Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/* mpfr_round_raw_generic, mpfr_round_raw2, mpfr_round_raw, mpfr_prec_round,
   mpfr_can_round, mpfr_can_round_raw -- various rounding functions

Copyright 1999-2023 Free Software Foundation, Inc.
Contributed by the AriC and Caramba projects, INRIA.

This file is part of the GNU MPFR Library.

The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.  If not, see
https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#include "mpfr-impl.h"

#define mpfr_round_raw_generic mpfr_round_raw
#define flag 0
#define use_inexp 1
#include "round_raw_generic.c"

/* mpfr_round_raw_2 is called from mpfr_round_raw2 */
#define mpfr_round_raw_generic mpfr_round_raw_2
#define flag 1
#define use_inexp 0
#include "round_raw_generic.c"

/* Seems to be unused. Remove comment to implement it.
#define mpfr_round_raw_generic mpfr_round_raw_3
#define flag 1
#define use_inexp 1
#include "round_raw_generic.c"
*/

#define mpfr_round_raw_generic mpfr_round_raw_4
#define flag 0
#define use_inexp 0
#include "round_raw_generic.c"

/* Note: if the new prec is lower than the current one, a reallocation
   must not be done (see exp_2.c). */

int
mpfr_prec_round (mpfr_ptr x, mpfr_prec_t prec, mpfr_rnd_t rnd_mode)
{
  mp_limb_t *tmp, *xp;
  int carry, inexact;
  mpfr_prec_t nw, ow;
  MPFR_TMP_DECL(marker);

  MPFR_ASSERTN (MPFR_PREC_COND (prec));

  nw = MPFR_PREC2LIMBS (prec); /* needed allocated limbs */

  /* check if x has enough allocated space for the significand */
  /* Get the number of limbs from the precision.
     (Compatible with all allocation methods) */
  ow = MPFR_LIMB_SIZE (x);
  if (MPFR_UNLIKELY (nw > ow))
    {
      /* FIXME: Variable can't be created using custom allocation,
         MPFR_DECL_INIT or GROUP_ALLOC: How to detect? */
      ow = MPFR_GET_ALLOC_SIZE(x);
      if (nw > ow)
       {
         mpfr_size_limb_t *tmpx;

         /* Realloc significand */
         tmpx = (mpfr_size_limb_t *) mpfr_reallocate_func
           (MPFR_GET_REAL_PTR(x), MPFR_MALLOC_SIZE(ow), MPFR_MALLOC_SIZE(nw));
         MPFR_SET_MANT_PTR(x, tmpx); /* mant ptr must be set
                                        before alloc size */
         MPFR_SET_ALLOC_SIZE(x, nw); /* new number of allocated limbs */
       }
    }

  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) ))
    {
      MPFR_PREC(x) = prec; /* Special value: need to set prec */
      if (MPFR_IS_NAN(x))
        MPFR_RET_NAN;
      MPFR_ASSERTD(MPFR_IS_INF(x) || MPFR_IS_ZERO(x));
      return 0; /* infinity and zero are exact */
    }

  /* x is a non-zero real number */

  MPFR_TMP_MARK(marker);
  tmp = MPFR_TMP_LIMBS_ALLOC (nw);
  xp = MPFR_MANT(x);
  carry = mpfr_round_raw (tmp, xp, MPFR_PREC(x), MPFR_IS_NEG(x),
                          prec, rnd_mode, &inexact);
  MPFR_PREC(x) = prec;

  if (MPFR_UNLIKELY(carry))
    {
      mpfr_exp_t exp = MPFR_EXP (x);

      if (MPFR_UNLIKELY(exp == __gmpfr_emax))
        (void) mpfr_overflow(x, rnd_mode, MPFR_SIGN(x));
      else
        {
          MPFR_ASSERTD (exp < __gmpfr_emax);
          MPFR_SET_EXP (x, exp + 1);
          xp[nw - 1] = MPFR_LIMB_HIGHBIT;
          if (nw - 1 > 0)
            MPN_ZERO(xp, nw - 1);
        }
    }
  else
    MPN_COPY(xp, tmp, nw);

