Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
*	$NetBSD: slogn.sa,v 1.5 2021/12/05 03:10:53 msaitoh Exp $

*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*	M68000 Hi-Performance Microprocessor Division
*	M68040 Software Package 
*
*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*	All rights reserved.
*
*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*	To the maximum extent permitted by applicable law,
*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*	PARTICULAR PURPOSE and any warranty against infringement with
*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*	and any accompanying written materials. 
*
*	To the maximum extent permitted by applicable law,
*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
*	and support of the SOFTWARE.  
*
*	You are hereby granted a copyright license to use, modify, and
*	distribute the SOFTWARE so long as this entire notice is retained
*	without alteration in any modified and/or redistributed versions,
*	and that such modified versions are clearly identified as such.
*	No licenses are granted by implication, estoppel or otherwise
*	under any patents or trademarks of Motorola, Inc.

*
*	slogn.sa 3.1 12/10/90
*
*	slogn computes the natural logarithm of an
*	input value. slognd does the same except the input value is a
*	denormalized number. slognp1 computes log(1+X), and slognp1d
*	computes log(1+X) for denormalized X.
*
*	Input: Double-extended value in memory location pointed to by address
*		register a0.
*
*	Output:	log(X) or log(1+X) returned in floating-point register Fp0.
*
*	Accuracy and Monotonicity: The returned result is within 2 ulps in
*		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
*		result is subsequently rounded to double precision. The 
*		result is provably monotonic in double precision.
*
*	Speed: The program slogn takes approximately 190 cycles for input 
*		argument X such that |X-1| >= 1/16, which is the usual 
*		situation. For those arguments, slognp1 takes approximately
*		 210 cycles. For the less common arguments, the program will
*		 run no worse than 10% slower.
*
*	Algorithm:
*	LOGN:
*	Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
*		u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.
*
*	Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven
*		significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base
*		2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7).
*
*	Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
*		log(1+u) = poly.
*
*	Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)
*		by k*log(2) + (log(F) + poly). The values of log(F) are calculated
*		beforehand and stored in the program.
*
*	lognp1:
*	Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
*		u where u = 2X/(2+X). Otherwise, move on to Step 2.
*
*	Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2
*		of the algorithm for LOGN and compute log(1+X) as
*		k*log(2) + log(F) + poly where poly approximates log(1+u),
*		u = (Y-F)/F. 
*
*	Implementation Notes:
*	Note 1. There are 64 different possible values for F, thus 64 log(F)'s
*		need to be tabulated. Moreover, the values of 1/F are also 
*		tabulated so that the division in (Y-F)/F can be performed by a
*		multiplication.
*
*	Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value
*		Y-F has to be calculated carefully when 1/2 <= X < 3/2. 
*
*	Note 3. To fully exploit the pipeline, polynomials are usually separated
*		into two parts evaluated independently before being added up.
*	

slogn	IDNT	2,1 Motorola 040 Floating Point Software Package

	section	8

	include fpsp.h

BOUNDS1  DC.L $3FFEF07D,$3FFF8841
BOUNDS2  DC.L $3FFE8000,$3FFFC000

LOGOF2	DC.L $3FFE0000,$B17217F7,$D1CF79AC,$00000000

one	DC.L $3F800000
zero	DC.L $00000000
infty	DC.L $7F800000
negone	DC.L $BF800000

