Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*	$NetBSD: clock.c,v 1.64 2022/06/26 18:46:14 tsutsui Exp $	*/

/*
 * Copyright (c) 1988 University of Utah.
 * Copyright (c) 1982, 1990 The Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * from: Utah $Hdr: clock.c 1.18 91/01/21$
 *
 *	@(#)clock.c	7.6 (Berkeley) 5/7/91
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.64 2022/06/26 18:46:14 tsutsui Exp $");

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/proc.h>
#include <sys/event.h>
#include <sys/timetc.h>

#include <dev/clock_subr.h>

#include <machine/psl.h>
#include <machine/cpu.h>
#include <machine/iomap.h>
#include <machine/mfp.h>
#include <atari/dev/clockreg.h>
#include <atari/dev/clockvar.h>
#include <atari/atari/device.h>

#if defined(GPROF) && defined(PROFTIMER)
#include <machine/profile.h>
#endif

#include "ioconf.h"

static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);

/*
 * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
 * of 200. Therefore the timer runs at an effective rate of:
 * 2457600/200 = 12288Hz.
 */
#define CLOCK_HZ	12288

static u_int clk_getcounter(struct timecounter *);

static struct timecounter clk_timecounter = {
	.tc_get_timecount = clk_getcounter,
	.tc_counter_mask = ~0u,
	.tc_frequency = CLOCK_HZ,
	.tc_name = "clock",
	.tc_quality = 100,
};

/*
 * Machine-dependent clock routines.
 *
 * Inittodr initializes the time of day hardware which provides
 * date functions.
 *
 * Resettodr restores the time of day hardware after a time change.
 */

struct clock_softc {
	device_t	sc_dev;
	int		sc_flags;
	struct todr_chip_handle	sc_handle;
};

/*
 *  'sc_flags' state info. Only used by the rtc-device functions.
 */
#define	RTC_OPEN	1

static dev_type_open(rtcopen);
static dev_type_close(rtcclose);
static dev_type_read(rtcread);
static dev_type_write(rtcwrite);

static void	clockattach(device_t, device_t, void *);
static int	clockmatch(device_t, cfdata_t, void *);

CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
    clockmatch, clockattach, NULL, NULL);

const struct cdevsw rtc_cdevsw = {
	.d_open = rtcopen,
	.d_close = rtcclose,
	.d_read = rtcread,
	.d_write = rtcwrite,
	.d_ioctl = noioctl,
	.d_stop = nostop,
	.d_tty = notty,
	.d_poll = nopoll,
	.d_mmap = nommap,
	.d_kqfilter = nokqfilter,
	.d_discard = nodiscard,
	.d_flag = 0
};

void statintr(struct clockframe);

static int	twodigits(char *, int);

static int	divisor;	/* Systemclock divisor	*/

/*
 * Statistics and profile clock intervals and variances. Variance must
 * be a power of 2. Since this gives us an even number, not an odd number,
 * we discard one case and compensate. That is, a variance of 64 would
 * give us offsets in [0..63]. Instead, we take offsets in [1..63].
 * This is symmetric around the point 32, or statvar/2, and thus averages
 * to that value (assuming uniform random numbers).
 */
#ifdef STATCLOCK
static int	statvar = 32;	/* {stat,prof}clock variance		*/
static int	statmin;	/* statclock divisor - variance/2	*/
static int	profmin;	/* profclock divisor - variance/2	*/
static int	clk2min;	/* current, from above choices		*/
#endif

static int
clockmatch(device_t parent, cfdata_t cf, void *aux)
{

	if (!strcmp("clock", aux))
		return 1;
	return 0;
}

/*
 * Start the real-time clock.
 */
static void
clockattach(device_t parent, device_t self, void *aux)
{
	struct clock_softc *sc = device_private(self);
	struct todr_chip_handle	*tch;

	sc->sc_dev = self;
	tch = &sc->sc_handle;
	tch->todr_gettime_ymdhms = atari_rtc_get;
	tch->todr_settime_ymdhms = atari_rtc_set;
	tch->todr_setwen = NULL;

	todr_attach(tch);

	sc->sc_flags = 0;

	/*
	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
	 * at an effective rate of: 2457600/200 = 12288Hz. The
	 * following expression works for 48, 64 or 96 hz.
	 */
	divisor       = CLOCK_HZ/hz;
	MFP->mf_tacr  = 0;		/* Stop timer			*/
	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
	MFP->mf_tadr  = divisor;	/* Set divisor			*/

	clk_timecounter.tc_frequency = CLOCK_HZ;