  MPFR_TMP_FREE(marker);
  return inexact;
}

/* assumption: GMP_NUMB_BITS is a power of 2 */

/* assuming b is an approximation to x in direction rnd1 with error at
   most 2^(MPFR_EXP(b)-err), returns 1 if one is able to round exactly
   x to precision prec with direction rnd2, and 0 otherwise.
   Side effects: none.

   rnd1 = RNDN and RNDF are similar: the sign of the error is unknown.

   rnd2 = RNDF: assume that the user will round the approximation b
   toward the direction of x, i.e. the opposite of rnd1 in directed
   rounding modes, otherwise RNDN. Some details:

                u   xinf        v xsup          w
           -----|----+----------|--+------------|-----
                     [----- x -----]
     rnd1 = RNDD     b             |
     rnd1 = RNDU                   b

   where u, v and w are consecutive machine numbers.

   * If [xinf,xsup] contains no machine numbers, then return 1.

   * If [xinf,xsup] contains 2 machine numbers, then return 0.

   * If [xinf,xsup] contains a single machine number, then return 1 iff
     the rounding of b is this machine number.
     With the above choice for the rounding of b, this will always be
     the case if rnd1 is a directed rounding mode; said otherwise, for
     rnd2 = RNDF and rnd1 being a directed rounding mode, return 1 iff
     [xinf,xsup] contains at most 1 machine number.
*/

int
mpfr_can_round (mpfr_srcptr b, mpfr_exp_t err, mpfr_rnd_t rnd1,
                mpfr_rnd_t rnd2, mpfr_prec_t prec)
{
  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(b)))
    return 0; /* We cannot round if Zero, Nan or Inf */
  else
    return mpfr_can_round_raw (MPFR_MANT(b), MPFR_LIMB_SIZE(b),
                               MPFR_SIGN(b), err, rnd1, rnd2, prec);
}

/* TODO: mpfr_can_round_raw currently does a memory allocation and some
   mpn operations. A bit inspection like for mpfr_round_p (round_p.c) may
   be sufficient, though this would be more complex than the one done in
   mpfr_round_p, and in particular, for some rnd1/rnd2 combinations, one
   needs to take care of changes of binade when the value is close to a
   power of 2. */

int
mpfr_can_round_raw (const mp_limb_t *bp, mp_size_t bn, int neg, mpfr_exp_t err,
                    mpfr_rnd_t rnd1, mpfr_rnd_t rnd2, mpfr_prec_t prec)
{
  mpfr_prec_t prec2;
  mp_size_t k, k1, tn;
  int s, s1;
  mp_limb_t cc, cc2;
  mp_limb_t *tmp;
  mp_limb_t cy = 0, tmp_hi;
  int res;
  MPFR_TMP_DECL(marker);

  /* Since mpfr_can_round is a function in the API, use MPFR_ASSERTN.
     The specification makes sense only for prec >= 1. */
  MPFR_ASSERTN (prec >= 1);

  MPFR_ASSERTD(bp[bn - 1] & MPFR_LIMB_HIGHBIT);

  MPFR_ASSERT_SIGN(neg);
  neg = MPFR_IS_NEG_SIGN(neg);
  MPFR_ASSERTD (neg == 0 || neg == 1);

  /* For rnd1 and rnd2, transform RNDF / RNDD / RNDU to RNDN / RNDZ / RNDA
     (with a special case for rnd1 directed rounding, rnd2 = RNDF). */

  if (rnd1 == MPFR_RNDF)
    rnd1 = MPFR_RNDN;  /* transform RNDF to RNDN */
  else if (rnd1 != MPFR_RNDN)
    rnd1 = MPFR_IS_LIKE_RNDZ(rnd1, neg) ? MPFR_RNDZ : MPFR_RNDA;