LOGA6	DC.L $3FC2499A,$B5E4040B
LOGA5	DC.L $BFC555B5,$848CB7DB

LOGA4	DC.L $3FC99999,$987D8730
LOGA3	DC.L $BFCFFFFF,$FF6F7E97

LOGA2	DC.L $3FD55555,$555555A4
LOGA1	DC.L $BFE00000,$00000008

LOGB5	DC.L $3F175496,$ADD7DAD6
LOGB4	DC.L $3F3C71C2,$FE80C7E0

LOGB3	DC.L $3F624924,$928BCCFF
LOGB2	DC.L $3F899999,$999995EC

LOGB1	DC.L $3FB55555,$55555555
TWO	DC.L $40000000,$00000000

LTHOLD	DC.L $3f990000,$80000000,$00000000,$00000000

LOGTBL:
	DC.L  $3FFE0000,$FE03F80F,$E03F80FE,$00000000
	DC.L  $3FF70000,$FF015358,$833C47E2,$00000000
	DC.L  $3FFE0000,$FA232CF2,$52138AC0,$00000000
	DC.L  $3FF90000,$BDC8D83E,$AD88D549,$00000000
	DC.L  $3FFE0000,$F6603D98,$0F6603DA,$00000000
	DC.L  $3FFA0000,$9CF43DCF,$F5EAFD48,$00000000
	DC.L  $3FFE0000,$F2B9D648,$0F2B9D65,$00000000
	DC.L  $3FFA0000,$DA16EB88,$CB8DF614,$00000000
	DC.L  $3FFE0000,$EF2EB71F,$C4345238,$00000000
	DC.L  $3FFB0000,$8B29B775,$1BD70743,$00000000
	DC.L  $3FFE0000,$EBBDB2A5,$C1619C8C,$00000000
	DC.L  $3FFB0000,$A8D839F8,$30C1FB49,$00000000
	DC.L  $3FFE0000,$E865AC7B,$7603A197,$00000000
	DC.L  $3FFB0000,$C61A2EB1,$8CD907AD,$00000000
	DC.L  $3FFE0000,$E525982A,$F70C880E,$00000000
	DC.L  $3FFB0000,$E2F2A47A,$DE3A18AF,$00000000
	DC.L  $3FFE0000,$E1FC780E,$1FC780E2,$00000000
	DC.L  $3FFB0000,$FF64898E,$DF55D551,$00000000
	DC.L  $3FFE0000,$DEE95C4C,$A037BA57,$00000000
	DC.L  $3FFC0000,$8DB956A9,$7B3D0148,$00000000
	DC.L  $3FFE0000,$DBEB61EE,$D19C5958,$00000000
	DC.L  $3FFC0000,$9B8FE100,$F47BA1DE,$00000000
	DC.L  $3FFE0000,$D901B203,$6406C80E,$00000000
	DC.L  $3FFC0000,$A9372F1D,$0DA1BD17,$00000000
	DC.L  $3FFE0000,$D62B80D6,$2B80D62C,$00000000
	DC.L  $3FFC0000,$B6B07F38,$CE90E46B,$00000000
	DC.L  $3FFE0000,$D3680D36,$80D3680D,$00000000
	DC.L  $3FFC0000,$C3FD0329,$06488481,$00000000
	DC.L  $3FFE0000,$D0B69FCB,$D2580D0B,$00000000
	DC.L  $3FFC0000,$D11DE0FF,$15AB18CA,$00000000
	DC.L  $3FFE0000,$CE168A77,$25080CE1,$00000000
	DC.L  $3FFC0000,$DE1433A1,$6C66B150,$00000000
	DC.L  $3FFE0000,$CB8727C0,$65C393E0,$00000000
	DC.L  $3FFC0000,$EAE10B5A,$7DDC8ADD,$00000000
	DC.L  $3FFE0000,$C907DA4E,$871146AD,$00000000
	DC.L  $3FFC0000,$F7856E5E,$E2C9B291,$00000000
	DC.L  $3FFE0000,$C6980C69,$80C6980C,$00000000
	DC.L  $3FFD0000,$82012CA5,$A68206D7,$00000000
	DC.L  $3FFE0000,$C4372F85,$5D824CA6,$00000000
	DC.L  $3FFD0000,$882C5FCD,$7256A8C5,$00000000
	DC.L  $3FFE0000,$C1E4BBD5,$95F6E947,$00000000
	DC.L  $3FFD0000,$8E44C60B,$4CCFD7DE,$00000000
	DC.L  $3FFE0000,$BFA02FE8,$0BFA02FF,$00000000
	DC.L  $3FFD0000,$944AD09E,$F4351AF6,$00000000
	DC.L  $3FFE0000,$BD691047,$07661AA3,$00000000
	DC.L  $3FFD0000,$9A3EECD4,$C3EAA6B2,$00000000
	DC.L  $3FFE0000,$BB3EE721,$A54D880C,$00000000
	DC.L  $3FFD0000,$A0218434,$353F1DE8,$00000000
	DC.L  $3FFE0000,$B92143FA,$36F5E02E,$00000000
	DC.L  $3FFD0000,$A5F2FCAB,$BBC506DA,$00000000
	DC.L  $3FFE0000,$B70FBB5A,$19BE3659,$00000000
	DC.L  $3FFD0000,$ABB3B8BA,$2AD362A5,$00000000
	DC.L  $3FFE0000,$B509E68A,$9B94821F,$00000000
	DC.L  $3FFD0000,$B1641795,$CE3CA97B,$00000000
	DC.L  $3FFE0000,$B30F6352,$8917C80B,$00000000
	DC.L  $3FFD0000,$B7047551,$5D0F1C61,$00000000
	DC.L  $3FFE0000,$B11FD3B8,$0B11FD3C,$00000000
	DC.L  $3FFD0000,$BC952AFE,$EA3D13E1,$00000000
	DC.L  $3FFE0000,$AF3ADDC6,$80AF3ADE,$00000000
