Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
/* mpfr_mul -- multiply two floating-point numbers

Copyright 1999-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"


/********* BEGINNING CHECK *************/

/* Check if we have to check the result of mpfr_mul.
   TODO: Find a better (and faster?) check than using old implementation */
#if MPFR_WANT_ASSERT >= 2

int mpfr_mul2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode);
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  /* Old implementation */
  int sign_product, cc, inexact;
  mpfr_exp_t ax;
  mp_limb_t *tmp;
  mp_limb_t b1;
  mpfr_prec_t bq, cq;
  mp_size_t bn, cn, tn, k;
  MPFR_TMP_DECL(marker);

  /* deal with special cases */
  if (MPFR_ARE_SINGULAR(b,c))
    {
      if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
        {
          MPFR_SET_NAN(a);
          MPFR_RET_NAN;
        }
      sign_product = MPFR_MULT_SIGN(MPFR_SIGN(b), MPFR_SIGN(c));
      if (MPFR_IS_INF(b))
        {
          if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
            {
              MPFR_SET_SIGN(a, sign_product);
              MPFR_SET_INF(a);
              MPFR_RET(0); /* exact */
            }
          else
            {
              MPFR_SET_NAN(a);
              MPFR_RET_NAN;
            }
        }
      else if (MPFR_IS_INF(c))
        {
          if (MPFR_NOTZERO(b))
            {
              MPFR_SET_SIGN(a, sign_product);
              MPFR_SET_INF(a);
              MPFR_RET(0); /* exact */
            }
          else
            {
              MPFR_SET_NAN(a);
              MPFR_RET_NAN;
            }
        }
      else
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
          MPFR_SET_SIGN(a, sign_product);
          MPFR_SET_ZERO(a);
          MPFR_RET(0); /* 0 * 0 is exact */
        }
    }
  sign_product = MPFR_MULT_SIGN(MPFR_SIGN(b), MPFR_SIGN(c));

  ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);

  bq = MPFR_PREC (b);
  cq = MPFR_PREC (c);

  MPFR_ASSERTN ((mpfr_uprec_t) bq + cq <= MPFR_PREC_MAX);

  bn = MPFR_PREC2LIMBS (bq); /* number of limbs of b */
  cn = MPFR_PREC2LIMBS (cq); /* number of limbs of c */
  k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
  tn = MPFR_PREC2LIMBS (bq + cq);
  /* <= k, thus no int overflow */
  MPFR_ASSERTD(tn <= k);

  /* Check for no size_t overflow*/
  MPFR_ASSERTD((size_t) k <= ((size_t) -1) / MPFR_BYTES_PER_MP_LIMB);
  MPFR_TMP_MARK(marker);
  tmp = MPFR_TMP_LIMBS_ALLOC (k);

  /* multiplies two mantissa in temporary allocated space */
  b1 = (MPFR_LIKELY(bn >= cn)) ?
    mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
    : mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);

  /* now tmp[0]..tmp[k-1] contains the product of both mantissa,
     with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
  b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
  MPFR_ASSERTD (b1 == 0 || b1 == 1);

  /* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
     then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
     and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
  tmp += k - tn;
  if (MPFR_UNLIKELY(b1 == 0))
    mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
  cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
                       MPFR_IS_NEG_SIGN(sign_product),
                       MPFR_PREC (a), rnd_mode, &inexact);
  MPFR_ASSERTD (cc == 0 || cc == 1);

  /* cc = 1 ==> result is a power of two */
  if (MPFR_UNLIKELY(cc))
    MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;

  MPFR_TMP_FREE(marker);

  {
    /* We need to cast b1 to a signed integer type in order to use
       signed integer arithmetic only, as the expression can involve
       negative integers. Let's recall that both b1 and cc are 0 or 1,
       and since cc is an int, let's choose int for this part. */
    mpfr_exp_t ax2 = ax + ((int) b1 - 1 + cc);
    if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
      return mpfr_overflow (a, rnd_mode, sign_product);
    if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
      {
        /* In the rounding to the nearest mode, if the exponent of the exact
           result (i.e. before rounding, i.e. without taking cc into account)
           is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
           both arguments are powers of 2) in absolute value, then round to
           zero. */
        if (rnd_mode == MPFR_RNDN &&
            (ax + (mpfr_exp_t) b1 < __gmpfr_emin ||
             (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
          rnd_mode = MPFR_RNDZ;
        return mpfr_underflow (a, rnd_mode, sign_product);
      }
    MPFR_SET_EXP (a, ax2);
    MPFR_SET_SIGN(a, sign_product);
  }
  MPFR_RET (inexact);
}

int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  mpfr_t ta, tb, tc;
  mpfr_flags_t old_flags, flags1, flags2;
  int inexact1, inexact2;

  if (rnd_mode == MPFR_RNDF)
    return mpfr_mul2 (a, b, c, rnd_mode);

  old_flags = __gmpfr_flags;

  mpfr_init2 (ta, MPFR_PREC (a));
  mpfr_init2 (tb, MPFR_PREC (b));
  mpfr_init2 (tc, MPFR_PREC (c));
  MPFR_ASSERTN (mpfr_set (tb, b, MPFR_RNDN) == 0);
  MPFR_ASSERTN (mpfr_set (tc, c, MPFR_RNDN) == 0);