  MPFR_ASSERTD (rnd1 == MPFR_RNDN ||
                rnd1 == MPFR_RNDZ ||
                rnd1 == MPFR_RNDA);

  if (rnd2 == MPFR_RNDF)
    {
      if (rnd1 == MPFR_RNDN)
        rnd2 = MPFR_RNDN;
      else
        {
          rnd2 = MPFR_IS_LIKE_RNDZ(rnd1, neg) ? MPFR_RNDA : MPFR_RNDZ;
          /* Warning: in this case (rnd1 directed rounding, rnd2 = RNDF),
             the specification of mpfr_can_round says that we should
             return non-zero (i.e., we can round) when {bp, bn} is
             exactly representable in precision prec. */
          if (mpfr_round_raw2 (bp, bn, neg, MPFR_RNDA, prec) == 0)
            return 1;
        }
    }
  else if (rnd2 != MPFR_RNDN)
    rnd2 = MPFR_IS_LIKE_RNDZ(rnd2, neg) ? MPFR_RNDZ : MPFR_RNDA;

  MPFR_ASSERTD (rnd2 == MPFR_RNDN ||
                rnd2 == MPFR_RNDZ ||
                rnd2 == MPFR_RNDA);

  /* For err < prec (+1 for rnd1=RNDN), we can never round correctly, since
     the error is at least 2*ulp(b) >= ulp(round(b)).
     However, for err = prec (+1 for rnd1=RNDN), we can round correctly in some
     rare cases where ulp(b) = 1/2*ulp(U) [see below for the definition of U],
     which implies rnd1 = RNDZ or RNDN, and rnd2 = RNDA or RNDN. */

  if (MPFR_UNLIKELY (err < prec + (rnd1 == MPFR_RNDN) ||
                     (err == prec + (rnd1 == MPFR_RNDN) &&
                      (rnd1 == MPFR_RNDA ||
                       rnd2 == MPFR_RNDZ))))
    return 0;  /* can't round */

  /* As a consequence... */
  MPFR_ASSERTD (err >= prec);

  /* The bound c on the error |x-b| is: c = 2^(MPFR_EXP(b)-err) <= b/2.
   * So, we now know that x and b have the same sign. By symmetry,
   * assume x > 0 and b > 0. We have: L <= x <= U, where, depending
   * on rnd1:
   *   MPFR_RNDN: L = b-c, U = b+c
   *   MPFR_RNDZ: L = b,   U = b+c
   *   MPFR_RNDA: L = b-c, U = b
   *
   * We can round x iff round(L,prec,rnd2) = round(U,prec,rnd2).
   */

  if (MPFR_UNLIKELY (prec > (mpfr_prec_t) bn * GMP_NUMB_BITS))
    { /* Then prec > PREC(b): we can round:
         (i) in rounding to the nearest as long as err >= prec + 2.
             When err = prec + 1 and b is not a power
             of two (so that a change of binade cannot occur), then one
             can round to nearest thanks to the even rounding rule (in the
             target precision prec, the significand of b ends with a 0).
             When err = prec + 1 and b is a power of two, when rnd1 = RNDZ one
             can round too.
         (ii) in directed rounding mode iff rnd1 is compatible with rnd2
              and err >= prec + 1, unless b = 2^k and rnd1 = RNDA or RNDN in
              which case we need err >= prec + 2.
      */
      if ((rnd1 == rnd2 || rnd2 == MPFR_RNDN) && err >= prec + 1)
        {
          if (rnd1 != MPFR_RNDZ &&
              err == prec + 1 &&
              mpfr_powerof2_raw2 (bp, bn))
            return 0;
          else
            return 1;
        }
      return 0;
    }

  /* now prec <= bn * GMP_NUMB_BITS */

  if (MPFR_UNLIKELY (err > (mpfr_prec_t) bn * GMP_NUMB_BITS))
    {
      /* we distinguish the case where b is a power of two:
         rnd1 rnd2 can round?
         RNDZ RNDZ ok
         RNDZ RNDA no
         RNDZ RNDN ok
         RNDA RNDZ no
         RNDA RNDA ok except when err = prec + 1
         RNDA RNDN ok except when err = prec + 1
         RNDN RNDZ no
         RNDN RNDA no
         RNDN RNDN ok except when err = prec + 1 */
      if (mpfr_powerof2_raw2 (bp, bn))
        {
          if ((rnd2 == MPFR_RNDZ || rnd2 == MPFR_RNDA) && rnd1 != rnd2)
            return 0;
          else if (rnd1 == MPFR_RNDZ)
            return 1; /* RNDZ RNDZ and RNDZ RNDN */
          else
            return err > prec + 1;
        }

