/* $NetBSD: dove.c,v 1.3 2021/09/30 10:19:52 skrll Exp $ */
/*
* Copyright (c) 2016 KIYOHARA Takashi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: dove.c,v 1.3 2021/09/30 10:19:52 skrll Exp $");
#define _INTR_PRIVATE
#include "mvsocgpp.h"
#include "mvsocpmu.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/errno.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
#include <arm/pic/picvar.h>
#include <arm/pic/picvar.h>
#include <arm/marvell/mvsocreg.h>
#include <arm/marvell/mvsocvar.h>
#include <arm/marvell/mvsocpmuvar.h>
#include <arm/marvell/dovereg.h>
#include <dev/marvell/marvellreg.h>
#define read_dbreg read_mlmbreg
#define write_dbreg write_mlmbreg
#if NMVSOCPMU > 0
#define READ_PMUREG(sc, o) \
bus_space_read_4((sc)->sc_iot, (sc)->sc_pmch, (o))
#define WRITE_PMUREG(sc, o, v) \
bus_space_write_4((sc)->sc_iot, (sc)->sc_pmch, (o), (v))
#else
vaddr_t pmu_base = -1;
#define READ_PMUREG(sc, o) le32toh(*(volatile uint32_t *)(pmu_base + (o)))
#endif
static void dove_intr_init(void);
static void dove_pic_unblock_irqs(struct pic_softc *, size_t, uint32_t);
static void dove_pic_block_irqs(struct pic_softc *, size_t, uint32_t);
static void dove_pic_establish_irq(struct pic_softc *, struct intrsource *);
static void dove_pic_source_name(struct pic_softc *, int, char *, size_t);
static int dove_find_pending_irqs(void);
static void dove_getclks(bus_addr_t);
static int dove_clkgating(struct marvell_attach_args *);
#if NMVSOCPMU > 0
struct dove_pmu_softc {
struct mvsocpmu_softc sc_mvsocpmu_sc;
bus_space_tag_t sc_iot;
bus_space_handle_t sc_pmch; /* Power Management Core handler */
bus_space_handle_t sc_pmh; /* Power Management handler */
int sc_xpratio;
int sc_dpratio;
};
static int dove_pmu_match(device_t, struct cfdata *, void *);
static void dove_pmu_attach(device_t, device_t, void *);
static int dove_pmu_intr(void *);
static int dove_tm_val2uc(int);
static int dove_tm_uc2val(int);
static int dove_dfs_slow(struct dove_pmu_softc *, bool);
CFATTACH_DECL_NEW(mvsocpmu, sizeof(struct dove_pmu_softc),
dove_pmu_match, dove_pmu_attach, NULL, NULL);
#endif
static const char * const sources[64] = {
"Bridge(0)", "Host2CPUDoorbell(1)","CPU2HostDoorbell(2)","NF(3)",
"PDMA(4)", "SPI1(5)", "SPI0(6)", "UART0(7)",
"UART1(8)", "UART2(9)", "UART3(10)", "TWSI(11)",
"GPIO7_0(12)", "GPIO15_8(13)", "GPIO23_16(14)", "PEX0_Err(15)",
"PEX0_INT(16)", "PEX1_Err(17)", "PEX1_INT(18)", "Audio0_INT(19)",
"Audio0_Err(20)", "Audio1_INT(21)", "Audio1_Err(22)", "USBBr(23)",
"USB0Cnt(24)", "USB1Cnt(25)", "GbERx(26)", "GbETx(27)",
"GbEMisc(28)", "GbESum(29)", "GbEErr(30)", "SecurityInt(31)",
"AC97(32)", "PMU(33)", "CAM(34)", "SD0(35)",
"SD1(36)", "SD0_wakeup_Int(37)","SD1_wakeup_Int(38)","XOR0_DMA0(39)",
"XOR0_DMA1(40)", "XOR0Err(41)", "XOR1_DMA0(42)", "XOR1_DMA1(43)",
"XOR1Err(44)", "IRE_DCON(45)", "LCD1(46)", "LCD0(47)",
"GPU(48)", "Reserved(49)", "Reserved_18(50)", "Vmeta(51)",
"Reserved_20(52)", "Reserved_21(53)", "SSPTimer(54)", "SSPInt(55)",
"MemoryErr(56)", "DwnstrmExclTrn(57)","UpstrmAddrErr(58)","SecurityErr(59)",