  /* Note: If b or c is NaN, then the NaN flag has been set by mpfr_set above.
     Thus restore the old flags just below to make sure that mpfr_mul3 is
     tested under the real conditions. */

  __gmpfr_flags = old_flags;
  inexact2 = mpfr_mul3 (ta, tb, tc, rnd_mode);
  flags2 = __gmpfr_flags;

  __gmpfr_flags = old_flags;
  inexact1 = mpfr_mul2 (a, b, c, rnd_mode);
  flags1 = __gmpfr_flags;

  /* Convert the ternary values to (-1,0,1). */
  inexact2 = VSIGN (inexact2);
  inexact1 = VSIGN (inexact1);

  if (! ((MPFR_IS_NAN (ta) && MPFR_IS_NAN (a)) || mpfr_equal_p (ta, a)) ||
      inexact1 != inexact2 || flags1 != flags2)
    {
      /* We do not have MPFR_PREC_FSPEC, so let's use mpfr_eexp_t and
         MPFR_EXP_FSPEC since mpfr_prec_t values are guaranteed to be
         representable in mpfr_exp_t, thus in mpfr_eexp_t. */
      fprintf (stderr, "mpfr_mul return different values for %s\n"
               "Prec_a = %" MPFR_EXP_FSPEC "d, "
               "Prec_b = %" MPFR_EXP_FSPEC "d, "
               "Prec_c = %" MPFR_EXP_FSPEC "d\n",
               mpfr_print_rnd_mode (rnd_mode),
               (mpfr_eexp_t) MPFR_PREC (a),
               (mpfr_eexp_t) MPFR_PREC (b),
               (mpfr_eexp_t) MPFR_PREC (c));
      /* Note: We output tb and tc instead of b and c, in case a = b or c
         (this is why tb and tc have been created in the first place). */
      fprintf (stderr, "b = ");
      mpfr_fdump (stderr, tb);
      fprintf (stderr, "c = ");
      mpfr_fdump (stderr, tc);
      fprintf (stderr, "OldMul: ");
      mpfr_fdump (stderr, ta);
      fprintf (stderr, "NewMul: ");
      mpfr_fdump (stderr, a);
      fprintf (stderr, "OldMul: ternary = %2d, flags =", inexact2);
      flags_fout (stderr, flags2);
      fprintf (stderr, "NewMul: ternary = %2d, flags =", inexact1);
      flags_fout (stderr, flags1);
      MPFR_ASSERTN(0);
    }

  mpfr_clears (ta, tb, tc, (mpfr_ptr) 0);
  return inexact1;
}

# define mpfr_mul mpfr_mul2

#endif  /* MPFR_WANT_ASSERT >= 2 */

/****** END OF CHECK *******/

/* Multiply 2 mpfr_t */

#if !defined(MPFR_GENERIC_ABI)

/* Disabled for now since the mul_1_extracted.c is not formally proven yet.
   Once it is proven, replace MPFR_WANT_PROVEN_CODExxx by MPFR_WANT_PROVEN_CODE. */
#if defined(MPFR_WANT_PROVEN_CODExxx) && GMP_NUMB_BITS == 64 && \
  UINT_MAX == 0xffffffff && MPFR_PREC_BITS == 64 && \
  _MPFR_PREC_FORMAT == 3 && _MPFR_EXP_FORMAT == _MPFR_PREC_FORMAT

/* The code assumes that mp_limb_t has 64 bits exactly, unsigned int
   has 32 bits exactly, mpfr_prec_t and mpfr_exp_t are of type long,
   which has 64 bits exactly. */

#include "mul_1_extracted.c"

#else

/* Special code for prec(a) < GMP_NUMB_BITS and
   prec(b), prec(c) <= GMP_NUMB_BITS.
   Note: this code was copied in sqr.c, function mpfr_sqr_1 (this saves a few cycles
   with respect to have this function exported). As a consequence, any change here
   should be reported in mpfr_sqr_1. */
static int
mpfr_mul_1 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode,
            mpfr_prec_t p)
{
  mp_limb_t a0;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mp_limb_t b0 = MPFR_MANT(b)[0];
  mp_limb_t c0 = MPFR_MANT(c)[0];
  mpfr_exp_t ax;
  mpfr_prec_t sh = GMP_NUMB_BITS - p;
  mp_limb_t rb, sb, mask = MPFR_LIMB_MASK(sh);