	DC.L  $3FFD0000,$C2168ED0,$F458BA4A,$00000000
	DC.L  $3FFE0000,$AD602B58,$0AD602B6,$00000000
	DC.L  $3FFD0000,$C788F439,$B3163BF1,$00000000
	DC.L  $3FFE0000,$AB8F69E2,$8359CD11,$00000000
	DC.L  $3FFD0000,$CCECAC08,$BF04565D,$00000000
	DC.L  $3FFE0000,$A9C84A47,$A07F5638,$00000000
	DC.L  $3FFD0000,$D2420487,$2DD85160,$00000000
	DC.L  $3FFE0000,$A80A80A8,$0A80A80B,$00000000
	DC.L  $3FFD0000,$D7894992,$3BC3588A,$00000000
	DC.L  $3FFE0000,$A655C439,$2D7B73A8,$00000000
	DC.L  $3FFD0000,$DCC2C4B4,$9887DACC,$00000000
	DC.L  $3FFE0000,$A4A9CF1D,$96833751,$00000000
	DC.L  $3FFD0000,$E1EEBD3E,$6D6A6B9E,$00000000
	DC.L  $3FFE0000,$A3065E3F,$AE7CD0E0,$00000000
	DC.L  $3FFD0000,$E70D785C,$2F9F5BDC,$00000000
	DC.L  $3FFE0000,$A16B312E,$A8FC377D,$00000000
	DC.L  $3FFD0000,$EC1F392C,$5179F283,$00000000
	DC.L  $3FFE0000,$9FD809FD,$809FD80A,$00000000
	DC.L  $3FFD0000,$F12440D3,$E36130E6,$00000000
	DC.L  $3FFE0000,$9E4CAD23,$DD5F3A20,$00000000
	DC.L  $3FFD0000,$F61CCE92,$346600BB,$00000000
	DC.L  $3FFE0000,$9CC8E160,$C3FB19B9,$00000000
	DC.L  $3FFD0000,$FB091FD3,$8145630A,$00000000
	DC.L  $3FFE0000,$9B4C6F9E,$F03A3CAA,$00000000
	DC.L  $3FFD0000,$FFE97042,$BFA4C2AD,$00000000
	DC.L  $3FFE0000,$99D722DA,$BDE58F06,$00000000
	DC.L  $3FFE0000,$825EFCED,$49369330,$00000000
	DC.L  $3FFE0000,$9868C809,$868C8098,$00000000
	DC.L  $3FFE0000,$84C37A7A,$B9A905C9,$00000000
	DC.L  $3FFE0000,$97012E02,$5C04B809,$00000000
	DC.L  $3FFE0000,$87224C2E,$8E645FB7,$00000000
	DC.L  $3FFE0000,$95A02568,$095A0257,$00000000
	DC.L  $3FFE0000,$897B8CAC,$9F7DE298,$00000000
	DC.L  $3FFE0000,$94458094,$45809446,$00000000
	DC.L  $3FFE0000,$8BCF55DE,$C4CD05FE,$00000000
	DC.L  $3FFE0000,$92F11384,$0497889C,$00000000
	DC.L  $3FFE0000,$8E1DC0FB,$89E125E5,$00000000
	DC.L  $3FFE0000,$91A2B3C4,$D5E6F809,$00000000
	DC.L  $3FFE0000,$9066E68C,$955B6C9B,$00000000
	DC.L  $3FFE0000,$905A3863,$3E06C43B,$00000000
	DC.L  $3FFE0000,$92AADE74,$C7BE59E0,$00000000
	DC.L  $3FFE0000,$8F1779D9,$FDC3A219,$00000000
	DC.L  $3FFE0000,$94E9BFF6,$15845643,$00000000
	DC.L  $3FFE0000,$8DDA5202,$37694809,$00000000
	DC.L  $3FFE0000,$9723A1B7,$20134203,$00000000
	DC.L  $3FFE0000,$8CA29C04,$6514E023,$00000000
	DC.L  $3FFE0000,$995899C8,$90EB8990,$00000000
	DC.L  $3FFE0000,$8B70344A,$139BC75A,$00000000
	DC.L  $3FFE0000,$9B88BDAA,$3A3DAE2F,$00000000
	DC.L  $3FFE0000,$8A42F870,$5669DB46,$00000000
	DC.L  $3FFE0000,$9DB4224F,$FFE1157C,$00000000
	DC.L  $3FFE0000,$891AC73A,$E9819B50,$00000000
	DC.L  $3FFE0000,$9FDADC26,$8B7A12DA,$00000000
	DC.L  $3FFE0000,$87F78087,$F78087F8,$00000000
	DC.L  $3FFE0000,$A1FCFF17,$CE733BD4,$00000000
	DC.L  $3FFE0000,$86D90544,$7A34ACC6,$00000000
	DC.L  $3FFE0000,$A41A9E8F,$5446FB9F,$00000000
	DC.L  $3FFE0000,$85BF3761,$2CEE3C9B,$00000000
	DC.L  $3FFE0000,$A633CD7E,$6771CD8B,$00000000
	DC.L  $3FFE0000,$84A9F9C8,$084A9F9D,$00000000
	DC.L  $3FFE0000,$A8489E60,$0B435A5E,$00000000
	DC.L  $3FFE0000,$83993052,$3FBE3368,$00000000
	DC.L  $3FFE0000,$AA59233C,$CCA4BD49,$00000000
	DC.L  $3FFE0000,$828CBFBE,$B9A020A3,$00000000
	DC.L  $3FFE0000,$AC656DAE,$6BCC4985,$00000000
	DC.L  $3FFE0000,$81848DA8,$FAF0D277,$00000000
	DC.L  $3FFE0000,$AE6D8EE3,$60BB2468,$00000000
	DC.L  $3FFE0000,$80808080,$80808081,$00000000
	DC.L  $3FFE0000,$B07197A2,$3C46C654,$00000000

