/* $NetBSD: i80321_timer.c,v 1.22 2018/07/12 10:46:42 maxv Exp $ */
/*
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Timer/clock support for the Intel i80321 I/O processor.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: i80321_timer.c,v 1.22 2018/07/12 10:46:42 maxv Exp $");
#include "opt_i80321.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <dev/clock_subr.h>
#include <sys/bus.h>
#include <arm/cpufunc.h>
#include <arm/xscale/i80321reg.h>
#include <arm/xscale/i80321var.h>
void (*i80321_hardclock_hook)(void);
#ifndef COUNTS_PER_SEC
#define COUNTS_PER_SEC 200000000 /* 200MHz */
#endif
#define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
static void tmr1_tc_init(void);
static void *clock_ih;
static uint32_t counts_per_hz;
int clockhandler(void *);
__unused static inline uint32_t
tmr0_read(void)
{
uint32_t rv;
__asm volatile("mrc p6, 0, %0, c0, c1, 0"
: "=r" (rv));
return (rv);
}
static inline void
tmr0_write(uint32_t val)
{
__asm volatile("mcr p6, 0, %0, c0, c1, 0"
:
: "r" (val));
}
static inline uint32_t
tcr0_read(void)
{
uint32_t rv;
__asm volatile("mrc p6, 0, %0, c2, c1, 0"
: "=r" (rv));
return (rv);
}
static inline void
tcr0_write(uint32_t val)
{
__asm volatile("mcr p6, 0, %0, c2, c1, 0"
:
: "r" (val));
}
static inline void
trr0_write(uint32_t val)
{
__asm volatile("mcr p6, 0, %0, c4, c1, 0"
:
: "r" (val));
}
__unused static inline uint32_t
tmr1_read(void)
{
uint32_t rv;
__asm volatile("mrc p6, 0, %0, c1, c1, 0"
: "=r" (rv));
return (rv);
}
static inline void
tmr1_write(uint32_t val)
{
__asm volatile("mcr p6, 0, %0, c1, c1, 0"
:
: "r" (val));
}
static inline uint32_t
tcr1_read(void)
{
uint32_t rv;
__asm volatile("mrc p6, 0, %0, c3, c1, 0"
: "=r" (rv));
return (rv);
}
static inline void
tcr1_write(uint32_t val)
{
__asm volatile("mcr p6, 0, %0, c3, c1, 0"
:
: "r" (val));
}
static inline void
trr1_write(uint32_t val)
{
__asm volatile("mcr p6, 0, %0, c5, c1, 0"
:
: "r" (val));
}
static inline void
tisr_write(uint32_t val)
{
__asm volatile("mcr p6, 0, %0, c6, c1, 0"
:
: "r" (val));
}
/*
* i80321_calibrate_delay:
*
* Calibrate the delay loop.
*/
void
i80321_calibrate_delay(void)
{
/*
* Just use hz=100 for now -- we'll adjust it, if necessary,
* in cpu_initclocks().
*/
counts_per_hz = COUNTS_PER_SEC / 100;
tmr0_write(0); /* stop timer */
tisr_write(TISR_TMR0); /* clear interrupt */
trr0_write(counts_per_hz); /* reload value */
tcr0_write(counts_per_hz); /* current value */
tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
}
/*
* cpu_initclocks:
*
* Initialize the clock and get them going.
*/
void
cpu_initclocks(void)
{
u_int oldirqstate;
if (hz < 50 || COUNTS_PER_SEC % hz) {
aprint_error("Cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
}
/*
* We only have one timer available; stathz and profhz are
* always left as 0 (the upper-layer clock code deals with
* this situation).
*/
if (stathz != 0)
aprint_error("Cannot get %d Hz statclock\n", stathz);
stathz = 0;
if (profhz != 0)
aprint_error("Cannot get %d Hz profclock\n", profhz);
profhz = 0;
/* Report the clock frequency. */
aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz);
oldirqstate = disable_interrupts(I32_bit);
/* Hook up the clock interrupt handler. */
clock_ih = i80321_intr_establish(ICU_INT_TMR0, IPL_CLOCK,
clockhandler, NULL);
if (clock_ih == NULL)
panic("cpu_initclocks: unable to register timer interrupt");
/* Set up the new clock parameters. */
tmr0_write(0); /* stop timer */
tisr_write(TISR_TMR0); /* clear interrupt */
counts_per_hz = COUNTS_PER_SEC / hz;
trr0_write(counts_per_hz); /* reload value */
tcr0_write(counts_per_hz); /* current value */
tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
restore_interrupts(oldirqstate);
tmr1_tc_init();
}
/*
* setstatclockrate:
*
* Set the rate of the statistics clock.
*
* We assume that hz is either stathz or profhz, and that neither
* will change after being set by cpu_initclocks(). We could
* recalculate the intervals here, but that would be a pain.
*/
void
setstatclockrate(int newhz)
{
/*
* XXX Use TMR1?
*/
}
static inline uint32_t
tmr1_tc_get(struct timecounter *tch)
{
return (~tcr1_read());
}
void
tmr1_tc_init(void)
{
static struct timecounter tmr1_tc = {
.tc_get_timecount = tmr1_tc_get,
.tc_frequency = COUNTS_PER_SEC,
.tc_counter_mask = ~0,
.tc_name = "tmr1_count",
.tc_quality = 100,
};
/* program the tc */
trr1_write(~0); /* reload value */
tcr1_write(~0); /* current value */
tmr1_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
trr1_write(~0);
tc_init(&tmr1_tc);
}
/*
* delay:
*
* Delay for at least N microseconds.
*/
void
delay(u_int n)
{
uint32_t cur, last, delta, usecs;
/*
* This works by polling the timer and counting the
* number of microseconds that go by.
*/
last = tcr0_read();
delta = usecs = 0;
while (n > usecs) {
cur = tcr0_read();
/* Check to see if the timer has wrapped around. */
if (last < cur)
delta += (last + (counts_per_hz - cur));
else
delta += (last - cur);
last = cur;
if (delta >= COUNTS_PER_USEC) {
usecs += delta / COUNTS_PER_USEC;
delta %= COUNTS_PER_USEC;
}
}
}
/*
* clockhandler:
*
* Handle the hardclock interrupt.
*/
int
clockhandler(void *arg)
{
struct clockframe *frame = arg;
tisr_write(TISR_TMR0);
hardclock(frame);
if (i80321_hardclock_hook != NULL)
(*i80321_hardclock_hook)();
return (1);
}