	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
		aprint_normal(": illegal value %d for systemclock, reset to %d\n\t",
								hz, 64);
		hz = 64;
	}
	aprint_normal(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
	tc_init(&clk_timecounter);

#ifdef STATCLOCK
	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
		stathz = hz;
	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
		profhz = hz << 1;

	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/

	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
	clk2min  = statmin;
#endif /* STATCLOCK */
}

void
cpu_initclocks(void)
{

	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
	MFP->mf_imra |= IA_TIMA;	/*    .....			*/

#ifdef STATCLOCK
	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
#endif /* STATCLOCK */
}

void
setstatclockrate(int newhz)
{

#ifdef STATCLOCK
	if (newhz == stathz)
		clk2min = statmin;
	else clk2min = profmin;
#endif /* STATCLOCK */
}

#ifdef STATCLOCK
void
statintr(struct clockframe frame)
{
	register int	var, r;

	var = statvar - 1;
	do {
		r = random() & var;
	} while (r == 0);

	/*
	 * Note that we are always lagging behind as the new divisor
	 * value will not be loaded until the next interrupt. This
	 * shouldn't disturb the median frequency (I think ;-) ) as
	 * only the value used when switching frequencies is used
	 * twice. This shouldn't happen very often.
	 */
	MFP->mf_tcdr = clk2min + r;

	statclock(&frame);
}
#endif /* STATCLOCK */

static u_int
clk_getcounter(struct timecounter *tc)
{
	uint32_t delta, count, cur_hardclock;
	uint8_t ipra, tadr;
	int s;
	static uint32_t lastcount;

	s = splhigh();
	cur_hardclock = getticks();
	ipra = MFP->mf_ipra;
	tadr = MFP->mf_tadr;
	delta = divisor - tadr;

	if (ipra & IA_TIMA)
		delta += divisor;
	splx(s);

	count = (divisor * cur_hardclock) + delta;
	if ((int32_t)(count - lastcount) < 0) {
		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
		count = lastcount + 1;
	}
	lastcount = count;

	return count;
}

#define TIMB_FREQ	614400
#define TIMB_LIMIT	256

void
init_delay(void)
{

	/*
	 * Initialize Timer-B in the ST-MFP. This timer is used by
	 * the 'delay' function below. This timer is setup to be
	 * continueously counting from 255 back to zero at a
	 * frequency of 614400Hz. We do this *early* in the
	 * initialisation process.
	 */
	MFP->mf_tbcr  = 0;		/* Stop timer			*/
	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
	MFP->mf_tbdr  = 0;
	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
}

/*
 * Wait "n" microseconds.
 * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
 * Note: timer had better have been programmed before this is first used!
 */
void
delay(unsigned int n)
{
	int	ticks, otick, remaining;

	/*
	 * Read the counter first, so that the rest of the setup overhead is
	 * counted.
	 */
	otick = MFP->mf_tbdr;

	if (n <= UINT_MAX / TIMB_FREQ) {
		/*
		 * For unsigned arithmetic, division can be replaced with
		 * multiplication with the inverse and a shift.
		 */
		remaining = n * TIMB_FREQ / 1000000;
	} else {
		/* This is a very long delay.
		 * Being slow here doesn't matter.
		 */
		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
	}

	while (remaining > 0) {
		ticks = MFP->mf_tbdr;
		if (ticks > otick)
			remaining -= TIMB_LIMIT - (ticks - otick);
		else
			remaining -= otick - ticks;
		otick = ticks;
	}
}

#ifdef GPROF
/*
 * profclock() is expanded in line in lev6intr() unless profiling kernel.
 * Assumes it is called with clock interrupts blocked.
 */
profclock(void *pc, int ps)
{

	/*
	 * Came from user mode.
	 * If this process is being profiled record the tick.
	 */
	if (USERMODE(ps)) {
		if (p->p_stats.p_prof.pr_scale)
			addupc(pc, &curproc->p_stats.p_prof, 1);
	}
	/*
	 * Came from kernel (supervisor) mode.
	 * If we are profiling the kernel, record the tick.
	 */
	else if (profiling < 2) {
		register int s = pc - s_lowpc;

		if (s < s_textsize)
			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
	}
	/*
	 * Kernel profiling was on but has been disabled.
	 * Mark as no longer profiling kernel and if all profiling done,
	 * disable the clock.
	 */
	if (profiling && (profon & PRF_KERNEL)) {
		profon &= ~PRF_KERNEL;
		if (profon == PRF_NONE)
			stopprofclock();
	}
}
#endif