ADJK	equ	L_SCR1

X	equ	FP_SCR1
XDCARE	equ	X+2
XFRAC	equ	X+4

F	equ	FP_SCR2
FFRAC	equ	F+4

KLOG2	equ	FP_SCR3

SAVEU	equ	FP_SCR4

	xref	t_frcinx
	xref	t_extdnrm
	xref	t_operr
	xref	t_dz

	xdef	slognd
slognd:
*--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT

	MOVE.L		#-100,ADJK(a6)	...INPUT = 2^(ADJK) * FP0

*----normalize the input value by left shifting k bits (k to be determined
*----below), adjusting exponent and storing -k to  ADJK
*----the value TWOTO100 is no longer needed.
*----Note that this code assumes the denormalized input is NON-ZERO.

     MoveM.L	D2-D7,-(A7)		...save some registers 
     Clr.L	D3			...D3 is exponent of smallest norm. #
     Move.L	4(A0),D4
     Move.L	8(A0),D5		...(D4,D5) is (Hi_X,Lo_X)
     Clr.L	D2			...D2 used for holding K

     Tst.L	D4
     BNE.B	HiX_not0

HiX_0:
     Move.L	D5,D4
     Clr.L	D5
     Move.L	#32,D2
     Clr.L	D6
     BFFFO      D4{0:32},D6
     LSL.L      D6,D4
     Add.L	D6,D2			...(D3,D4,D5) is normalized

