Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#
# $NetBSD: os.s,v 1.1 2000/04/14 20:24:39 is Exp $
#

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
# M68000 Hi-Performance Microprocessor Division
# M68060 Software Package Production Release 
# 
# M68060 Software Package Copyright (C) 1993, 1994, 1995, 1996 Motorola Inc.
# All rights reserved.
# 
# THE SOFTWARE is provided on an "AS IS" basis and without warranty.
# To the maximum extent permitted by applicable law,
# MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
# INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
# FOR A PARTICULAR PURPOSE and any warranty against infringement with
# regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
# and any accompanying written materials. 
# 
# To the maximum extent permitted by applicable law,
# IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
# (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
# BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
# ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
# 
# Motorola assumes no responsibility for the maintenance and support
# of the SOFTWARE.  
# 
# You are hereby granted a copyright license to use, modify, and distribute the
# SOFTWARE so long as this entire notice is retained without alteration
# in any modified and/or redistributed versions, and that such modified
# versions are clearly identified as such.
# No licenses are granted by implication, estoppel or otherwise under any
# patents or trademarks of Motorola, Inc.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#
# os.s
#
# This file contains:
#	- example "Call-Out"s required by both the ISP and FPSP.
#


#################################
# EXAMPLE CALL-OUTS 		#
# 				#
# _060_dmem_write()		#
# _060_dmem_read()		#
# _060_imem_read()		#
# _060_dmem_read_byte()		#
# _060_dmem_read_word()		#
# _060_dmem_read_long()		#
# _060_imem_read_word()		#
# _060_imem_read_long()		#
# _060_dmem_write_byte()	#
# _060_dmem_write_word()	#
# _060_dmem_write_long()	#
#				#
# _060_real_trace()		#
# _060_real_access()		#
#################################

# 
# Each IO routine checks to see if the memory write/read is to/from user
# or supervisor application space. The examples below use simple "move"
# instructions for supervisor mode applications and call _copyin()/_copyout()
# for user mode applications.
# When installing the 060SP, the _copyin()/_copyout() equivalents for a 
# given operating system should be substituted.
#
# The addresses within the 060SP are guaranteed to be on the stack.
# The result is that Unix processes are allowed to sleep as a consequence
# of a page fault during a _copyout.
#

#
# _060_dmem_write():
#
# Writes to data memory while in supervisor mode.
#
# INPUTS:
#	a0 - supervisor source address	
#	a1 - user destination address
#	d0 - number of bytes to write	
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d1 - 0 = success, !0 = failure
#
	global		_060_dmem_write
_060_dmem_write:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	beq.b		user_write
super_write:
	mov.b		(%a0)+,(%a1)+		# copy 1 byte
	subq.l		&0x1,%d0		# decr byte counter
	bne.b		super_write		# quit if ctr = 0
	clr.l		%d1			# return success
	rts
user_write:
	mov.l		%d0,-(%sp)		# pass: counter
	mov.l		%a1,-(%sp)		# pass: user dst
	mov.l		%a0,-(%sp)		# pass: supervisor src
	bsr.l		_copyout		# write byte to user mem
	mov.l		%d0,%d1			# return success
	add.l		&0xc, %sp		# clear 3 lw params
	rts

#
# _060_imem_read(), _060_dmem_read():
#
# Reads from data/instruction memory while in supervisor mode.
#
# INPUTS:
#	a0 - user source address
#	a1 - supervisor destination address
#	d0 - number of bytes to read
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d1 - 0 = success, !0 = failure
#
	global 		_060_imem_read
	global		_060_dmem_read
_060_imem_read:
_060_dmem_read:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	beq.b		user_read
super_read:
	mov.b		(%a0)+,(%a1)+		# copy 1 byte
	subq.l		&0x1,%d0		# decr byte counter
	bne.b		super_read		# quit if ctr = 0
	clr.l		%d1			# return success
	rts
user_read:
	mov.l		%d0,-(%sp)		# pass: counter
	mov.l		%a1,-(%sp)		# pass: super dst
	mov.l		%a0,-(%sp)		# pass: user src
	bsr.l		_copyin			# read byte from user mem
	mov.l		%d0,%d1			# return success
	add.l		&0xc,%sp		# clear 3 lw params
	rts