"GPIO_31_24(60)", "HighGPIO(61)", "SATAInt(62)", "Reserved_31(63)"
};
static struct pic_ops dove_picops = {
.pic_unblock_irqs = dove_pic_unblock_irqs,
.pic_block_irqs = dove_pic_block_irqs,
.pic_establish_irq = dove_pic_establish_irq,
.pic_source_name = dove_pic_source_name,
};
static struct pic_softc dove_pic = {
.pic_ops = &dove_picops,
.pic_maxsources = 64,
.pic_name = "dove",
};
static struct {
bus_size_t offset;
uint32_t bits;
} clkgatings[]= {
{ DOVE_USB0_BASE, (1 << 0) },
{ DOVE_USB1_BASE, (1 << 1) },
{ DOVE_GBE_BASE, (1 << 2) | (1 << 30) },
{ DOVE_SATAHC_BASE, (1 << 3) },
{ MVSOC_PEX_BASE, (1 << 4) },
{ DOVE_PEX1_BASE, (1 << 5) },
{ DOVE_SDHC0_BASE, (1 << 8) },
{ DOVE_SDHC1_BASE, (1 << 9) },
{ DOVE_NAND_BASE, (1 << 10) },
{ DOVE_CAMERA_BASE, (1 << 11) },
{ DOVE_AUDIO0_BASE, (1 << 12) },
{ DOVE_AUDIO1_BASE, (1 << 13) },
{ DOVE_CESA_BASE, (1 << 15) },
#if 0
{ PDMA, (1 << 22) }, /* PdmaEnClock */
#endif
{ DOVE_XORE_BASE, (1 << 23) | (1 << 24) },
};
/*
* dove_bootstrap:
*
* Initialize the rest of the Dove dependencies, making it
* ready to handle interrupts from devices.
* And clks, PMU.
*/
void
dove_bootstrap(bus_addr_t iobase)
{
/* disable all interrupts */
write_dbreg(DOVE_DB_MIRQIMR, 0);
write_dbreg(DOVE_DB_SMIRQIMR, 0);
/* disable all bridge interrupts */
write_mlmbreg(MVSOC_MLMB_MLMBIMR, 0);
mvsoc_intr_init = dove_intr_init;
#if NMVSOCGPP > 0
/*
* 64 General Purpose Port I/O (GPIO [63:0]) and
* an additional eight General Purpose Outputs (GPO [71:64]).
*/
gpp_npins = 72;
gpp_irqbase = 96; /* Main(32) + Second Main(32) + Bridge(32) */
#endif
dove_getclks(iobase);
mvsoc_clkgating = dove_clkgating;
#if NMVSOCPMU == 0
pmu_base = iobase + DOVE_PMU_BASE;
#endif
}
static void
dove_intr_init(void)
{
extern struct pic_softc mvsoc_bridge_pic;
void *ih __diagused;
pic_add(&dove_pic, 0);
pic_add(&mvsoc_bridge_pic, 64);
ih = intr_establish(DOVE_IRQ_BRIDGE, IPL_HIGH, IST_LEVEL_HIGH,
pic_handle_intr, &mvsoc_bridge_pic);
KASSERT(ih != NULL);
find_pending_irqs = dove_find_pending_irqs;
}
/* ARGSUSED */
static void
dove_pic_unblock_irqs(struct pic_softc *pic, size_t irqbase, uint32_t irq_mask)
{
const size_t reg = DOVE_DB_MIRQIMR
+ irqbase * (DOVE_DB_SMIRQIMR - DOVE_DB_MIRQIMR) / 32;
KASSERT(irqbase < 64);
write_dbreg(reg, read_dbreg(reg) | irq_mask);
}
/* ARGSUSED */
static void
dove_pic_block_irqs(struct pic_softc *pic, size_t irqbase,
uint32_t irq_mask)
{
const size_t reg = DOVE_DB_MIRQIMR
+ irqbase * (DOVE_DB_SMIRQIMR - DOVE_DB_MIRQIMR) / 32;
KASSERT(irqbase < 64);
write_dbreg(reg, read_dbreg(reg) & ~irq_mask);
}
/* ARGSUSED */
static void
dove_pic_establish_irq(struct pic_softc *pic, struct intrsource *is)
{
/* Nothing */
}
static void
dove_pic_source_name(struct pic_softc *pic, int irq, char *buf, size_t len)
{
strlcpy(buf, sources[pic->pic_irqbase + irq], len);
}
/*
* Called with interrupts disabled
*/
static int
dove_find_pending_irqs(void)
{
int ipl = 0;
uint32_t cause = read_dbreg(DOVE_DB_MICR);
uint32_t pending = read_dbreg(DOVE_DB_MIRQIMR);