     Move.L	D3,X(a6)
     Move.L	D4,XFRAC(a6)
     Move.L	D5,XFRAC+4(a6)
     Neg.L	D2
     Move.L	D2,ADJK(a6)
     FMove.X	X(a6),FP0
     MoveM.L	(A7)+,D2-D7		...restore registers
     LEA	X(a6),A0
     Bra.B	LOGBGN			...begin regular log(X)


HiX_not0:
     Clr.L	D6
     BFFFO	D4{0:32},D6		...find first 1
     Move.L	D6,D2			...get k
     LSL.L	D6,D4
     Move.L	D5,D7			...a copy of D5
     LSL.L	D6,D5
     Neg.L	D6
     AddI.L	#32,D6
     LSR.L	D6,D7
     Or.L	D7,D4			...(D3,D4,D5) normalized

     Move.L	D3,X(a6)
     Move.L	D4,XFRAC(a6)
     Move.L	D5,XFRAC+4(a6)
     Neg.L	D2
     Move.L	D2,ADJK(a6)
     FMove.X	X(a6),FP0
     MoveM.L	(A7)+,D2-D7		...restore registers
     LEA	X(a6),A0
     Bra.B	LOGBGN			...begin regular log(X)


	xdef	slogn
slogn:
*--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S

	FMOVE.X		(A0),FP0	...LOAD INPUT
	CLR.L		ADJK(a6)

LOGBGN:
*--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
*--A FINITE, NON-ZERO, NORMALIZED NUMBER.

	move.l	(a0),d0
	move.w	4(a0),d0

	move.l	(a0),X(a6)
	move.l	4(a0),X+4(a6)
	move.l	8(a0),X+8(a6)

	TST.L	D0		...CHECK IF X IS NEGATIVE
	BLT.W	LOGNEG		...LOG OF NEGATIVE ARGUMENT IS INVALID
	CMP2.L	BOUNDS1,D0	...X IS POSITIVE, CHECK IF X IS NEAR 1
	BCC.W	LOGNEAR1	...BOUNDS IS ROUGHLY [15/16, 17/16]

LOGMAIN:
*--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1

*--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
*--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
*--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
*--			 = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
*--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
*--LOG(1+U) CAN BE VERY EFFICIENT.
*--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
*--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. 

*--GET K, Y, F, AND ADDRESS OF 1/F.
	ASR.L	#8,D0
	ASR.L	#8,D0		...SHIFTED 16 BITS, BIASED EXPO. OF X
	SUBI.L	#$3FFF,D0 	...THIS IS K
	ADD.L	ADJK(a6),D0	...ADJUST K, ORIGINAL INPUT MAY BE  DENORM.
	LEA	LOGTBL,A0 	...BASE ADDRESS OF 1/F AND LOG(F)
	FMOVE.L	D0,FP1		...CONVERT K TO FLOATING-POINT FORMAT

*--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
	MOVE.L	#$3FFF0000,X(a6)	...X IS NOW Y, I.E. 2^(-K)*X
	MOVE.L	XFRAC(a6),FFRAC(a6)
	ANDI.L	#$FE000000,FFRAC(a6) ...FIRST 7 BITS OF Y
	ORI.L	#$01000000,FFRAC(a6) ...GET F: ATTACH A 1 AT THE EIGHTH BIT
	MOVE.L	FFRAC(a6),D0	...READY TO GET ADDRESS OF 1/F
	ANDI.L	#$7E000000,D0	
	ASR.L	#8,D0
	ASR.L	#8,D0
	ASR.L	#4,D0		...SHIFTED 20, D0 IS THE DISPLACEMENT
	ADDA.L	D0,A0		...A0 IS THE ADDRESS FOR 1/F

	FMOVE.X	X(a6),FP0
	move.l	#$3fff0000,F(a6)
	clr.l	F+8(a6)
	FSUB.X	F(a6),FP0		...Y-F
	FMOVEm.X FP2/fp3,-(sp)	...SAVE FP2 WHILE FP0 IS NOT READY
*--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
*--REGISTERS SAVED: FPCR, FP1, FP2

LP1CONT1:
*--AN RE-ENTRY POINT FOR LOGNP1
	FMUL.X	(A0),FP0	...FP0 IS U = (Y-F)/F
	FMUL.X	LOGOF2,FP1	...GET K*LOG2 WHILE FP0 IS NOT READY
	FMOVE.X	FP0,FP2
	FMUL.X	FP2,FP2		...FP2 IS V=U*U
	FMOVE.X	FP1,KLOG2(a6)	...PUT K*LOG2 IN MEMORY, FREE FP1