      /* now the general case where b is not a power of two:
         rnd1 rnd2 can round?
         RNDZ RNDZ ok
         RNDZ RNDA except when b is representable in precision 'prec'
         RNDZ RNDN except when b is the middle of two representable numbers in
                   precision 'prec' and b ends with 'xxx0[1]',
                   or b is representable in precision 'prec'
                   and err = prec + 1 and b ends with '1'.
         RNDA RNDZ except when b is representable in precision 'prec'
         RNDA RNDA ok
         RNDA RNDN except when b is the middle of two representable numbers in
                   precision 'prec' and b ends with 'xxx1[1]',
                   or b is representable in precision 'prec'
                   and err = prec + 1 and b ends with '1'.
         RNDN RNDZ except when b is representable in precision 'prec'
         RNDN RNDA except when b is representable in precision 'prec'
         RNDN RNDN except when b is the middle of two representable numbers in
                   precision 'prec', or b is representable in precision 'prec'
                   and err = prec + 1 and b ends with '1'. */
      if (rnd2 == MPFR_RNDN)
        {
          if (err == prec + 1 && (bp[0] & 1))
            return 0; /* err == prec + 1 implies prec = bn * GMP_NUMB_BITS */
          if (prec < (mpfr_prec_t) bn * GMP_NUMB_BITS)
            {
              k1 = MPFR_PREC2LIMBS (prec + 1);
              MPFR_UNSIGNED_MINUS_MODULO(s1, prec + 1);
              if (((bp[bn - k1] >> s1) & 1) &&
                  mpfr_round_raw2 (bp, bn, neg, MPFR_RNDA, prec + 1) == 0)
                { /* b is the middle of two representable numbers */
                  if (rnd1 == MPFR_RNDN)
                    return 0;
                  k1 = MPFR_PREC2LIMBS (prec);
                  MPFR_UNSIGNED_MINUS_MODULO(s1, prec);
                  return (rnd1 == MPFR_RNDZ) ^
                    (((bp[bn - k1] >> s1) & 1) == 0);
                }
            }
          return 1;
        }
      else if (rnd1 == rnd2) /* cases RNDZ RNDZ or RNDA RNDA: ok */
        return 1;
      else
        return mpfr_round_raw2 (bp, bn, neg, MPFR_RNDA, prec) != 0;
    }

  /* now err <= bn * GMP_NUMB_BITS */

  /* warning: if k = m*GMP_NUMB_BITS, consider limb m-1 and not m */
  k = (err - 1) / GMP_NUMB_BITS;
  MPFR_UNSIGNED_MINUS_MODULO(s, err);
  /* the error corresponds to bit s in limb k, the most significant limb
     being limb 0; in memory, limb k is bp[bn-1-k]. */

  k1 = (prec - 1) / GMP_NUMB_BITS;
  MPFR_UNSIGNED_MINUS_MODULO(s1, prec);
  /* the least significant bit is bit s1 in limb k1 */

  /* We don't need to consider the k1 most significant limbs.
     They will be considered later only to detect when subtracting
     the error bound yields a change of binade.
     Warning! The number with updated bn may no longer be normalized. */
  k -= k1;
  bn -= k1;
  prec2 = prec - (mpfr_prec_t) k1 * GMP_NUMB_BITS;

  /* We can decide of the correct rounding if rnd2(b-eps) and rnd2(b+eps)
     give the same result to the target precision 'prec', i.e., if when
     adding or subtracting (1 << s) in bp[bn-1-k], it does not change the
     rounding in direction 'rnd2' at ulp-position bp[bn-1] >> s1, taking also
     into account the possible change of binade. */
  MPFR_TMP_MARK(marker);
  tn = bn;
  k++; /* since we work with k+1 everywhere */
  tmp = MPFR_TMP_LIMBS_ALLOC (tn);
  if (bn > k)
    MPN_COPY (tmp, bp, bn - k); /* copy low bn-k limbs of b into tmp */