  /* When prec(b), prec(c) <= GMP_NUMB_BITS / 2, we could replace umul_ppmm
     by a limb multiplication as follows, but we assume umul_ppmm is as fast
     as a limb multiplication on modern processors:
      a0 = (b0 >> (GMP_NUMB_BITS / 2)) * (c0 >> (GMP_NUMB_BITS / 2));
      sb = 0;
  */
  ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
  umul_ppmm (a0, sb, b0, c0);
  if (a0 < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      /* TODO: This is actually an addition with carry (no shifts and no OR
         needed in asm). Make sure that GCC generates optimized code once
         it supports carry-in. */
      a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
    }
  rb = a0 & (MPFR_LIMB_ONE << (sh - 1));
  sb |= (a0 & mask) ^ rb;
  ap[0] = a0 & ~mask;

  MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      if (ax == __gmpfr_emin - 1 && ap[0] == MPFR_LIMB(~mask) &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* For RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ. This corresponds to:
         (a) either ax < emin - 1
         (b) or ax = emin - 1 and ap[0] = 1000....000 and rb = sb = 0 */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 ||
           (ap[0] == MPFR_LIMB_HIGHBIT && (rb | sb) == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN(a));
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE << sh;
      if (ap[0] == 0)
        {
          ap[0] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN(a));
    }
}

#endif /* MPFR_WANT_PROVEN_CODE */

/* Special code for prec(a) = GMP_NUMB_BITS and
   prec(b), prec(c) <= GMP_NUMB_BITS. */
static int
mpfr_mul_1n (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  mp_limb_t a0;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mp_limb_t b0 = MPFR_MANT(b)[0];
  mp_limb_t c0 = MPFR_MANT(c)[0];
  mpfr_exp_t ax;
  mp_limb_t rb, sb;

  ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
  umul_ppmm (a0, sb, b0, c0);
  if (a0 < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      /* TODO: This is actually an addition with carry (no shifts and no OR
         needed in asm). Make sure that GCC generates optimized code once
         it supports carry-in. */
      a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
    }
  rb = sb & MPFR_LIMB_HIGHBIT;
  sb = sb & ~MPFR_LIMB_HIGHBIT;
  ap[0] = a0;

  MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow.
     Note: this case can only occur when the initial a0 (after the umul_ppmm
     call above) had its most significant bit 0, since the largest a0 is
     obtained for b0 = c0 = B-1 where B=2^GMP_NUMB_BITS, thus b0*c0 <= (B-1)^2
     thus a0 <= B-2. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      if (ax == __gmpfr_emin - 1 && ap[0] == ~MPFR_LIMB_ZERO &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* For RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ. This corresponds to:
         (a) either ax < emin - 1
         (b) or ax = emin - 1 and ap[0] = 1000....000 and rb = sb = 0 */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 ||
           (ap[0] == MPFR_LIMB_HIGHBIT && (rb | sb) == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & MPFR_LIMB_ONE) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN(a));
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE;
      if (ap[0] == 0)
        {
          ap[0] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN(a));
    }
}

/* Special code for GMP_NUMB_BITS < prec(a) < 2*GMP_NUMB_BITS and
   GMP_NUMB_BITS < prec(b), prec(c) <= 2*GMP_NUMB_BITS.
   Note: this code was copied in sqr.c, function mpfr_sqr_2 (this saves a few cycles
   with respect to have this function exported). As a consequence, any change here
   should be reported in mpfr_sqr_2. */
static int
mpfr_mul_2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode,
            mpfr_prec_t p)
{
  mp_limb_t h, l, u, v, w;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mpfr_exp_t ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
  mpfr_prec_t sh = 2 * GMP_NUMB_BITS - p;
  mp_limb_t rb, sb, sb2, mask = MPFR_LIMB_MASK(sh);
  mp_limb_t *bp = MPFR_MANT(b), *cp = MPFR_MANT(c);

  /* we store the 4-limb product in h=ap[1], l=ap[0], sb=ap[-1], sb2=ap[-2] */
  umul_ppmm (h, l, bp[1], cp[1]);
  umul_ppmm (u, v, bp[1], cp[0]);
  l += u;
  h += (l < u);
  umul_ppmm (u, w, bp[0], cp[1]);
  l += u;
  h += (l < u);