#
# _060_dmem_read_byte():
# 
# Read a data byte from user memory.
#
# INPUTS:
#	a0 - user source address
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d0 - data byte in d0
#	d1 - 0 = success, !0 = failure
#
	global 		_060_dmem_read_byte
_060_dmem_read_byte:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		dmrbs			# supervisor
dmrbu:	clr.l		-(%sp)			# clear space on stack for result
	mov.l		&0x1,-(%sp)		# pass: # bytes to copy
	pea		0x7(%sp)		# pass: dst addr (stack)
	mov.l		%a0,-(%sp)		# pass: src addr (user mem)
	bsr.l		_copyin			# "copy in" the data
	mov.l		%d0,%d1			# return success
	add.l		&0xc,%sp		# delete params
	mov.l		(%sp)+,%d0		# put answer in d0
	rts
dmrbs:	clr.l		%d0			# clear whole longword
	mov.b		(%a0),%d0		# fetch super byte
	clr.l		%d1			# return success
	rts

#
# _060_dmem_read_word():
# 
# Read a data word from user memory.
#
# INPUTS:
#	a0 - user source address
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d0 - data word in d0
#	d1 - 0 = success, !0 = failure
#
	global 		_060_dmem_read_word
_060_dmem_read_word:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		dmrws			# supervisor
dmrwu:	clr.l		-(%sp)			# clear space on stack for result
	mov.l		&0x2,-(%sp)		# pass: # bytes to copy
	pea		0x6(%sp)		# pass: dst addr (stack)
	mov.l		%a0,-(%sp)		# pass: src addr (user mem)
	bsr.l		_copyin			# "copy in" the data
	mov.l		%d0,%d1			# return success
	add.l		&0xc,%sp		# delete params
	mov.l		(%sp)+,%d0		# put answer in d0
	rts
dmrws:	clr.l		%d0			# clear whole longword
	mov.w		(%a0), %d0		# fetch super word
	clr.l		%d1			# return success
	rts

#
# _060_dmem_read_long():
# 

#
# INPUTS:
#	a0 - user source address
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d0 - data longword in d0
#	d1 - 0 = success, !0 = failure
#
	global 		_060_dmem_read_long
_060_dmem_read_long:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		dmrls			# supervisor
dmrlu:	subq.l		&0x4,%sp		# clear space on stack for result
	mov.l		&0x4,-(%sp)		# pass: # bytes to copy
	pea		0x4(%sp)		# pass: dst addr (stack)
	mov.l		%a0,-(%sp)		# pass: src addr (user mem)
	bsr.l		_copyin			# "copy in" the data
	mov.l		%d0,%d1			# return success
	add.l		&0xc,%sp		# delete params
	mov.l		(%sp)+,%d0		# put answer in d0
	rts
dmrls:	mov.l		(%a0),%d0		# fetch super longword
	clr.l		%d1			# return success
	rts

#
# _060_dmem_write_byte():
#
# Write a data byte to user memory.
#
# INPUTS:
#	a0 - user destination address
# 	d0 - data byte in d0
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d1 - 0 = success, !0 = failure
#
	global 		_060_dmem_write_byte
_060_dmem_write_byte:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		dmwbs			# supervisor
dmwbu:	mov.l		%d0,-(%sp)		# put src on stack
	mov.l		&0x1,-(%sp)		# pass: # bytes to copy
	mov.l		%a0,-(%sp)		# pass: dst addr (user mem)
	pea		0xb(%sp)		# pass: src addr (stack)
	bsr.l		_copyout		# "copy out" the data
	mov.l		%d0,%d1			# return success
	add.l		&0x10,%sp		# delete params + src
	rts
dmwbs:	mov.b		%d0,(%a0)		# store super byte
	clr.l		%d1			# return success
	rts

#
# _060_dmem_write_word():
#
# Write a data word to user memory.
#
# INPUTS:
#	a0 - user destination address
# 	d0 - data word in d0
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d1 - 0 = success, !0 = failure
#
	global 		_060_dmem_write_word
_060_dmem_write_word:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		dmwws			# supervisor
dmwwu:	mov.l		%d0,-(%sp)		# put src on stack
	mov.l		&0x2,-(%sp)		# pass: # bytes to copy
	mov.l		%a0,-(%sp)		# pass: dst addr (user mem)
	pea		0xa(%sp)		# pass: src addr (stack)
	bsr.l		_copyout		# "copy out" the data
	mov.l		%d0,%d1			# return success
	add.l		&0x10,%sp		# delete params + src
	rts
dmwws:	mov.w		%d0,(%a0)		# store super word
	clr.l		%d1			# return success
	rts

