0xf6 C mulx (%rsi,%r14,8),%r13,%r12
jmp L(lo0)
L(b3): mulx( %r8, %r11, %r10)
lea 1(%r14), n
.byte 0xc4,0x22,0x93,0xf6,0x64,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%r13,%r12
.byte 0xc4,0xa2,0xe3,0xf6,0x04,0xf6 C mulx (%rsi,%r14,8),%rbx,%rax
add %r10, %r13
adc %r12, %rbx
adc $0, %rax
jrcxz L(cor)
jmp L(lo3)
L(cor): add 8(rp), %r11
mov 16(rp), %r10
mov 24(rp), %r12
L(mcor):mov %r11, 8(rp)
adc %r10, %r13
adc %r12, %rbx
mulx( (up), %r10, %r8) C FIXME r8 unused (use imul?)
adc %rax, %rbp
add %r10, %rbp
mov (%r15), %rdx
mov -24(up), %r8
mulx( %r8, %r9, %r12)
mulx( -16,(up), %r14, %rax)
add %r12, %r14
adc $0, %rax
adc %r9, %r13
mov %r13, 16(rp)
adc %r14, %rbx
mulx( -8,(up), %r10, %r8) C FIXME r8 unused (use imul?)
adc %rax, %rbp
add %r10, %rbp
mov 8(%r15), %rdx
mulx( -24,(up), %r14, %rax)
add %r14, %rbx
mov %rbx, 24(rp)
mulx( -16,(up), %r10, %r8) C FIXME r8 unused (use imul?)
adc %rax, %rbp
add %r10, %rbp
mov %rbp, 32(rp)
pop %rbx
pop %rbp
pop %r12
pop %r13
pop %r14
pop %r15
FUNC_EXIT()
ret
L(b2): mulx( %r8, %r13, %r12)
lea (%r14), n
.byte 0xc4,0xa2,0xe3,0xf6,0x44,0xf6,0xf8 C mulx -0x8(%rsi,%r14,8),%rbx,%rax
add %r12, %rbx
adc $0, %rax
.byte 0xc4,0x22,0xb3,0xf6,0x04,0xf6 C mulx (%rsi,%r14,8),%r9,%r8
jmp L(lo2)
ALIGN(16)
L(top): add %r9, (rp,n,8)
L(lo3): .byte 0xc4,0x62,0xb3,0xf6,0x04,0xce C mulx (up,n,8), %r9, %r8
adc %r11, 8(rp,n,8)
L(lo2): .byte 0xc4,0x62,0xa3,0xf6,0x54,0xce,0x08 C mulx 8(up,n,8), %r11, %r10
adc %r13, 16(rp,n,8)
L(lo1): .byte 0xc4,0x62,0x93,0xf6,0x64,0xce,0x10 C mulx 16(up,n,8), %r13, %r12
adc %rbx, 24(rp,n,8)
adc %rax, %r9
L(lo0): .byte 0xc4,0xe2,0xe3,0xf6,0x44,0xce,0x18 C mulx 24(up,n,8), %rbx, %rax
adc %r8, %r11
adc %r10, %r13
adc %r12, %rbx
adc $0, %rax
add $4, n
js L(top)
add %r9, (rp)
adc %r11, 8(rp)
adc %r13, 16(rp)
adc %rbx, 24(rp)
inc %r14
jmp L(outer)
EPILOGUE()