/* $NetBSD: smdk2410_machdep.c,v 1.46 2023/04/20 08:28:05 skrll Exp $ */
/*
* Copyright (c) 2002, 2003 Fujitsu Component Limited
* Copyright (c) 2002, 2003, 2005 Genetec Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of The Fujitsu Component Limited nor the name of
* Genetec corporation may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
* CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
* CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 2001,2002 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for integrator board
*
* Created : 24/11/97
*/
/*
* Machine dependent functions for kernel setup for Samsung SMDK2410
* derived from integrator_machdep.c
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: smdk2410_machdep.c,v 1.46 2023/04/20 08:28:05 skrll Exp $");
#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_md.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <machine/bootconfig.h>
#include <arm/locore.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/s3c2xx0/s3c2410reg.h>
#include <arm/s3c2xx0/s3c2410var.h>
#include "ksyms.h"
#ifndef SDRAM_START
#define SDRAM_START S3C2410_SDRAM_START
#endif
#ifndef SDRAM_SIZE
#define SDRAM_SIZE (32*1024*1024)
#endif
/*
* Address to map I/O registers in early initialize stage.
*/
#define SMDK2410_IO_VBASE 0xfd000000
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
/* Memory disk support */
#if defined(MEMORY_DISK_DYNAMIC) && defined(MEMORY_DISK_ROOT_ADDR)
#define DO_MEMORY_DISK
/* We have memory disk image outside of the kernel on ROM. */
#ifdef MEMORY_DISK_ROOT_ROM
/* map the image directory and use read-only */
#else
/* copy the image to RAM */
#endif
#endif
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_end;
u_int free_pages;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
paddr_t msgbufphys;
#define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
#define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 2 /* L2 tables for mapping kernel VM */
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
/* Prototypes */
void consinit(void);
void kgdb_port_init(void);
#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif
#include "sscom.h"
#if NSSCOM > 0
#include "opt_sscom.h"
#include <arm/s3c2xx0/sscom_var.h>
#endif
/*
* Define the default console speed for the board. This is generally
* what the firmware provided with the board defaults to.
*/
#ifndef CONSPEED
#define CONSPEED B115200 /* TTYDEF_SPEED */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
cpu_reset_address_paddr = vtophys((u_int)s3c2410_softreset);
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/* NOTREACHED */
}
/* Disable console buffering */
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/* NOTREACHED */
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel , and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
#define _V(n) (SMDK2410_IO_VBASE + (n) * L1_S_SIZE)
#define GPIO_VBASE _V(0)
#define INTCTL_VBASE _V(1)
#define CLKMAN_VBASE _V(2)
#define UART_VBASE _V(3)
#ifdef MEMORY_DISK_DYNAMIC
#define MEMORY_DISK_VADDR _V(4)
#endif
static const struct pmap_devmap smdk2410_devmap[] = {
/* GPIO registers */
DEVMAP_ENTRY(
GPIO_VBASE,
S3C2410_GPIO_BASE,
S3C2410_GPIO_SIZE
),
DEVMAP_ENTRY(
INTCTL_VBASE,
S3C2410_INTCTL_BASE,
S3C2410_INTCTL_SIZE
),
DEVMAP_ENTRY(
CLKMAN_VBASE,
S3C2410_CLKMAN_BASE,
S3C24X0_CLKMAN_SIZE
),
/* UART registers for UART0, 1, 2. */
DEVMAP_ENTRY(
UART_VBASE,
S3C2410_UART0_BASE,
S3C2410_UART_BASE(3) - S3C2410_UART0_BASE
),
DEVMAP_ENTRY_END
};
static inline pd_entry_t *
read_ttb(void)
{
long ttb;
__asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb));
return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
}
#define ioreg_read8(a) (*(volatile uint8_t *)(a))
#define ioreg_write8(a,v) (*(volatile uint8_t *)(a)=(v))
#define ioreg_read32(a) (*(volatile uint32_t *)(a))
#define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v))
/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
vaddr_t
initarm(void *arg)
{
int loop;
int loop1;
u_int l1pagetable;
extern int etext __asm("_etext");
extern int end __asm("_end");
int progress_counter = 0;
#ifdef DO_MEMORY_DISK
vaddr_t md_root_start;
#define MD_ROOT_SIZE (MEMORY_DISK_ROOT_SIZE * DEV_BSIZE)
#endif
#define gpio_read8(reg) ioreg_read8(GPIO_VBASE + (reg))
#define LEDSTEP() __LED(progress_counter++)
#define pdatf (*(volatile uint8_t *)(S3C2410_GPIO_BASE+GPIO_PFDAT))
#define __LED(x) (pdatf = (pdatf & ~0xf0) | (~(x) & 0xf0))
LEDSTEP();
/* CS8900A on CS3 and CL-PD7610 need nBE1 signal. make sure
* memory controller is set correctly. (USB download firmware
* doesn't do this right) Also, we use WAIT signal for them.