*--LOG(1+U) IS APPROXIMATED BY
*--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
*--[U + V*(A1+V*(A3+V*A5))]  +  [U*V*(A2+V*(A4+V*A6))]

	FMOVE.X	FP2,FP3
	FMOVE.X	FP2,FP1	

	FMUL.D	LOGA6,FP1	...V*A6
	FMUL.D	LOGA5,FP2	...V*A5

	FADD.D	LOGA4,FP1	...A4+V*A6
	FADD.D	LOGA3,FP2	...A3+V*A5

	FMUL.X	FP3,FP1		...V*(A4+V*A6)
	FMUL.X	FP3,FP2		...V*(A3+V*A5)

	FADD.D	LOGA2,FP1	...A2+V*(A4+V*A6)
	FADD.D	LOGA1,FP2	...A1+V*(A3+V*A5)

	FMUL.X	FP3,FP1		...V*(A2+V*(A4+V*A6))
	ADDA.L	#16,A0		...ADDRESS OF LOG(F)
	FMUL.X	FP3,FP2		...V*(A1+V*(A3+V*A5)), FP3 RELEASED

	FMUL.X	FP0,FP1		...U*V*(A2+V*(A4+V*A6))
	FADD.X	FP2,FP0		...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED

	FADD.X	(A0),FP1	...LOG(F)+U*V*(A2+V*(A4+V*A6))
	FMOVEm.X  (sp)+,FP2/fp3	...RESTORE FP2
	FADD.X	FP1,FP0		...FP0 IS LOG(F) + LOG(1+U)

	fmove.l	d1,fpcr
	FADD.X	KLOG2(a6),FP0	...FINAL ADD
	bra	t_frcinx


LOGNEAR1:
*--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
	FMOVE.X	FP0,FP1
	FSUB.S	one,FP1		...FP1 IS X-1
	FADD.S	one,FP0		...FP0 IS X+1
	FADD.X	FP1,FP1		...FP1 IS 2(X-1)
*--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
*--IN U, U = 2(X-1)/(X+1) = FP1/FP0

LP1CONT2:
*--THIS IS AN RE-ENTRY POINT FOR LOGNP1
	FDIV.X	FP0,FP1		...FP1 IS U
	FMOVEm.X FP2/fp3,-(sp)	 ...SAVE FP2
*--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
*--LET V=U*U, W=V*V, CALCULATE
*--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
*--U + U*V*(  [B1 + W*(B3 + W*B5)]  +  [V*(B2 + W*B4)]  )
	FMOVE.X	FP1,FP0
	FMUL.X	FP0,FP0	...FP0 IS V
	FMOVE.X	FP1,SAVEU(a6) ...STORE U IN MEMORY, FREE FP1
	FMOVE.X	FP0,FP1	
	FMUL.X	FP1,FP1	...FP1 IS W

	FMOVE.D	LOGB5,FP3
	FMOVE.D	LOGB4,FP2

	FMUL.X	FP1,FP3	...W*B5
	FMUL.X	FP1,FP2	...W*B4

	FADD.D	LOGB3,FP3 ...B3+W*B5
	FADD.D	LOGB2,FP2 ...B2+W*B4

	FMUL.X	FP3,FP1	...W*(B3+W*B5), FP3 RELEASED

	FMUL.X	FP0,FP2	...V*(B2+W*B4)

	FADD.D	LOGB1,FP1 ...B1+W*(B3+W*B5)
	FMUL.X	SAVEU(a6),FP0 ...FP0 IS U*V

	FADD.X	FP2,FP1	...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
	FMOVEm.X (sp)+,FP2/fp3 ...FP2 RESTORED