  /* now the full product is {h, l, v + w + high(b0*c0), low(b0*c0)},
     where the lower part contributes to less than 3 ulps to {h, l} */

  /* If h has its most significant bit set and the low sh-1 bits of l are not
     000...000 nor 111...111 nor 111...110, then we can round correctly;
     if h has zero as most significant bit, we have to shift left h and l,
     thus if the low sh-2 bits are not 000...000 nor 111...111 nor 111...110,
     then we can round correctly. To avoid an extra test we consider the latter
     case (if we can round, we can also round in the former case).
     For sh <= 3, we have mask <= 7, thus (mask>>2) <= 1, and the approximation
     cannot be enough. */
  if (MPFR_LIKELY(((l + 2) & (mask >> 2)) > 2))
    sb = sb2 = 1; /* result cannot be exact in that case */
  else
    {
      umul_ppmm (sb, sb2, bp[0], cp[0]);
      /* the full product is {h, l, sb + v + w, sb2} */
      sb += v;
      l += (sb < v);
      h += (l == 0) && (sb < v);
      sb += w;
      l += (sb < w);
      h += (l == 0) && (sb < w);
    }
  if (h < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      h = (h << 1) | (l >> (GMP_NUMB_BITS - 1));
      l = (l << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
      /* no need to shift sb2 since we only want to know if it is zero or not */
    }
  ap[1] = h;
  rb = l & (MPFR_LIMB_ONE << (sh - 1));
  sb |= ((l & mask) ^ rb) | sb2;
  ap[0] = l & ~mask;

  MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      if (ax == __gmpfr_emin - 1 &&
          ap[1] == MPFR_LIMB_MAX &&
          ap[0] == MPFR_LIMB(~mask) &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* for RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 ||
           (ap[1] == MPFR_LIMB_HIGHBIT && ap[0] == 0 && (rb | sb) == 0)))
            rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN(a));
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE << sh;
      ap[1] += (ap[0] == 0);
      if (ap[1] == 0)
        {
          ap[1] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN(a));
    }
}

/* Special code for 2*GMP_NUMB_BITS < prec(a) < 3*GMP_NUMB_BITS and
   2*GMP_NUMB_BITS < prec(b), prec(c) <= 3*GMP_NUMB_BITS. */
static int
mpfr_mul_3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode,
            mpfr_prec_t p)
{
  mp_limb_t a0, a1, a2, h, l, cy;
  mpfr_limb_ptr ap = MPFR_MANT(a);
  mpfr_exp_t ax = MPFR_GET_EXP(b) + MPFR_GET_EXP(c);
  mpfr_prec_t sh = 3 * GMP_NUMB_BITS - p;
  mp_limb_t rb, sb, sb2, mask = MPFR_LIMB_MASK(sh);
  mp_limb_t *bp = MPFR_MANT(b), *cp = MPFR_MANT(c);

  /* we store the upper 3-limb product in a2, a1, a0:
     b2*c2, b2*c1+b1*c2, b2*c0+b1*c1+b0*c2 */
  umul_ppmm (a2, a1, bp[2], cp[2]);
  umul_ppmm (h, a0, bp[2], cp[1]);
  a1 += h;
  a2 += (a1 < h);
  umul_ppmm (h, l, bp[1], cp[2]);
  a1 += h;
  a2 += (a1 < h);
  a0 += l;
  cy = a0 < l; /* carry in a1 */
  umul_ppmm (h, l, bp[2], cp[0]);
  a0 += h;
  cy += (a0 < h);
  umul_ppmm (h, l, bp[1], cp[1]);
  a0 += h;
  cy += (a0 < h);
  umul_ppmm (h, l, bp[0], cp[2]);
  a0 += h;
  cy += (a0 < h);
  /* now propagate cy */
  a1 += cy;
  a2 += (a1 < cy);

  /* Now the approximate product {a2, a1, a0} has an error of less than
     5 ulps (3 ulps for the ignored low limbs of b2*c0+b1*c1+b0*c2,
     plus 2 ulps for the ignored b1*c0+b0*c1 (plus b0*c0)).
     Since we might shift by 1 bit, we make sure the low sh-2 bits of a0
     are not 0, -1, -2, -3 or -4. */

  if (MPFR_LIKELY(((a0 + 4) & (mask >> 2)) > 4))
    sb = sb2 = 1; /* result cannot be exact in that case */
  else
    {
      mp_limb_t p[6];
      mpn_mul_n (p, bp, cp, 3);
      a2 = p[5];
      a1 = p[4];
      a0 = p[3];
      sb = p[2];
      sb2 = p[1] | p[0];
    }
  if (a2 < MPFR_LIMB_HIGHBIT)
    {
      ax --;
      a2 = (a2 << 1) | (a1 >> (GMP_NUMB_BITS - 1));
      a1 = (a1 << 1) | (a0 >> (GMP_NUMB_BITS - 1));
      a0 = (a0 << 1) | (sb >> (GMP_NUMB_BITS - 1));
      sb <<= 1;
      /* no need to shift sb2: we only need to know if it is zero or not */
    }
  ap[2] = a2;
  ap[1] = a1;
  rb = a0 & (MPFR_LIMB_ONE << (sh - 1));
  sb |= ((a0 & mask) ^ rb) | sb2;
  ap[0] = a0 & ~mask;