pending &= cause;
if (pending)
ipl |= pic_mark_pending_sources(&dove_pic, 0, pending);
uint32_t cause2 = read_dbreg(DOVE_DB_SMICR);
uint32_t pending2 = read_dbreg(DOVE_DB_SMIRQIMR);
pending2 &= cause2;
if (pending2)
ipl |= pic_mark_pending_sources(&dove_pic, 32, pending2);
return ipl;
}
/*
* Clock functions
*/
static void
dove_getclks(bus_addr_t iobase)
{
uint32_t val;
#define MHz * 1000 * 1000
val = le32toh(*(volatile uint32_t *)(iobase + DOVE_MISC_BASE +
DOVE_MISC_SAMPLE_AT_RESET0));
switch (val & 0x01800000) {
case 0x00000000: mvTclk = 166 MHz; break;
case 0x00800000: mvTclk = 125 MHz; break;
default:
panic("unknown mvTclk\n");
}
switch (val & 0x000001e0) {
case 0x000000a0: mvPclk = 1000 MHz; break;
case 0x000000c0: mvPclk = 933 MHz; break;
case 0x000000e0: mvPclk = 933 MHz; break;
case 0x00000100: mvPclk = 800 MHz; break;
case 0x00000120: mvPclk = 800 MHz; break;
case 0x00000140: mvPclk = 800 MHz; break;
case 0x00000160: mvPclk = 1067 MHz; break;
case 0x00000180: mvPclk = 667 MHz; break;
case 0x000001a0: mvPclk = 533 MHz; break;
case 0x000001c0: mvPclk = 400 MHz; break;
case 0x000001e0: mvPclk = 333 MHz; break;
default:
panic("unknown mvPclk\n");
}
switch (val & 0x0000f000) {
case 0x00000000: mvSysclk = mvPclk / 1; break;
case 0x00002000: mvSysclk = mvPclk / 2; break;
case 0x00004000: mvSysclk = mvPclk / 3; break;
case 0x00006000: mvSysclk = mvPclk / 4; break;
case 0x00008000: mvSysclk = mvPclk / 5; break;
case 0x0000a000: mvSysclk = mvPclk / 6; break;
case 0x0000c000: mvSysclk = mvPclk / 7; break;
case 0x0000e000: mvSysclk = mvPclk / 8; break;
case 0x0000f000: mvSysclk = mvPclk / 10; break;
}
#undef MHz
}
static int
dove_clkgating(struct marvell_attach_args *mva)
{
uint32_t val;
int i;
#if NMVSOCPMU > 0
struct dove_pmu_softc *pmu =
device_private(device_find_by_xname("mvsocpmu0"));
if (pmu == NULL)
return 0;
#else
KASSERT(pmu_base != -1);
#endif
if (strcmp(mva->mva_name, "mvsocpmu") == 0)
return 0;
for (i = 0; i < __arraycount(clkgatings); i++) {
if (clkgatings[i].offset == mva->mva_offset) {
val = READ_PMUREG(pmu, DOVE_PMU_CGCR);
if ((val & clkgatings[i].bits) == clkgatings[i].bits)
/* Clock enabled */
return 0;
return 1;
}
}
/* Clock Gating not support */
return 0;
}
#if NMVSOCPMU > 0
static int
dove_pmu_match(device_t parent, struct cfdata *match, void *aux)
{
struct marvell_attach_args *mva = aux;
if (mvsocpmu_match(parent, match, aux) == 0)
return 0;
if (mva->mva_offset == MVA_OFFSET_DEFAULT ||
mva->mva_irq == MVA_IRQ_DEFAULT)
return 0;
mva->mva_size = DOVE_PMU_SIZE;
return 1;
}
static void
dove_pmu_attach(device_t parent, device_t self, void *aux)
{
struct dove_pmu_softc *sc = device_private(self);
struct marvell_attach_args *mva = aux;
uint32_t tdc0, cpucdc0;
sc->sc_iot = mva->mva_iot;
if (bus_space_subregion(sc->sc_iot, mva->mva_ioh,
mva->mva_offset, mva->mva_size, &sc->sc_pmch))
panic("%s: Cannot map core registers", device_xname(self));
if (bus_space_subregion(sc->sc_iot, mva->mva_ioh,
mva->mva_offset + (DOVE_PMU_BASE2 - DOVE_PMU_BASE),
DOVE_PMU_SIZE, &sc->sc_pmh))