#
# _060_dmem_write_long():
#
# Write a data longword to user memory.
#
# INPUTS:
#	a0 - user destination address
# 	d0 - data longword in d0
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d1 - 0 = success, !0 = failure
#
	global 		_060_dmem_write_long
_060_dmem_write_long:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		dmwls			# supervisor
dmwlu:	mov.l		%d0,-(%sp)		# put src on stack
	mov.l		&0x4,-(%sp)		# pass: # bytes to copy
	mov.l		%a0,-(%sp)		# pass: dst addr (user mem)
	pea		0x8(%sp)		# pass: src addr (stack)
	bsr.l		_copyout		# "copy out" the data
	mov.l		%d0,%d1			# return success
	add.l		&0x10,%sp		# delete params + src
	rts
dmwls:	mov.l		%d0,(%a0)		# store super longword
	clr.l		%d1			# return success
	rts

#
# _060_imem_read_word():
# 
# Read an instruction word from user memory.
#
# INPUTS:
#	a0 - user source address
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d0 - instruction word in d0
#	d1 - 0 = success, !0 = failure
#
	global 		_060_imem_read_word
_060_imem_read_word:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		imrws			# supervisor
imrwu:	clr.l		-(%sp)			# clear space on stack for result
	mov.l		&0x2,-(%sp)		# pass: # bytes to copy
	pea		0x6(%sp)		# pass: dst addr (stack)
	mov.l		%a0,-(%sp)		# pass: src addr (user mem)
	bsr.l		_copyin			# "copy in" the data
	mov.l		%d0,%d1			# return success
	add.l		&0xc,%sp		# delete params
	mov.l		(%sp)+,%d0		# put answer in d0
	rts
imrws:	mov.w		(%a0),%d0		# fetch super word
	clr.l		%d1			# return success
	rts

#
# _060_imem_read_long():
# 
# Read an instruction longword from user memory.
#
# INPUTS:
#	a0 - user source address
# 	0x4(%a6),bit5 - 1 = supervisor mode, 0 = user mode
# OUTPUTS:
#	d0 - instruction longword in d0
#	d1 - 0 = success, !0 = failure
#
	global 		_060_imem_read_long
_060_imem_read_long:
	btst		&0x5,0x4(%a6)		# check for supervisor state
	bne.b		imrls			# supervisor
imrlu:	subq.l		&0x4,%sp		# clear space on stack for result
	mov.l		&0x4,-(%sp)		# pass: # bytes to copy
	pea		0x4(%sp)		# pass: dst addr (stack)
	mov.l		%a0,-(%sp)		# pass: src addr (user mem)
	bsr.l		_copyin			# "copy in" the data
	mov.l		%d0,%d1			# return success
	add.l		&0xc,%sp		# delete params
	mov.l		(%sp)+,%d0		# put answer in d0
	rts
imrls:	mov.l		(%a0),%d0		# fetch super longword
	clr.l		%d1			# return success
	rts

################################################

#
# Use these routines if your kernel doesn't have _copyout/_copyin equivalents.
# Assumes that D0/D1/A0/A1 are scratch registers. The _copyin/_copyout
# below assume that the SFC/DFC have been set previously.
#

#
# int _copyout(supervisor_addr, user_addr, nbytes)
#
	global 		_copyout
_copyout:
	mov.l		4(%sp),%a0		# source
	mov.l		8(%sp),%a1		# destination
	mov.l		12(%sp),%d0		# count
moreout:
	mov.b		(%a0)+,%d1		# fetch supervisor byte
	movs.b		%d1,(%a1)+		# store user byte
	subq.l		&0x1,%d0		# are we through yet?
	bne.w		moreout			# no; so, continue
	rts

#
# int _copyin(user_addr, supervisor_addr, nbytes)
#
	global 		_copyin
_copyin:
	mov.l		4(%sp),%a0		# source
	mov.l		8(%sp),%a1		# destination
	mov.l		12(%sp),%d0		# count
morein:
	movs.b		(%a0)+,%d1		# fetch user byte
	mov.b		%d1,(%a1)+		# write supervisor byte
	subq.l		&0x1,%d0		# are we through yet?
	bne.w		morein			# no; so, continue
	rts

############################################################################

#
# _060_real_trace():
#
# This is the exit point for the 060FPSP when an instruction is being traced
# and there are no other higher priority exceptions pending for this instruction
# or they have already been processed.
#
# The sample code below simply executes an "rte".
#
	global		_060_real_trace
_060_real_trace:
	rte

#
# _060_real_access():
#
# This is the exit point for the 060FPSP when an access error exception
# is encountered. The routine below should point to the operating system
# handler for access error exceptions. The exception stack frame is an
# 8-word access error frame.
#
# The sample routine below simply executes an "rte" instruction which
# is most likely the incorrect thing to do and could put the system
# into an infinite loop.
#
	global		_060_real_access
_060_real_access:
	rte