  MPFR_SIGN(a) = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));

  /* rounding */
  if (MPFR_UNLIKELY(ax > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));

  /* Warning: underflow should be checked *after* rounding, thus when rounding
     away and when a > 0.111...111*2^(emin-1), or when rounding to nearest and
     a >= 0.111...111[1]*2^(emin-1), there is no underflow. */
  if (MPFR_UNLIKELY(ax < __gmpfr_emin))
    {
      if (ax == __gmpfr_emin - 1 &&
          ap[2] == MPFR_LIMB_MAX &&
          ap[1] == MPFR_LIMB_MAX &&
          ap[0] == MPFR_LIMB(~mask) &&
          ((rnd_mode == MPFR_RNDN && rb) ||
           (MPFR_IS_LIKE_RNDA(rnd_mode, MPFR_IS_NEG (a)) && (rb | sb))))
        goto rounding; /* no underflow */
      /* for RNDN, mpfr_underflow always rounds away, thus for |a| <= 2^(emin-2)
         we have to change to RNDZ */
      if (rnd_mode == MPFR_RNDN &&
          (ax < __gmpfr_emin - 1 ||
           (ap[2] == MPFR_LIMB_HIGHBIT && ap[1] == 0 && ap[0] == 0
            && (rb | sb) == 0)))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
    }

 rounding:
  MPFR_EXP (a) = ax; /* Don't use MPFR_SET_EXP since ax might be < __gmpfr_emin
                        in the cases "goto rounding" above. */
  if ((rb == 0 && sb == 0) || rnd_mode == MPFR_RNDF)
    {
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET (0);
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      if (rb == 0 || (sb == 0 && (ap[0] & (MPFR_LIMB_ONE << sh)) == 0))
        goto truncate;
      else
        goto add_one_ulp;
    }
  else if (MPFR_IS_LIKE_RNDZ(rnd_mode, MPFR_IS_NEG(a)))
    {
    truncate:
      MPFR_ASSERTD(ax >= __gmpfr_emin);
      MPFR_RET(-MPFR_SIGN(a));
    }
  else /* round away from zero */
    {
    add_one_ulp:
      ap[0] += MPFR_LIMB_ONE << sh;
      ap[1] += (ap[0] == 0);
      ap[2] += (ap[1] == 0) && (ap[0] == 0);
      if (ap[2] == 0)
        {
          ap[2] = MPFR_LIMB_HIGHBIT;
          if (MPFR_UNLIKELY(ax + 1 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, MPFR_SIGN(a));
          MPFR_ASSERTD(ax + 1 <= __gmpfr_emax);
          MPFR_ASSERTD(ax + 1 >= __gmpfr_emin);
          MPFR_SET_EXP (a, ax + 1);
        }
      MPFR_RET(MPFR_SIGN(a));
    }
}

#endif /* !defined(MPFR_GENERIC_ABI) */

/* Note: mpfr_sqr will call mpfr_mul if bn > MPFR_SQR_THRESHOLD,
   in order to use Mulders' mulhigh, which is handled only here
   to avoid partial code duplication. There is some overhead due
   to the additional tests, but slowdown should not be noticeable
   as this code is not executed in very small precisions. */

MPFR_HOT_FUNCTION_ATTR int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  int sign, inexact;
  mpfr_exp_t ax, ax2;
  mp_limb_t *tmp;
  mp_limb_t b1;
  mpfr_prec_t aq, bq, cq;
  mp_size_t bn, cn, tn, k, threshold;
  MPFR_TMP_DECL (marker);

  MPFR_LOG_FUNC
    (("b[%Pu]=%.*Rg c[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (b), mpfr_log_prec, b,
      mpfr_get_prec (c), mpfr_log_prec, c, rnd_mode),
     ("a[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (a), mpfr_log_prec, a, inexact));