  MPFR_ASSERTD (k > 0);

  switch (rnd1)
    {
    case MPFR_RNDZ:
      /* rnd1 = Round to Zero */
      cc = (bp[bn - 1] >> s1) & 1; /* cc is the least significant bit of b */
      /* mpfr_round_raw2 returns 1 if one should add 1 at ulp(b,prec),
         and 0 otherwise */
      cc ^= mpfr_round_raw2 (bp, bn, neg, rnd2, prec2);
      /* cc is the new value of bit s1 in bp[bn-1] after rounding 'rnd2' */

      /* now round b + 2^(MPFR_EXP(b)-err) */
      cy = mpn_add_1 (tmp + bn - k, bp + bn - k, k, MPFR_LIMB_ONE << s);
      /* propagate carry up to most significant limb */
      for (tn = 0; tn + 1 < k1 && cy != 0; tn ++)
        cy = bp[bn + tn] == MPFR_LIMB_MAX;
      if (cy == 0 && err == prec)
        {
          res = 0;
          goto end;
        }
      if (MPFR_UNLIKELY(cy))
        {
          /* when a carry occurs, we have b < 2^h <= b+c, we can round iff:
             rnd2 = RNDZ: never, since b and b+c round to different values;
             rnd2 = RNDA: when b+c is an exact power of two, and err > prec
                          (since for err = prec, b = 2^h - 1/2*ulp(2^h) is
                          exactly representable and thus rounds to itself);
             rnd2 = RNDN: whenever cc = 0, since err >= prec implies
                          c <= ulp(b) = 1/2*ulp(2^h), thus b+c rounds to 2^h,
                          and b+c >= 2^h implies that bit 'prec' of b is 1,
                          thus cc = 0 means that b is rounded to 2^h too. */
          res = (rnd2 == MPFR_RNDZ) ? 0
            : (rnd2 == MPFR_RNDA) ? (err > prec && k == bn && tmp[0] == 0)
            : cc == 0;
          goto end;
        }
      break;
    case MPFR_RNDN:
      /* rnd1 = Round to nearest */