*/
ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON,
(BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(2) |
(BWSCON_ST|BWSCON_WS) << BWSCON_BANK_SHIFT(3) |
ioreg_read32(S3C2410_MEMCTL_BASE + MEMCTL_BWSCON));
/* tweak access timing for CS8900A */
ioreg_write32(S3C2410_MEMCTL_BASE + MEMCTL_BANKCON(3),
(0<<BANKCON_TACS_SHIFT)|(1<<BANKCON_TCOS_SHIFT)|
(7<<BANKCON_TACC_SHIFT)|(0<<BANKCON_TOCH_SHIFT)|
(0<<BANKCON_TCAH_SHIFT));
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
LEDSTEP();
/*
* Map I/O registers that are used in startup. Now we are
* still using page table prepared by bootloader. Later we'll
* map those registers at the same address in the kernel page
* table.
*/
pmap_devmap_bootstrap((vaddr_t)read_ttb(), smdk2410_devmap);
#undef pdatf
#define pdatf (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PFDAT))
LEDSTEP();
/* Disable all peripheral interrupts */
ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
/* initialize some variables so that splfoo() doesn't
touch illegal address. */
s3c2xx0_intr_bootstrap(INTCTL_VBASE);
consinit();
#ifdef VERBOSE_INIT_ARM
printf("consinit done\n");
#endif
#ifdef KGDB
LEDSTEP();
kgdb_port_init();
#endif
LEDSTEP();
#ifdef VERBOSE_INIT_ARM
/* Talk to the user */
printf("\nNetBSD/evbarm (SMDK2410) booting ...\n");
#endif
/*
* Ok we have the following memory map
*
* Physical Address Range Description
* ----------------------- ----------------------------------
* 0x00000000 - 0x00ffffff Intel flash Memory (16MB)
* 0x02000000 - 0x020fffff AMD flash Memory (1MB)
* or (depend on DIPSW setting)
* 0x00000000 - 0x000fffff AMD flash Memory (1MB)
* 0x02000000 - 0x02ffffff Intel flash Memory (16MB)
*
* 0x30000000 - 0x31ffffff SDRAM (32MB)
*
* The initarm() has the responsibility for creating the kernel
* page tables.
* It must also set up various memory pointers that are used
* by pmap etc.