  /* deal with special cases */
  if (MPFR_ARE_SINGULAR (b, c))
    {
      if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
        {
          MPFR_SET_NAN (a);
          MPFR_RET_NAN;
        }
      sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
      if (MPFR_IS_INF (b))
        {
          if (!MPFR_IS_ZERO (c))
            {
              MPFR_SET_SIGN (a, sign);
              MPFR_SET_INF (a);
              MPFR_RET (0);
            }
          else
            {
              MPFR_SET_NAN (a);
              MPFR_RET_NAN;
            }
        }
      else if (MPFR_IS_INF (c))
        {
          if (!MPFR_IS_ZERO (b))
            {
              MPFR_SET_SIGN (a, sign);
              MPFR_SET_INF (a);
              MPFR_RET(0);
            }
          else
            {
              MPFR_SET_NAN (a);
              MPFR_RET_NAN;
            }
        }
      else
        {
          MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
          MPFR_SET_SIGN (a, sign);
          MPFR_SET_ZERO (a);
          MPFR_RET (0);
        }
    }

  aq = MPFR_GET_PREC (a);
  bq = MPFR_GET_PREC (b);
  cq = MPFR_GET_PREC (c);

#if !defined(MPFR_GENERIC_ABI)
  if (aq == bq && aq == cq)
    {
      if (aq < GMP_NUMB_BITS)
        return mpfr_mul_1 (a, b, c, rnd_mode, aq);

      if (GMP_NUMB_BITS < aq && aq < 2 * GMP_NUMB_BITS)
        return mpfr_mul_2 (a, b, c, rnd_mode, aq);

      if (aq == GMP_NUMB_BITS)
        return mpfr_mul_1n (a, b, c, rnd_mode);

      if (2 * GMP_NUMB_BITS < aq && aq < 3 * GMP_NUMB_BITS)
        return mpfr_mul_3 (a, b, c, rnd_mode, aq);
    }
#endif

  sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));

  ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
  /* Note: the exponent of the exact result will be e = bx + cx + ec with
     ec in {-1,0,1} and the following assumes that e is representable. */

  /* FIXME: Useful since we do an exponent check after?
   * It is useful iff the precision is big, there is an overflow
   * and we are doing further mults...*/
#ifdef HUGE
  if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1))
    return mpfr_overflow (a, rnd_mode, sign);
  if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2))
    return mpfr_underflow (a, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
                           sign);
#endif

  MPFR_ASSERTN ((mpfr_uprec_t) bq + cq <= MPFR_PREC_MAX);

  bn = MPFR_PREC2LIMBS (bq); /* number of limbs of b */
  cn = MPFR_PREC2LIMBS (cq); /* number of limbs of c */
  k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
  tn = MPFR_PREC2LIMBS (bq + cq);
  MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */

  /* Check for no size_t overflow. */
  MPFR_ASSERTD ((size_t) k <= ((size_t) -1) / MPFR_BYTES_PER_MP_LIMB);
  MPFR_TMP_MARK (marker);
  tmp = MPFR_TMP_LIMBS_ALLOC (k);

  /* multiplies two mantissa in temporary allocated space */
  if (MPFR_UNLIKELY (bn < cn))
    {
      mpfr_srcptr z = b;
      mp_size_t zn  = bn;
      b = c;
      bn = cn;
      c = z;
      cn = zn;
    }
  MPFR_ASSERTD (bn >= cn);
  if (bn <= 2)
    {
      /* The 3 cases perform the same first operation. */
      umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
      if (bn == 1)
        {
          /* 1 limb * 1 limb */
          b1 = tmp[1];
        }
      else if (MPFR_UNLIKELY (cn == 1))
        {
          /* 2 limbs * 1 limb */
          mp_limb_t t;
          umul_ppmm (tmp[2], t, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
          add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t);
          b1 = tmp[2];
        }
      else
        {
          /* 2 limbs * 2 limbs */
          mp_limb_t t1, t2, t3;
          /* First 2 limbs * 1 limb */
          umul_ppmm (tmp[2], t1, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
          add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t1);
          /* Second, the other 2 limbs * 1 limb product */
          umul_ppmm (t1, t2, MPFR_MANT (b)[0], MPFR_MANT (c)[1]);
          umul_ppmm (tmp[3], t3, MPFR_MANT (b)[1], MPFR_MANT (c)[1]);
          add_ssaaaa (tmp[3], t1, tmp[3], t1, 0, t3);
          /* Sum those two partial products */
          add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], t1, t2);
          tmp[3] += (tmp[2] < t1);
          b1 = tmp[3];
        }
      b1 >>= (GMP_NUMB_BITS - 1);
      tmp += k - tn;
      if (MPFR_UNLIKELY (b1 == 0))
        mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
    }
  else /* bn >= cn and bn >= 3 */
    /* Mulders' mulhigh. This code can also be used via mpfr_sqr,
       hence the tests b != c. */
    if (MPFR_UNLIKELY (cn > (threshold = b != c ?
                             MPFR_MUL_THRESHOLD : MPFR_SQR_THRESHOLD)))
      {
        mp_limb_t *bp, *cp;
        mp_size_t n;
        mpfr_prec_t p;