      /* first round b+2^(MPFR_EXP(b)-err) */
      cy = mpn_add_1 (tmp + bn - k, bp + bn - k, k, MPFR_LIMB_ONE << s);
      /* propagate carry up to most significant limb */
      for (tn = 0; tn + 1 < k1 && cy != 0; tn ++)
        cy = bp[bn + tn] == MPFR_LIMB_MAX;
      cc = (tmp[bn - 1] >> s1) & 1; /* gives 0 when cc=1 */
      cc ^= mpfr_round_raw2 (tmp, bn, neg, rnd2, prec2);
      /* cc is the new value of bit s1 in bp[bn-1]+eps after rounding 'rnd2' */
      if (MPFR_UNLIKELY (cy != 0))
        {
          /* when a carry occurs, we have b-c < b < 2^h <= b+c, we can round
             iff:
             rnd2 = RNDZ: never, since b-c and b+c round to different values;
             rnd2 = RNDA: when b+c is an exact power of two, and
                          err > prec + 1 (since for err <= prec + 1,
                          b-c <= 2^h - 1/2*ulp(2^h) is exactly representable
                          and thus rounds to itself);
             rnd2 = RNDN: whenever err > prec + 1, since for err = prec + 1,
                          b+c rounds to 2^h, and b-c rounds to nextbelow(2^h).
                          For err > prec + 1, c <= 1/4*ulp(b) <= 1/8*ulp(2^h),
                          thus
                          2^h - 1/4*ulp(b) <= b-c < b+c <= 2^h + 1/8*ulp(2^h),
                          therefore both b-c and b+c round to 2^h. */
          res = (rnd2 == MPFR_RNDZ) ? 0
            : (rnd2 == MPFR_RNDA) ? (err > prec + 1 && k == bn && tmp[0] == 0)
            : err > prec + 1;
          goto end;
        }
    subtract_eps:
      /* now round b-2^(MPFR_EXP(b)-err), this happens for
         rnd1 = RNDN or RNDA */
      MPFR_ASSERTD(rnd1 == MPFR_RNDN || rnd1 == MPFR_RNDA);
      cy = mpn_sub_1 (tmp + bn - k, bp + bn - k, k, MPFR_LIMB_ONE << s);
      /* propagate the potential borrow up to the most significant limb
         (it cannot propagate further since the most significant limb is
         at least MPFR_LIMB_HIGHBIT).
         Note: we use the same limb tmp[bn-1] to subtract. */
      tmp_hi = tmp[bn - 1];
      for (tn = 0; tn < k1 && cy != 0; tn ++)
        cy = mpn_sub_1 (&tmp_hi, bp + bn + tn, 1, cy);
      /* We have an exponent decrease when tn = k1 and
         tmp[bn-1] < MPFR_LIMB_HIGHBIT:
         b-c < 2^h <= b (for RNDA) or b+c (for RNDN).
         Then we surely cannot round when rnd2 = RNDZ, since b or b+c round to
         a value >= 2^h, and b-c rounds to a value < 2^h.
         We also surely cannot round when (rnd1,rnd2) = (RNDN,RNDA), since
         b-c rounds to a value <= 2^h, and b+c > 2^h rounds to a value > 2^h.
         It thus remains:
         (rnd1,rnd2) = (RNDA,RNDA), (RNDA,RNDN) and (RNDN,RNDN).
         For (RNDA,RNDA) we can round only when b-c and b round to 2^h, which
         implies b = 2^h and err > prec (which is true in that case):
         a necessary condition is that cc = 0.
         For (RNDA,RNDN) we can round only when b-c and b round to 2^h, which
         implies b-c >= 2^h - 1/4*ulp(2^h), and b <= 2^h + 1/2*ulp(2^h);
         since ulp(2^h) = ulp(b), this implies c <= 3/4*ulp(b), thus
         err > prec.
         For (RNDN,RNDN) we can round only when b-c and b+c round to 2^h,
         which implies b-c >= 2^h - 1/4*ulp(2^h), and
         b+c <= 2^h + 1/2*ulp(2^h);
         since ulp(2^h) = ulp(b), this implies 2*c <= 3/4*ulp(b), thus
         err > prec+1.
      */
      if (tn == k1 && tmp_hi < MPFR_LIMB_HIGHBIT) /* exponent decrease */
        {
          if (rnd2 == MPFR_RNDZ || (rnd1 == MPFR_RNDN && rnd2 == MPFR_RNDA) ||
              cc != 0 /* b or b+c does not round to 2^h */)
            {
              res = 0;
              goto end;
            }
          /* in that case since the most significant bit of tmp is 0, we
             should consider one more bit; res = 0 when b-c does not round
             to 2^h. */
          res = mpfr_round_raw2 (tmp, bn, neg, rnd2, prec2 + 1) != 0;
          goto end;
        }
      if (err == prec + (rnd1 == MPFR_RNDN))
        {
          /* No exponent increase nor decrease, thus we have |U-L| = ulp(b).
             For rnd2 = RNDZ or RNDA, either [L,U] contains one representable
             number in the target precision, and then L and U round
             differently; or both L and U are representable: they round
             differently too; thus in all cases we cannot round.
             For rnd2 = RNDN, the only case where we can round is when the
             middle of [L,U] (i.e. b) is representable, and ends with a 0. */
          res = (rnd2 == MPFR_RNDN && (((bp[bn - 1] >> s1) & 1) == 0) &&
                 mpfr_round_raw2 (bp, bn, neg, MPFR_RNDZ, prec2) ==
                 mpfr_round_raw2 (bp, bn, neg, MPFR_RNDA, prec2));
          goto end;
        }
      break;
    default:
      /* rnd1 = Round away */
      MPFR_ASSERTD (rnd1 == MPFR_RNDA);
      cc = (bp[bn - 1] >> s1) & 1;
      /* the mpfr_round_raw2() call below returns whether one should add 1 or
         not for rounding */
      cc ^= mpfr_round_raw2 (bp, bn, neg, rnd2, prec2);
      /* cc is the new value of bit s1 in bp[bn-1]+eps after rounding 'rnd2' */

      goto subtract_eps;
    }

  cc2 = (tmp[bn - 1] >> s1) & 1;
  res = cc == (cc2 ^ mpfr_round_raw2 (tmp, bn, neg, rnd2, prec2));

 end:
  MPFR_TMP_FREE(marker);
  return res;
}