/***********************************************************************
 *                   Real Time Clock support                           *
 ***********************************************************************/

u_int mc146818_read(void *cookie, u_int regno)
{
	struct rtc *rtc = cookie;

	rtc->rtc_regno = regno;
	return rtc->rtc_data & 0xff;
}

void mc146818_write(void *cookie, u_int regno, u_int value)
{
	struct rtc *rtc = cookie;

	rtc->rtc_regno = regno;
	rtc->rtc_data  = value;
}

static int
atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
{
	int			sps;
	mc_todregs		clkregs;
	u_int			regb;

	sps = splhigh();
	regb = mc146818_read(RTC, MC_REGB);
	MC146818_GETTOD(RTC, &clkregs);
	splx(sps);

	regb &= MC_REGB_24HR|MC_REGB_BINARY;
	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
		printf("Error: Nonstandard RealTimeClock Configuration -"
			" value ignored\n"
			"       A write to /dev/rtc will correct this.\n");
			return 0;
	}
	if (clkregs[MC_SEC] > 59)
		return -1;
	if (clkregs[MC_MIN] > 59)
		return -1;
	if (clkregs[MC_HOUR] > 23)
		return -1;
	if (range_test(clkregs[MC_DOM], 1, 31))
		return -1;
	if (range_test(clkregs[MC_MONTH], 1, 12))
		return -1;
	if (clkregs[MC_YEAR] > 99)
		return -1;

	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
	dtp->dt_mon  = clkregs[MC_MONTH];
	dtp->dt_day  = clkregs[MC_DOM];
	dtp->dt_hour = clkregs[MC_HOUR];
	dtp->dt_min  = clkregs[MC_MIN];
	dtp->dt_sec  = clkregs[MC_SEC];

	return 0;
}

static int
atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
{
	int s;
	mc_todregs clkregs;

	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
	clkregs[MC_MONTH] = dtp->dt_mon;
	clkregs[MC_DOM] = dtp->dt_day;
	clkregs[MC_HOUR] = dtp->dt_hour;
	clkregs[MC_MIN] = dtp->dt_min;
	clkregs[MC_SEC] = dtp->dt_sec;

	s = splclock();
	MC146818_PUTTOD(RTC, &clkregs);
	splx(s);

	return 0;
}

/***********************************************************************
 *                   RTC-device support				       *
 ***********************************************************************/
static int
rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
{
	int			unit = minor(dev);
	struct clock_softc	*sc;

	sc = device_lookup_private(&clock_cd, unit);
	if (sc == NULL)
		return ENXIO;
	if (sc->sc_flags & RTC_OPEN)
		return EBUSY;

	sc->sc_flags = RTC_OPEN;
	return 0;
}

static int
rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
{
	int			unit = minor(dev);
	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);

	sc->sc_flags = 0;
	return 0;
}

static int
rtcread(dev_t dev, struct uio *uio, int flags)
{
	mc_todregs		clkregs;
	int			s, length;
	char			buffer[16 + 1];

	s = splhigh();
	MC146818_GETTOD(RTC, &clkregs);
	splx(s);

	snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
	    clkregs[MC_MONTH], clkregs[MC_DOM],
	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);

	if (uio->uio_offset > strlen(buffer))
		return 0;

	length = strlen(buffer) - uio->uio_offset;
	if (length > uio->uio_resid)
		length = uio->uio_resid;

	return uiomove((void *)buffer, length, uio);
}

static int
twodigits(char *buffer, int pos)
{
	int result = 0;

	if (buffer[pos] >= '0' && buffer[pos] <= '9')
		result = (buffer[pos] - '0') * 10;
	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
		result += (buffer[pos+1] - '0');
	return result;
}

static int
rtcwrite(dev_t dev, struct uio *uio, int flags)
{
	mc_todregs		clkregs;
	int			s, length, error;
	char			buffer[16];

	/*
	 * We require atomic updates!
	 */
	length = uio->uio_resid;
	if (uio->uio_offset || (length != sizeof(buffer)
	    && length != sizeof(buffer) - 1))
		return EINVAL;

	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
		return error;

	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
		return EINVAL;

	s = splclock();
	mc146818_write(RTC, MC_REGB,
	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
	MC146818_GETTOD(RTC, &clkregs);
	splx(s);

	clkregs[MC_SEC]   = twodigits(buffer, 13);
	clkregs[MC_MIN]   = twodigits(buffer, 10);
	clkregs[MC_HOUR]  = twodigits(buffer, 8);
	clkregs[MC_DOM]   = twodigits(buffer, 6);
	clkregs[MC_MONTH] = twodigits(buffer, 4);
	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;

	s = splclock();
	MC146818_PUTTOD(RTC, &clkregs);
	splx(s);

	return 0;
}