        /* First check if we can reduce the precision of b or c:
           exact values are a nightmare for the short product trick */
        bp = MPFR_MANT (b);
        cp = MPFR_MANT (c);
        MPFR_STAT_STATIC_ASSERT (MPFR_MUL_THRESHOLD >= 1 &&
                                 MPFR_SQR_THRESHOLD >= 1);
        if (MPFR_UNLIKELY ((bp[0] == 0 && bp[1] == 0) ||
                           (cp[0] == 0 && cp[1] == 0)))
          {
            mpfr_t b_tmp, c_tmp;

            MPFR_TMP_FREE (marker);
            /* Check for b */
            while (*bp == 0)
              {
                bp++;
                bn--;
                MPFR_ASSERTD (bn > 0);
              } /* This must end since the most significant limb is != 0 */

            /* Check for c too: if b == c, this will do nothing */
            while (*cp == 0)
              {
                cp++;
                cn--;
                MPFR_ASSERTD (cn > 0);
              } /* This must end since the most significant limb is != 0 */

            /* It is not the fastest way, but it is safer. */
            MPFR_SET_SAME_SIGN (b_tmp, b);
            MPFR_SET_EXP (b_tmp, MPFR_GET_EXP (b));
            MPFR_PREC (b_tmp) = bn * GMP_NUMB_BITS;
            MPFR_MANT (b_tmp) = bp;

            if (b != c)
              {
                MPFR_SET_SAME_SIGN (c_tmp, c);
                MPFR_SET_EXP (c_tmp, MPFR_GET_EXP (c));
                MPFR_PREC (c_tmp) = cn * GMP_NUMB_BITS;
                MPFR_MANT (c_tmp) = cp;

                /* Call again mpfr_mul with the fixed arguments */
                return mpfr_mul (a, b_tmp, c_tmp, rnd_mode);
              }
            else
              /* Call mpfr_mul instead of mpfr_sqr as the precision
                 is probably still high enough. It is thus better to call
                 mpfr_mul again, but it should not give an infinite loop
                 if we call mpfr_sqr. */
              return mpfr_mul (a, b_tmp, b_tmp, rnd_mode);
          }

        /* Compute estimated precision of mulhigh.
           We could use `+ (n < cn) + (n < bn)' instead of `+ 2',
           but does it worth it? */
        n = MPFR_LIMB_SIZE (a) + 1;
        n = MIN (n, cn);
        MPFR_ASSERTD (n >= 1 && 2*n <= k && n <= cn && n <= bn);
        p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
        bp += bn - n;
        cp += cn - n;

        /* Check if MulHigh can produce a roundable result.
           We may lose 1 bit due to RNDN, 1 due to final shift. */
        if (MPFR_UNLIKELY (aq > p - 5))
          {
            if (MPFR_UNLIKELY (aq > p - 5 + GMP_NUMB_BITS
                               || bn <= threshold + 1))
              {
                /* MulHigh can't produce a roundable result. */
                MPFR_LOG_MSG (("mpfr_mulhigh can't be used (%lu VS %lu)\n",
                               aq, p));
                goto full_multiply;
              }
            /* Add one extra limb to mantissa of b and c. */
            if (bn > n)
              bp --;
            else
              {
                bp = MPFR_TMP_LIMBS_ALLOC (n + 1);
                bp[0] = 0;
                MPN_COPY (bp + 1, MPFR_MANT (b) + bn - n, n);
              }
            if (b != c)
              {
#if GMP_NUMB_BITS <= 32
                if (cn > n)
                  cp --; /* This can only happen on a 32-bit computer,
                            and is very unlikely to happen.
                            Indeed, since n = MIN (an + 1, cn), with
                            an = MPFR_LIMB_SIZE(a), we can have cn > n
                            only when n = an + 1 < cn.
                            We are in the case aq > p - 5, with
                            aq = PREC(a) = an*W - sh, with W = GMP_NUMB_BITS
                            and 0 <= sh < W, and p = n*W - ceil(log2(n+2)),
                            thus an*W - sh > n*W - ceil(log2(n+2)) - 5.
                            Thus n < an + (ceil(log2(n+2)) + 5 - sh)/W.
                            To get n = an + 1, we need
                            ceil(log2(n+2)) + 5 - sh > W, thus since sh>=0
                            we need ceil(log2(n+2)) + 5 > W.
                            With W=32 this can only happen for n>=2^27-1,
                            thus for a precision of 2^32-64 for a,
                            and with W=64 for n>=2^59-1, which would give
                            a precision >= 2^64. */
                else
#endif
                  {
                    cp = MPFR_TMP_LIMBS_ALLOC (n + 1);
                    cp[0] = 0;
                    MPN_COPY (cp + 1, MPFR_MANT (c) + cn - n, n);
                  }
              }
            /* We will compute with one extra limb */
            n++;
            /* ceil(log2(n+2)) takes into account the lost bits due to
               Mulders' short product */
            p = n * GMP_NUMB_BITS - MPFR_INT_CEIL_LOG2 (n + 2);
            /* Due to some nasty reasons we can have only 4 bits */
            MPFR_ASSERTD (aq <= p - 4);