*/
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independent */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = SDRAM_START;
bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
/*
* Set up the variables that define the availability of
* physical memory. For now, we're going to set
* physical_freestart to 0x08200000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the bottom of SDRAM, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
#ifdef DO_MEMORY_DISK
#ifdef MEMORY_DISK_ROOT_ROM
md_root_start = MEMORY_DISK_ROOT_ADDR;
boothowto |= RB_RDONLY;
#else
/* Reserve physmem for ram disk */
md_root_start = ((physical_end - MD_ROOT_SIZE) & ~(L1_S_SIZE-1));
printf("Reserve %ld bytes for memory disk\n",
physical_end - md_root_start);
/* copy fs contents */
memcpy((void *)md_root_start, (void *)MEMORY_DISK_ROOT_ADDR,
MD_ROOT_SIZE);
physical_end = md_root_start;
#endif
#endif
physical_freestart = SDRAM_START; /* XXX */
physical_freeend = SDRAM_START + 0x00200000;
physmem = (physical_end - physical_start) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* XXX
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
panic("initarm: Failed to align the kernel page directory\n");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
LEDSTEP();
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t)&end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00200000; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the vector page. */
#if 1
/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
* cache-clean code there. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
#else
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
#endif
#ifdef MEMORY_DISK_DYNAMIC
/* map MD root image */
pmap_map_chunk(l1pagetable, MEMORY_DISK_VADDR, md_root_start,
MD_ROOT_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
md_root_setconf((void *)md_root_start, MD_ROOT_SIZE);
#endif /* MEMORY_DISK_DYNAMIC */
/*
* map integrated peripherals at same address in l1pagetable
* so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1pagetable, smdk2410_devmap);
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
{
physical_freestart = physical_start +
(((((uintptr_t)&end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE);
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
}
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
LEDSTEP();
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
cpu_setttb(kernel_l1pt.pv_pa, true);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("done!\n");
#endif
LEDSTEP();
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
LEDSTEP();
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
LEDSTEP();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_md_init();
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
LEDSTEP();
/* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
LEDSTEP();
/* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
printf("irq ");
#endif
/* XXX irq_init(); */
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef BOOTHOWTO
boothowto |= BOOTHOWTO;
#endif
{
uint8_t gpio = ~gpio_read8(GPIO_PFDAT);
if (gpio & (1<<0)) /* SW1 (EINT0) */
boothowto ^= RB_SINGLE;
if (gpio & (1<<2)) /* SW2 (EINT2) */
boothowto ^= RB_KDB;
#ifdef VERBOSE_INIT_ARM
printf( "sw: %x boothowto: %x\n", gpio, boothowto );
#endif
}
#ifdef KGDB
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
#ifdef DDB
db_machine_init();
if (boothowto & RB_KDB)
Debugger();
#endif
/* We return the new stack pointer address */
return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}
void
consinit(void)
{
static int consinit_done = 0;
bus_space_tag_t iot = &s3c2xx0_bs_tag;
int pclk;
if (consinit_done != 0)
return;
consinit_done = 1;
s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
#if NSSCOM > 0
#ifdef SSCOM0CONSOLE
if (0 == s3c2410_sscom_cnattach(iot, 0, comcnspeed,
pclk, comcnmode))
return;
#endif
#ifdef SSCOM1CONSOLE
if (0 == s3c2410_sscom_cnattach(iot, 1, comcnspeed,
pclk, comcnmode))
return;
#endif
#endif /* NSSCOM */
#if NCOM>0 && defined(CONCOMADDR)
if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
COM_FREQ, COM_TYPE_NORMAL, comcnmode))
panic("can't init serial console @%x", CONCOMADDR);
return;
#endif
consinit_done = 0;
}
#ifdef KGDB
#if (NSSCOM > 0)
#ifdef KGDB_DEVNAME
const char kgdb_devname[] = KGDB_DEVNAME;
#else
const char kgdb_devname[] = "";
#endif
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
#endif
int kgdb_sscom_mode = KGDB_DEVMODE;
#endif /* NSSCOM */
void
kgdb_port_init(void)
{
#if (NSSCOM > 0)
int unit = -1;
int pclk;
if (strcmp(kgdb_devname, "sscom0") == 0)
unit = 0;
else if (strcmp(kgdb_devname, "sscom1") == 0)
unit = 1;
if (unit >= 0) {
s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
s3c2410_sscom_kgdb_attach(&s3c2xx0_bs_tag,
unit, kgdb_rate, pclk, kgdb_sscom_mode);
}
#endif
}
#endif
static struct arm32_dma_range smdk2410_dma_ranges[1];
bus_dma_tag_t
s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
{
extern paddr_t physical_start, physical_end;
struct arm32_bus_dma_tag *dmat;
smdk2410_dma_ranges[0].dr_sysbase = physical_start;
smdk2410_dma_ranges[0].dr_busbase = physical_start;
smdk2410_dma_ranges[0].dr_len = physical_end - physical_start;
#if 1
dmat = dma_tag_template;
#else
dmat = malloc(sizeof *dmat, M_DEVBUF, M_WAITOK);
*dmat = *dma_tag_template;
#endif
dmat->_ranges = smdk2410_dma_ranges;
dmat->_nranges = 1;
return dmat;
}