panic("%s: Cannot map registers", device_xname(self));
if (bus_space_subregion(sc->sc_iot, mva->mva_ioh,
mva->mva_offset + (DOVE_PMU_SRAM_BASE - DOVE_PMU_BASE),
DOVE_PMU_SRAM_SIZE, &sc->sc_pmh))
panic("%s: Cannot map SRAM", device_xname(self));
tdc0 = READ_PMUREG(sc, DOVE_PMU_TDC0R);
tdc0 &= ~(DOVE_PMU_TDC0R_THERMAVGNUM_MASK |
DOVE_PMU_TDC0R_THERMREFCALCOUNT_MASK |
DOVE_PMU_TDC0R_THERMSELVCAL_MASK);
tdc0 |= (DOVE_PMU_TDC0R_THERMAVGNUM_2 |
DOVE_PMU_TDC0R_THERMREFCALCOUNT(0xf1) |
DOVE_PMU_TDC0R_THERMSELVCAL(2));
WRITE_PMUREG(sc, DOVE_PMU_TDC0R, tdc0);
WRITE_PMUREG(sc, DOVE_PMU_TDC0R,
READ_PMUREG(sc, DOVE_PMU_TDC0R) | DOVE_PMU_TDC0R_THERMSOFTRESET);
delay(1);
WRITE_PMUREG(sc, DOVE_PMU_TDC0R,
READ_PMUREG(sc, DOVE_PMU_TDC0R) & ~DOVE_PMU_TDC0R_THERMSOFTRESET);
cpucdc0 = READ_PMUREG(sc, DOVE_PMU_CPUCDC0R);
sc->sc_xpratio = DOVE_PMU_CPUCDC0R_XPRATIO(cpucdc0);
sc->sc_dpratio = DOVE_PMU_CPUCDC0R_DPRATIO(cpucdc0);
sc->sc_mvsocpmu_sc.sc_iot = mva->mva_iot;
if (bus_space_subregion(sc->sc_iot, sc->sc_pmch,
DOVE_PMU_TM_BASE, MVSOC_PMU_TM_SIZE, &sc->sc_mvsocpmu_sc.sc_tmh))
panic("%s: Cannot map thermal managaer registers",
device_xname(self));
sc->sc_mvsocpmu_sc.sc_uc2val = dove_tm_uc2val;
sc->sc_mvsocpmu_sc.sc_val2uc = dove_tm_val2uc;
mvsocpmu_attach(parent, self, aux);
WRITE_PMUREG(sc, DOVE_PMU_PMUICR, 0);
WRITE_PMUREG(sc, DOVE_PMU_PMUIMR, DOVE_PMU_PMUI_THERMOVERHEAT);
marvell_intr_establish(mva->mva_irq, IPL_HIGH, dove_pmu_intr, sc);
}
static int
dove_pmu_intr(void *arg)
{
struct dove_pmu_softc *sc = arg;
uint32_t cause, mask;
mask = READ_PMUREG(sc, DOVE_PMU_PMUIMR);
cause = READ_PMUREG(sc, DOVE_PMU_PMUICR);
printf("dove pmu intr: cause 0x%x, mask 0x%x\n", cause, mask);
WRITE_PMUREG(sc, DOVE_PMU_PMUICR, 0);
cause &= mask;
if (cause & DOVE_PMU_PMUI_BATTFAULT) {
printf(" Battery Falut\n");
}
if (cause & DOVE_PMU_PMUI_RTCALARM) {
printf(" RTC Alarm\n");
}
if (cause & DOVE_PMU_PMUI_THERMOVERHEAT) {
mask |= DOVE_PMU_PMUI_THERMCOOLING;
if (dove_dfs_slow(sc, true) == 0)
mask &= ~DOVE_PMU_PMUI_THERMOVERHEAT;
WRITE_PMUREG(sc, DOVE_PMU_PMUIMR, mask);
}
if (cause & DOVE_PMU_PMUI_THERMCOOLING) {
mask |= DOVE_PMU_PMUI_THERMOVERHEAT;
if (dove_dfs_slow(sc, false) == 0)
mask &= ~DOVE_PMU_PMUI_THERMCOOLING;
WRITE_PMUREG(sc, DOVE_PMU_PMUIMR, mask);
}
if (cause & DOVE_PMU_PMUI_DVSDONE) {
printf(" DVS Done\n");
}
if (cause & DOVE_PMU_PMUI_DFSDONE) {
printf(" DFS Done\n");
}
return 0;
}
static int
dove_tm_uc2val(int v)
{
return (2281638 - v / 1000 * 10) / 7298;
}
static int
dove_tm_val2uc(int v)
{
return (2281638 - 7298 * v) / 10 * 1000;
}
static int
dove_dfs_slow(struct dove_pmu_softc *sc, bool slow)
{
uint32_t control, status, psw, pmucr;
int rv;
uint32_t cause0, cause1, cause2;
status = READ_PMUREG(sc, DOVE_PMU_CPUSDFSSR);
status &= DOVE_PMU_CPUSDFSSR_CPUSLOWMODESTTS_MASK;
if ((slow && status == DOVE_PMU_CPUSDFSSR_CPUSLOWMODESTTS_SLOW) ||
(!slow && status == DOVE_PMU_CPUSDFSSR_CPUSLOWMODESTTS_TURBO))
return 0;
cause0 = READ_PMUREG(sc, DOVE_PMU_PMUICR);
/*
* 1. Disable the CPU FIQ and IRQ interrupts.