            if (MPFR_LIKELY (k < 2*n))
              {
                tmp = MPFR_TMP_LIMBS_ALLOC (2 * n);
                tmp += 2*n-k; /* `tmp' still points to an area of `k' limbs */
              }
          }
        MPFR_LOG_MSG (("Use mpfr_mulhigh (%lu VS %lu)\n", aq, p));
        /* Compute an approximation of the product of b and c */
        if (b != c)
          mpfr_mulhigh_n (tmp + k - 2 * n, bp, cp, n);
        else
          mpfr_sqrhigh_n (tmp + k - 2 * n, bp, n);
        /* now tmp[k-n]..tmp[k-1] contains an approximation of the n upper
           limbs of the product, with tmp[k-1] >= 2^(GMP_NUMB_BITS-2) */
        b1 = tmp[k-1] >> (GMP_NUMB_BITS - 1); /* msb from the product */

        /* If the mantissas of b and c are uniformly distributed in (1/2, 1],
           then their product is in (1/4, 1/2] with probability 2*ln(2)-1
           ~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
        if (MPFR_UNLIKELY (b1 == 0))
          /* Warning: the mpfr_mulhigh_n call above only surely affects
             tmp[k-n-1..k-1], thus we shift only those limbs */
          mpn_lshift (tmp + k - n - 1, tmp + k - n - 1, n + 1, 1);
        tmp += k - tn;
        /* now the approximation is in tmp[tn-n]...tmp[tn-1] */
        MPFR_ASSERTD (MPFR_LIMB_MSB (tmp[tn-1]) != 0);

        /* for RNDF, we simply use RNDZ, since anyway here we multiply numbers
           with large precisions, thus the overhead of RNDZ is small */
        if (rnd_mode == MPFR_RNDF)
          rnd_mode = MPFR_RNDZ;

        /* if the most significant bit b1 is zero, we have only p-1 correct
           bits */
        if (MPFR_UNLIKELY (!mpfr_round_p (tmp, tn, p + b1 - 1,
                                          aq + (rnd_mode == MPFR_RNDN))))
          {
            tmp -= k - tn; /* tmp may have changed, FIX IT!!!!! */
            goto full_multiply;
          }
      }
    else
      {
      full_multiply:
        MPFR_LOG_MSG (("Use mpn_mul\n", 0));
        b1 = mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn);

        /* now tmp[0]..tmp[k-1] contains the product of both mantissa,
           with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
        b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */

        /* if the mantissas of b and c are uniformly distributed in (1/2, 1],
           then their product is in (1/4, 1/2] with probability 2*ln(2)-1
           ~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
        tmp += k - tn;
        if (MPFR_UNLIKELY (b1 == 0))
          mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
      }

  /* b1 is 0 or 1 (most significant bit from the raw product) */
  ax2 = ax + ((int) b1 - 1);
  MPFR_RNDRAW (inexact, a, tmp, bq + cq, rnd_mode, sign, ax2++);
  MPFR_TMP_FREE (marker);
  MPFR_EXP (a) = ax2; /* Can't use MPFR_SET_EXP: Expo may be out of range */
  MPFR_SET_SIGN (a, sign);
  if (MPFR_UNLIKELY (ax2 > __gmpfr_emax))
    return mpfr_overflow (a, rnd_mode, sign);
  if (MPFR_UNLIKELY (ax2 < __gmpfr_emin))
    {
      /* In the rounding to the nearest mode, if the exponent of the exact
         result (i.e. before rounding, i.e. without taking cc into account)
         is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
         both arguments are powers of 2), then round to zero. */
      if (rnd_mode == MPFR_RNDN
          && (ax + (mpfr_exp_t) b1 < __gmpfr_emin
              || (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
        rnd_mode = MPFR_RNDZ;
      return mpfr_underflow (a, rnd_mode, sign);
    }
  MPFR_RET (inexact);
}