	FMUL.X	FP1,FP0	...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )

	fmove.l	d1,fpcr
	FADD.X	SAVEU(a6),FP0		
	bra	t_frcinx
	rts

LOGNEG:
*--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
	bra	t_operr

	xdef	slognp1d
slognp1d:
*--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
* Simply return the denorm

	bra	t_extdnrm

	xdef	slognp1
slognp1:
*--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S

	FMOVE.X	(A0),FP0	...LOAD INPUT
	fabs.x	fp0		;test magnitude
	fcmp.x	LTHOLD,fp0	;compare with min threshold
	fbgt.w	LP1REAL		;if greater, continue
	fmove.l	#0,fpsr		;clr N flag from compare
	fmove.l	d1,fpcr
	fmove.x	(a0),fp0	;return signed argument
	bra	t_frcinx

LP1REAL:
	FMOVE.X	(A0),FP0	...LOAD INPUT
	CLR.L	ADJK(a6)
	FMOVE.X	FP0,FP1	...FP1 IS INPUT Z
	FADD.S	one,FP0	...X := ROUND(1+Z)
	FMOVE.X	FP0,X(a6)
	MOVE.W	XFRAC(a6),XDCARE(a6)
	MOVE.L	X(a6),D0
	TST.L	D0
	BLE.W	LP1NEG0	...LOG OF ZERO OR -VE
	CMP2.L	BOUNDS2,D0
	BCS.W	LOGMAIN	...BOUNDS2 IS [1/2,3/2]
*--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
*--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
*--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).

LP1NEAR1:
*--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
	CMP2.L	BOUNDS1,D0
	BCS.B	LP1CARE

LP1ONE16:
*--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
*--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
	FADD.X	FP1,FP1	...FP1 IS 2Z
	FADD.S	one,FP0	...FP0 IS 1+X
*--U = FP1/FP0
	BRA.W	LP1CONT2

LP1CARE:
*--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
*--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
*--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
*--THERE ARE ONLY TWO CASES.
*--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
*--CASE 2: 1+Z > 1, THEN K = 0  AND Y-F = (1-F) + Z
*--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
*--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.

	MOVE.L	XFRAC(a6),FFRAC(a6)
	ANDI.L	#$FE000000,FFRAC(a6)
	ORI.L	#$01000000,FFRAC(a6)	...F OBTAINED
	CMPI.L	#$3FFF8000,D0	...SEE IF 1+Z > 1
	BGE.B	KISZERO

KISNEG1:
	FMOVE.S	TWO,FP0
	move.l	#$3fff0000,F(a6)
	clr.l	F+8(a6)
	FSUB.X	F(a6),FP0	...2-F
	MOVE.L	FFRAC(a6),D0
	ANDI.L	#$7E000000,D0
	ASR.L	#8,D0
	ASR.L	#8,D0
	ASR.L	#4,D0		...D0 CONTAINS DISPLACEMENT FOR 1/F
	FADD.X	FP1,FP1		...GET 2Z
	FMOVEm.X FP2/fp3,-(sp)	...SAVE FP2 
	FADD.X	FP1,FP0		...FP0 IS Y-F = (2-F)+2Z
	LEA	LOGTBL,A0	...A0 IS ADDRESS OF 1/F
	ADDA.L	D0,A0
	FMOVE.S	negone,FP1	...FP1 IS K = -1
	BRA.W	LP1CONT1

KISZERO:
	FMOVE.S	one,FP0
	move.l	#$3fff0000,F(a6)
	clr.l	F+8(a6)
	FSUB.X	F(a6),FP0		...1-F
	MOVE.L	FFRAC(a6),D0
	ANDI.L	#$7E000000,D0
	ASR.L	#8,D0
	ASR.L	#8,D0
	ASR.L	#4,D0
	FADD.X	FP1,FP0		...FP0 IS Y-F
	FMOVEm.X FP2/fp3,-(sp)	...FP2 SAVED
	LEA	LOGTBL,A0
	ADDA.L	D0,A0	 	...A0 IS ADDRESS OF 1/F
	FMOVE.S	zero,FP1	...FP1 IS K = 0
	BRA.W	LP1CONT1

LP1NEG0:
*--FPCR SAVED. D0 IS X IN COMPACT FORM.
	TST.L	D0
	BLT.B	LP1NEG
LP1ZERO:
	FMOVE.S	negone,FP0

	fmove.l	d1,fpcr
	bra t_dz

LP1NEG:
	FMOVE.S	zero,FP0

	fmove.l	d1,fpcr
	bra	t_operr

	end