*/
psw = disable_interrupts(I32_bit | F32_bit);
/*
* 2. Program the new CPU Speed mode in the CPU Subsystem DFS Control
* Register.
*/
control = READ_PMUREG(sc, DOVE_PMU_CPUSDFSCR);
if (slow) {
control |= DOVE_PMU_CPUSDFSCR_CPUSLOWEN;
control |= DOVE_PMU_CPUSDFSCR_CPUL2CR(sc->sc_dpratio);
} else {
control &= ~DOVE_PMU_CPUSDFSCR_CPUSLOWEN;
control |= DOVE_PMU_CPUSDFSCR_CPUL2CR(sc->sc_xpratio);
}
WRITE_PMUREG(sc, DOVE_PMU_CPUSDFSCR, control);
/*
* 3. Enable the <DFSDone> field in the PMU Interrupts Mask Register
* to wake up the CPU when the DFS procedure has been completed.
*/
WRITE_PMUREG(sc, DOVE_PMU_PMUIMR,
READ_PMUREG(sc, DOVE_PMU_PMUIMR) | DOVE_PMU_PMUI_DFSDONE);
/*
* 4. Set the <MaskFIQ> and <MaskIRQ> field in the PMU Control Register.
* The PMU masks the main interrupt pins of the Interrupt Controller
* (FIQ and IRQ) from, so that they cannot be asserted to the CPU
* core.
*/
pmucr = bus_space_read_4(sc->sc_iot, sc->sc_pmh, DOVE_PMU_PMUCR);
cause1 = READ_PMUREG(sc, DOVE_PMU_PMUICR);
bus_space_write_4(sc->sc_iot, sc->sc_pmh, DOVE_PMU_PMUCR,
pmucr | DOVE_PMU_PMUCR_MASKFIQ | DOVE_PMU_PMUCR_MASKIRQ);
/*
* 5. Set the <DFSEn> field in the CPU Subsystem DFS Control Register.
*/
WRITE_PMUREG(sc, DOVE_PMU_CPUSDFSCR,
READ_PMUREG(sc, DOVE_PMU_CPUSDFSCR) | DOVE_PMU_CPUSDFSCR_DFSEN);
/*
* 6. Use the WFI instruction (Wait for Interrupt), to place the CPU
* in Sleep mode.
*/
cause2 = READ_PMUREG(sc, DOVE_PMU_PMUICR);
__asm("wfi");
status = READ_PMUREG(sc, DOVE_PMU_CPUSDFSSR);
status &= DOVE_PMU_CPUSDFSSR_CPUSLOWMODESTTS_MASK;
if ((slow && status == DOVE_PMU_CPUSDFSSR_CPUSLOWMODESTTS_SLOW) ||
(!slow && status == DOVE_PMU_CPUSDFSSR_CPUSLOWMODESTTS_TURBO)) {
rv = 0;
printf("DFS changed to %s\n", slow ? "slow" : "turbo");
} else {
rv = 1;
printf("DFS failed to %s\n", slow ? "slow" : "turbo");
}
bus_space_write_4(sc->sc_iot, sc->sc_pmh, DOVE_PMU_PMUCR, pmucr);
restore_interrupts(psw);
printf("causes: 0x%x -> 0x%x -> 0x%x\n", cause0, cause1, cause2);
return rv;
}
#endif